Properties

Label 845.2.a.h.1.2
Level 845845
Weight 22
Character 845.1
Self dual yes
Analytic conductor 6.7476.747
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 845=5132 845 = 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.747358970806.74735897080
Analytic rank: 11
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.4450420.445042 of defining polynomial
Character χ\chi == 845.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.445042q23.24698q31.80194q4+1.00000q5+1.44504q63.24698q7+1.69202q8+7.54288q90.445042q10+0.692021q11+5.85086q12+1.44504q143.24698q15+2.85086q16+3.74094q173.35690q18+1.53319q191.80194q20+10.5429q210.307979q221.22521q235.49396q24+1.00000q2514.7506q27+5.85086q286.07069q29+1.44504q30+8.45473q314.65279q322.24698q331.66487q343.24698q3513.5918q36+1.89008q370.682333q38+1.69202q40+0.457123q414.69202q426.19806q431.24698q44+7.54288q45+0.545269q4611.5429q479.25667q48+3.54288q490.445042q5012.1468q51+0.801938q53+6.56465q54+0.692021q555.49396q564.97823q57+2.70171q586.60388q59+5.85086q604.19806q613.76271q6224.4916q633.63102q64+1.00000q66+13.8116q676.74094q68+3.97823q69+1.44504q70+9.87263q71+12.7627q728.05429q730.841166q743.24698q752.76271q762.24698q7716.5157q79+2.85086q80+25.2664q810.203439q826.17092q8318.9976q84+3.74094q85+2.75840q86+19.7114q87+1.17092q88+10.5254q893.35690q90+2.20775q9227.4523q93+5.13706q94+1.53319q95+15.1075q96+3.45473q971.57673q98+5.21983q99+O(q100)q-0.445042 q^{2} -3.24698 q^{3} -1.80194 q^{4} +1.00000 q^{5} +1.44504 q^{6} -3.24698 q^{7} +1.69202 q^{8} +7.54288 q^{9} -0.445042 q^{10} +0.692021 q^{11} +5.85086 q^{12} +1.44504 q^{14} -3.24698 q^{15} +2.85086 q^{16} +3.74094 q^{17} -3.35690 q^{18} +1.53319 q^{19} -1.80194 q^{20} +10.5429 q^{21} -0.307979 q^{22} -1.22521 q^{23} -5.49396 q^{24} +1.00000 q^{25} -14.7506 q^{27} +5.85086 q^{28} -6.07069 q^{29} +1.44504 q^{30} +8.45473 q^{31} -4.65279 q^{32} -2.24698 q^{33} -1.66487 q^{34} -3.24698 q^{35} -13.5918 q^{36} +1.89008 q^{37} -0.682333 q^{38} +1.69202 q^{40} +0.457123 q^{41} -4.69202 q^{42} -6.19806 q^{43} -1.24698 q^{44} +7.54288 q^{45} +0.545269 q^{46} -11.5429 q^{47} -9.25667 q^{48} +3.54288 q^{49} -0.445042 q^{50} -12.1468 q^{51} +0.801938 q^{53} +6.56465 q^{54} +0.692021 q^{55} -5.49396 q^{56} -4.97823 q^{57} +2.70171 q^{58} -6.60388 q^{59} +5.85086 q^{60} -4.19806 q^{61} -3.76271 q^{62} -24.4916 q^{63} -3.63102 q^{64} +1.00000 q^{66} +13.8116 q^{67} -6.74094 q^{68} +3.97823 q^{69} +1.44504 q^{70} +9.87263 q^{71} +12.7627 q^{72} -8.05429 q^{73} -0.841166 q^{74} -3.24698 q^{75} -2.76271 q^{76} -2.24698 q^{77} -16.5157 q^{79} +2.85086 q^{80} +25.2664 q^{81} -0.203439 q^{82} -6.17092 q^{83} -18.9976 q^{84} +3.74094 q^{85} +2.75840 q^{86} +19.7114 q^{87} +1.17092 q^{88} +10.5254 q^{89} -3.35690 q^{90} +2.20775 q^{92} -27.4523 q^{93} +5.13706 q^{94} +1.53319 q^{95} +15.1075 q^{96} +3.45473 q^{97} -1.57673 q^{98} +5.21983 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq25q3q4+3q5+4q65q7+4q9q103q11+4q12+4q145q155q163q176q18+8q19q20+13q216q22++17q99+O(q100) 3 q - q^{2} - 5 q^{3} - q^{4} + 3 q^{5} + 4 q^{6} - 5 q^{7} + 4 q^{9} - q^{10} - 3 q^{11} + 4 q^{12} + 4 q^{14} - 5 q^{15} - 5 q^{16} - 3 q^{17} - 6 q^{18} + 8 q^{19} - q^{20} + 13 q^{21} - 6 q^{22}+ \cdots + 17 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.445042 −0.314692 −0.157346 0.987544i 0.550294π-0.550294\pi
−0.157346 + 0.987544i 0.550294π0.550294\pi
33 −3.24698 −1.87464 −0.937322 0.348464i 0.886703π-0.886703\pi
−0.937322 + 0.348464i 0.886703π0.886703\pi
44 −1.80194 −0.900969
55 1.00000 0.447214
66 1.44504 0.589936
77 −3.24698 −1.22724 −0.613621 0.789600i 0.710288π-0.710288\pi
−0.613621 + 0.789600i 0.710288π0.710288\pi
88 1.69202 0.598220
99 7.54288 2.51429
1010 −0.445042 −0.140735
1111 0.692021 0.208652 0.104326 0.994543i 0.466731π-0.466731\pi
0.104326 + 0.994543i 0.466731π0.466731\pi
1212 5.85086 1.68900
1313 0 0
1414 1.44504 0.386204
1515 −3.24698 −0.838367
1616 2.85086 0.712714
1717 3.74094 0.907311 0.453655 0.891177i 0.350120π-0.350120\pi
0.453655 + 0.891177i 0.350120π0.350120\pi
1818 −3.35690 −0.791228
1919 1.53319 0.351737 0.175869 0.984414i 0.443727π-0.443727\pi
0.175869 + 0.984414i 0.443727π0.443727\pi
2020 −1.80194 −0.402926
2121 10.5429 2.30064
2222 −0.307979 −0.0656612
2323 −1.22521 −0.255474 −0.127737 0.991808i 0.540771π-0.540771\pi
−0.127737 + 0.991808i 0.540771π0.540771\pi
2424 −5.49396 −1.12145
2525 1.00000 0.200000
2626 0 0
2727 −14.7506 −2.83876
2828 5.85086 1.10571
2929 −6.07069 −1.12730 −0.563649 0.826014i 0.690603π-0.690603\pi
−0.563649 + 0.826014i 0.690603π0.690603\pi
3030 1.44504 0.263827
3131 8.45473 1.51851 0.759257 0.650791i 0.225562π-0.225562\pi
0.759257 + 0.650791i 0.225562π0.225562\pi
3232 −4.65279 −0.822505
3333 −2.24698 −0.391149
3434 −1.66487 −0.285524
3535 −3.24698 −0.548840
3636 −13.5918 −2.26530
3737 1.89008 0.310728 0.155364 0.987857i 0.450345π-0.450345\pi
0.155364 + 0.987857i 0.450345π0.450345\pi
3838 −0.682333 −0.110689
3939 0 0
4040 1.69202 0.267532
4141 0.457123 0.0713907 0.0356953 0.999363i 0.488635π-0.488635\pi
0.0356953 + 0.999363i 0.488635π0.488635\pi
4242 −4.69202 −0.723995
4343 −6.19806 −0.945196 −0.472598 0.881278i 0.656684π-0.656684\pi
−0.472598 + 0.881278i 0.656684π0.656684\pi
4444 −1.24698 −0.187989
4545 7.54288 1.12443
