Properties

Label 845.2.a.h.1.2
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.445042 q^{2} -3.24698 q^{3} -1.80194 q^{4} +1.00000 q^{5} +1.44504 q^{6} -3.24698 q^{7} +1.69202 q^{8} +7.54288 q^{9} -0.445042 q^{10} +0.692021 q^{11} +5.85086 q^{12} +1.44504 q^{14} -3.24698 q^{15} +2.85086 q^{16} +3.74094 q^{17} -3.35690 q^{18} +1.53319 q^{19} -1.80194 q^{20} +10.5429 q^{21} -0.307979 q^{22} -1.22521 q^{23} -5.49396 q^{24} +1.00000 q^{25} -14.7506 q^{27} +5.85086 q^{28} -6.07069 q^{29} +1.44504 q^{30} +8.45473 q^{31} -4.65279 q^{32} -2.24698 q^{33} -1.66487 q^{34} -3.24698 q^{35} -13.5918 q^{36} +1.89008 q^{37} -0.682333 q^{38} +1.69202 q^{40} +0.457123 q^{41} -4.69202 q^{42} -6.19806 q^{43} -1.24698 q^{44} +7.54288 q^{45} +0.545269 q^{46} -11.5429 q^{47} -9.25667 q^{48} +3.54288 q^{49} -0.445042 q^{50} -12.1468 q^{51} +0.801938 q^{53} +6.56465 q^{54} +0.692021 q^{55} -5.49396 q^{56} -4.97823 q^{57} +2.70171 q^{58} -6.60388 q^{59} +5.85086 q^{60} -4.19806 q^{61} -3.76271 q^{62} -24.4916 q^{63} -3.63102 q^{64} +1.00000 q^{66} +13.8116 q^{67} -6.74094 q^{68} +3.97823 q^{69} +1.44504 q^{70} +9.87263 q^{71} +12.7627 q^{72} -8.05429 q^{73} -0.841166 q^{74} -3.24698 q^{75} -2.76271 q^{76} -2.24698 q^{77} -16.5157 q^{79} +2.85086 q^{80} +25.2664 q^{81} -0.203439 q^{82} -6.17092 q^{83} -18.9976 q^{84} +3.74094 q^{85} +2.75840 q^{86} +19.7114 q^{87} +1.17092 q^{88} +10.5254 q^{89} -3.35690 q^{90} +2.20775 q^{92} -27.4523 q^{93} +5.13706 q^{94} +1.53319 q^{95} +15.1075 q^{96} +3.45473 q^{97} -1.57673 q^{98} +5.21983 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 5 q^{3} - q^{4} + 3 q^{5} + 4 q^{6} - 5 q^{7} + 4 q^{9} - q^{10} - 3 q^{11} + 4 q^{12} + 4 q^{14} - 5 q^{15} - 5 q^{16} - 3 q^{17} - 6 q^{18} + 8 q^{19} - q^{20} + 13 q^{21} - 6 q^{22}+ \cdots + 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.445042 −0.314692 −0.157346 0.987544i \(-0.550294\pi\)
−0.157346 + 0.987544i \(0.550294\pi\)
\(3\) −3.24698 −1.87464 −0.937322 0.348464i \(-0.886703\pi\)
−0.937322 + 0.348464i \(0.886703\pi\)
\(4\) −1.80194 −0.900969
\(5\) 1.00000 0.447214
\(6\) 1.44504 0.589936
\(7\) −3.24698 −1.22724 −0.613621 0.789600i \(-0.710288\pi\)
−0.613621 + 0.789600i \(0.710288\pi\)
\(8\) 1.69202 0.598220
\(9\) 7.54288 2.51429
\(10\) −0.445042 −0.140735
\(11\) 0.692021 0.208652 0.104326 0.994543i \(-0.466731\pi\)
0.104326 + 0.994543i \(0.466731\pi\)
\(12\) 5.85086 1.68900
\(13\) 0 0
\(14\) 1.44504 0.386204
\(15\) −3.24698 −0.838367
\(16\) 2.85086 0.712714
\(17\) 3.74094 0.907311 0.453655 0.891177i \(-0.350120\pi\)
0.453655 + 0.891177i \(0.350120\pi\)
\(18\) −3.35690 −0.791228
\(19\) 1.53319 0.351737 0.175869 0.984414i \(-0.443727\pi\)
0.175869 + 0.984414i \(0.443727\pi\)
\(20\) −1.80194 −0.402926
\(21\) 10.5429 2.30064
\(22\) −0.307979 −0.0656612
\(23\) −1.22521 −0.255474 −0.127737 0.991808i \(-0.540771\pi\)
−0.127737 + 0.991808i \(0.540771\pi\)
\(24\) −5.49396 −1.12145
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −14.7506 −2.83876
\(28\) 5.85086 1.10571
\(29\) −6.07069 −1.12730 −0.563649 0.826014i \(-0.690603\pi\)
−0.563649 + 0.826014i \(0.690603\pi\)
\(30\) 1.44504 0.263827
\(31\) 8.45473 1.51851 0.759257 0.650791i \(-0.225562\pi\)
0.759257 + 0.650791i \(0.225562\pi\)
\(32\) −4.65279 −0.822505
\(33\) −2.24698 −0.391149
\(34\) −1.66487 −0.285524
\(35\) −3.24698 −0.548840
\(36\) −13.5918 −2.26530
\(37\) 1.89008 0.310728 0.155364 0.987857i \(-0.450345\pi\)
0.155364 + 0.987857i \(0.450345\pi\)
\(38\) −0.682333 −0.110689
\(39\) 0 0
\(40\) 1.69202 0.267532
\(41\) 0.457123 0.0713907 0.0356953 0.999363i \(-0.488635\pi\)
0.0356953 + 0.999363i \(0.488635\pi\)
\(42\) −4.69202 −0.723995
\(43\) −6.19806 −0.945196 −0.472598 0.881278i \(-0.656684\pi\)
−0.472598 + 0.881278i \(0.656684\pi\)
\(44\) −1.24698 −0.187989
\(45\) 7.54288 1.12443
\(46\) 0.545269 0.0803956
\(47\) −11.5429 −1.68370 −0.841851 0.539710i \(-0.818534\pi\)
−0.841851 + 0.539710i \(0.818534\pi\)
\(48\) −9.25667 −1.33608
\(49\) 3.54288 0.506125
\(50\) −0.445042 −0.0629384
\(51\) −12.1468 −1.70089
\(52\) 0 0
\(53\) 0.801938 0.110155 0.0550773 0.998482i \(-0.482459\pi\)
0.0550773 + 0.998482i \(0.482459\pi\)
\(54\) 6.56465 0.893335
\(55\) 0.692021 0.0933122
\(56\) −5.49396 −0.734161
\(57\) −4.97823 −0.659383
\(58\) 2.70171 0.354752
\(59\) −6.60388 −0.859751 −0.429876 0.902888i \(-0.641443\pi\)
−0.429876 + 0.902888i \(0.641443\pi\)
\(60\) 5.85086 0.755342
\(61\) −4.19806 −0.537507 −0.268753 0.963209i \(-0.586612\pi\)
−0.268753 + 0.963209i \(0.586612\pi\)
\(62\) −3.76271 −0.477865
\(63\) −24.4916 −3.08565
\(64\) −3.63102 −0.453878
\(65\) 0 0
\(66\) 1.00000 0.123091
\(67\) 13.8116 1.68736 0.843679 0.536847i \(-0.180385\pi\)
0.843679 + 0.536847i \(0.180385\pi\)
\(68\) −6.74094 −0.817459
\(69\) 3.97823 0.478923
\(70\) 1.44504 0.172716
\(71\) 9.87263 1.17167 0.585833 0.810432i \(-0.300768\pi\)
0.585833 + 0.810432i \(0.300768\pi\)
\(72\) 12.7627 1.50410
\(73\) −8.05429 −0.942684 −0.471342 0.881951i \(-0.656230\pi\)
−0.471342 + 0.881951i \(0.656230\pi\)
\(74\) −0.841166 −0.0977836
