Properties

Label 4225.2.a.bf.1.2
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 845)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.445042 q^{2} +3.24698 q^{3} -1.80194 q^{4} +1.44504 q^{6} +3.24698 q^{7} -1.69202 q^{8} +7.54288 q^{9} +0.692021 q^{11} -5.85086 q^{12} +1.44504 q^{14} +2.85086 q^{16} -3.74094 q^{17} +3.35690 q^{18} +1.53319 q^{19} +10.5429 q^{21} +0.307979 q^{22} +1.22521 q^{23} -5.49396 q^{24} +14.7506 q^{27} -5.85086 q^{28} -6.07069 q^{29} +8.45473 q^{31} +4.65279 q^{32} +2.24698 q^{33} -1.66487 q^{34} -13.5918 q^{36} -1.89008 q^{37} +0.682333 q^{38} +0.457123 q^{41} +4.69202 q^{42} +6.19806 q^{43} -1.24698 q^{44} +0.545269 q^{46} +11.5429 q^{47} +9.25667 q^{48} +3.54288 q^{49} -12.1468 q^{51} -0.801938 q^{53} +6.56465 q^{54} -5.49396 q^{56} +4.97823 q^{57} -2.70171 q^{58} -6.60388 q^{59} -4.19806 q^{61} +3.76271 q^{62} +24.4916 q^{63} -3.63102 q^{64} +1.00000 q^{66} -13.8116 q^{67} +6.74094 q^{68} +3.97823 q^{69} +9.87263 q^{71} -12.7627 q^{72} +8.05429 q^{73} -0.841166 q^{74} -2.76271 q^{76} +2.24698 q^{77} -16.5157 q^{79} +25.2664 q^{81} +0.203439 q^{82} +6.17092 q^{83} -18.9976 q^{84} +2.75840 q^{86} -19.7114 q^{87} -1.17092 q^{88} +10.5254 q^{89} -2.20775 q^{92} +27.4523 q^{93} +5.13706 q^{94} +15.1075 q^{96} -3.45473 q^{97} +1.57673 q^{98} +5.21983 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{3} - q^{4} + 4 q^{6} + 5 q^{7} + 4 q^{9} - 3 q^{11} - 4 q^{12} + 4 q^{14} - 5 q^{16} + 3 q^{17} + 6 q^{18} + 8 q^{19} + 13 q^{21} + 6 q^{22} + 2 q^{23} - 7 q^{24} + 8 q^{27} - 4 q^{28}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.445042 0.314692 0.157346 0.987544i \(-0.449706\pi\)
0.157346 + 0.987544i \(0.449706\pi\)
\(3\) 3.24698 1.87464 0.937322 0.348464i \(-0.113297\pi\)
0.937322 + 0.348464i \(0.113297\pi\)
\(4\) −1.80194 −0.900969
\(5\) 0 0
\(6\) 1.44504 0.589936
\(7\) 3.24698 1.22724 0.613621 0.789600i \(-0.289712\pi\)
0.613621 + 0.789600i \(0.289712\pi\)
\(8\) −1.69202 −0.598220
\(9\) 7.54288 2.51429
\(10\) 0 0
\(11\) 0.692021 0.208652 0.104326 0.994543i \(-0.466731\pi\)
0.104326 + 0.994543i \(0.466731\pi\)
\(12\) −5.85086 −1.68900
\(13\) 0 0
\(14\) 1.44504 0.386204
\(15\) 0 0
\(16\) 2.85086 0.712714
\(17\) −3.74094 −0.907311 −0.453655 0.891177i \(-0.649880\pi\)
−0.453655 + 0.891177i \(0.649880\pi\)
\(18\) 3.35690 0.791228
\(19\) 1.53319 0.351737 0.175869 0.984414i \(-0.443727\pi\)
0.175869 + 0.984414i \(0.443727\pi\)
\(20\) 0 0
\(21\) 10.5429 2.30064
\(22\) 0.307979 0.0656612
\(23\) 1.22521 0.255474 0.127737 0.991808i \(-0.459229\pi\)
0.127737 + 0.991808i \(0.459229\pi\)
\(24\) −5.49396 −1.12145
\(25\) 0 0
\(26\) 0 0
\(27\) 14.7506 2.83876
\(28\) −5.85086 −1.10571
\(29\) −6.07069 −1.12730 −0.563649 0.826014i \(-0.690603\pi\)
−0.563649 + 0.826014i \(0.690603\pi\)
\(30\) 0 0
\(31\) 8.45473 1.51851 0.759257 0.650791i \(-0.225562\pi\)
0.759257 + 0.650791i \(0.225562\pi\)
\(32\) 4.65279 0.822505
\(33\) 2.24698 0.391149
\(34\) −1.66487 −0.285524
\(35\) 0 0
\(36\) −13.5918 −2.26530
\(37\) −1.89008 −0.310728 −0.155364 0.987857i \(-0.549655\pi\)
−0.155364 + 0.987857i \(0.549655\pi\)
\(38\) 0.682333 0.110689
\(39\) 0 0
\(40\) 0 0
\(41\) 0.457123 0.0713907 0.0356953 0.999363i \(-0.488635\pi\)
0.0356953 + 0.999363i \(0.488635\pi\)
\(42\) 4.69202 0.723995
\(43\) 6.19806 0.945196 0.472598 0.881278i \(-0.343316\pi\)
0.472598 + 0.881278i \(0.343316\pi\)
\(44\) −1.24698 −0.187989
\(45\) 0 0
\(46\) 0.545269 0.0803956
\(47\) 11.5429 1.68370 0.841851 0.539710i \(-0.181466\pi\)
0.841851 + 0.539710i \(0.181466\pi\)
\(48\) 9.25667 1.33608
\(49\) 3.54288 0.506125
\(50\) 0 0
\(51\) −12.1468 −1.70089
\(52\) 0 0
\(53\) −0.801938 −0.110155 −0.0550773 0.998482i \(-0.517541\pi\)
−0.0550773 + 0.998482i \(0.517541\pi\)
\(54\) 6.56465 0.893335
\(55\) 0 0
\(56\) −5.49396 −0.734161
\(57\) 4.97823 0.659383
\(58\) −2.70171 −0.354752
\(59\) −6.60388 −0.859751 −0.429876 0.902888i \(-0.641443\pi\)
−0.429876 + 0.902888i \(0.641443\pi\)
\(60\) 0 0
\(61\) −4.19806 −0.537507 −0.268753 0.963209i \(-0.586612\pi\)
−0.268753 + 0.963209i \(0.586612\pi\)
\(62\) 3.76271 0.477865
\(63\) 24.4916 3.08565
\(64\) −3.63102 −0.453878
\(65\) 0 0
\(66\) 1.00000 0.123091
\(67\) −13.8116 −1.68736 −0.843679 0.536847i \(-0.819615\pi\)
−0.843679 + 0.536847i \(0.819615\pi\)
\(68\) 6.74094 0.817459
\(69\) 3.97823 0.478923
\(70\) 0 0
\(71\) 9.87263 1.17167 0.585833 0.810432i \(-0.300768\pi\)
0.585833 + 0.810432i \(0.300768\pi\)
\(72\) −12.7627 −1.50410
\(73\) 8.05429 0.942684 0.471342 0.881951i \(-0.343770\pi\)
0.471342 + 0.881951i \(0.343770\pi\)
\(74\) −0.841166 −0.0977836
\(75\) 0 0
\(76\) −2.76271 −0.316904
\(77\) 2.24698 0.256067
\(78\) 0 0
\(79\) −16.5157 −1.85816 −0.929082 0.369873i \(-0.879401\pi\)