4646 0.545269 0.0803956
4747 −11.5429 −1.68370 −0.841851 0.539710i 0.818534π-0.818534\pi
−0.841851 + 0.539710i 0.818534π0.818534\pi
4848 −9.25667 −1.33608
4949 3.54288 0.506125
5050 −0.445042 −0.0629384
5151 −12.1468 −1.70089
5252 0 0
5353 0.801938 0.110155 0.0550773 0.998482i 0.482459π-0.482459\pi
0.0550773 + 0.998482i 0.482459π0.482459\pi
5454 6.56465 0.893335
5555 0.692021 0.0933122
5656 −5.49396 −0.734161
5757 −4.97823 −0.659383
5858 2.70171 0.354752
5959 −6.60388 −0.859751 −0.429876 0.902888i 0.641443π-0.641443\pi
−0.429876 + 0.902888i 0.641443π0.641443\pi
6060 5.85086 0.755342
6161 −4.19806 −0.537507 −0.268753 0.963209i 0.586612π-0.586612\pi
−0.268753 + 0.963209i 0.586612π0.586612\pi
6262 −3.76271 −0.477865
6363 −24.4916 −3.08565
6464 −3.63102 −0.453878
6565 0 0
6666 1.00000 0.123091
6767 13.8116 1.68736 0.843679 0.536847i 0.180385π-0.180385\pi
0.843679 + 0.536847i 0.180385π0.180385\pi
6868 −6.74094 −0.817459
6969 3.97823 0.478923
7070 1.44504 0.172716
7171 9.87263 1.17167 0.585833 0.810432i 0.300768π-0.300768\pi
0.585833 + 0.810432i 0.300768π0.300768\pi
7272 12.7627 1.50410
7373 −8.05429 −0.942684 −0.471342 0.881951i 0.656230π-0.656230\pi
−0.471342 + 0.881951i 0.656230π0.656230\pi
7474 −0.841166 −0.0977836
7575 −3.24698 −0.374929
7676 −2.76271 −0.316904
7777 −2.24698 −0.256067
7878 0 0
7979 −16.5157 −1.85816 −0.929082 0.369873i 0.879401π-0.879401\pi
−0.929082 + 0.369873i 0.879401π0.879401\pi
8080 2.85086 0.318735
8181 25.2664 2.80737
8282 −0.203439 −0.0224661
8383 −6.17092 −0.677346 −0.338673 0.940904i 0.609978π-0.609978\pi
−0.338673 + 0.940904i 0.609978π0.609978\pi
8484 −18.9976 −2.07281
8585 3.74094 0.405762
8686 2.75840 0.297446
8787 19.7114 2.11328
8888 1.17092 0.124820
8989 10.5254 1.11569 0.557846 0.829944i 0.311628π-0.311628\pi
0.557846 + 0.829944i 0.311628π0.311628\pi
9090 −3.35690 −0.353848
9191 0 0
9292 2.20775 0.230174
9393 −27.4523 −2.84667
9494 5.13706 0.529848
9595 1.53319 0.157302
9696 15.1075 1.54191
9797 3.45473 0.350775 0.175387 0.984500i 0.443882π-0.443882\pi
0.175387 + 0.984500i 0.443882π0.443882\pi
9898 −1.57673 −0.159274
9999 5.21983 0.524613
100100 −1.80194 −0.180194
101101 4.32304 0.430159 0.215079 0.976597i 0.430999π-0.430999\pi
0.215079 + 0.976597i 0.430999π0.430999\pi
102102 5.40581 0.535255
103103 −4.25906 −0.419658 −0.209829 0.977738i 0.567291π-0.567291\pi
−0.209829 + 0.977738i 0.567291π0.567291\pi
104104 0 0
105105 10.5429 1.02888
106106 −0.356896 −0.0346648
107107 −11.2174 −1.08443 −0.542215 0.840240i 0.682414π-0.682414\pi
−0.542215 + 0.840240i 0.682414π0.682414\pi
108108 26.5797 2.55763
109109 −2.37196 −0.227193 −0.113596 0.993527i 0.536237π-0.536237\pi
−0.113596 + 0.993527i 0.536237π0.536237\pi
110110 −0.307979 −0.0293646
111111 −6.13706 −0.582504
112112 −9.25667 −0.874673
113113 −1.72886 −0.162637 −0.0813186 0.996688i 0.525913π-0.525913\pi
−0.0813186 + 0.996688i 0.525913π0.525913\pi
114114 2.21552 0.207503
115115 −1.22521 −0.114251
116116 10.9390 1.01566
117117 0 0
118118 2.93900 0.270557
119119 −12.1468 −1.11349
120120 −5.49396 −0.501528
121121 −10.5211 −0.956464
122122 1.86831 0.169149
123123 −1.48427 −0.133832
124124 −15.2349 −1.36813
125125 1.00000 0.0894427
126126 10.8998 0.971029
127127 3.78986 0.336295 0.168148 0.985762i 0.446221π-0.446221\pi
0.168148 + 0.985762i 0.446221π0.446221\pi
128128 10.9215 0.965337
129129 20.1250 1.77191
130130 0 0
131131 5.48858 0.479540 0.239770 0.970830i 0.422928π-0.422928\pi
0.239770 + 0.970830i 0.422928π0.422928\pi
132132 4.04892 0.352413
133133 −4.97823 −0.431667
134134 −6.14675 −0.530998
135135 −14.7506 −1.26953
136136 6.32975 0.542771
137137 −2.58211 −0.220604 −0.110302 0.993898i 0.535182π-0.535182\pi
−0.110302 + 0.993898i 0.535182π0.535182\pi
138138 −1.77048 −0.150713
139139 −14.4330 −1.22419 −0.612094 0.790785i 0.709673π-0.709673\pi
−0.612094 + 0.790785i 0.709673π0.709673\pi
140140 5.85086 0.494488
141141 37.4795 3.15634
142142 −4.39373 −0.368714
143143 0 0
144144 21.5036 1.79197
145145 −6.07069 −0.504143
146146 3.58450 0.296655
147147 −11.5036 −0.948805
148148 −3.40581 −0.279956
149149 0.572417 0.0468942 0.0234471 0.999725i 0.492536π-0.492536\pi
0.0234471 + 0.999725i 0.492536π0.492536\pi
150150 1.44504 0.117987
151151 −1.23490 −0.100495 −0.0502473 0.998737i 0.516001π-0.516001\pi
−0.0502473 + 0.998737i 0.516001π0.516001\pi
152152 2.59419 0.210416
153153 28.2174 2.28124
154154 1.00000 0.0805823
155155 8.45473 0.679100
156156 0 0
157157 11.5375 0.920793 0.460396 0.887713i 0.347707π-0.347707\pi
0.460396 + 0.887713i 0.347707π0.347707\pi
158158 7.35019 0.584750
159159 −2.60388 −0.206501
160160 −4.65279 −0.367836
161161 3.97823 0.313528
162162 −11.2446 −0.883458
163163 7.28382 0.570512 0.285256 0.958451i 0.407921π-0.407921\pi
0.285256 + 0.958451i 0.407921π0.407921\pi
164164 −0.823708 −0.0643208
165165 −2.24698 −0.174927
166166 2.74632 0.213155
167167 14.4480 1.11802 0.559011 0.829160i 0.311181π-0.311181\pi
0.559011 + 0.829160i 0.311181π0.311181\pi
168168 17.8388 1.37629
169169 0 0
170170 −1.66487 −0.127690
171171 11.5646 0.884371
172172 11.1685 0.851592
173173 1.81940 0.138326 0.0691631 0.997605i 0.477967π-0.477967\pi
0.0691631 + 0.997605i 0.477967π0.477967\pi
174174 −8.77240 −0.665034
175175 −3.24698 −0.245449
176176 1.97285 0.148709
177177 21.4426 1.61173