\(75\) −3.24698 −0.374929
\(76\) −2.76271 −0.316904
\(77\) −2.24698 −0.256067
\(78\) 0 0
\(79\) −16.5157 −1.85816 −0.929082 0.369873i \(-0.879401\pi\)
−0.929082 + 0.369873i \(0.879401\pi\)
\(80\) 2.85086 0.318735
\(81\) 25.2664 2.80737
\(82\) −0.203439 −0.0224661
\(83\) −6.17092 −0.677346 −0.338673 0.940904i \(-0.609978\pi\)
−0.338673 + 0.940904i \(0.609978\pi\)
\(84\) −18.9976 −2.07281
\(85\) 3.74094 0.405762
\(86\) 2.75840 0.297446
\(87\) 19.7114 2.11328
\(88\) 1.17092 0.124820
\(89\) 10.5254 1.11569 0.557846 0.829944i \(-0.311628\pi\)
0.557846 + 0.829944i \(0.311628\pi\)
\(90\) −3.35690 −0.353848
\(91\) 0 0
\(92\) 2.20775 0.230174
\(93\) −27.4523 −2.84667
\(94\) 5.13706 0.529848
\(95\) 1.53319 0.157302
\(96\) 15.1075 1.54191
\(97\) 3.45473 0.350775 0.175387 0.984500i \(-0.443882\pi\)
0.175387 + 0.984500i \(0.443882\pi\)
\(98\) −1.57673 −0.159274
\(99\) 5.21983 0.524613
\(100\) −1.80194 −0.180194
\(101\) 4.32304 0.430159 0.215079 0.976597i \(-0.430999\pi\)
0.215079 + 0.976597i \(0.430999\pi\)
\(102\) 5.40581 0.535255
\(103\) −4.25906 −0.419658 −0.209829 0.977738i \(-0.567291\pi\)
−0.209829 + 0.977738i \(0.567291\pi\)
\(104\) 0 0
\(105\) 10.5429 1.02888
\(106\) −0.356896 −0.0346648
\(107\) −11.2174 −1.08443 −0.542215 0.840240i \(-0.682414\pi\)
−0.542215 + 0.840240i \(0.682414\pi\)
\(108\) 26.5797 2.55763
\(109\) −2.37196 −0.227193 −0.113596 0.993527i \(-0.536237\pi\)
−0.113596 + 0.993527i \(0.536237\pi\)
\(110\) −0.307979 −0.0293646
\(111\) −6.13706 −0.582504
\(112\) −9.25667 −0.874673
\(113\) −1.72886 −0.162637 −0.0813186 0.996688i \(-0.525913\pi\)
−0.0813186 + 0.996688i \(0.525913\pi\)
\(114\) 2.21552 0.207503
\(115\) −1.22521 −0.114251
\(116\) 10.9390 1.01566
\(117\) 0 0
\(118\) 2.93900 0.270557
\(119\) −12.1468 −1.11349
\(120\) −5.49396 −0.501528
\(121\) −10.5211 −0.956464
\(122\) 1.86831 0.169149
\(123\) −1.48427 −0.133832
\(124\) −15.2349 −1.36813
\(125\) 1.00000 0.0894427
\(126\) 10.8998 0.971029
\(127\) 3.78986 0.336295 0.168148 0.985762i \(-0.446221\pi\)
0.168148 + 0.985762i \(0.446221\pi\)
\(128\) 10.9215 0.965337
\(129\) 20.1250 1.77191
\(130\) 0 0
\(131\) 5.48858 0.479540 0.239770 0.970830i \(-0.422928\pi\)
0.239770 + 0.970830i \(0.422928\pi\)
\(132\) 4.04892 0.352413
\(133\) −4.97823 −0.431667
\(134\) −6.14675 −0.530998
\(135\) −14.7506 −1.26953
\(136\) 6.32975 0.542771
\(137\) −2.58211 −0.220604 −0.110302 0.993898i \(-0.535182\pi\)
−0.110302 + 0.993898i \(0.535182\pi\)
\(138\) −1.77048 −0.150713
\(139\) −14.4330 −1.22419 −0.612094 0.790785i \(-0.709673\pi\)
−0.612094 + 0.790785i \(0.709673\pi\)
\(140\) 5.85086 0.494488
\(141\) 37.4795 3.15634
\(142\) −4.39373 −0.368714
\(143\) 0 0
\(144\) 21.5036 1.79197
\(145\) −6.07069 −0.504143
\(146\) 3.58450 0.296655
\(147\) −11.5036 −0.948805
\(148\) −3.40581 −0.279956
\(149\) 0.572417 0.0468942 0.0234471 0.999725i \(-0.492536\pi\)
0.0234471 + 0.999725i \(0.492536\pi\)
\(150\) 1.44504 0.117987
\(151\) −1.23490 −0.100495 −0.0502473 0.998737i \(-0.516001\pi\)
−0.0502473 + 0.998737i \(0.516001\pi\)
\(152\) 2.59419 0.210416
\(153\) 28.2174 2.28124
\(154\) 1.00000 0.0805823
\(155\) 8.45473 0.679100
\(156\) 0 0
\(157\) 11.5375 0.920793 0.460396 0.887713i \(-0.347707\pi\)
0.460396 + 0.887713i \(0.347707\pi\)
\(158\) 7.35019 0.584750
\(159\) −2.60388 −0.206501
\(160\) −4.65279 −0.367836
\(161\) 3.97823 0.313528
\(162\) −11.2446 −0.883458
\(163\) 7.28382 0.570512 0.285256 0.958451i \(-0.407921\pi\)
0.285256 + 0.958451i \(0.407921\pi\)
\(164\) −0.823708 −0.0643208
\(165\) −2.24698 −0.174927
\(166\) 2.74632 0.213155
\(167\) 14.4480 1.11802 0.559011 0.829160i \(-0.311181\pi\)
0.559011 + 0.829160i \(0.311181\pi\)
\(168\) 17.8388 1.37629
\(169\) 0 0
\(170\) −1.66487 −0.127690
\(171\) 11.5646 0.884371
\(172\) 11.1685 0.851592
\(173\) 1.81940 0.138326 0.0691631 0.997605i \(-0.477967\pi\)
0.0691631 + 0.997605i \(0.477967\pi\)
\(174\) −8.77240 −0.665034
\(175\) −3.24698 −0.245449
\(176\) 1.97285 0.148709
\(177\) 21.4426 1.61173
\(178\) −4.68425 −0.351100
\(179\) −18.2470 −1.36384 −0.681922 0.731425i \(-0.738856\pi\)
−0.681922 + 0.731425i \(0.738856\pi\)
\(180\) −13.5918 −1.01307
\(181\) −11.8605 −0.881587 −0.440794 0.897608i \(-0.645303\pi\)
−0.440794 + 0.897608i \(0.645303\pi\)
\(182\) 0 0
\(183\) 13.6310 1.00763
\(184\) −2.07308 −0.152830
\(185\) 1.89008 0.138962
\(186\) 12.2174 0.895826
\(187\) 2.58881 0.189313
\(188\) 20.7995 1.51696
\(189\) 47.8950 3.48385
\(190\) −0.682333 −0.0495016
\(191\) 8.56465 0.619716 0.309858 0.950783i \(-0.399718\pi\)
0.309858 + 0.950783i \(0.399718\pi\)
\(192\) 11.7899 0.850860
\(193\) −21.6993 −1.56195 −0.780976 0.624562i \(-0.785278\pi\)
−0.780976 + 0.624562i \(0.785278\pi\)
\(194\) −1.53750 −0.110386
\(195\) 0 0
\(196\) −6.38404 −0.456003
\(197\) −21.8431 −1.55626 −0.778128 0.628106i \(-0.783830\pi\)
−0.778128 + 0.628106i \(0.783830\pi\)
\(198\) −2.32304 −0.165092
\(199\) −3.67025 −0.260177 −0.130089 0.991502i \(-0.541526\pi\)
−0.130089 + 0.991502i \(0.541526\pi\)
\(200\) 1.69202 0.119644
\(201\) −44.8461 −3.16320