−0.929082 + 0.369873i \(0.879401\pi\)
\(80\) 0 0
\(81\) 25.2664 2.80737
\(82\) 0.203439 0.0224661
\(83\) 6.17092 0.677346 0.338673 0.940904i \(-0.390022\pi\)
0.338673 + 0.940904i \(0.390022\pi\)
\(84\) −18.9976 −2.07281
\(85\) 0 0
\(86\) 2.75840 0.297446
\(87\) −19.7114 −2.11328
\(88\) −1.17092 −0.124820
\(89\) 10.5254 1.11569 0.557846 0.829944i \(-0.311628\pi\)
0.557846 + 0.829944i \(0.311628\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −2.20775 −0.230174
\(93\) 27.4523 2.84667
\(94\) 5.13706 0.529848
\(95\) 0 0
\(96\) 15.1075 1.54191
\(97\) −3.45473 −0.350775 −0.175387 0.984500i \(-0.556118\pi\)
−0.175387 + 0.984500i \(0.556118\pi\)
\(98\) 1.57673 0.159274
\(99\) 5.21983 0.524613
\(100\) 0 0
\(101\) 4.32304 0.430159 0.215079 0.976597i \(-0.430999\pi\)
0.215079 + 0.976597i \(0.430999\pi\)
\(102\) −5.40581 −0.535255
\(103\) 4.25906 0.419658 0.209829 0.977738i \(-0.432709\pi\)
0.209829 + 0.977738i \(0.432709\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.356896 −0.0346648
\(107\) 11.2174 1.08443 0.542215 0.840240i \(-0.317586\pi\)
0.542215 + 0.840240i \(0.317586\pi\)
\(108\) −26.5797 −2.55763
\(109\) −2.37196 −0.227193 −0.113596 0.993527i \(-0.536237\pi\)
−0.113596 + 0.993527i \(0.536237\pi\)
\(110\) 0 0
\(111\) −6.13706 −0.582504
\(112\) 9.25667 0.874673
\(113\) 1.72886 0.162637 0.0813186 0.996688i \(-0.474087\pi\)
0.0813186 + 0.996688i \(0.474087\pi\)
\(114\) 2.21552 0.207503
\(115\) 0 0
\(116\) 10.9390 1.01566
\(117\) 0 0
\(118\) −2.93900 −0.270557
\(119\) −12.1468 −1.11349
\(120\) 0 0
\(121\) −10.5211 −0.956464
\(122\) −1.86831 −0.169149
\(123\) 1.48427 0.133832
\(124\) −15.2349 −1.36813
\(125\) 0 0
\(126\) 10.8998 0.971029
\(127\) −3.78986 −0.336295 −0.168148 0.985762i \(-0.553779\pi\)
−0.168148 + 0.985762i \(0.553779\pi\)
\(128\) −10.9215 −0.965337
\(129\) 20.1250 1.77191
\(130\) 0 0
\(131\) 5.48858 0.479540 0.239770 0.970830i \(-0.422928\pi\)
0.239770 + 0.970830i \(0.422928\pi\)
\(132\) −4.04892 −0.352413
\(133\) 4.97823 0.431667
\(134\) −6.14675 −0.530998
\(135\) 0 0
\(136\) 6.32975 0.542771
\(137\) 2.58211 0.220604 0.110302 0.993898i \(-0.464818\pi\)
0.110302 + 0.993898i \(0.464818\pi\)
\(138\) 1.77048 0.150713
\(139\) −14.4330 −1.22419 −0.612094 0.790785i \(-0.709673\pi\)
−0.612094 + 0.790785i \(0.709673\pi\)
\(140\) 0 0
\(141\) 37.4795 3.15634
\(142\) 4.39373 0.368714
\(143\) 0 0
\(144\) 21.5036 1.79197
\(145\) 0 0
\(146\) 3.58450 0.296655
\(147\) 11.5036 0.948805
\(148\) 3.40581 0.279956
\(149\) 0.572417 0.0468942 0.0234471 0.999725i \(-0.492536\pi\)
0.0234471 + 0.999725i \(0.492536\pi\)
\(150\) 0 0
\(151\) −1.23490 −0.100495 −0.0502473 0.998737i \(-0.516001\pi\)
−0.0502473 + 0.998737i \(0.516001\pi\)
\(152\) −2.59419 −0.210416
\(153\) −28.2174 −2.28124
\(154\) 1.00000 0.0805823
\(155\) 0 0
\(156\) 0 0
\(157\) −11.5375 −0.920793 −0.460396 0.887713i \(-0.652293\pi\)
−0.460396 + 0.887713i \(0.652293\pi\)
\(158\) −7.35019 −0.584750
\(159\) −2.60388 −0.206501
\(160\) 0 0
\(161\) 3.97823 0.313528
\(162\) 11.2446 0.883458
\(163\) −7.28382 −0.570512 −0.285256 0.958451i \(-0.592079\pi\)
−0.285256 + 0.958451i \(0.592079\pi\)
\(164\) −0.823708 −0.0643208
\(165\) 0 0
\(166\) 2.74632 0.213155
\(167\) −14.4480 −1.11802 −0.559011 0.829160i \(-0.688819\pi\)
−0.559011 + 0.829160i \(0.688819\pi\)
\(168\) −17.8388 −1.37629
\(169\) 0 0
\(170\) 0 0
\(171\) 11.5646 0.884371
\(172\) −11.1685 −0.851592
\(173\) −1.81940 −0.138326 −0.0691631 0.997605i \(-0.522033\pi\)
−0.0691631 + 0.997605i \(0.522033\pi\)
\(174\) −8.77240 −0.665034
\(175\) 0 0
\(176\) 1.97285 0.148709
\(177\) −21.4426 −1.61173
\(178\) 4.68425 0.351100
\(179\) −18.2470 −1.36384 −0.681922 0.731425i \(-0.738856\pi\)
−0.681922 + 0.731425i \(0.738856\pi\)
\(180\) 0 0
\(181\) −11.8605 −0.881587 −0.440794 0.897608i \(-0.645303\pi\)
−0.440794 + 0.897608i \(0.645303\pi\)
\(182\) 0 0
\(183\) −13.6310 −1.00763
\(184\) −2.07308 −0.152830
\(185\) 0 0
\(186\) 12.2174 0.895826
\(187\) −2.58881 −0.189313
\(188\) −20.7995 −1.51696
\(189\) 47.8950 3.48385
\(190\) 0 0
\(191\) 8.56465 0.619716 0.309858 0.950783i \(-0.399718\pi\)
0.309858 + 0.950783i \(0.399718\pi\)
\(192\) −11.7899 −0.850860
\(193\) 21.6993 1.56195 0.780976 0.624562i \(-0.214722\pi\)
0.780976 + 0.624562i \(0.214722\pi\)
\(194\) −1.53750 −0.110386
\(195\) 0 0
\(196\) −6.38404 −0.456003
\(197\) 21.8431 1.55626 0.778128 0.628106i \(-0.216170\pi\)
0.778128 + 0.628106i \(0.216170\pi\)
\(198\) 2.32304 0.165092
\(199\) −3.67025 −0.260177 −0.130089 0.991502i \(-0.541526\pi\)
−0.130089 + 0.991502i \(0.541526\pi\)
\(200\) 0 0
\(201\) −44.8461 −3.16320
\(202\) 1.92394 0.135368
\(203\) −19.7114 −1.38347
\(204\) 21.8877 1.53244