178178 −4.68425 −0.351100
179179 −18.2470 −1.36384 −0.681922 0.731425i 0.738856π-0.738856\pi
−0.681922 + 0.731425i 0.738856π0.738856\pi
180180 −13.5918 −1.01307
181181 −11.8605 −0.881587 −0.440794 0.897608i 0.645303π-0.645303\pi
−0.440794 + 0.897608i 0.645303π0.645303\pi
182182 0 0
183183 13.6310 1.00763
184184 −2.07308 −0.152830
185185 1.89008 0.138962
186186 12.2174 0.895826
187187 2.58881 0.189313
188188 20.7995 1.51696
189189 47.8950 3.48385
190190 −0.682333 −0.0495016
191191 8.56465 0.619716 0.309858 0.950783i 0.399718π-0.399718\pi
0.309858 + 0.950783i 0.399718π0.399718\pi
192192 11.7899 0.850860
193193 −21.6993 −1.56195 −0.780976 0.624562i 0.785278π-0.785278\pi
−0.780976 + 0.624562i 0.785278π0.785278\pi
194194 −1.53750 −0.110386
195195 0 0
196196 −6.38404 −0.456003
197197 −21.8431 −1.55626 −0.778128 0.628106i 0.783830π-0.783830\pi
−0.778128 + 0.628106i 0.783830π0.783830\pi
198198 −2.32304 −0.165092
199199 −3.67025 −0.260177 −0.130089 0.991502i 0.541526π-0.541526\pi
−0.130089 + 0.991502i 0.541526π0.541526\pi
200200 1.69202 0.119644
201201 −44.8461 −3.16320
202202 −1.92394 −0.135368
203203 19.7114 1.38347
204204 21.8877 1.53244
205205 0.457123 0.0319269
206206 1.89546 0.132063
207207 −9.24160 −0.642336
208208 0 0
209209 1.06100 0.0733908
210210 −4.69202 −0.323780
211211 −15.2862 −1.05235 −0.526173 0.850378i 0.676374π-0.676374\pi
−0.526173 + 0.850378i 0.676374π0.676374\pi
212212 −1.44504 −0.0992459
213213 −32.0562 −2.19646
214214 4.99223 0.341262
215215 −6.19806 −0.422704
216216 −24.9584 −1.69820
217217 −27.4523 −1.86359
218218 1.05562 0.0714958
219219 26.1521 1.76720
220220 −1.24698 −0.0840713
221221 0 0
222222 2.73125 0.183310
223223 3.66786 0.245618 0.122809 0.992430i 0.460810π-0.460810\pi
0.122809 + 0.992430i 0.460810π0.460810\pi
224224 15.1075 1.00941
225225 7.54288 0.502858
226226 0.769414 0.0511806
227227 −18.5676 −1.23238 −0.616188 0.787599i 0.711324π-0.711324\pi
−0.616188 + 0.787599i 0.711324π0.711324\pi
228228 8.97046 0.594083
229229 −16.0978 −1.06377 −0.531887 0.846815i 0.678517π-0.678517\pi
−0.531887 + 0.846815i 0.678517π0.678517\pi
230230 0.545269 0.0359540
231231 7.29590 0.480035
232232 −10.2717 −0.674372
233233 −20.3056 −1.33026 −0.665132 0.746726i 0.731625π-0.731625\pi
−0.665132 + 0.746726i 0.731625π0.731625\pi
234234 0 0
235235 −11.5429 −0.752974
236236 11.8998 0.774609
237237 53.6262 3.48340
238238 5.40581 0.350407
239239 20.7168 1.34006 0.670028 0.742335i 0.266282π-0.266282\pi
0.670028 + 0.742335i 0.266282π0.266282\pi
240240 −9.25667 −0.597515
241241 25.8582 1.66567 0.832835 0.553521i 0.186716π-0.186716\pi
0.832835 + 0.553521i 0.186716π0.186716\pi
242242 4.68233 0.300992
243243 −37.7875 −2.42407
244244 7.56465 0.484277
245245 3.54288 0.226346
246246 0.660563 0.0421159
247247 0 0
248248 14.3056 0.908406
249249 20.0368 1.26978
250250 −0.445042 −0.0281469
251251 −26.2989 −1.65997 −0.829985 0.557785i 0.811651π-0.811651\pi
−0.829985 + 0.557785i 0.811651π0.811651\pi
252252 44.1323 2.78007
253253 −0.847871 −0.0533052
254254 −1.68664 −0.105829
255255 −12.1468 −0.760659
256256 2.40150 0.150094
257257 −6.04354 −0.376986 −0.188493 0.982075i 0.560360π-0.560360\pi
−0.188493 + 0.982075i 0.560360π0.560360\pi
258258 −8.95646 −0.557605
259259 −6.13706 −0.381339
260260 0 0
261261 −45.7904 −2.83436
262262 −2.44265 −0.150907
263263 −16.5429 −1.02008 −0.510039 0.860151i 0.670369π-0.670369\pi
−0.510039 + 0.860151i 0.670369π0.670369\pi
264264 −3.80194 −0.233993
265265 0.801938 0.0492626
266266 2.21552 0.135842
267267 −34.1758 −2.09153
268268 −24.8877 −1.52026
269269 −12.0954 −0.737472 −0.368736 0.929534i 0.620209π-0.620209\pi
−0.368736 + 0.929534i 0.620209π0.620209\pi
270270 6.56465 0.399512
271271 −13.2687 −0.806019 −0.403010 0.915196i 0.632036π-0.632036\pi
−0.403010 + 0.915196i 0.632036π0.632036\pi
272272 10.6649 0.646653
273273 0 0
274274 1.14914 0.0694224
275275 0.692021 0.0417305
276276 −7.16852 −0.431494
277277 −8.48858 −0.510029 −0.255015 0.966937i 0.582080π-0.582080\pi
−0.255015 + 0.966937i 0.582080π0.582080\pi
278278 6.42327 0.385242
279279 63.7730 3.81799
280280 −5.49396 −0.328327
281281 −26.7603 −1.59639 −0.798193 0.602401i 0.794211π-0.794211\pi
−0.798193 + 0.602401i 0.794211π0.794211\pi
282282 −16.6799 −0.993276
283283 −11.6649 −0.693405 −0.346702 0.937975i 0.612699π-0.612699\pi
−0.346702 + 0.937975i 0.612699π0.612699\pi
284284 −17.7899 −1.05563
285285 −4.97823 −0.294885
286286 0 0
287287 −1.48427 −0.0876137
288288 −35.0954 −2.06802
289289 −3.00538 −0.176787
290290 2.70171 0.158650
291291 −11.2174 −0.657578
292292 14.5133 0.849329
293293 10.6407 0.621637 0.310818 0.950469i 0.399397π-0.399397\pi
0.310818 + 0.950469i 0.399397π0.399397\pi
294294 5.11960 0.298581
295295 −6.60388 −0.384492
296296 3.19806 0.185884
297297 −10.2078 −0.592314
298298 −0.254749 −0.0147572
299299 0 0
300300 5.85086 0.337799
301301 20.1250 1.15998
302302 0.549581 0.0316249
303303 −14.0368 −0.806395
304304 4.37090 0.250688
305305 −4.19806 −0.240380
306306 −12.5579 −0.717890
307307 0.291585 0.0166416 0.00832082 0.999965i 0.497351π-0.497351\pi
0.00832082 + 0.999965i 0.497351π0.497351\pi
308308 4.04892 0.230708
309309 13.8291 0.786709
310310 −3.76271 −0.213708
311311 30.2707 1.71649 0.858246 0.513238i 0.171554π-0.171554\pi
0.858246 + 0.513238i 0.171554π0.171554\pi
312312 0 0