\(202\) −1.92394 −0.135368
\(203\) 19.7114 1.38347
\(204\) 21.8877 1.53244
\(205\) 0.457123 0.0319269
\(206\) 1.89546 0.132063
\(207\) −9.24160 −0.642336
\(208\) 0 0
\(209\) 1.06100 0.0733908
\(210\) −4.69202 −0.323780
\(211\) −15.2862 −1.05235 −0.526173 0.850378i \(-0.676374\pi\)
−0.526173 + 0.850378i \(0.676374\pi\)
\(212\) −1.44504 −0.0992459
\(213\) −32.0562 −2.19646
\(214\) 4.99223 0.341262
\(215\) −6.19806 −0.422704
\(216\) −24.9584 −1.69820
\(217\) −27.4523 −1.86359
\(218\) 1.05562 0.0714958
\(219\) 26.1521 1.76720
\(220\) −1.24698 −0.0840713
\(221\) 0 0
\(222\) 2.73125 0.183310
\(223\) 3.66786 0.245618 0.122809 0.992430i \(-0.460810\pi\)
0.122809 + 0.992430i \(0.460810\pi\)
\(224\) 15.1075 1.00941
\(225\) 7.54288 0.502858
\(226\) 0.769414 0.0511806
\(227\) −18.5676 −1.23238 −0.616188 0.787599i \(-0.711324\pi\)
−0.616188 + 0.787599i \(0.711324\pi\)
\(228\) 8.97046 0.594083
\(229\) −16.0978 −1.06377 −0.531887 0.846815i \(-0.678517\pi\)
−0.531887 + 0.846815i \(0.678517\pi\)
\(230\) 0.545269 0.0359540
\(231\) 7.29590 0.480035
\(232\) −10.2717 −0.674372
\(233\) −20.3056 −1.33026 −0.665132 0.746726i \(-0.731625\pi\)
−0.665132 + 0.746726i \(0.731625\pi\)
\(234\) 0 0
\(235\) −11.5429 −0.752974
\(236\) 11.8998 0.774609
\(237\) 53.6262 3.48340
\(238\) 5.40581 0.350407
\(239\) 20.7168 1.34006 0.670028 0.742335i \(-0.266282\pi\)
0.670028 + 0.742335i \(0.266282\pi\)
\(240\) −9.25667 −0.597515
\(241\) 25.8582 1.66567 0.832835 0.553521i \(-0.186716\pi\)
0.832835 + 0.553521i \(0.186716\pi\)
\(242\) 4.68233 0.300992
\(243\) −37.7875 −2.42407
\(244\) 7.56465 0.484277
\(245\) 3.54288 0.226346
\(246\) 0.660563 0.0421159
\(247\) 0 0
\(248\) 14.3056 0.908406
\(249\) 20.0368 1.26978
\(250\) −0.445042 −0.0281469
\(251\) −26.2989 −1.65997 −0.829985 0.557785i \(-0.811651\pi\)
−0.829985 + 0.557785i \(0.811651\pi\)
\(252\) 44.1323 2.78007
\(253\) −0.847871 −0.0533052
\(254\) −1.68664 −0.105829
\(255\) −12.1468 −0.760659
\(256\) 2.40150 0.150094
\(257\) −6.04354 −0.376986 −0.188493 0.982075i \(-0.560360\pi\)
−0.188493 + 0.982075i \(0.560360\pi\)
\(258\) −8.95646 −0.557605
\(259\) −6.13706 −0.381339
\(260\) 0 0
\(261\) −45.7904 −2.83436
\(262\) −2.44265 −0.150907
\(263\) −16.5429 −1.02008 −0.510039 0.860151i \(-0.670369\pi\)
−0.510039 + 0.860151i \(0.670369\pi\)
\(264\) −3.80194 −0.233993
\(265\) 0.801938 0.0492626
\(266\) 2.21552 0.135842
\(267\) −34.1758 −2.09153
\(268\) −24.8877 −1.52026
\(269\) −12.0954 −0.737472 −0.368736 0.929534i \(-0.620209\pi\)
−0.368736 + 0.929534i \(0.620209\pi\)
\(270\) 6.56465 0.399512
\(271\) −13.2687 −0.806019 −0.403010 0.915196i \(-0.632036\pi\)
−0.403010 + 0.915196i \(0.632036\pi\)
\(272\) 10.6649 0.646653
\(273\) 0 0
\(274\) 1.14914 0.0694224
\(275\) 0.692021 0.0417305
\(276\) −7.16852 −0.431494
\(277\) −8.48858 −0.510029 −0.255015 0.966937i \(-0.582080\pi\)
−0.255015 + 0.966937i \(0.582080\pi\)
\(278\) 6.42327 0.385242
\(279\) 63.7730 3.81799
\(280\) −5.49396 −0.328327
\(281\) −26.7603 −1.59639 −0.798193 0.602401i \(-0.794211\pi\)
−0.798193 + 0.602401i \(0.794211\pi\)
\(282\) −16.6799 −0.993276
\(283\) −11.6649 −0.693405 −0.346702 0.937975i \(-0.612699\pi\)
−0.346702 + 0.937975i \(0.612699\pi\)
\(284\) −17.7899 −1.05563
\(285\) −4.97823 −0.294885
\(286\) 0 0
\(287\) −1.48427 −0.0876137
\(288\) −35.0954 −2.06802
\(289\) −3.00538 −0.176787
\(290\) 2.70171 0.158650
\(291\) −11.2174 −0.657578
\(292\) 14.5133 0.849329
\(293\) 10.6407 0.621637 0.310818 0.950469i \(-0.399397\pi\)
0.310818 + 0.950469i \(0.399397\pi\)
\(294\) 5.11960 0.298581
\(295\) −6.60388 −0.384492
\(296\) 3.19806 0.185884
\(297\) −10.2078 −0.592314
\(298\) −0.254749 −0.0147572
\(299\) 0 0
\(300\) 5.85086 0.337799
\(301\) 20.1250 1.15998
\(302\) 0.549581 0.0316249
\(303\) −14.0368 −0.806395
\(304\) 4.37090 0.250688
\(305\) −4.19806 −0.240380
\(306\) −12.5579 −0.717890
\(307\) 0.291585 0.0166416 0.00832082 0.999965i \(-0.497351\pi\)
0.00832082 + 0.999965i \(0.497351\pi\)
\(308\) 4.04892 0.230708
\(309\) 13.8291 0.786709
\(310\) −3.76271 −0.213708
\(311\) 30.2707 1.71649 0.858246 0.513238i \(-0.171554\pi\)
0.858246 + 0.513238i \(0.171554\pi\)
\(312\) 0 0
\(313\) 8.50902 0.480959 0.240479 0.970654i \(-0.422695\pi\)
0.240479 + 0.970654i \(0.422695\pi\)
\(314\) −5.13467 −0.289766
\(315\) −24.4916 −1.37994
\(316\) 29.7603 1.67415
\(317\) −11.5550 −0.648991 −0.324496 0.945887i \(-0.605195\pi\)
−0.324496 + 0.945887i \(0.605195\pi\)
\(318\) 1.15883 0.0649842
\(319\) −4.20105 −0.235213
\(320\) −3.63102 −0.202980
\(321\) 36.4228 2.03292
\(322\) −1.77048 −0.0986649
\(323\) 5.73556 0.319135
\(324\) −45.5284 −2.52936
\(325\) 0 0
\(326\) −3.24160 −0.179536
\(327\) 7.70171 0.425906
\(328\) 0.773463 0.0427073
\(329\) 37.4795 2.06631
\(330\) 1.00000 0.0550482
\(331\) −27.4403 −1.50825 −0.754126 0.656729i \(-0.771939\pi\)
−0.754126 + 0.656729i \(0.771939\pi\)
\(332\) 11.1196 0.610268
\(333\) 14.2567 0.781261
\(334\) −6.42998 −0.351833
\(335\) 13.8116 0.754610
\(336\) 30.0562 1.63970
\(337\) −34.7265 −1.89167 −0.945836 0.324646i \(-0.894755\pi\)