\(205\) 0 0
\(206\) 1.89546 0.132063
\(207\) 9.24160 0.642336
\(208\) 0 0
\(209\) 1.06100 0.0733908
\(210\) 0 0
\(211\) −15.2862 −1.05235 −0.526173 0.850378i \(-0.676374\pi\)
−0.526173 + 0.850378i \(0.676374\pi\)
\(212\) 1.44504 0.0992459
\(213\) 32.0562 2.19646
\(214\) 4.99223 0.341262
\(215\) 0 0
\(216\) −24.9584 −1.69820
\(217\) 27.4523 1.86359
\(218\) −1.05562 −0.0714958
\(219\) 26.1521 1.76720
\(220\) 0 0
\(221\) 0 0
\(222\) −2.73125 −0.183310
\(223\) −3.66786 −0.245618 −0.122809 0.992430i \(-0.539190\pi\)
−0.122809 + 0.992430i \(0.539190\pi\)
\(224\) 15.1075 1.00941
\(225\) 0 0
\(226\) 0.769414 0.0511806
\(227\) 18.5676 1.23238 0.616188 0.787599i \(-0.288676\pi\)
0.616188 + 0.787599i \(0.288676\pi\)
\(228\) −8.97046 −0.594083
\(229\) −16.0978 −1.06377 −0.531887 0.846815i \(-0.678517\pi\)
−0.531887 + 0.846815i \(0.678517\pi\)
\(230\) 0 0
\(231\) 7.29590 0.480035
\(232\) 10.2717 0.674372
\(233\) 20.3056 1.33026 0.665132 0.746726i \(-0.268375\pi\)
0.665132 + 0.746726i \(0.268375\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.8998 0.774609
\(237\) −53.6262 −3.48340
\(238\) −5.40581 −0.350407
\(239\) 20.7168 1.34006 0.670028 0.742335i \(-0.266282\pi\)
0.670028 + 0.742335i \(0.266282\pi\)
\(240\) 0 0
\(241\) 25.8582 1.66567 0.832835 0.553521i \(-0.186716\pi\)
0.832835 + 0.553521i \(0.186716\pi\)
\(242\) −4.68233 −0.300992
\(243\) 37.7875 2.42407
\(244\) 7.56465 0.484277
\(245\) 0 0
\(246\) 0.660563 0.0421159
\(247\) 0 0
\(248\) −14.3056 −0.908406
\(249\) 20.0368 1.26978
\(250\) 0 0
\(251\) −26.2989 −1.65997 −0.829985 0.557785i \(-0.811651\pi\)
−0.829985 + 0.557785i \(0.811651\pi\)
\(252\) −44.1323 −2.78007
\(253\) 0.847871 0.0533052
\(254\) −1.68664 −0.105829
\(255\) 0 0
\(256\) 2.40150 0.150094
\(257\) 6.04354 0.376986 0.188493 0.982075i \(-0.439640\pi\)
0.188493 + 0.982075i \(0.439640\pi\)
\(258\) 8.95646 0.557605
\(259\) −6.13706 −0.381339
\(260\) 0 0
\(261\) −45.7904 −2.83436
\(262\) 2.44265 0.150907
\(263\) 16.5429 1.02008 0.510039 0.860151i \(-0.329631\pi\)
0.510039 + 0.860151i \(0.329631\pi\)
\(264\) −3.80194 −0.233993
\(265\) 0 0
\(266\) 2.21552 0.135842
\(267\) 34.1758 2.09153
\(268\) 24.8877 1.52026
\(269\) −12.0954 −0.737472 −0.368736 0.929534i \(-0.620209\pi\)
−0.368736 + 0.929534i \(0.620209\pi\)
\(270\) 0 0
\(271\) −13.2687 −0.806019 −0.403010 0.915196i \(-0.632036\pi\)
−0.403010 + 0.915196i \(0.632036\pi\)
\(272\) −10.6649 −0.646653
\(273\) 0 0
\(274\) 1.14914 0.0694224
\(275\) 0 0
\(276\) −7.16852 −0.431494
\(277\) 8.48858 0.510029 0.255015 0.966937i \(-0.417920\pi\)
0.255015 + 0.966937i \(0.417920\pi\)
\(278\) −6.42327 −0.385242
\(279\) 63.7730 3.81799
\(280\) 0 0
\(281\) −26.7603 −1.59639 −0.798193 0.602401i \(-0.794211\pi\)
−0.798193 + 0.602401i \(0.794211\pi\)
\(282\) 16.6799 0.993276
\(283\) 11.6649 0.693405 0.346702 0.937975i \(-0.387301\pi\)
0.346702 + 0.937975i \(0.387301\pi\)
\(284\) −17.7899 −1.05563
\(285\) 0 0
\(286\) 0 0
\(287\) 1.48427 0.0876137
\(288\) 35.0954 2.06802
\(289\) −3.00538 −0.176787
\(290\) 0 0
\(291\) −11.2174 −0.657578
\(292\) −14.5133 −0.849329
\(293\) −10.6407 −0.621637 −0.310818 0.950469i \(-0.600603\pi\)
−0.310818 + 0.950469i \(0.600603\pi\)
\(294\) 5.11960 0.298581
\(295\) 0 0
\(296\) 3.19806 0.185884
\(297\) 10.2078 0.592314
\(298\) 0.254749 0.0147572
\(299\) 0 0
\(300\) 0 0
\(301\) 20.1250 1.15998
\(302\) −0.549581 −0.0316249
\(303\) 14.0368 0.806395
\(304\) 4.37090 0.250688
\(305\) 0 0
\(306\) −12.5579 −0.717890
\(307\) −0.291585 −0.0166416 −0.00832082 0.999965i \(-0.502649\pi\)
−0.00832082 + 0.999965i \(0.502649\pi\)
\(308\) −4.04892 −0.230708
\(309\) 13.8291 0.786709
\(310\) 0 0
\(311\) 30.2707 1.71649 0.858246 0.513238i \(-0.171554\pi\)
0.858246 + 0.513238i \(0.171554\pi\)
\(312\) 0 0
\(313\) −8.50902 −0.480959 −0.240479 0.970654i \(-0.577305\pi\)
−0.240479 + 0.970654i \(0.577305\pi\)
\(314\) −5.13467 −0.289766
\(315\) 0 0
\(316\) 29.7603 1.67415
\(317\) 11.5550 0.648991 0.324496 0.945887i \(-0.394805\pi\)
0.324496 + 0.945887i \(0.394805\pi\)
\(318\) −1.15883 −0.0649842
\(319\) −4.20105 −0.235213
\(320\) 0 0
\(321\) 36.4228 2.03292
\(322\) 1.77048 0.0986649
\(323\) −5.73556 −0.319135
\(324\) −45.5284 −2.52936
\(325\) 0 0
\(326\) −3.24160 −0.179536
\(327\) −7.70171 −0.425906
\(328\) −0.773463 −0.0427073
\(329\) 37.4795 2.06631
\(330\) 0 0
\(331\) −27.4403 −1.50825 −0.754126 0.656729i \(-0.771939\pi\)
−0.754126 + 0.656729i \(0.771939\pi\)
\(332\) −11.1196 −0.610268
\(333\) −14.2567 −0.781261
\(334\) −6.42998 −0.351833
\(335\) 0 0
\(336\) 30.0562 1.63970
\(337\) 34.7265 1.89167 0.945836 0.324646i \(-0.105245\pi\)
0.945836 + 0.324646i \(0.105245\pi\)
\(338\) 0 0
\(339\) 5.61356 0.304887
\(340\) 0 0