313313 8.50902 0.480959 0.240479 0.970654i 0.422695π-0.422695\pi
0.240479 + 0.970654i 0.422695π0.422695\pi
314314 −5.13467 −0.289766
315315 −24.4916 −1.37994
316316 29.7603 1.67415
317317 −11.5550 −0.648991 −0.324496 0.945887i 0.605195π-0.605195\pi
−0.324496 + 0.945887i 0.605195π0.605195\pi
318318 1.15883 0.0649842
319319 −4.20105 −0.235213
320320 −3.63102 −0.202980
321321 36.4228 2.03292
322322 −1.77048 −0.0986649
323323 5.73556 0.319135
324324 −45.5284 −2.52936
325325 0 0
326326 −3.24160 −0.179536
327327 7.70171 0.425906
328328 0.773463 0.0427073
329329 37.4795 2.06631
330330 1.00000 0.0550482
331331 −27.4403 −1.50825 −0.754126 0.656729i 0.771939π-0.771939\pi
−0.754126 + 0.656729i 0.771939π0.771939\pi
332332 11.1196 0.610268
333333 14.2567 0.781261
334334 −6.42998 −0.351833
335335 13.8116 0.754610
336336 30.0562 1.63970
337337 −34.7265 −1.89167 −0.945836 0.324646i 0.894755π-0.894755\pi
−0.945836 + 0.324646i 0.894755π0.894755\pi
338338 0 0
339339 5.61356 0.304887
340340 −6.74094 −0.365579
341341 5.85086 0.316842
342342 −5.14675 −0.278304
343343 11.2252 0.606104
344344 −10.4873 −0.565435
345345 3.97823 0.214181
346346 −0.809707 −0.0435301
347347 29.6262 1.59042 0.795210 0.606334i 0.207361π-0.207361\pi
0.795210 + 0.606334i 0.207361π0.207361\pi
348348 −35.5187 −1.90400
349349 −15.9463 −0.853586 −0.426793 0.904349i 0.640357π-0.640357\pi
−0.426793 + 0.904349i 0.640357π0.640357\pi
350350 1.44504 0.0772407
351351 0 0
352352 −3.21983 −0.171618
353353 22.2828 1.18599 0.592996 0.805206i 0.297945π-0.297945\pi
0.592996 + 0.805206i 0.297945π0.297945\pi
354354 −9.54288 −0.507198
355355 9.87263 0.523985
356356 −18.9661 −1.00520
357357 39.4403 2.08740
358358 8.12067 0.429191
359359 34.6896 1.83085 0.915424 0.402490i 0.131855π-0.131855\pi
0.915424 + 0.402490i 0.131855π0.131855\pi
360360 12.7627 0.672654
361361 −16.6493 −0.876281
362362 5.27844 0.277429
363363 34.1618 1.79303
364364 0 0
365365 −8.05429 −0.421581
366366 −6.06638 −0.317095
367367 9.71246 0.506986 0.253493 0.967337i 0.418420π-0.418420\pi
0.253493 + 0.967337i 0.418420π0.418420\pi
368368 −3.49289 −0.182080
369369 3.44803 0.179497
370370 −0.841166 −0.0437302
371371 −2.60388 −0.135186
372372 49.4674 2.56477
373373 15.0411 0.778801 0.389401 0.921069i 0.372682π-0.372682\pi
0.389401 + 0.921069i 0.372682π0.372682\pi
374374 −1.15213 −0.0595752
375375 −3.24698 −0.167673
376376 −19.5308 −1.00722
377377 0 0
378378 −21.3153 −1.09634
379379 −13.1347 −0.674683 −0.337341 0.941382i 0.609528π-0.609528\pi
−0.337341 + 0.941382i 0.609528π0.609528\pi
380380 −2.76271 −0.141724
381381 −12.3056 −0.630434
382382 −3.81163 −0.195020
383383 −3.02177 −0.154405 −0.0772026 0.997015i 0.524599π-0.524599\pi
−0.0772026 + 0.997015i 0.524599π0.524599\pi
384384 −35.4620 −1.80966
385385 −2.24698 −0.114517
386386 9.65710 0.491534
387387 −46.7512 −2.37650
388388 −6.22521 −0.316037
389389 31.4282 1.59347 0.796736 0.604328i 0.206558π-0.206558\pi
0.796736 + 0.604328i 0.206558π0.206558\pi
390390 0 0
391391 −4.58343 −0.231794
392392 5.99462 0.302774
393393 −17.8213 −0.898966
394394 9.72109 0.489741
395395 −16.5157 −0.830997
396396 −9.40581 −0.472660
397397 23.0489 1.15679 0.578396 0.815756i 0.303679π-0.303679\pi
0.578396 + 0.815756i 0.303679π0.303679\pi
398398 1.63342 0.0818757
399399 16.1642 0.809223
400400 2.85086 0.142543
401401 −19.8103 −0.989279 −0.494640 0.869098i 0.664700π-0.664700\pi
−0.494640 + 0.869098i 0.664700π0.664700\pi
402402 19.9584 0.995433
403403 0 0
404404 −7.78986 −0.387560
405405 25.2664 1.25550
406406 −8.77240 −0.435367
407407 1.30798 0.0648341
408408 −20.5526 −1.01750
409409 −32.9705 −1.63028 −0.815142 0.579261i 0.803341π-0.803341\pi
−0.815142 + 0.579261i 0.803341π0.803341\pi
410410 −0.203439 −0.0100471
411411 8.38404 0.413554
412412 7.67456 0.378099
413413 21.4426 1.05512
414414 4.11290 0.202138
415415 −6.17092 −0.302918
416416 0 0
417417 46.8635 2.29492
418418 −0.472189 −0.0230955
419419 21.6136 1.05589 0.527946 0.849278i 0.322962π-0.322962\pi
0.527946 + 0.849278i 0.322962π0.322962\pi
420420 −18.9976 −0.926988
421421 −4.11769 −0.200684 −0.100342 0.994953i 0.531994π-0.531994\pi
−0.100342 + 0.994953i 0.531994π0.531994\pi
422422 6.80300 0.331165
423423 −87.0665 −4.23332
424424 1.35690 0.0658967
425425 3.74094 0.181462
426426 14.2664 0.691207
427427 13.6310 0.659651
428428 20.2131 0.977038
429429 0 0
430430 2.75840 0.133022
431431 −18.8616 −0.908532 −0.454266 0.890866i 0.650098π-0.650098\pi
−0.454266 + 0.890866i 0.650098π0.650098\pi
432432 −42.0519 −2.02322
433433 3.31336 0.159230 0.0796148 0.996826i 0.474631π-0.474631\pi
0.0796148 + 0.996826i 0.474631π0.474631\pi
434434 12.2174 0.586456
435435 19.7114 0.945089
436436 4.27413 0.204694
437437 −1.87848 −0.0898597
438438 −11.6388 −0.556123
439439 −14.3894 −0.686770 −0.343385 0.939195i 0.611573π-0.611573\pi
−0.343385 + 0.939195i 0.611573π0.611573\pi
440440 1.17092 0.0558212
441441 26.7235 1.27255
442442 0 0
443443 12.4577 0.591884 0.295942 0.955206i 0.404367π-0.404367\pi
0.295942 + 0.955206i 0.404367π0.404367\pi
444444 11.0586 0.524818
445445 10.5254 0.498953
446446 −1.63235 −0.0772940
447447 −1.85862 −0.0879099
448448 11.7899 0.557018
449449 −30.5478 −1.44164 −0.720819 0.693123i 0.756234π-0.756234\pi
−0.720819 + 0.693123i 0.756234π0.756234\pi
450450 −3.35690 −0.158246