−0.945836 + 0.324646i \(0.894755\pi\)
\(338\) 0 0
\(339\) 5.61356 0.304887
\(340\) −6.74094 −0.365579
\(341\) 5.85086 0.316842
\(342\) −5.14675 −0.278304
\(343\) 11.2252 0.606104
\(344\) −10.4873 −0.565435
\(345\) 3.97823 0.214181
\(346\) −0.809707 −0.0435301
\(347\) 29.6262 1.59042 0.795210 0.606334i \(-0.207361\pi\)
0.795210 + 0.606334i \(0.207361\pi\)
\(348\) −35.5187 −1.90400
\(349\) −15.9463 −0.853586 −0.426793 0.904349i \(-0.640357\pi\)
−0.426793 + 0.904349i \(0.640357\pi\)
\(350\) 1.44504 0.0772407
\(351\) 0 0
\(352\) −3.21983 −0.171618
\(353\) 22.2828 1.18599 0.592996 0.805206i \(-0.297945\pi\)
0.592996 + 0.805206i \(0.297945\pi\)
\(354\) −9.54288 −0.507198
\(355\) 9.87263 0.523985
\(356\) −18.9661 −1.00520
\(357\) 39.4403 2.08740
\(358\) 8.12067 0.429191
\(359\) 34.6896 1.83085 0.915424 0.402490i \(-0.131855\pi\)
0.915424 + 0.402490i \(0.131855\pi\)
\(360\) 12.7627 0.672654
\(361\) −16.6493 −0.876281
\(362\) 5.27844 0.277429
\(363\) 34.1618 1.79303
\(364\) 0 0
\(365\) −8.05429 −0.421581
\(366\) −6.06638 −0.317095
\(367\) 9.71246 0.506986 0.253493 0.967337i \(-0.418420\pi\)
0.253493 + 0.967337i \(0.418420\pi\)
\(368\) −3.49289 −0.182080
\(369\) 3.44803 0.179497
\(370\) −0.841166 −0.0437302
\(371\) −2.60388 −0.135186
\(372\) 49.4674 2.56477
\(373\) 15.0411 0.778801 0.389401 0.921069i \(-0.372682\pi\)
0.389401 + 0.921069i \(0.372682\pi\)
\(374\) −1.15213 −0.0595752
\(375\) −3.24698 −0.167673
\(376\) −19.5308 −1.00722
\(377\) 0 0
\(378\) −21.3153 −1.09634
\(379\) −13.1347 −0.674683 −0.337341 0.941382i \(-0.609528\pi\)
−0.337341 + 0.941382i \(0.609528\pi\)
\(380\) −2.76271 −0.141724
\(381\) −12.3056 −0.630434
\(382\) −3.81163 −0.195020
\(383\) −3.02177 −0.154405 −0.0772026 0.997015i \(-0.524599\pi\)
−0.0772026 + 0.997015i \(0.524599\pi\)
\(384\) −35.4620 −1.80966
\(385\) −2.24698 −0.114517
\(386\) 9.65710 0.491534
\(387\) −46.7512 −2.37650
\(388\) −6.22521 −0.316037
\(389\) 31.4282 1.59347 0.796736 0.604328i \(-0.206558\pi\)
0.796736 + 0.604328i \(0.206558\pi\)
\(390\) 0 0
\(391\) −4.58343 −0.231794
\(392\) 5.99462 0.302774
\(393\) −17.8213 −0.898966
\(394\) 9.72109 0.489741
\(395\) −16.5157 −0.830997
\(396\) −9.40581 −0.472660
\(397\) 23.0489 1.15679 0.578396 0.815756i \(-0.303679\pi\)
0.578396 + 0.815756i \(0.303679\pi\)
\(398\) 1.63342 0.0818757
\(399\) 16.1642 0.809223
\(400\) 2.85086 0.142543
\(401\) −19.8103 −0.989279 −0.494640 0.869098i \(-0.664700\pi\)
−0.494640 + 0.869098i \(0.664700\pi\)
\(402\) 19.9584 0.995433
\(403\) 0 0
\(404\) −7.78986 −0.387560
\(405\) 25.2664 1.25550
\(406\) −8.77240 −0.435367
\(407\) 1.30798 0.0648341
\(408\) −20.5526 −1.01750
\(409\) −32.9705 −1.63028 −0.815142 0.579261i \(-0.803341\pi\)
−0.815142 + 0.579261i \(0.803341\pi\)
\(410\) −0.203439 −0.0100471
\(411\) 8.38404 0.413554
\(412\) 7.67456 0.378099
\(413\) 21.4426 1.05512
\(414\) 4.11290 0.202138
\(415\) −6.17092 −0.302918
\(416\) 0 0
\(417\) 46.8635 2.29492
\(418\) −0.472189 −0.0230955
\(419\) 21.6136 1.05589 0.527946 0.849278i \(-0.322962\pi\)
0.527946 + 0.849278i \(0.322962\pi\)
\(420\) −18.9976 −0.926988
\(421\) −4.11769 −0.200684 −0.100342 0.994953i \(-0.531994\pi\)
−0.100342 + 0.994953i \(0.531994\pi\)
\(422\) 6.80300 0.331165
\(423\) −87.0665 −4.23332
\(424\) 1.35690 0.0658967
\(425\) 3.74094 0.181462
\(426\) 14.2664 0.691207
\(427\) 13.6310 0.659651
\(428\) 20.2131 0.977038
\(429\) 0 0
\(430\) 2.75840 0.133022
\(431\) −18.8616 −0.908532 −0.454266 0.890866i \(-0.650098\pi\)
−0.454266 + 0.890866i \(0.650098\pi\)
\(432\) −42.0519 −2.02322
\(433\) 3.31336 0.159230 0.0796148 0.996826i \(-0.474631\pi\)
0.0796148 + 0.996826i \(0.474631\pi\)
\(434\) 12.2174 0.586456
\(435\) 19.7114 0.945089
\(436\) 4.27413 0.204694
\(437\) −1.87848 −0.0898597
\(438\) −11.6388 −0.556123
\(439\) −14.3894 −0.686770 −0.343385 0.939195i \(-0.611573\pi\)
−0.343385 + 0.939195i \(0.611573\pi\)
\(440\) 1.17092 0.0558212
\(441\) 26.7235 1.27255
\(442\) 0 0
\(443\) 12.4577 0.591884 0.295942 0.955206i \(-0.404367\pi\)
0.295942 + 0.955206i \(0.404367\pi\)
\(444\) 11.0586 0.524818
\(445\) 10.5254 0.498953
\(446\) −1.63235 −0.0772940
\(447\) −1.85862 −0.0879099
\(448\) 11.7899 0.557018
\(449\) −30.5478 −1.44164 −0.720819 0.693123i \(-0.756234\pi\)
−0.720819 + 0.693123i \(0.756234\pi\)
\(450\) −3.35690 −0.158246
\(451\) 0.316339 0.0148958
\(452\) 3.11529 0.146531
\(453\) 4.00969 0.188392
\(454\) 8.26337 0.387819
\(455\) 0 0
\(456\) −8.42327 −0.394456
\(457\) −9.79225 −0.458062 −0.229031 0.973419i \(-0.573556\pi\)
−0.229031 + 0.973419i \(0.573556\pi\)
\(458\) 7.16421 0.334762
\(459\) −55.1812 −2.57564
\(460\) 2.20775 0.102937
\(461\) 13.2620 0.617675 0.308838 0.951115i \(-0.400060\pi\)
0.308838 + 0.951115i \(0.400060\pi\)
\(462\) −3.24698 −0.151063
\(463\) 17.2403 0.801224 0.400612 0.916248i \(-0.368798\pi\)
0.400612 + 0.916248i \(0.368798\pi\)
\(464\) −17.3067 −0.803441
\(465\) −27.4523 −1.27307
\(466\) 9.03684 0.418623
\(467\) −4.98254 −0.230565 −0.115282 0.993333i \(-0.536777\pi\)
−0.115282 + 0.993333i \(0.536777\pi\)
\(468\) 0 0