\(341\) 5.85086 0.316842
\(342\) 5.14675 0.278304
\(343\) −11.2252 −0.606104
\(344\) −10.4873 −0.565435
\(345\) 0 0
\(346\) −0.809707 −0.0435301
\(347\) −29.6262 −1.59042 −0.795210 0.606334i \(-0.792639\pi\)
−0.795210 + 0.606334i \(0.792639\pi\)
\(348\) 35.5187 1.90400
\(349\) −15.9463 −0.853586 −0.426793 0.904349i \(-0.640357\pi\)
−0.426793 + 0.904349i \(0.640357\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.21983 0.171618
\(353\) −22.2828 −1.18599 −0.592996 0.805206i \(-0.702055\pi\)
−0.592996 + 0.805206i \(0.702055\pi\)
\(354\) −9.54288 −0.507198
\(355\) 0 0
\(356\) −18.9661 −1.00520
\(357\) −39.4403 −2.08740
\(358\) −8.12067 −0.429191
\(359\) 34.6896 1.83085 0.915424 0.402490i \(-0.131855\pi\)
0.915424 + 0.402490i \(0.131855\pi\)
\(360\) 0 0
\(361\) −16.6493 −0.876281
\(362\) −5.27844 −0.277429
\(363\) −34.1618 −1.79303
\(364\) 0 0
\(365\) 0 0
\(366\) −6.06638 −0.317095
\(367\) −9.71246 −0.506986 −0.253493 0.967337i \(-0.581580\pi\)
−0.253493 + 0.967337i \(0.581580\pi\)
\(368\) 3.49289 0.182080
\(369\) 3.44803 0.179497
\(370\) 0 0
\(371\) −2.60388 −0.135186
\(372\) −49.4674 −2.56477
\(373\) −15.0411 −0.778801 −0.389401 0.921069i \(-0.627318\pi\)
−0.389401 + 0.921069i \(0.627318\pi\)
\(374\) −1.15213 −0.0595752
\(375\) 0 0
\(376\) −19.5308 −1.00722
\(377\) 0 0
\(378\) 21.3153 1.09634
\(379\) −13.1347 −0.674683 −0.337341 0.941382i \(-0.609528\pi\)
−0.337341 + 0.941382i \(0.609528\pi\)
\(380\) 0 0
\(381\) −12.3056 −0.630434
\(382\) 3.81163 0.195020
\(383\) 3.02177 0.154405 0.0772026 0.997015i \(-0.475401\pi\)
0.0772026 + 0.997015i \(0.475401\pi\)
\(384\) −35.4620 −1.80966
\(385\) 0 0
\(386\) 9.65710 0.491534
\(387\) 46.7512 2.37650
\(388\) 6.22521 0.316037
\(389\) 31.4282 1.59347 0.796736 0.604328i \(-0.206558\pi\)
0.796736 + 0.604328i \(0.206558\pi\)
\(390\) 0 0
\(391\) −4.58343 −0.231794
\(392\) −5.99462 −0.302774
\(393\) 17.8213 0.898966
\(394\) 9.72109 0.489741
\(395\) 0 0
\(396\) −9.40581 −0.472660
\(397\) −23.0489 −1.15679 −0.578396 0.815756i \(-0.696321\pi\)
−0.578396 + 0.815756i \(0.696321\pi\)
\(398\) −1.63342 −0.0818757
\(399\) 16.1642 0.809223
\(400\) 0 0
\(401\) −19.8103 −0.989279 −0.494640 0.869098i \(-0.664700\pi\)
−0.494640 + 0.869098i \(0.664700\pi\)
\(402\) −19.9584 −0.995433
\(403\) 0 0
\(404\) −7.78986 −0.387560
\(405\) 0 0
\(406\) −8.77240 −0.435367
\(407\) −1.30798 −0.0648341
\(408\) 20.5526 1.01750
\(409\) −32.9705 −1.63028 −0.815142 0.579261i \(-0.803341\pi\)
−0.815142 + 0.579261i \(0.803341\pi\)
\(410\) 0 0
\(411\) 8.38404 0.413554
\(412\) −7.67456 −0.378099
\(413\) −21.4426 −1.05512
\(414\) 4.11290 0.202138
\(415\) 0 0
\(416\) 0 0
\(417\) −46.8635 −2.29492
\(418\) 0.472189 0.0230955
\(419\) 21.6136 1.05589 0.527946 0.849278i \(-0.322962\pi\)
0.527946 + 0.849278i \(0.322962\pi\)
\(420\) 0 0
\(421\) −4.11769 −0.200684 −0.100342 0.994953i \(-0.531994\pi\)
−0.100342 + 0.994953i \(0.531994\pi\)
\(422\) −6.80300 −0.331165
\(423\) 87.0665 4.23332
\(424\) 1.35690 0.0658967
\(425\) 0 0
\(426\) 14.2664 0.691207
\(427\) −13.6310 −0.659651
\(428\) −20.2131 −0.977038
\(429\) 0 0
\(430\) 0 0
\(431\) −18.8616 −0.908532 −0.454266 0.890866i \(-0.650098\pi\)
−0.454266 + 0.890866i \(0.650098\pi\)
\(432\) 42.0519 2.02322
\(433\) −3.31336 −0.159230 −0.0796148 0.996826i \(-0.525369\pi\)
−0.0796148 + 0.996826i \(0.525369\pi\)
\(434\) 12.2174 0.586456
\(435\) 0 0
\(436\) 4.27413 0.204694
\(437\) 1.87848 0.0898597
\(438\) 11.6388 0.556123
\(439\) −14.3894 −0.686770 −0.343385 0.939195i \(-0.611573\pi\)
−0.343385 + 0.939195i \(0.611573\pi\)
\(440\) 0 0
\(441\) 26.7235 1.27255
\(442\) 0 0
\(443\) −12.4577 −0.591884 −0.295942 0.955206i \(-0.595633\pi\)
−0.295942 + 0.955206i \(0.595633\pi\)
\(444\) 11.0586 0.524818
\(445\) 0 0
\(446\) −1.63235 −0.0772940
\(447\) 1.85862 0.0879099
\(448\) −11.7899 −0.557018
\(449\) −30.5478 −1.44164 −0.720819 0.693123i \(-0.756234\pi\)
−0.720819 + 0.693123i \(0.756234\pi\)
\(450\) 0 0
\(451\) 0.316339 0.0148958
\(452\) −3.11529 −0.146531
\(453\) −4.00969 −0.188392
\(454\) 8.26337 0.387819
\(455\) 0 0
\(456\) −8.42327 −0.394456
\(457\) 9.79225 0.458062 0.229031 0.973419i \(-0.426444\pi\)
0.229031 + 0.973419i \(0.426444\pi\)
\(458\) −7.16421 −0.334762
\(459\) −55.1812 −2.57564
\(460\) 0 0
\(461\) 13.2620 0.617675 0.308838 0.951115i \(-0.400060\pi\)
0.308838 + 0.951115i \(0.400060\pi\)
\(462\) 3.24698 0.151063
\(463\) −17.2403 −0.801224 −0.400612 0.916248i \(-0.631202\pi\)
−0.400612 + 0.916248i \(0.631202\pi\)
\(464\) −17.3067 −0.803441
\(465\) 0 0
\(466\) 9.03684 0.418623
\(467\) 4.98254 0.230565 0.115282 0.993333i \(-0.463223\pi\)
0.115282 + 0.993333i \(0.463223\pi\)
\(468\) 0 0
\(469\) −44.8461 −2.07080
\(470\) 0 0