451451 0.316339 0.0148958
452452 3.11529 0.146531
453453 4.00969 0.188392
454454 8.26337 0.387819
455455 0 0
456456 −8.42327 −0.394456
457457 −9.79225 −0.458062 −0.229031 0.973419i 0.573556π-0.573556\pi
−0.229031 + 0.973419i 0.573556π0.573556\pi
458458 7.16421 0.334762
459459 −55.1812 −2.57564
460460 2.20775 0.102937
461461 13.2620 0.617675 0.308838 0.951115i 0.400060π-0.400060\pi
0.308838 + 0.951115i 0.400060π0.400060\pi
462462 −3.24698 −0.151063
463463 17.2403 0.801224 0.400612 0.916248i 0.368798π-0.368798\pi
0.400612 + 0.916248i 0.368798π0.368798\pi
464464 −17.3067 −0.803441
465465 −27.4523 −1.27307
466466 9.03684 0.418623
467467 −4.98254 −0.230565 −0.115282 0.993333i 0.536777π-0.536777\pi
−0.115282 + 0.993333i 0.536777π0.536777\pi
468468 0 0
469469 −44.8461 −2.07080
470470 5.13706 0.236955
471471 −37.4620 −1.72616
472472 −11.1739 −0.514320
473473 −4.28919 −0.197217
474474 −23.8659 −1.09620
475475 1.53319 0.0703475
476476 21.8877 1.00322
477477 6.04892 0.276961
478478 −9.21983 −0.421705
479479 5.11529 0.233724 0.116862 0.993148i 0.462717π-0.462717\pi
0.116862 + 0.993148i 0.462717π0.462717\pi
480480 15.1075 0.689561
481481 0 0
482482 −11.5080 −0.524173
483483 −12.9172 −0.587754
484484 18.9584 0.861744
485485 3.45473 0.156871
486486 16.8170 0.762835
487487 6.33704 0.287159 0.143579 0.989639i 0.454139π-0.454139\pi
0.143579 + 0.989639i 0.454139π0.454139\pi
488488 −7.10321 −0.321547
489489 −23.6504 −1.06951
490490 −1.57673 −0.0712293
491491 −31.3381 −1.41427 −0.707135 0.707079i 0.750012π-0.750012\pi
−0.707135 + 0.707079i 0.750012π0.750012\pi
492492 2.67456 0.120579
493493 −22.7101 −1.02281
494494 0 0
495495 5.21983 0.234614
496496 24.1032 1.08227
497497 −32.0562 −1.43792
498498 −8.91723 −0.399591
499499 23.7047 1.06117 0.530584 0.847632i 0.321973π-0.321973\pi
0.530584 + 0.847632i 0.321973π0.321973\pi
500500 −1.80194 −0.0805851
501501 −46.9124 −2.09589
502502 11.7041 0.522380
503503 15.7125 0.700584 0.350292 0.936641i 0.386082π-0.386082\pi
0.350292 + 0.936641i 0.386082π0.386082\pi
504504 −41.4403 −1.84590
505505 4.32304 0.192373
506506 0.377338 0.0167747
507507 0 0
508508 −6.82908 −0.302992
509509 −36.3551 −1.61141 −0.805706 0.592316i 0.798214π-0.798214\pi
−0.805706 + 0.592316i 0.798214π0.798214\pi
510510 5.40581 0.239373
511511 26.1521 1.15690
512512 −22.9119 −1.01257
513513 −22.6155 −0.998498
514514 2.68963 0.118634
515515 −4.25906 −0.187677
516516 −36.2640 −1.59643
517517 −7.98792 −0.351308
518518 2.73125 0.120004
519519 −5.90754 −0.259312
520520 0 0
521521 9.55735 0.418715 0.209358 0.977839i 0.432863π-0.432863\pi
0.209358 + 0.977839i 0.432863π0.432863\pi
522522 20.3787 0.891950
523523 3.57242 0.156211 0.0781054 0.996945i 0.475113π-0.475113\pi
0.0781054 + 0.996945i 0.475113π0.475113\pi
524524 −9.89008 −0.432050
525525 10.5429 0.460129
526526 7.36227 0.321010
527527 31.6286 1.37776
528528 −6.40581 −0.278777
529529 −21.4989 −0.934733
530530 −0.356896 −0.0155026
531531 −49.8122 −2.16167
532532 8.97046 0.388919
533533 0 0
534534 15.2097 0.658187
535535 −11.2174 −0.484972
536536 23.3696 1.00941
537537 59.2476 2.55672
538538 5.38298 0.232077
539539 2.45175 0.105604
540540 26.5797 1.14381
541541 9.99330 0.429645 0.214823 0.976653i 0.431083π-0.431083\pi
0.214823 + 0.976653i 0.431083π0.431083\pi
542542 5.90515 0.253648
543543 38.5109 1.65266
544544 −17.4058 −0.746268
545545 −2.37196 −0.101604
546546 0 0
547547 −17.9836 −0.768923 −0.384462 0.923141i 0.625613π-0.625613\pi
−0.384462 + 0.923141i 0.625613π0.625613\pi
548548 4.65279 0.198757
549549 −31.6655 −1.35145
550550 −0.307979 −0.0131322
551551 −9.30750 −0.396513
552552 6.73125 0.286501
553553 53.6262 2.28042
554554 3.77777 0.160502
555555 −6.13706 −0.260504
556556 26.0073 1.10296
557557 −16.5670 −0.701968 −0.350984 0.936381i 0.614153π-0.614153\pi
−0.350984 + 0.936381i 0.614153π0.614153\pi
558558 −28.3817 −1.20149
559559 0 0
560560 −9.25667 −0.391166
561561 −8.40581 −0.354894
562562 11.9095 0.502370
563563 31.7356 1.33749 0.668747 0.743490i 0.266831π-0.266831\pi
0.668747 + 0.743490i 0.266831π0.266831\pi
564564 −67.5357 −2.84377
565565 −1.72886 −0.0727336
566566 5.19136 0.218209
567567 −82.0393 −3.44533
568568 16.7047 0.700913
569569 13.9336 0.584128 0.292064 0.956399i 0.405658π-0.405658\pi
0.292064 + 0.956399i 0.405658π0.405658\pi
570570 2.21552 0.0927979
571571 −26.2959 −1.10045 −0.550225 0.835017i 0.685458π-0.685458\pi
−0.550225 + 0.835017i 0.685458π0.685458\pi
572572 0 0
573573 −27.8092 −1.16175
574574 0.660563 0.0275713
575575 −1.22521 −0.0510948
576576 −27.3884 −1.14118
577577 20.0339 0.834020 0.417010 0.908902i 0.363078π-0.363078\pi
0.417010 + 0.908902i 0.363078π0.363078\pi
578578 1.33752 0.0556334
579579 70.4572 2.92810
580580 10.9390 0.454217
581581 20.0368 0.831268
582582 4.99223 0.206935
583583 0.554958 0.0229840
584584 −13.6280 −0.563932
585585 0 0
586586 −4.73556 −0.195624
587587 20.0103 0.825913 0.412956 0.910751i 0.364496π-0.364496\pi
0.412956 + 0.910751i 0.364496π0.364496\pi
588588 20.7289 0.854844
589589 12.9627 0.534118
590590 2.93900 0.120997
591591 70.9241 2.91743
592592 5.38835 0.221460
593593 36.7023 1.50718 0.753591 0.657343i 0.228320π-0.228320\pi
0.753591 + 0.657343i 0.228320π0.228320\pi
594594 4.54288 0.186396
595595 −12.1468 −0.497968
596596 −1.03146 −0.0422502
597597 11.9172 0.487740