\(469\) −44.8461 −2.07080
\(470\) 5.13706 0.236955
\(471\) −37.4620 −1.72616
\(472\) −11.1739 −0.514320
\(473\) −4.28919 −0.197217
\(474\) −23.8659 −1.09620
\(475\) 1.53319 0.0703475
\(476\) 21.8877 1.00322
\(477\) 6.04892 0.276961
\(478\) −9.21983 −0.421705
\(479\) 5.11529 0.233724 0.116862 0.993148i \(-0.462717\pi\)
0.116862 + 0.993148i \(0.462717\pi\)
\(480\) 15.1075 0.689561
\(481\) 0 0
\(482\) −11.5080 −0.524173
\(483\) −12.9172 −0.587754
\(484\) 18.9584 0.861744
\(485\) 3.45473 0.156871
\(486\) 16.8170 0.762835
\(487\) 6.33704 0.287159 0.143579 0.989639i \(-0.454139\pi\)
0.143579 + 0.989639i \(0.454139\pi\)
\(488\) −7.10321 −0.321547
\(489\) −23.6504 −1.06951
\(490\) −1.57673 −0.0712293
\(491\) −31.3381 −1.41427 −0.707135 0.707079i \(-0.750012\pi\)
−0.707135 + 0.707079i \(0.750012\pi\)
\(492\) 2.67456 0.120579
\(493\) −22.7101 −1.02281
\(494\) 0 0
\(495\) 5.21983 0.234614
\(496\) 24.1032 1.08227
\(497\) −32.0562 −1.43792
\(498\) −8.91723 −0.399591
\(499\) 23.7047 1.06117 0.530584 0.847632i \(-0.321973\pi\)
0.530584 + 0.847632i \(0.321973\pi\)
\(500\) −1.80194 −0.0805851
\(501\) −46.9124 −2.09589
\(502\) 11.7041 0.522380
\(503\) 15.7125 0.700584 0.350292 0.936641i \(-0.386082\pi\)
0.350292 + 0.936641i \(0.386082\pi\)
\(504\) −41.4403 −1.84590
\(505\) 4.32304 0.192373
\(506\) 0.377338 0.0167747
\(507\) 0 0
\(508\) −6.82908 −0.302992
\(509\) −36.3551 −1.61141 −0.805706 0.592316i \(-0.798214\pi\)
−0.805706 + 0.592316i \(0.798214\pi\)
\(510\) 5.40581 0.239373
\(511\) 26.1521 1.15690
\(512\) −22.9119 −1.01257
\(513\) −22.6155 −0.998498
\(514\) 2.68963 0.118634
\(515\) −4.25906 −0.187677
\(516\) −36.2640 −1.59643
\(517\) −7.98792 −0.351308
\(518\) 2.73125 0.120004
\(519\) −5.90754 −0.259312
\(520\) 0 0
\(521\) 9.55735 0.418715 0.209358 0.977839i \(-0.432863\pi\)
0.209358 + 0.977839i \(0.432863\pi\)
\(522\) 20.3787 0.891950
\(523\) 3.57242 0.156211 0.0781054 0.996945i \(-0.475113\pi\)
0.0781054 + 0.996945i \(0.475113\pi\)
\(524\) −9.89008 −0.432050
\(525\) 10.5429 0.460129
\(526\) 7.36227 0.321010
\(527\) 31.6286 1.37776
\(528\) −6.40581 −0.278777
\(529\) −21.4989 −0.934733
\(530\) −0.356896 −0.0155026
\(531\) −49.8122 −2.16167
\(532\) 8.97046 0.388919
\(533\) 0 0
\(534\) 15.2097 0.658187
\(535\) −11.2174 −0.484972
\(536\) 23.3696 1.00941
\(537\) 59.2476 2.55672
\(538\) 5.38298 0.232077
\(539\) 2.45175 0.105604
\(540\) 26.5797 1.14381
\(541\) 9.99330 0.429645 0.214823 0.976653i \(-0.431083\pi\)
0.214823 + 0.976653i \(0.431083\pi\)
\(542\) 5.90515 0.253648
\(543\) 38.5109 1.65266
\(544\) −17.4058 −0.746268
\(545\) −2.37196 −0.101604
\(546\) 0 0
\(547\) −17.9836 −0.768923 −0.384462 0.923141i \(-0.625613\pi\)
−0.384462 + 0.923141i \(0.625613\pi\)
\(548\) 4.65279 0.198757
\(549\) −31.6655 −1.35145
\(550\) −0.307979 −0.0131322
\(551\) −9.30750 −0.396513
\(552\) 6.73125 0.286501
\(553\) 53.6262 2.28042
\(554\) 3.77777 0.160502
\(555\) −6.13706 −0.260504
\(556\) 26.0073 1.10296
\(557\) −16.5670 −0.701968 −0.350984 0.936381i \(-0.614153\pi\)
−0.350984 + 0.936381i \(0.614153\pi\)
\(558\) −28.3817 −1.20149
\(559\) 0 0
\(560\) −9.25667 −0.391166
\(561\) −8.40581 −0.354894
\(562\) 11.9095 0.502370
\(563\) 31.7356 1.33749 0.668747 0.743490i \(-0.266831\pi\)
0.668747 + 0.743490i \(0.266831\pi\)
\(564\) −67.5357 −2.84377
\(565\) −1.72886 −0.0727336
\(566\) 5.19136 0.218209
\(567\) −82.0393 −3.44533
\(568\) 16.7047 0.700913
\(569\) 13.9336 0.584128 0.292064 0.956399i \(-0.405658\pi\)
0.292064 + 0.956399i \(0.405658\pi\)
\(570\) 2.21552 0.0927979
\(571\) −26.2959 −1.10045 −0.550225 0.835017i \(-0.685458\pi\)
−0.550225 + 0.835017i \(0.685458\pi\)
\(572\) 0 0
\(573\) −27.8092 −1.16175
\(574\) 0.660563 0.0275713
\(575\) −1.22521 −0.0510948
\(576\) −27.3884 −1.14118
\(577\) 20.0339 0.834020 0.417010 0.908902i \(-0.363078\pi\)
0.417010 + 0.908902i \(0.363078\pi\)
\(578\) 1.33752 0.0556334
\(579\) 70.4572 2.92810
\(580\) 10.9390 0.454217
\(581\) 20.0368 0.831268
\(582\) 4.99223 0.206935
\(583\) 0.554958 0.0229840
\(584\) −13.6280 −0.563932
\(585\) 0 0
\(586\) −4.73556 −0.195624
\(587\) 20.0103 0.825913 0.412956 0.910751i \(-0.364496\pi\)
0.412956 + 0.910751i \(0.364496\pi\)
\(588\) 20.7289 0.854844
\(589\) 12.9627 0.534118
\(590\) 2.93900 0.120997
\(591\) 70.9241 2.91743
\(592\) 5.38835 0.221460
\(593\) 36.7023 1.50718 0.753591 0.657343i \(-0.228320\pi\)
0.753591 + 0.657343i \(0.228320\pi\)
\(594\) 4.54288 0.186396
\(595\) −12.1468 −0.497968
\(596\) −1.03146 −0.0422502
\(597\) 11.9172 0.487740
\(598\) 0 0
\(599\) 13.5386 0.553171 0.276585 0.960989i \(-0.410797\pi\)
0.276585 + 0.960989i \(0.410797\pi\)
\(600\) −5.49396 −0.224290
\(601\) 42.4965 1.73347 0.866734 0.498771i \(-0.166215\pi\)
0.866734 + 0.498771i \(0.166215\pi\)
\(602\) −8.95646 −0.365038
\(603\) 104.179 4.24251
\(604\) 2.22521 0.0905425
\(605\) −10.5211 −0.427744
\(606\) 6.24698 0.253766
\(607\) −12.4969 −0.507235 −0.253618 0.967305i \(-0.581620\pi\)
−0.253618 + 0.967305i \(0.581620\pi\)
\(608\) −7.13361 −0.289306
\(609\) −64.0025 −2.59351
\(610\) 1.86831 0.0756458