\(471\) −37.4620 −1.72616
\(472\) 11.1739 0.514320
\(473\) 4.28919 0.197217
\(474\) −23.8659 −1.09620
\(475\) 0 0
\(476\) 21.8877 1.00322
\(477\) −6.04892 −0.276961
\(478\) 9.21983 0.421705
\(479\) 5.11529 0.233724 0.116862 0.993148i \(-0.462717\pi\)
0.116862 + 0.993148i \(0.462717\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 11.5080 0.524173
\(483\) 12.9172 0.587754
\(484\) 18.9584 0.861744
\(485\) 0 0
\(486\) 16.8170 0.762835
\(487\) −6.33704 −0.287159 −0.143579 0.989639i \(-0.545861\pi\)
−0.143579 + 0.989639i \(0.545861\pi\)
\(488\) 7.10321 0.321547
\(489\) −23.6504 −1.06951
\(490\) 0 0
\(491\) −31.3381 −1.41427 −0.707135 0.707079i \(-0.750012\pi\)
−0.707135 + 0.707079i \(0.750012\pi\)
\(492\) −2.67456 −0.120579
\(493\) 22.7101 1.02281
\(494\) 0 0
\(495\) 0 0
\(496\) 24.1032 1.08227
\(497\) 32.0562 1.43792
\(498\) 8.91723 0.399591
\(499\) 23.7047 1.06117 0.530584 0.847632i \(-0.321973\pi\)
0.530584 + 0.847632i \(0.321973\pi\)
\(500\) 0 0
\(501\) −46.9124 −2.09589
\(502\) −11.7041 −0.522380
\(503\) −15.7125 −0.700584 −0.350292 0.936641i \(-0.613918\pi\)
−0.350292 + 0.936641i \(0.613918\pi\)
\(504\) −41.4403 −1.84590
\(505\) 0 0
\(506\) 0.377338 0.0167747
\(507\) 0 0
\(508\) 6.82908 0.302992
\(509\) −36.3551 −1.61141 −0.805706 0.592316i \(-0.798214\pi\)
−0.805706 + 0.592316i \(0.798214\pi\)
\(510\) 0 0
\(511\) 26.1521 1.15690
\(512\) 22.9119 1.01257
\(513\) 22.6155 0.998498
\(514\) 2.68963 0.118634
\(515\) 0 0
\(516\) −36.2640 −1.59643
\(517\) 7.98792 0.351308
\(518\) −2.73125 −0.120004
\(519\) −5.90754 −0.259312
\(520\) 0 0
\(521\) 9.55735 0.418715 0.209358 0.977839i \(-0.432863\pi\)
0.209358 + 0.977839i \(0.432863\pi\)
\(522\) −20.3787 −0.891950
\(523\) −3.57242 −0.156211 −0.0781054 0.996945i \(-0.524887\pi\)
−0.0781054 + 0.996945i \(0.524887\pi\)
\(524\) −9.89008 −0.432050
\(525\) 0 0
\(526\) 7.36227 0.321010
\(527\) −31.6286 −1.37776
\(528\) 6.40581 0.278777
\(529\) −21.4989 −0.934733
\(530\) 0 0
\(531\) −49.8122 −2.16167
\(532\) −8.97046 −0.388919
\(533\) 0 0
\(534\) 15.2097 0.658187
\(535\) 0 0
\(536\) 23.3696 1.00941
\(537\) −59.2476 −2.55672
\(538\) −5.38298 −0.232077
\(539\) 2.45175 0.105604
\(540\) 0 0
\(541\) 9.99330 0.429645 0.214823 0.976653i \(-0.431083\pi\)
0.214823 + 0.976653i \(0.431083\pi\)
\(542\) −5.90515 −0.253648
\(543\) −38.5109 −1.65266
\(544\) −17.4058 −0.746268
\(545\) 0 0
\(546\) 0 0
\(547\) 17.9836 0.768923 0.384462 0.923141i \(-0.374387\pi\)
0.384462 + 0.923141i \(0.374387\pi\)
\(548\) −4.65279 −0.198757
\(549\) −31.6655 −1.35145
\(550\) 0 0
\(551\) −9.30750 −0.396513
\(552\) −6.73125 −0.286501
\(553\) −53.6262 −2.28042
\(554\) 3.77777 0.160502
\(555\) 0 0
\(556\) 26.0073 1.10296
\(557\) 16.5670 0.701968 0.350984 0.936381i \(-0.385847\pi\)
0.350984 + 0.936381i \(0.385847\pi\)
\(558\) 28.3817 1.20149
\(559\) 0 0
\(560\) 0 0
\(561\) −8.40581 −0.354894
\(562\) −11.9095 −0.502370
\(563\) −31.7356 −1.33749 −0.668747 0.743490i \(-0.733169\pi\)
−0.668747 + 0.743490i \(0.733169\pi\)
\(564\) −67.5357 −2.84377
\(565\) 0 0
\(566\) 5.19136 0.218209
\(567\) 82.0393 3.44533
\(568\) −16.7047 −0.700913
\(569\) 13.9336 0.584128 0.292064 0.956399i \(-0.405658\pi\)
0.292064 + 0.956399i \(0.405658\pi\)
\(570\) 0 0
\(571\) −26.2959 −1.10045 −0.550225 0.835017i \(-0.685458\pi\)
−0.550225 + 0.835017i \(0.685458\pi\)
\(572\) 0 0
\(573\) 27.8092 1.16175
\(574\) 0.660563 0.0275713
\(575\) 0 0
\(576\) −27.3884 −1.14118
\(577\) −20.0339 −0.834020 −0.417010 0.908902i \(-0.636922\pi\)
−0.417010 + 0.908902i \(0.636922\pi\)
\(578\) −1.33752 −0.0556334
\(579\) 70.4572 2.92810
\(580\) 0 0
\(581\) 20.0368 0.831268
\(582\) −4.99223 −0.206935
\(583\) −0.554958 −0.0229840
\(584\) −13.6280 −0.563932
\(585\) 0 0
\(586\) −4.73556 −0.195624
\(587\) −20.0103 −0.825913 −0.412956 0.910751i \(-0.635504\pi\)
−0.412956 + 0.910751i \(0.635504\pi\)
\(588\) −20.7289 −0.854844
\(589\) 12.9627 0.534118
\(590\) 0 0
\(591\) 70.9241 2.91743
\(592\) −5.38835 −0.221460
\(593\) −36.7023 −1.50718 −0.753591 0.657343i \(-0.771680\pi\)
−0.753591 + 0.657343i \(0.771680\pi\)
\(594\) 4.54288 0.186396
\(595\) 0 0
\(596\) −1.03146 −0.0422502
\(597\) −11.9172 −0.487740
\(598\) 0 0
\(599\) 13.5386 0.553171 0.276585 0.960989i \(-0.410797\pi\)
0.276585 + 0.960989i \(0.410797\pi\)
\(600\) 0 0
\(601\) 42.4965 1.73347 0.866734 0.498771i \(-0.166215\pi\)
0.866734 + 0.498771i \(0.166215\pi\)
\(602\) 8.95646 0.365038
\(603\) −104.179 −4.24251
\(604\) 2.22521 0.0905425
\(605\) 0 0
\(606\) 6.24698 0.253766
\(607\) 12.4969 0.507235 0.253618 0.967305i \(-0.418380\pi\)
0.253618 + 0.967305i \(0.418380\pi\)
\(608\) 7.13361 0.289306
\(609\) −64.0025 −2.59351
\(610\) 0 0
\(611\) 0 0
\(612\) 50.8461 2.05533