598598 0 0
599599 13.5386 0.553171 0.276585 0.960989i 0.410797π-0.410797\pi
0.276585 + 0.960989i 0.410797π0.410797\pi
600600 −5.49396 −0.224290
601601 42.4965 1.73347 0.866734 0.498771i 0.166215π-0.166215\pi
0.866734 + 0.498771i 0.166215π0.166215\pi
602602 −8.95646 −0.365038
603603 104.179 4.24251
604604 2.22521 0.0905425
605605 −10.5211 −0.427744
606606 6.24698 0.253766
607607 −12.4969 −0.507235 −0.253618 0.967305i 0.581620π-0.581620\pi
−0.253618 + 0.967305i 0.581620π0.581620\pi
608608 −7.13361 −0.289306
609609 −64.0025 −2.59351
610610 1.86831 0.0756458
611611 0 0
612612 −50.8461 −2.05533
613613 30.0694 1.21449 0.607245 0.794515i 0.292275π-0.292275\pi
0.607245 + 0.794515i 0.292275π0.292275\pi
614614 −0.129768 −0.00523699
615615 −1.48427 −0.0598516
616616 −3.80194 −0.153184
617617 −28.1196 −1.13205 −0.566026 0.824387i 0.691520π-0.691520\pi
−0.566026 + 0.824387i 0.691520π0.691520\pi
618618 −6.15452 −0.247571
619619 −20.3424 −0.817631 −0.408815 0.912617i 0.634058π-0.634058\pi
−0.408815 + 0.912617i 0.634058π0.634058\pi
620620 −15.2349 −0.611848
621621 18.0726 0.725229
622622 −13.4717 −0.540167
623623 −34.1758 −1.36923
624624 0 0
625625 1.00000 0.0400000
626626 −3.78687 −0.151354
627627 −3.44504 −0.137582
628628 −20.7899 −0.829606
629629 7.07069 0.281927
630630 10.8998 0.434257
631631 3.66355 0.145843 0.0729217 0.997338i 0.476768π-0.476768\pi
0.0729217 + 0.997338i 0.476768π0.476768\pi
632632 −27.9450 −1.11159
633633 49.6340 1.97277
634634 5.14244 0.204232
635635 3.78986 0.150396
636636 4.69202 0.186051
637637 0 0
638638 1.86964 0.0740198
639639 74.4680 2.94591
640640 10.9215 0.431712
641641 5.73556 0.226541 0.113271 0.993564i 0.463867π-0.463867\pi
0.113271 + 0.993564i 0.463867π0.463867\pi
642642 −16.2097 −0.639745
643643 7.35929 0.290222 0.145111 0.989415i 0.453646π-0.453646\pi
0.145111 + 0.989415i 0.453646π0.453646\pi
644644 −7.16852 −0.282479
645645 20.1250 0.792420
646646 −2.55257 −0.100429
647647 49.2664 1.93686 0.968430 0.249285i 0.0801956π-0.0801956\pi
0.968430 + 0.249285i 0.0801956π0.0801956\pi
648648 42.7512 1.67943
649649 −4.57002 −0.179389
650650 0 0
651651 89.1372 3.49356
652652 −13.1250 −0.514014
653653 8.50796 0.332942 0.166471 0.986046i 0.446763π-0.446763\pi
0.166471 + 0.986046i 0.446763π0.446763\pi
654654 −3.42758 −0.134029
655655 5.48858 0.214457
656656 1.30319 0.0508811
657657 −60.7525 −2.37018
658658 −16.6799 −0.650252
659659 −5.42221 −0.211219 −0.105610 0.994408i 0.533679π-0.533679\pi
−0.105610 + 0.994408i 0.533679π0.533679\pi
660660 4.04892 0.157604
661661 16.2784 0.633158 0.316579 0.948566i 0.397466π-0.397466\pi
0.316579 + 0.948566i 0.397466π0.397466\pi
662662 12.2121 0.474635
663663 0 0
664664 −10.4413 −0.405202
665665 −4.97823 −0.193047
666666 −6.34481 −0.245857
667667 7.43786 0.287995
668668 −26.0344 −1.00730
669669 −11.9095 −0.460446
670670 −6.14675 −0.237470
671671 −2.90515 −0.112152
672672 −49.0538 −1.89229
673673 −22.8866 −0.882215 −0.441107 0.897454i 0.645414π-0.645414\pi
−0.441107 + 0.897454i 0.645414π0.645414\pi
674674 15.4547 0.595294
675675 −14.7506 −0.567752
676676 0 0
677677 −36.9711 −1.42091 −0.710456 0.703741i 0.751511π-0.751511\pi
−0.710456 + 0.703741i 0.751511π0.751511\pi
678678 −2.49827 −0.0959455
679679 −11.2174 −0.430486
680680 6.32975 0.242735
681681 60.2887 2.31027
682682 −2.60388 −0.0997075
683683 21.3177 0.815698 0.407849 0.913049i 0.366279π-0.366279\pi
0.407849 + 0.913049i 0.366279π0.366279\pi
684684 −20.8388 −0.796790
685685 −2.58211 −0.0986572
686686 −4.99569 −0.190736
687687 52.2693 1.99420
688688 −17.6698 −0.673654
689689 0 0
690690 −1.77048 −0.0674010
691691 −20.9554 −0.797181 −0.398590 0.917129i 0.630500π-0.630500\pi
−0.398590 + 0.917129i 0.630500π0.630500\pi
692692 −3.27844 −0.124628
693693 −16.9487 −0.643827
694694 −13.1849 −0.500493
695695 −14.4330 −0.547473
696696 33.3521 1.26421
697697 1.71007 0.0647736
698698 7.09677 0.268617
699699 65.9318 2.49377
700700 5.85086 0.221142
701701 −36.9439 −1.39535 −0.697676 0.716413i 0.745782π-0.745782\pi
−0.697676 + 0.716413i 0.745782π0.745782\pi
702702 0 0
703703 2.89785 0.109295
704704 −2.51275 −0.0947027
705705 37.4795 1.41156
706706 −9.91676 −0.373222
707707 −14.0368 −0.527910
708708 −38.6383 −1.45212
709709 −6.41358 −0.240867 −0.120434 0.992721i 0.538428π-0.538428\pi
−0.120434 + 0.992721i 0.538428π0.538428\pi
710710 −4.39373 −0.164894
711711 −124.576 −4.67197
712712 17.8092 0.667429
713713 −10.3588 −0.387941
714714 −17.5526 −0.656888
715715 0 0
716716 32.8799 1.22878
717717 −67.2669 −2.51213
718718 −15.4383 −0.576154
719719 −13.7265 −0.511911 −0.255955 0.966689i 0.582390π-0.582390\pi
−0.255955 + 0.966689i 0.582390π0.582390\pi
720720 21.5036 0.801394
721721 13.8291 0.515022
722722 7.40965 0.275759
723723 −83.9609 −3.12254
724724 21.3720 0.794283
725725 −6.07069 −0.225460
726726 −15.2034 −0.564253
727727 33.1008 1.22764 0.613821 0.789445i 0.289632π-0.289632\pi
0.613821 + 0.789445i 0.289632π0.289632\pi
728728 0 0
729729 46.8961 1.73689
730730 3.58450 0.132668
731731 −23.1866 −0.857586
732732 −24.5623 −0.907847
733733 −50.6902 −1.87229 −0.936143 0.351620i 0.885631π-0.885631\pi
−0.936143 + 0.351620i 0.885631π0.885631\pi
734734 −4.32245 −0.159545
735735 −11.5036 −0.424318
736736 5.70065 0.210129
737737 9.55794 0.352071
738738 −1.53452 −0.0564863