\(611\) 0 0
\(612\) −50.8461 −2.05533
\(613\) 30.0694 1.21449 0.607245 0.794515i \(-0.292275\pi\)
0.607245 + 0.794515i \(0.292275\pi\)
\(614\) −0.129768 −0.00523699
\(615\) −1.48427 −0.0598516
\(616\) −3.80194 −0.153184
\(617\) −28.1196 −1.13205 −0.566026 0.824387i \(-0.691520\pi\)
−0.566026 + 0.824387i \(0.691520\pi\)
\(618\) −6.15452 −0.247571
\(619\) −20.3424 −0.817631 −0.408815 0.912617i \(-0.634058\pi\)
−0.408815 + 0.912617i \(0.634058\pi\)
\(620\) −15.2349 −0.611848
\(621\) 18.0726 0.725229
\(622\) −13.4717 −0.540167
\(623\) −34.1758 −1.36923
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −3.78687 −0.151354
\(627\) −3.44504 −0.137582
\(628\) −20.7899 −0.829606
\(629\) 7.07069 0.281927
\(630\) 10.8998 0.434257
\(631\) 3.66355 0.145843 0.0729217 0.997338i \(-0.476768\pi\)
0.0729217 + 0.997338i \(0.476768\pi\)
\(632\) −27.9450 −1.11159
\(633\) 49.6340 1.97277
\(634\) 5.14244 0.204232
\(635\) 3.78986 0.150396
\(636\) 4.69202 0.186051
\(637\) 0 0
\(638\) 1.86964 0.0740198
\(639\) 74.4680 2.94591
\(640\) 10.9215 0.431712
\(641\) 5.73556 0.226541 0.113271 0.993564i \(-0.463867\pi\)
0.113271 + 0.993564i \(0.463867\pi\)
\(642\) −16.2097 −0.639745
\(643\) 7.35929 0.290222 0.145111 0.989415i \(-0.453646\pi\)
0.145111 + 0.989415i \(0.453646\pi\)
\(644\) −7.16852 −0.282479
\(645\) 20.1250 0.792420
\(646\) −2.55257 −0.100429
\(647\) 49.2664 1.93686 0.968430 0.249285i \(-0.0801956\pi\)
0.968430 + 0.249285i \(0.0801956\pi\)
\(648\) 42.7512 1.67943
\(649\) −4.57002 −0.179389
\(650\) 0 0
\(651\) 89.1372 3.49356
\(652\) −13.1250 −0.514014
\(653\) 8.50796 0.332942 0.166471 0.986046i \(-0.446763\pi\)
0.166471 + 0.986046i \(0.446763\pi\)
\(654\) −3.42758 −0.134029
\(655\) 5.48858 0.214457
\(656\) 1.30319 0.0508811
\(657\) −60.7525 −2.37018
\(658\) −16.6799 −0.650252
\(659\) −5.42221 −0.211219 −0.105610 0.994408i \(-0.533679\pi\)
−0.105610 + 0.994408i \(0.533679\pi\)
\(660\) 4.04892 0.157604
\(661\) 16.2784 0.633158 0.316579 0.948566i \(-0.397466\pi\)
0.316579 + 0.948566i \(0.397466\pi\)
\(662\) 12.2121 0.474635
\(663\) 0 0
\(664\) −10.4413 −0.405202
\(665\) −4.97823 −0.193047
\(666\) −6.34481 −0.245857
\(667\) 7.43786 0.287995
\(668\) −26.0344 −1.00730
\(669\) −11.9095 −0.460446
\(670\) −6.14675 −0.237470
\(671\) −2.90515 −0.112152
\(672\) −49.0538 −1.89229
\(673\) −22.8866 −0.882215 −0.441107 0.897454i \(-0.645414\pi\)
−0.441107 + 0.897454i \(0.645414\pi\)
\(674\) 15.4547 0.595294
\(675\) −14.7506 −0.567752
\(676\) 0 0
\(677\) −36.9711 −1.42091 −0.710456 0.703741i \(-0.751511\pi\)
−0.710456 + 0.703741i \(0.751511\pi\)
\(678\) −2.49827 −0.0959455
\(679\) −11.2174 −0.430486
\(680\) 6.32975 0.242735
\(681\) 60.2887 2.31027
\(682\) −2.60388 −0.0997075
\(683\) 21.3177 0.815698 0.407849 0.913049i \(-0.366279\pi\)
0.407849 + 0.913049i \(0.366279\pi\)
\(684\) −20.8388 −0.796790
\(685\) −2.58211 −0.0986572
\(686\) −4.99569 −0.190736
\(687\) 52.2693 1.99420
\(688\) −17.6698 −0.673654
\(689\) 0 0
\(690\) −1.77048 −0.0674010
\(691\) −20.9554 −0.797181 −0.398590 0.917129i \(-0.630500\pi\)
−0.398590 + 0.917129i \(0.630500\pi\)
\(692\) −3.27844 −0.124628
\(693\) −16.9487 −0.643827
\(694\) −13.1849 −0.500493
\(695\) −14.4330 −0.547473
\(696\) 33.3521 1.26421
\(697\) 1.71007 0.0647736
\(698\) 7.09677 0.268617
\(699\) 65.9318 2.49377
\(700\) 5.85086 0.221142
\(701\) −36.9439 −1.39535 −0.697676 0.716413i \(-0.745782\pi\)
−0.697676 + 0.716413i \(0.745782\pi\)
\(702\) 0 0
\(703\) 2.89785 0.109295
\(704\) −2.51275 −0.0947027
\(705\) 37.4795 1.41156
\(706\) −9.91676 −0.373222
\(707\) −14.0368 −0.527910
\(708\) −38.6383 −1.45212
\(709\) −6.41358 −0.240867 −0.120434 0.992721i \(-0.538428\pi\)
−0.120434 + 0.992721i \(0.538428\pi\)
\(710\) −4.39373 −0.164894
\(711\) −124.576 −4.67197
\(712\) 17.8092 0.667429
\(713\) −10.3588 −0.387941
\(714\) −17.5526 −0.656888
\(715\) 0 0
\(716\) 32.8799 1.22878
\(717\) −67.2669 −2.51213
\(718\) −15.4383 −0.576154
\(719\) −13.7265 −0.511911 −0.255955 0.966689i \(-0.582390\pi\)
−0.255955 + 0.966689i \(0.582390\pi\)
\(720\) 21.5036 0.801394
\(721\) 13.8291 0.515022
\(722\) 7.40965 0.275759
\(723\) −83.9609 −3.12254
\(724\) 21.3720 0.794283
\(725\) −6.07069 −0.225460
\(726\) −15.2034 −0.564253
\(727\) 33.1008 1.22764 0.613821 0.789445i \(-0.289632\pi\)
0.613821 + 0.789445i \(0.289632\pi\)
\(728\) 0 0
\(729\) 46.8961 1.73689
\(730\) 3.58450 0.132668
\(731\) −23.1866 −0.857586
\(732\) −24.5623 −0.907847
\(733\) −50.6902 −1.87229 −0.936143 0.351620i \(-0.885631\pi\)
−0.936143 + 0.351620i \(0.885631\pi\)
\(734\) −4.32245 −0.159545
\(735\) −11.5036 −0.424318
\(736\) 5.70065 0.210129
\(737\) 9.55794 0.352071
\(738\) −1.53452 −0.0564863
\(739\) 24.5448 0.902895 0.451447 0.892298i \(-0.350908\pi\)
0.451447 + 0.892298i \(0.350908\pi\)
\(740\) −3.40581 −0.125200
\(741\) 0 0
\(742\) 1.15883 0.0425421
\(743\) 8.90217 0.326589 0.163294 0.986577i \(-0.447788\pi\)
0.163294 + 0.986577i \(0.447788\pi\)
\(744\) −46.4499 −1.70294
\(745\) 0.572417 0.0209717
\(746\) −6.69394 −0.245083
\(747\) −46.5465 −1.70305