\(613\) −30.0694 −1.21449 −0.607245 0.794515i \(-0.707725\pi\)
−0.607245 + 0.794515i \(0.707725\pi\)
\(614\) −0.129768 −0.00523699
\(615\) 0 0
\(616\) −3.80194 −0.153184
\(617\) 28.1196 1.13205 0.566026 0.824387i \(-0.308480\pi\)
0.566026 + 0.824387i \(0.308480\pi\)
\(618\) 6.15452 0.247571
\(619\) −20.3424 −0.817631 −0.408815 0.912617i \(-0.634058\pi\)
−0.408815 + 0.912617i \(0.634058\pi\)
\(620\) 0 0
\(621\) 18.0726 0.725229
\(622\) 13.4717 0.540167
\(623\) 34.1758 1.36923
\(624\) 0 0
\(625\) 0 0
\(626\) −3.78687 −0.151354
\(627\) 3.44504 0.137582
\(628\) 20.7899 0.829606
\(629\) 7.07069 0.281927
\(630\) 0 0
\(631\) 3.66355 0.145843 0.0729217 0.997338i \(-0.476768\pi\)
0.0729217 + 0.997338i \(0.476768\pi\)
\(632\) 27.9450 1.11159
\(633\) −49.6340 −1.97277
\(634\) 5.14244 0.204232
\(635\) 0 0
\(636\) 4.69202 0.186051
\(637\) 0 0
\(638\) −1.86964 −0.0740198
\(639\) 74.4680 2.94591
\(640\) 0 0
\(641\) 5.73556 0.226541 0.113271 0.993564i \(-0.463867\pi\)
0.113271 + 0.993564i \(0.463867\pi\)
\(642\) 16.2097 0.639745
\(643\) −7.35929 −0.290222 −0.145111 0.989415i \(-0.546354\pi\)
−0.145111 + 0.989415i \(0.546354\pi\)
\(644\) −7.16852 −0.282479
\(645\) 0 0
\(646\) −2.55257 −0.100429
\(647\) −49.2664 −1.93686 −0.968430 0.249285i \(-0.919804\pi\)
−0.968430 + 0.249285i \(0.919804\pi\)
\(648\) −42.7512 −1.67943
\(649\) −4.57002 −0.179389
\(650\) 0 0
\(651\) 89.1372 3.49356
\(652\) 13.1250 0.514014
\(653\) −8.50796 −0.332942 −0.166471 0.986046i \(-0.553237\pi\)
−0.166471 + 0.986046i \(0.553237\pi\)
\(654\) −3.42758 −0.134029
\(655\) 0 0
\(656\) 1.30319 0.0508811
\(657\) 60.7525 2.37018
\(658\) 16.6799 0.650252
\(659\) −5.42221 −0.211219 −0.105610 0.994408i \(-0.533679\pi\)
−0.105610 + 0.994408i \(0.533679\pi\)
\(660\) 0 0
\(661\) 16.2784 0.633158 0.316579 0.948566i \(-0.397466\pi\)
0.316579 + 0.948566i \(0.397466\pi\)
\(662\) −12.2121 −0.474635
\(663\) 0 0
\(664\) −10.4413 −0.405202
\(665\) 0 0
\(666\) −6.34481 −0.245857
\(667\) −7.43786 −0.287995
\(668\) 26.0344 1.00730
\(669\) −11.9095 −0.460446
\(670\) 0 0
\(671\) −2.90515 −0.112152
\(672\) 49.0538 1.89229
\(673\) 22.8866 0.882215 0.441107 0.897454i \(-0.354586\pi\)
0.441107 + 0.897454i \(0.354586\pi\)
\(674\) 15.4547 0.595294
\(675\) 0 0
\(676\) 0 0
\(677\) 36.9711 1.42091 0.710456 0.703741i \(-0.248489\pi\)
0.710456 + 0.703741i \(0.248489\pi\)
\(678\) 2.49827 0.0959455
\(679\) −11.2174 −0.430486
\(680\) 0 0
\(681\) 60.2887 2.31027
\(682\) 2.60388 0.0997075
\(683\) −21.3177 −0.815698 −0.407849 0.913049i \(-0.633721\pi\)
−0.407849 + 0.913049i \(0.633721\pi\)
\(684\) −20.8388 −0.796790
\(685\) 0 0
\(686\) −4.99569 −0.190736
\(687\) −52.2693 −1.99420
\(688\) 17.6698 0.673654
\(689\) 0 0
\(690\) 0 0
\(691\) −20.9554 −0.797181 −0.398590 0.917129i \(-0.630500\pi\)
−0.398590 + 0.917129i \(0.630500\pi\)
\(692\) 3.27844 0.124628
\(693\) 16.9487 0.643827
\(694\) −13.1849 −0.500493
\(695\) 0 0
\(696\) 33.3521 1.26421
\(697\) −1.71007 −0.0647736
\(698\) −7.09677 −0.268617
\(699\) 65.9318 2.49377
\(700\) 0 0
\(701\) −36.9439 −1.39535 −0.697676 0.716413i \(-0.745782\pi\)
−0.697676 + 0.716413i \(0.745782\pi\)
\(702\) 0 0
\(703\) −2.89785 −0.109295
\(704\) −2.51275 −0.0947027
\(705\) 0 0
\(706\) −9.91676 −0.373222
\(707\) 14.0368 0.527910
\(708\) 38.6383 1.45212
\(709\) −6.41358 −0.240867 −0.120434 0.992721i \(-0.538428\pi\)
−0.120434 + 0.992721i \(0.538428\pi\)
\(710\) 0 0
\(711\) −124.576 −4.67197
\(712\) −17.8092 −0.667429
\(713\) 10.3588 0.387941
\(714\) −17.5526 −0.656888
\(715\) 0 0
\(716\) 32.8799 1.22878
\(717\) 67.2669 2.51213
\(718\) 15.4383 0.576154
\(719\) −13.7265 −0.511911 −0.255955 0.966689i \(-0.582390\pi\)
−0.255955 + 0.966689i \(0.582390\pi\)
\(720\) 0 0
\(721\) 13.8291 0.515022
\(722\) −7.40965 −0.275759
\(723\) 83.9609 3.12254
\(724\) 21.3720 0.794283
\(725\) 0 0
\(726\) −15.2034 −0.564253
\(727\) −33.1008 −1.22764 −0.613821 0.789445i \(-0.710368\pi\)
−0.613821 + 0.789445i \(0.710368\pi\)
\(728\) 0 0
\(729\) 46.8961 1.73689
\(730\) 0 0
\(731\) −23.1866 −0.857586
\(732\) 24.5623 0.907847
\(733\) 50.6902 1.87229 0.936143 0.351620i \(-0.114369\pi\)
0.936143 + 0.351620i \(0.114369\pi\)
\(734\) −4.32245 −0.159545
\(735\) 0 0
\(736\) 5.70065 0.210129
\(737\) −9.55794 −0.352071
\(738\) 1.53452 0.0564863
\(739\) 24.5448 0.902895 0.451447 0.892298i \(-0.350908\pi\)
0.451447 + 0.892298i \(0.350908\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.15883 −0.0425421
\(743\) −8.90217 −0.326589 −0.163294 0.986577i \(-0.552212\pi\)
−0.163294 + 0.986577i \(0.552212\pi\)
\(744\) −46.4499 −1.70294
\(745\) 0 0
\(746\) −6.69394 −0.245083
\(747\) 46.5465 1.70305
\(748\) 4.66487 0.170565
\(749\) 36.4228 1.33086
\(750\) 0 0