739739 24.5448 0.902895 0.451447 0.892298i 0.350908π-0.350908\pi
0.451447 + 0.892298i 0.350908π0.350908\pi
740740 −3.40581 −0.125200
741741 0 0
742742 1.15883 0.0425421
743743 8.90217 0.326589 0.163294 0.986577i 0.447788π-0.447788\pi
0.163294 + 0.986577i 0.447788π0.447788\pi
744744 −46.4499 −1.70294
745745 0.572417 0.0209717
746746 −6.69394 −0.245083
747747 −46.5465 −1.70305
748748 −4.66487 −0.170565
749749 36.4228 1.33086
750750 1.44504 0.0527655
751751 −3.00059 −0.109493 −0.0547466 0.998500i 0.517435π-0.517435\pi
−0.0547466 + 0.998500i 0.517435π0.517435\pi
752752 −32.9071 −1.20000
753753 85.3919 3.11185
754754 0 0
755755 −1.23490 −0.0449425
756756 −86.3038 −3.13884
757757 −23.1691 −0.842096 −0.421048 0.907038i 0.638338π-0.638338\pi
−0.421048 + 0.907038i 0.638338π0.638338\pi
758758 5.84548 0.212317
759759 2.75302 0.0999283
760760 2.59419 0.0941010
761761 13.6431 0.494562 0.247281 0.968944i 0.420463π-0.420463\pi
0.247281 + 0.968944i 0.420463π0.420463\pi
762762 5.47650 0.198393
763763 7.70171 0.278821
764764 −15.4330 −0.558345
765765 28.2174 1.02020
766766 1.34481 0.0485901
767767 0 0
768768 −7.79763 −0.281373
769769 31.8853 1.14981 0.574907 0.818219i 0.305038π-0.305038\pi
0.574907 + 0.818219i 0.305038π0.305038\pi
770770 1.00000 0.0360375
771771 19.6233 0.706714
772772 39.1008 1.40727
773773 18.4168 0.662407 0.331204 0.943559i 0.392545π-0.392545\pi
0.331204 + 0.943559i 0.392545π0.392545\pi
774774 20.8062 0.747865
775775 8.45473 0.303703
776776 5.84548 0.209840
777777 19.9269 0.714874
778778 −13.9869 −0.501453
779779 0.700856 0.0251108
780780 0 0
781781 6.83207 0.244471
782782 2.03982 0.0729438
783783 89.5465 3.20013
784784 10.1002 0.360722
785785 11.5375 0.411791
786786 7.93123 0.282898
787787 −31.5230 −1.12367 −0.561837 0.827248i 0.689905π-0.689905\pi
−0.561837 + 0.827248i 0.689905π0.689905\pi
788788 39.3599 1.40214
789789 53.7144 1.91228
790790 7.35019 0.261508
791791 5.61356 0.199595
792792 8.83207 0.313834
793793 0 0
794794 −10.2577 −0.364033
795795 −2.60388 −0.0923499
796796 6.61356 0.234412
797797 41.3967 1.46635 0.733173 0.680042i 0.238038π-0.238038\pi
0.733173 + 0.680042i 0.238038π0.238038\pi
798798 −7.19375 −0.254656
799799 −43.1812 −1.52764
800800 −4.65279 −0.164501
801801 79.3919 2.80518
802802 8.81641 0.311318
803803 −5.57374 −0.196693
804804 80.8098 2.84994
805805 3.97823 0.140214
806806 0 0
807807 39.2737 1.38250
808808 7.31468 0.257330
809809 33.9748 1.19449 0.597245 0.802059i 0.296262π-0.296262\pi
0.597245 + 0.802059i 0.296262π0.296262\pi
810810 −11.2446 −0.395095
811811 −42.4174 −1.48948 −0.744739 0.667356i 0.767426π-0.767426\pi
−0.744739 + 0.667356i 0.767426π0.767426\pi
812812 −35.5187 −1.24646
813813 43.0834 1.51100
814814 −0.582105 −0.0204028
815815 7.28382 0.255141
816816 −34.6286 −1.21224
817817 −9.50279 −0.332461
818818 14.6732 0.513038
819819 0 0
820820 −0.823708 −0.0287651
821821 −20.8823 −0.728798 −0.364399 0.931243i 0.618726π-0.618726\pi
−0.364399 + 0.931243i 0.618726π0.618726\pi
822822 −3.73125 −0.130142
823823 −31.4196 −1.09522 −0.547608 0.836735i 0.684462π-0.684462\pi
−0.547608 + 0.836735i 0.684462π0.684462\pi
824824 −7.20642 −0.251048
825825 −2.24698 −0.0782298
826826 −9.54288 −0.332039
827827 −30.8471 −1.07266 −0.536330 0.844008i 0.680190π-0.680190\pi
−0.536330 + 0.844008i 0.680190π0.680190\pi
828828 16.6528 0.578725
829829 30.9004 1.07321 0.536607 0.843832i 0.319706π-0.319706\pi
0.536607 + 0.843832i 0.319706π0.319706\pi
830830 2.74632 0.0953260
831831 27.5623 0.956124
832832 0 0
833833 13.2537 0.459213
834834 −20.8562 −0.722192
835835 14.4480 0.499995
836836 −1.91185 −0.0661229
837837 −124.713 −4.31070
838838 −9.61894 −0.332281
839839 −17.9782 −0.620677 −0.310339 0.950626i 0.600442π-0.600442\pi
−0.310339 + 0.950626i 0.600442π0.600442\pi
840840 17.8388 0.615496
841841 7.85325 0.270802
842842 1.83254 0.0631536
843843 86.8902 2.99266
844844 27.5448 0.948131
845845 0 0
846846 38.7482 1.33219
847847 34.1618 1.17381
848848 2.28621 0.0785087
849849 37.8756 1.29989
850850 −1.66487 −0.0571047
851851 −2.31575 −0.0793828
852852 57.7633 1.97894
853853 −4.04413 −0.138468 −0.0692342 0.997600i 0.522056π-0.522056\pi
−0.0692342 + 0.997600i 0.522056π0.522056\pi
854854 −6.06638 −0.207587
855855 11.5646 0.395503
856856 −18.9801 −0.648728
857857 25.7888 0.880928 0.440464 0.897770i 0.354814π-0.354814\pi
0.440464 + 0.897770i 0.354814π0.354814\pi
858858 0 0
859859 −5.63043 −0.192108 −0.0960539 0.995376i 0.530622π-0.530622\pi
−0.0960539 + 0.995376i 0.530622π0.530622\pi
860860 11.1685 0.380843
861861 4.81940 0.164245
862862 8.39421 0.285908
863863 20.6112 0.701612 0.350806 0.936448i 0.385908π-0.385908\pi
0.350806 + 0.936448i 0.385908π0.385908\pi
864864 68.6316 2.33489
865865 1.81940 0.0618613
866866 −1.47458 −0.0501083
867867 9.75840 0.331413
868868 49.4674 1.67903
869869 −11.4292 −0.387710
870870 −8.77240 −0.297412
871871 0 0
872872 −4.01341 −0.135911
873873 26.0586 0.881950
874874 0.836001 0.0282781
875875 −3.24698 −0.109768
876876 −47.1245 −1.59219
877877 −3.46383 −0.116965 −0.0584826 0.998288i 0.518626π-0.518626\pi
−0.0584826 + 0.998288i 0.518626π0.518626\pi
878878 6.40389 0.216121
879879 −34.5502 −1.16535
880880 1.97285 0.0665049
881881 −28.2040 −0.950218 −0.475109 0.879927i 0.657591π-0.657591\pi
−0.475109 + 0.879927i 0.657591π0.657591\pi