\(748\) −4.66487 −0.170565
\(749\) 36.4228 1.33086
\(750\) 1.44504 0.0527655
\(751\) −3.00059 −0.109493 −0.0547466 0.998500i \(-0.517435\pi\)
−0.0547466 + 0.998500i \(0.517435\pi\)
\(752\) −32.9071 −1.20000
\(753\) 85.3919 3.11185
\(754\) 0 0
\(755\) −1.23490 −0.0449425
\(756\) −86.3038 −3.13884
\(757\) −23.1691 −0.842096 −0.421048 0.907038i \(-0.638338\pi\)
−0.421048 + 0.907038i \(0.638338\pi\)
\(758\) 5.84548 0.212317
\(759\) 2.75302 0.0999283
\(760\) 2.59419 0.0941010
\(761\) 13.6431 0.494562 0.247281 0.968944i \(-0.420463\pi\)
0.247281 + 0.968944i \(0.420463\pi\)
\(762\) 5.47650 0.198393
\(763\) 7.70171 0.278821
\(764\) −15.4330 −0.558345
\(765\) 28.2174 1.02020
\(766\) 1.34481 0.0485901
\(767\) 0 0
\(768\) −7.79763 −0.281373
\(769\) 31.8853 1.14981 0.574907 0.818219i \(-0.305038\pi\)
0.574907 + 0.818219i \(0.305038\pi\)
\(770\) 1.00000 0.0360375
\(771\) 19.6233 0.706714
\(772\) 39.1008 1.40727
\(773\) 18.4168 0.662407 0.331204 0.943559i \(-0.392545\pi\)
0.331204 + 0.943559i \(0.392545\pi\)
\(774\) 20.8062 0.747865
\(775\) 8.45473 0.303703
\(776\) 5.84548 0.209840
\(777\) 19.9269 0.714874
\(778\) −13.9869 −0.501453
\(779\) 0.700856 0.0251108
\(780\) 0 0
\(781\) 6.83207 0.244471
\(782\) 2.03982 0.0729438
\(783\) 89.5465 3.20013
\(784\) 10.1002 0.360722
\(785\) 11.5375 0.411791
\(786\) 7.93123 0.282898
\(787\) −31.5230 −1.12367 −0.561837 0.827248i \(-0.689905\pi\)
−0.561837 + 0.827248i \(0.689905\pi\)
\(788\) 39.3599 1.40214
\(789\) 53.7144 1.91228
\(790\) 7.35019 0.261508
\(791\) 5.61356 0.199595
\(792\) 8.83207 0.313834
\(793\) 0 0
\(794\) −10.2577 −0.364033
\(795\) −2.60388 −0.0923499
\(796\) 6.61356 0.234412
\(797\) 41.3967 1.46635 0.733173 0.680042i \(-0.238038\pi\)
0.733173 + 0.680042i \(0.238038\pi\)
\(798\) −7.19375 −0.254656
\(799\) −43.1812 −1.52764
\(800\) −4.65279 −0.164501
\(801\) 79.3919 2.80518
\(802\) 8.81641 0.311318
\(803\) −5.57374 −0.196693
\(804\) 80.8098 2.84994
\(805\) 3.97823 0.140214
\(806\) 0 0
\(807\) 39.2737 1.38250
\(808\) 7.31468 0.257330
\(809\) 33.9748 1.19449 0.597245 0.802059i \(-0.296262\pi\)
0.597245 + 0.802059i \(0.296262\pi\)
\(810\) −11.2446 −0.395095
\(811\) −42.4174 −1.48948 −0.744739 0.667356i \(-0.767426\pi\)
−0.744739 + 0.667356i \(0.767426\pi\)
\(812\) −35.5187 −1.24646
\(813\) 43.0834 1.51100
\(814\) −0.582105 −0.0204028
\(815\) 7.28382 0.255141
\(816\) −34.6286 −1.21224
\(817\) −9.50279 −0.332461
\(818\) 14.6732 0.513038
\(819\) 0 0
\(820\) −0.823708 −0.0287651
\(821\) −20.8823 −0.728798 −0.364399 0.931243i \(-0.618726\pi\)
−0.364399 + 0.931243i \(0.618726\pi\)
\(822\) −3.73125 −0.130142
\(823\) −31.4196 −1.09522 −0.547608 0.836735i \(-0.684462\pi\)
−0.547608 + 0.836735i \(0.684462\pi\)
\(824\) −7.20642 −0.251048
\(825\) −2.24698 −0.0782298
\(826\) −9.54288 −0.332039
\(827\) −30.8471 −1.07266 −0.536330 0.844008i \(-0.680190\pi\)
−0.536330 + 0.844008i \(0.680190\pi\)
\(828\) 16.6528 0.578725
\(829\) 30.9004 1.07321 0.536607 0.843832i \(-0.319706\pi\)
0.536607 + 0.843832i \(0.319706\pi\)
\(830\) 2.74632 0.0953260
\(831\) 27.5623 0.956124
\(832\) 0 0
\(833\) 13.2537 0.459213
\(834\) −20.8562 −0.722192
\(835\) 14.4480 0.499995
\(836\) −1.91185 −0.0661229
\(837\) −124.713 −4.31070
\(838\) −9.61894 −0.332281
\(839\) −17.9782 −0.620677 −0.310339 0.950626i \(-0.600442\pi\)
−0.310339 + 0.950626i \(0.600442\pi\)
\(840\) 17.8388 0.615496
\(841\) 7.85325 0.270802
\(842\) 1.83254 0.0631536
\(843\) 86.8902 2.99266
\(844\) 27.5448 0.948131
\(845\) 0 0
\(846\) 38.7482 1.33219
\(847\) 34.1618 1.17381
\(848\) 2.28621 0.0785087
\(849\) 37.8756 1.29989
\(850\) −1.66487 −0.0571047
\(851\) −2.31575 −0.0793828
\(852\) 57.7633 1.97894
\(853\) −4.04413 −0.138468 −0.0692342 0.997600i \(-0.522056\pi\)
−0.0692342 + 0.997600i \(0.522056\pi\)
\(854\) −6.06638 −0.207587
\(855\) 11.5646 0.395503
\(856\) −18.9801 −0.648728
\(857\) 25.7888 0.880928 0.440464 0.897770i \(-0.354814\pi\)
0.440464 + 0.897770i \(0.354814\pi\)
\(858\) 0 0
\(859\) −5.63043 −0.192108 −0.0960539 0.995376i \(-0.530622\pi\)
−0.0960539 + 0.995376i \(0.530622\pi\)
\(860\) 11.1685 0.380843
\(861\) 4.81940 0.164245
\(862\) 8.39421 0.285908
\(863\) 20.6112 0.701612 0.350806 0.936448i \(-0.385908\pi\)
0.350806 + 0.936448i \(0.385908\pi\)
\(864\) 68.6316 2.33489
\(865\) 1.81940 0.0618613
\(866\) −1.47458 −0.0501083
\(867\) 9.75840 0.331413
\(868\) 49.4674 1.67903
\(869\) −11.4292 −0.387710
\(870\) −8.77240 −0.297412
\(871\) 0 0
\(872\) −4.01341 −0.135911
\(873\) 26.0586 0.881950
\(874\) 0.836001 0.0282781
\(875\) −3.24698 −0.109768
\(876\) −47.1245 −1.59219
\(877\) −3.46383 −0.116965 −0.0584826 0.998288i \(-0.518626\pi\)
−0.0584826 + 0.998288i \(0.518626\pi\)
\(878\) 6.40389 0.216121
\(879\) −34.5502 −1.16535
\(880\) 1.97285 0.0665049
\(881\) −28.2040 −0.950218 −0.475109 0.879927i \(-0.657591\pi\)
−0.475109 + 0.879927i \(0.657591\pi\)
\(882\) −11.8931 −0.400460
\(883\) 36.4577 1.22690 0.613450 0.789734i \(-0.289781\pi\)
0.613450 + 0.789734i \(0.289781\pi\)
\(884\) 0 0
\(885\) 21.4426 0.720787
\(886\) −5.54420 −0.186261