\(751\) −3.00059 −0.109493 −0.0547466 0.998500i \(-0.517435\pi\)
−0.0547466 + 0.998500i \(0.517435\pi\)
\(752\) 32.9071 1.20000
\(753\) −85.3919 −3.11185
\(754\) 0 0
\(755\) 0 0
\(756\) −86.3038 −3.13884
\(757\) 23.1691 0.842096 0.421048 0.907038i \(-0.361662\pi\)
0.421048 + 0.907038i \(0.361662\pi\)
\(758\) −5.84548 −0.212317
\(759\) 2.75302 0.0999283
\(760\) 0 0
\(761\) 13.6431 0.494562 0.247281 0.968944i \(-0.420463\pi\)
0.247281 + 0.968944i \(0.420463\pi\)
\(762\) −5.47650 −0.198393
\(763\) −7.70171 −0.278821
\(764\) −15.4330 −0.558345
\(765\) 0 0
\(766\) 1.34481 0.0485901
\(767\) 0 0
\(768\) 7.79763 0.281373
\(769\) 31.8853 1.14981 0.574907 0.818219i \(-0.305038\pi\)
0.574907 + 0.818219i \(0.305038\pi\)
\(770\) 0 0
\(771\) 19.6233 0.706714
\(772\) −39.1008 −1.40727
\(773\) −18.4168 −0.662407 −0.331204 0.943559i \(-0.607455\pi\)
−0.331204 + 0.943559i \(0.607455\pi\)
\(774\) 20.8062 0.747865
\(775\) 0 0
\(776\) 5.84548 0.209840
\(777\) −19.9269 −0.714874
\(778\) 13.9869 0.501453
\(779\) 0.700856 0.0251108
\(780\) 0 0
\(781\) 6.83207 0.244471
\(782\) −2.03982 −0.0729438
\(783\) −89.5465 −3.20013
\(784\) 10.1002 0.360722
\(785\) 0 0
\(786\) 7.93123 0.282898
\(787\) 31.5230 1.12367 0.561837 0.827248i \(-0.310095\pi\)
0.561837 + 0.827248i \(0.310095\pi\)
\(788\) −39.3599 −1.40214
\(789\) 53.7144 1.91228
\(790\) 0 0
\(791\) 5.61356 0.199595
\(792\) −8.83207 −0.313834
\(793\) 0 0
\(794\) −10.2577 −0.364033
\(795\) 0 0
\(796\) 6.61356 0.234412
\(797\) −41.3967 −1.46635 −0.733173 0.680042i \(-0.761962\pi\)
−0.733173 + 0.680042i \(0.761962\pi\)
\(798\) 7.19375 0.254656
\(799\) −43.1812 −1.52764
\(800\) 0 0
\(801\) 79.3919 2.80518
\(802\) −8.81641 −0.311318
\(803\) 5.57374 0.196693
\(804\) 80.8098 2.84994
\(805\) 0 0
\(806\) 0 0
\(807\) −39.2737 −1.38250
\(808\) −7.31468 −0.257330
\(809\) 33.9748 1.19449 0.597245 0.802059i \(-0.296262\pi\)
0.597245 + 0.802059i \(0.296262\pi\)
\(810\) 0 0
\(811\) −42.4174 −1.48948 −0.744739 0.667356i \(-0.767426\pi\)
−0.744739 + 0.667356i \(0.767426\pi\)
\(812\) 35.5187 1.24646
\(813\) −43.0834 −1.51100
\(814\) −0.582105 −0.0204028
\(815\) 0 0
\(816\) −34.6286 −1.21224
\(817\) 9.50279 0.332461
\(818\) −14.6732 −0.513038
\(819\) 0 0
\(820\) 0 0
\(821\) −20.8823 −0.728798 −0.364399 0.931243i \(-0.618726\pi\)
−0.364399 + 0.931243i \(0.618726\pi\)
\(822\) 3.73125 0.130142
\(823\) 31.4196 1.09522 0.547608 0.836735i \(-0.315538\pi\)
0.547608 + 0.836735i \(0.315538\pi\)
\(824\) −7.20642 −0.251048
\(825\) 0 0
\(826\) −9.54288 −0.332039
\(827\) 30.8471 1.07266 0.536330 0.844008i \(-0.319810\pi\)
0.536330 + 0.844008i \(0.319810\pi\)
\(828\) −16.6528 −0.578725
\(829\) 30.9004 1.07321 0.536607 0.843832i \(-0.319706\pi\)
0.536607 + 0.843832i \(0.319706\pi\)
\(830\) 0 0
\(831\) 27.5623 0.956124
\(832\) 0 0
\(833\) −13.2537 −0.459213
\(834\) −20.8562 −0.722192
\(835\) 0 0
\(836\) −1.91185 −0.0661229
\(837\) 124.713 4.31070
\(838\) 9.61894 0.332281
\(839\) −17.9782 −0.620677 −0.310339 0.950626i \(-0.600442\pi\)
−0.310339 + 0.950626i \(0.600442\pi\)
\(840\) 0 0
\(841\) 7.85325 0.270802
\(842\) −1.83254 −0.0631536
\(843\) −86.8902 −2.99266
\(844\) 27.5448 0.948131
\(845\) 0 0
\(846\) 38.7482 1.33219
\(847\) −34.1618 −1.17381
\(848\) −2.28621 −0.0785087
\(849\) 37.8756 1.29989
\(850\) 0 0
\(851\) −2.31575 −0.0793828
\(852\) −57.7633 −1.97894
\(853\) 4.04413 0.138468 0.0692342 0.997600i \(-0.477944\pi\)
0.0692342 + 0.997600i \(0.477944\pi\)
\(854\) −6.06638 −0.207587
\(855\) 0 0
\(856\) −18.9801 −0.648728
\(857\) −25.7888 −0.880928 −0.440464 0.897770i \(-0.645186\pi\)
−0.440464 + 0.897770i \(0.645186\pi\)
\(858\) 0 0
\(859\) −5.63043 −0.192108 −0.0960539 0.995376i \(-0.530622\pi\)
−0.0960539 + 0.995376i \(0.530622\pi\)
\(860\) 0 0
\(861\) 4.81940 0.164245
\(862\) −8.39421 −0.285908
\(863\) −20.6112 −0.701612 −0.350806 0.936448i \(-0.614092\pi\)
−0.350806 + 0.936448i \(0.614092\pi\)
\(864\) 68.6316 2.33489
\(865\) 0 0
\(866\) −1.47458 −0.0501083
\(867\) −9.75840 −0.331413
\(868\) −49.4674 −1.67903
\(869\) −11.4292 −0.387710
\(870\) 0 0
\(871\) 0 0
\(872\) 4.01341 0.135911
\(873\) −26.0586 −0.881950
\(874\) 0.836001 0.0282781
\(875\) 0 0
\(876\) −47.1245 −1.59219
\(877\) 3.46383 0.116965 0.0584826 0.998288i \(-0.481374\pi\)
0.0584826 + 0.998288i \(0.481374\pi\)
\(878\) −6.40389 −0.216121
\(879\) −34.5502 −1.16535
\(880\) 0 0
\(881\) −28.2040 −0.950218 −0.475109 0.879927i \(-0.657591\pi\)
−0.475109 + 0.879927i \(0.657591\pi\)
\(882\) 11.8931 0.400460
\(883\) −36.4577 −1.22690 −0.613450 0.789734i \(-0.710219\pi\)
−0.613450 + 0.789734i \(0.710219\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.54420 −0.186261
\(887\) −6.17331 −0.207279 −0.103640 0.994615i \(-0.533049\pi\)