882882 −11.8931 −0.400460
883883 36.4577 1.22690 0.613450 0.789734i 0.289781π-0.289781\pi
0.613450 + 0.789734i 0.289781π0.289781\pi
884884 0 0
885885 21.4426 0.720787
886886 −5.54420 −0.186261
887887 6.17331 0.207279 0.103640 0.994615i 0.466951π-0.466951\pi
0.103640 + 0.994615i 0.466951π0.466951\pi
888888 −10.3840 −0.348466
889889 −12.3056 −0.412716
890890 −4.68425 −0.157016
891891 17.4849 0.585765
892892 −6.60925 −0.221294
893893 −17.6974 −0.592221
894894 0.827166 0.0276646
895895 −18.2470 −0.609929
896896 −35.4620 −1.18470
897897 0 0
898898 13.5950 0.453672
899899 −51.3260 −1.71182
900900 −13.5918 −0.453060
901901 3.00000 0.0999445
902902 −0.140784 −0.00468760
903903 −65.3454 −2.17456
904904 −2.92526 −0.0972928
905905 −11.8605 −0.394258
906906 −1.78448 −0.0592854
907907 −15.1860 −0.504242 −0.252121 0.967696i 0.581128π-0.581128\pi
−0.252121 + 0.967696i 0.581128π0.581128\pi
908908 33.4577 1.11033
909909 32.6082 1.08155
910910 0 0
911911 37.0810 1.22855 0.614274 0.789093i 0.289449π-0.289449\pi
0.614274 + 0.789093i 0.289449π0.289449\pi
912912 −14.1922 −0.469951
913913 −4.27041 −0.141330
914914 4.35796 0.144149
915915 13.6310 0.450628
916916 29.0073 0.958428
917917 −17.8213 −0.588512
918918 24.5579 0.810533
919919 −30.5590 −1.00805 −0.504024 0.863689i 0.668148π-0.668148\pi
−0.504024 + 0.863689i 0.668148π0.668148\pi
920920 −2.07308 −0.0683474
921921 −0.946771 −0.0311972
922922 −5.90217 −0.194377
923923 0 0
924924 −13.1468 −0.432496
925925 1.89008 0.0621456
926926 −7.67264 −0.252139
927927 −32.1256 −1.05514
928928 28.2457 0.927209
929929 27.2489 0.894007 0.447004 0.894532i 0.352491π-0.352491\pi
0.447004 + 0.894532i 0.352491π0.352491\pi
930930 12.2174 0.400626
931931 5.43190 0.178023
932932 36.5894 1.19853
933933 −98.2882 −3.21781
934934 2.21744 0.0725568
935935 2.58881 0.0846631
936936 0 0
937937 57.8286 1.88918 0.944589 0.328255i 0.106460π-0.106460\pi
0.944589 + 0.328255i 0.106460π0.106460\pi
938938 19.9584 0.651664
939939 −27.6286 −0.901626
940940 20.7995 0.678406
941941 40.1463 1.30873 0.654366 0.756178i 0.272936π-0.272936\pi
0.654366 + 0.756178i 0.272936π0.272936\pi
942942 16.6722 0.543209
943943 −0.560072 −0.0182385
944944 −18.8267 −0.612757
945945 47.8950 1.55802
946946 1.90887 0.0620627
947947 0.987918 0.0321030 0.0160515 0.999871i 0.494890π-0.494890\pi
0.0160515 + 0.999871i 0.494890π0.494890\pi
948948 −96.6311 −3.13843
949949 0 0
950950 −0.682333 −0.0221378
951951 37.5187 1.21663
952952 −20.5526 −0.666112
953953 −43.3351 −1.40376 −0.701881 0.712294i 0.747656π-0.747656\pi
−0.701881 + 0.712294i 0.747656π0.747656\pi
954954 −2.69202 −0.0871574
955955 8.56465 0.277145
956956 −37.3303 −1.20735
957957 13.6407 0.440942
958958 −2.27652 −0.0735510
959959 8.38404 0.270735
960960 11.7899 0.380516
961961 40.4825 1.30589
962962 0 0
963963 −84.6118 −2.72658
964964 −46.5948 −1.50072
965965 −21.6993 −0.698526
966966 5.74871 0.184962
967967 −4.89977 −0.157566 −0.0787830 0.996892i 0.525103π-0.525103\pi
−0.0787830 + 0.996892i 0.525103π0.525103\pi
968968 −17.8019 −0.572176
969969 −18.6233 −0.598265
970970 −1.53750 −0.0493661
971971 −37.5153 −1.20392 −0.601961 0.798526i 0.705614π-0.705614\pi
−0.601961 + 0.798526i 0.705614π0.705614\pi
972972 68.0907 2.18401
973973 46.8635 1.50238
974974 −2.82025 −0.0903666
975975 0 0
976976 −11.9681 −0.383088
977977 59.7663 1.91209 0.956046 0.293215i 0.0947253π-0.0947253\pi
0.956046 + 0.293215i 0.0947253π0.0947253\pi
978978 10.5254 0.336566
979979 7.28382 0.232792
980980 −6.38404 −0.203931
981981 −17.8914 −0.571229
982982 13.9468 0.445059
983983 −39.2452 −1.25173 −0.625863 0.779933i 0.715253π-0.715253\pi
−0.625863 + 0.779933i 0.715253π0.715253\pi
984984 −2.51142 −0.0800611
985985 −21.8431 −0.695979
986986 10.1069 0.321870
987987 −121.695 −3.87360
988988 0 0
989989 7.59392 0.241473
990990 −2.32304 −0.0738312
991991 −12.2577 −0.389380 −0.194690 0.980865i 0.562370π-0.562370\pi
−0.194690 + 0.980865i 0.562370π0.562370\pi
992992 −39.3381 −1.24899
993993 89.0980 2.82744
994994 14.2664 0.452501
995995 −3.67025 −0.116355
996996 −36.1051 −1.14403
997997 −24.5687 −0.778098 −0.389049 0.921217i 0.627196π-0.627196\pi
−0.389049 + 0.921217i 0.627196π0.627196\pi
998998 −10.5496 −0.333941
999999 −27.8799 −0.882082
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.h.1.2 3
3.2 odd 2 7605.2.a.by.1.2 3
5.4 even 2 4225.2.a.bf.1.2 3
13.2 odd 12 845.2.m.i.316.3 12
13.3 even 3 845.2.e.l.191.2 6
13.4 even 6 845.2.e.j.146.2 6
13.5 odd 4 845.2.c.f.506.4 6
13.6 odd 12 845.2.m.i.361.4 12
13.7 odd 12 845.2.m.i.361.3 12
13.8 odd 4 845.2.c.f.506.3 6
13.9 even 3 845.2.e.l.146.2 6
13.10 even 6 845.2.e.j.191.2 6
13.11 odd 12 845.2.m.i.316.4 12
13.12 even 2 845.2.a.j.1.2 yes 3
39.38 odd 2 7605.2.a.br.1.2 3
65.64 even 2 4225.2.a.bd.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.h.1.2 3 1.1 even 1 trivial
845.2.a.j.1.2 yes 3 13.12 even 2
845.2.c.f.506.3 6 13.8 odd 4
845.2.c.f.506.4 6 13.5 odd 4
845.2.e.j.146.2 6 13.4 even 6
845.2.e.j.191.2 6 13.10 even 6
845.2.e.l.146.2 6 13.9 even 3
845.2.e.l.191.2 6 13.3 even 3
845.2.m.i.316.3 12 13.2 odd 12
845.2.m.i.316.4 12 13.11 odd 12
845.2.m.i.361.3 12 13.7 odd 12
845.2.m.i.361.4 12 13.6 odd 12
4225.2.a.bd.1.2 3 65.64 even 2
4225.2.a.bf.1.2 3 5.4 even 2
7605.2.a.br.1.2 3 39.38 odd 2
7605.2.a.by.1.2 3 3.2 odd 2