\(887\) 6.17331 0.207279 0.103640 0.994615i \(-0.466951\pi\)
0.103640 + 0.994615i \(0.466951\pi\)
\(888\) −10.3840 −0.348466
\(889\) −12.3056 −0.412716
\(890\) −4.68425 −0.157016
\(891\) 17.4849 0.585765
\(892\) −6.60925 −0.221294
\(893\) −17.6974 −0.592221
\(894\) 0.827166 0.0276646
\(895\) −18.2470 −0.609929
\(896\) −35.4620 −1.18470
\(897\) 0 0
\(898\) 13.5950 0.453672
\(899\) −51.3260 −1.71182
\(900\) −13.5918 −0.453060
\(901\) 3.00000 0.0999445
\(902\) −0.140784 −0.00468760
\(903\) −65.3454 −2.17456
\(904\) −2.92526 −0.0972928
\(905\) −11.8605 −0.394258
\(906\) −1.78448 −0.0592854
\(907\) −15.1860 −0.504242 −0.252121 0.967696i \(-0.581128\pi\)
−0.252121 + 0.967696i \(0.581128\pi\)
\(908\) 33.4577 1.11033
\(909\) 32.6082 1.08155
\(910\) 0 0
\(911\) 37.0810 1.22855 0.614274 0.789093i \(-0.289449\pi\)
0.614274 + 0.789093i \(0.289449\pi\)
\(912\) −14.1922 −0.469951
\(913\) −4.27041 −0.141330
\(914\) 4.35796 0.144149
\(915\) 13.6310 0.450628
\(916\) 29.0073 0.958428
\(917\) −17.8213 −0.588512
\(918\) 24.5579 0.810533
\(919\) −30.5590 −1.00805 −0.504024 0.863689i \(-0.668148\pi\)
−0.504024 + 0.863689i \(0.668148\pi\)
\(920\) −2.07308 −0.0683474
\(921\) −0.946771 −0.0311972
\(922\) −5.90217 −0.194377
\(923\) 0 0
\(924\) −13.1468 −0.432496
\(925\) 1.89008 0.0621456
\(926\) −7.67264 −0.252139
\(927\) −32.1256 −1.05514
\(928\) 28.2457 0.927209
\(929\) 27.2489 0.894007 0.447004 0.894532i \(-0.352491\pi\)
0.447004 + 0.894532i \(0.352491\pi\)
\(930\) 12.2174 0.400626
\(931\) 5.43190 0.178023
\(932\) 36.5894 1.19853
\(933\) −98.2882 −3.21781
\(934\) 2.21744 0.0725568
\(935\) 2.58881 0.0846631
\(936\) 0 0
\(937\) 57.8286 1.88918 0.944589 0.328255i \(-0.106460\pi\)
0.944589 + 0.328255i \(0.106460\pi\)
\(938\) 19.9584 0.651664
\(939\) −27.6286 −0.901626
\(940\) 20.7995 0.678406
\(941\) 40.1463 1.30873 0.654366 0.756178i \(-0.272936\pi\)
0.654366 + 0.756178i \(0.272936\pi\)
\(942\) 16.6722 0.543209
\(943\) −0.560072 −0.0182385
\(944\) −18.8267 −0.612757
\(945\) 47.8950 1.55802
\(946\) 1.90887 0.0620627
\(947\) 0.987918 0.0321030 0.0160515 0.999871i \(-0.494890\pi\)
0.0160515 + 0.999871i \(0.494890\pi\)
\(948\) −96.6311 −3.13843
\(949\) 0 0
\(950\) −0.682333 −0.0221378
\(951\) 37.5187 1.21663
\(952\) −20.5526 −0.666112
\(953\) −43.3351 −1.40376 −0.701881 0.712294i \(-0.747656\pi\)
−0.701881 + 0.712294i \(0.747656\pi\)
\(954\) −2.69202 −0.0871574
\(955\) 8.56465 0.277145
\(956\) −37.3303 −1.20735
\(957\) 13.6407 0.440942
\(958\) −2.27652 −0.0735510
\(959\) 8.38404 0.270735
\(960\) 11.7899 0.380516
\(961\) 40.4825 1.30589
\(962\) 0 0
\(963\) −84.6118 −2.72658
\(964\) −46.5948 −1.50072
\(965\) −21.6993 −0.698526
\(966\) 5.74871 0.184962
\(967\) −4.89977 −0.157566 −0.0787830 0.996892i \(-0.525103\pi\)
−0.0787830 + 0.996892i \(0.525103\pi\)
\(968\) −17.8019 −0.572176
\(969\) −18.6233 −0.598265
\(970\) −1.53750 −0.0493661
\(971\) −37.5153 −1.20392 −0.601961 0.798526i \(-0.705614\pi\)
−0.601961 + 0.798526i \(0.705614\pi\)
\(972\) 68.0907 2.18401
\(973\) 46.8635 1.50238
\(974\) −2.82025 −0.0903666
\(975\) 0 0
\(976\) −11.9681 −0.383088
\(977\) 59.7663 1.91209 0.956046 0.293215i \(-0.0947253\pi\)
0.956046 + 0.293215i \(0.0947253\pi\)
\(978\) 10.5254 0.336566
\(979\) 7.28382 0.232792
\(980\) −6.38404 −0.203931
\(981\) −17.8914 −0.571229
\(982\) 13.9468 0.445059
\(983\) −39.2452 −1.25173 −0.625863 0.779933i \(-0.715253\pi\)
−0.625863 + 0.779933i \(0.715253\pi\)
\(984\) −2.51142 −0.0800611
\(985\) −21.8431 −0.695979
\(986\) 10.1069 0.321870
\(987\) −121.695 −3.87360
\(988\) 0 0
\(989\) 7.59392 0.241473
\(990\) −2.32304 −0.0738312
\(991\) −12.2577 −0.389380 −0.194690 0.980865i \(-0.562370\pi\)
−0.194690 + 0.980865i \(0.562370\pi\)
\(992\) −39.3381 −1.24899
\(993\) 89.0980 2.82744
\(994\) 14.2664 0.452501
\(995\) −3.67025 −0.116355
\(996\) −36.1051 −1.14403
\(997\) −24.5687 −0.778098 −0.389049 0.921217i \(-0.627196\pi\)
−0.389049 + 0.921217i \(0.627196\pi\)
\(998\) −10.5496 −0.333941
\(999\) −27.8799 −0.882082
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.h.1.2 3
3.2 odd 2 7605.2.a.by.1.2 3
5.4 even 2 4225.2.a.bf.1.2 3
13.2 odd 12 845.2.m.i.316.3 12
13.3 even 3 845.2.e.l.191.2 6
13.4 even 6 845.2.e.j.146.2 6
13.5 odd 4 845.2.c.f.506.4 6
13.6 odd 12 845.2.m.i.361.4 12
13.7 odd 12 845.2.m.i.361.3 12
13.8 odd 4 845.2.c.f.506.3 6
13.9 even 3 845.2.e.l.146.2 6
13.10 even 6 845.2.e.j.191.2 6
13.11 odd 12 845.2.m.i.316.4 12
13.12 even 2 845.2.a.j.1.2 yes 3
39.38 odd 2 7605.2.a.br.1.2 3
65.64 even 2 4225.2.a.bd.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.h.1.2 3 1.1 even 1 trivial
845.2.a.j.1.2 yes 3 13.12 even 2
845.2.c.f.506.3 6 13.8 odd 4
845.2.c.f.506.4 6 13.5 odd 4
845.2.e.j.146.2 6 13.4 even 6
845.2.e.j.191.2 6 13.10 even 6
845.2.e.l.146.2 6 13.9 even 3
845.2.e.l.191.2 6 13.3 even 3
845.2.m.i.316.3 12 13.2 odd 12
845.2.m.i.316.4 12 13.11 odd 12
845.2.m.i.361.3 12 13.7 odd 12
845.2.m.i.361.4 12 13.6 odd 12
4225.2.a.bd.1.2 3 65.64 even 2
4225.2.a.bf.1.2 3 5.4 even 2
7605.2.a.br.1.2 3 39.38 odd 2
7605.2.a.by.1.2 3 3.2 odd 2