−0.103640 + 0.994615i \(0.533049\pi\)
\(888\) 10.3840 0.348466
\(889\) −12.3056 −0.412716
\(890\) 0 0
\(891\) 17.4849 0.585765
\(892\) 6.60925 0.221294
\(893\) 17.6974 0.592221
\(894\) 0.827166 0.0276646
\(895\) 0 0
\(896\) −35.4620 −1.18470
\(897\) 0 0
\(898\) −13.5950 −0.453672
\(899\) −51.3260 −1.71182
\(900\) 0 0
\(901\) 3.00000 0.0999445
\(902\) 0.140784 0.00468760
\(903\) 65.3454 2.17456
\(904\) −2.92526 −0.0972928
\(905\) 0 0
\(906\) −1.78448 −0.0592854
\(907\) 15.1860 0.504242 0.252121 0.967696i \(-0.418872\pi\)
0.252121 + 0.967696i \(0.418872\pi\)
\(908\) −33.4577 −1.11033
\(909\) 32.6082 1.08155
\(910\) 0 0
\(911\) 37.0810 1.22855 0.614274 0.789093i \(-0.289449\pi\)
0.614274 + 0.789093i \(0.289449\pi\)
\(912\) 14.1922 0.469951
\(913\) 4.27041 0.141330
\(914\) 4.35796 0.144149
\(915\) 0 0
\(916\) 29.0073 0.958428
\(917\) 17.8213 0.588512
\(918\) −24.5579 −0.810533
\(919\) −30.5590 −1.00805 −0.504024 0.863689i \(-0.668148\pi\)
−0.504024 + 0.863689i \(0.668148\pi\)
\(920\) 0 0
\(921\) −0.946771 −0.0311972
\(922\) 5.90217 0.194377
\(923\) 0 0
\(924\) −13.1468 −0.432496
\(925\) 0 0
\(926\) −7.67264 −0.252139
\(927\) 32.1256 1.05514
\(928\) −28.2457 −0.927209
\(929\) 27.2489 0.894007 0.447004 0.894532i \(-0.352491\pi\)
0.447004 + 0.894532i \(0.352491\pi\)
\(930\) 0 0
\(931\) 5.43190 0.178023
\(932\) −36.5894 −1.19853
\(933\) 98.2882 3.21781
\(934\) 2.21744 0.0725568
\(935\) 0 0
\(936\) 0 0
\(937\) −57.8286 −1.88918 −0.944589 0.328255i \(-0.893540\pi\)
−0.944589 + 0.328255i \(0.893540\pi\)
\(938\) −19.9584 −0.651664
\(939\) −27.6286 −0.901626
\(940\) 0 0
\(941\) 40.1463 1.30873 0.654366 0.756178i \(-0.272936\pi\)
0.654366 + 0.756178i \(0.272936\pi\)
\(942\) −16.6722 −0.543209
\(943\) 0.560072 0.0182385
\(944\) −18.8267 −0.612757
\(945\) 0 0
\(946\) 1.90887 0.0620627
\(947\) −0.987918 −0.0321030 −0.0160515 0.999871i \(-0.505110\pi\)
−0.0160515 + 0.999871i \(0.505110\pi\)
\(948\) 96.6311 3.13843
\(949\) 0 0
\(950\) 0 0
\(951\) 37.5187 1.21663
\(952\) 20.5526 0.666112
\(953\) 43.3351 1.40376 0.701881 0.712294i \(-0.252344\pi\)
0.701881 + 0.712294i \(0.252344\pi\)
\(954\) −2.69202 −0.0871574
\(955\) 0 0
\(956\) −37.3303 −1.20735
\(957\) −13.6407 −0.440942
\(958\) 2.27652 0.0735510
\(959\) 8.38404 0.270735
\(960\) 0 0
\(961\) 40.4825 1.30589
\(962\) 0 0
\(963\) 84.6118 2.72658
\(964\) −46.5948 −1.50072
\(965\) 0 0
\(966\) 5.74871 0.184962
\(967\) 4.89977 0.157566 0.0787830 0.996892i \(-0.474897\pi\)
0.0787830 + 0.996892i \(0.474897\pi\)
\(968\) 17.8019 0.572176
\(969\) −18.6233 −0.598265
\(970\) 0 0
\(971\) −37.5153 −1.20392 −0.601961 0.798526i \(-0.705614\pi\)
−0.601961 + 0.798526i \(0.705614\pi\)
\(972\) −68.0907 −2.18401
\(973\) −46.8635 −1.50238
\(974\) −2.82025 −0.0903666
\(975\) 0 0
\(976\) −11.9681 −0.383088
\(977\) −59.7663 −1.91209 −0.956046 0.293215i \(-0.905275\pi\)
−0.956046 + 0.293215i \(0.905275\pi\)
\(978\) −10.5254 −0.336566
\(979\) 7.28382 0.232792
\(980\) 0 0
\(981\) −17.8914 −0.571229
\(982\) −13.9468 −0.445059
\(983\) 39.2452 1.25173 0.625863 0.779933i \(-0.284747\pi\)
0.625863 + 0.779933i \(0.284747\pi\)
\(984\) −2.51142 −0.0800611
\(985\) 0 0
\(986\) 10.1069 0.321870
\(987\) 121.695 3.87360
\(988\) 0 0
\(989\) 7.59392 0.241473
\(990\) 0 0
\(991\) −12.2577 −0.389380 −0.194690 0.980865i \(-0.562370\pi\)
−0.194690 + 0.980865i \(0.562370\pi\)
\(992\) 39.3381 1.24899
\(993\) −89.0980 −2.82744
\(994\) 14.2664 0.452501
\(995\) 0 0
\(996\) −36.1051 −1.14403
\(997\) 24.5687 0.778098 0.389049 0.921217i \(-0.372804\pi\)
0.389049 + 0.921217i \(0.372804\pi\)
\(998\) 10.5496 0.333941
\(999\) −27.8799 −0.882082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.bf.1.2 3
5.4 even 2 845.2.a.h.1.2 3
13.12 even 2 4225.2.a.bd.1.2 3
15.14 odd 2 7605.2.a.by.1.2 3
65.4 even 6 845.2.e.j.146.2 6
65.9 even 6 845.2.e.l.146.2 6
65.19 odd 12 845.2.m.i.361.4 12
65.24 odd 12 845.2.m.i.316.4 12
65.29 even 6 845.2.e.l.191.2 6
65.34 odd 4 845.2.c.f.506.3 6
65.44 odd 4 845.2.c.f.506.4 6
65.49 even 6 845.2.e.j.191.2 6
65.54 odd 12 845.2.m.i.316.3 12
65.59 odd 12 845.2.m.i.361.3 12
65.64 even 2 845.2.a.j.1.2 yes 3
195.194 odd 2 7605.2.a.br.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.h.1.2 3 5.4 even 2
845.2.a.j.1.2 yes 3 65.64 even 2
845.2.c.f.506.3 6 65.34 odd 4
845.2.c.f.506.4 6 65.44 odd 4
845.2.e.j.146.2 6 65.4 even 6
845.2.e.j.191.2 6 65.49 even 6
845.2.e.l.146.2 6 65.9 even 6
845.2.e.l.191.2 6 65.29 even 6
845.2.m.i.316.3 12 65.54 odd 12
845.2.m.i.316.4 12 65.24 odd 12
845.2.m.i.361.3 12 65.59 odd 12
845.2.m.i.361.4 12 65.19 odd 12
4225.2.a.bd.1.2 3 13.12 even 2
4225.2.a.bf.1.2 3 1.1 even 1 trivial
7605.2.a.br.1.2 3 195.194 odd 2
7605.2.a.by.1.2 3 15.14 odd 2