Properties

Label 425.2.a.h.1.4
Level 425425
Weight 22
Character 425.1
Self dual yes
Analytic conductor 3.3943.394
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 425=5217 425 = 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.393642085903.39364208590
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.6224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x46x22x+5 x^{4} - 6x^{2} - 2x + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 85)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 0.7968150.796815 of defining polynomial
Character χ\chi == 425.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.31627q2+0.203185q3+3.36509q4+0.470630q6+0.683735q7+3.16190q82.95872q9+3.68135q11+0.683735q12+4.43927q13+1.58371q14+0.593630q161.00000q176.85317q181.03890q19+0.138925q21+8.52699q224.52699q23+0.642450q24+10.2825q261.21072q27+2.30083q283.69127q2910.8921q314.94880q32+0.747995q332.31627q349.95633q36+0.308729q372.40637q38+0.901992q396.15198q41+0.321786q42+7.88454q43+12.3881q4410.4857q46+4.43927q47+0.120617q486.53251q490.203185q51+14.9385q52+11.4603q532.80435q54+2.16190q560.211089q578.54996q582.00000q59+9.94089q6125.2289q622.02298q6312.6500q64+1.73255q66+9.16944q673.36509q680.919815q699.37262q719.35517q722.26946q73+0.715099q743.49599q76+2.51707q77+2.08925q78+7.42696q79+8.63015q8114.2496q828.92344q83+0.467493q84+18.2627q860.750010q87+11.6401q88+11.5523q89+3.03528q9115.2337q922.21310q93+10.2825q941.00552q9612.5500q9715.1310q9810.8921q99+O(q100)q+2.31627 q^{2} +0.203185 q^{3} +3.36509 q^{4} +0.470630 q^{6} +0.683735 q^{7} +3.16190 q^{8} -2.95872 q^{9} +3.68135 q^{11} +0.683735 q^{12} +4.43927 q^{13} +1.58371 q^{14} +0.593630 q^{16} -1.00000 q^{17} -6.85317 q^{18} -1.03890 q^{19} +0.138925 q^{21} +8.52699 q^{22} -4.52699 q^{23} +0.642450 q^{24} +10.2825 q^{26} -1.21072 q^{27} +2.30083 q^{28} -3.69127 q^{29} -10.8921 q^{31} -4.94880 q^{32} +0.747995 q^{33} -2.31627 q^{34} -9.95633 q^{36} +0.308729 q^{37} -2.40637 q^{38} +0.901992 q^{39} -6.15198 q^{41} +0.321786 q^{42} +7.88454 q^{43} +12.3881 q^{44} -10.4857 q^{46} +4.43927 q^{47} +0.120617 q^{48} -6.53251 q^{49} -0.203185 q^{51} +14.9385 q^{52} +11.4603 q^{53} -2.80435 q^{54} +2.16190 q^{56} -0.211089 q^{57} -8.54996 q^{58} -2.00000 q^{59} +9.94089 q^{61} -25.2289 q^{62} -2.02298 q^{63} -12.6500 q^{64} +1.73255 q^{66} +9.16944 q^{67} -3.36509 q^{68} -0.919815 q^{69} -9.37262 q^{71} -9.35517 q^{72} -2.26946 q^{73} +0.715099 q^{74} -3.49599 q^{76} +2.51707 q^{77} +2.08925 q^{78} +7.42696 q^{79} +8.63015 q^{81} -14.2496 q^{82} -8.92344 q^{83} +0.467493 q^{84} +18.2627 q^{86} -0.750010 q^{87} +11.6401 q^{88} +11.5523 q^{89} +3.03528 q^{91} -15.2337 q^{92} -2.21310 q^{93} +10.2825 q^{94} -1.00552 q^{96} -12.5500 q^{97} -15.1310 q^{98} -10.8921 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q2+4q3+4q4+10q7+4q92q11+10q12+6q136q144q164q174q18+4q19+12q21+12q22+4q236q24+10q27+12q99+O(q100) 4 q + 2 q^{2} + 4 q^{3} + 4 q^{4} + 10 q^{7} + 4 q^{9} - 2 q^{11} + 10 q^{12} + 6 q^{13} - 6 q^{14} - 4 q^{16} - 4 q^{17} - 4 q^{18} + 4 q^{19} + 12 q^{21} + 12 q^{22} + 4 q^{23} - 6 q^{24} + 10 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.31627 1.63785 0.818924 0.573903i 0.194571π-0.194571\pi
0.818924 + 0.573903i 0.194571π0.194571\pi
33 0.203185 0.117309 0.0586544 0.998278i 0.481319π-0.481319\pi
0.0586544 + 0.998278i 0.481319π0.481319\pi
44 3.36509 1.68254
55 0 0
66 0.470630 0.192134
77 0.683735 0.258427 0.129214 0.991617i 0.458755π-0.458755\pi
0.129214 + 0.991617i 0.458755π0.458755\pi
88 3.16190 1.11790
99 −2.95872 −0.986239
1010 0 0
1111 3.68135 1.10997 0.554985 0.831861i 0.312724π-0.312724\pi
0.554985 + 0.831861i 0.312724π0.312724\pi
1212 0.683735 0.197377
1313 4.43927 1.23123 0.615615 0.788047i 0.288908π-0.288908\pi
0.615615 + 0.788047i 0.288908π0.288908\pi
1414 1.58371 0.423264
1515 0 0
1616 0.593630 0.148408
1717 −1.00000 −0.242536
1818 −6.85317 −1.61531
1919 −1.03890 −0.238340 −0.119170 0.992874i 0.538023π-0.538023\pi
−0.119170 + 0.992874i 0.538023π0.538023\pi
2020 0 0
2121 0.138925 0.0303158
2222 8.52699 1.81796
2323 −4.52699 −0.943942 −0.471971 0.881614i 0.656457π-0.656457\pi
−0.471971 + 0.881614i 0.656457π0.656457\pi
2424 0.642450 0.131140
2525 0 0
2626 10.2825 2.01657
2727 −1.21072 −0.233003
2828 2.30083 0.434815
2929 −3.69127 −0.685452 −0.342726 0.939435i 0.611350π-0.611350\pi
−0.342726 + 0.939435i 0.611350π0.611350\pi
3030 0 0
3131 −10.8921 −1.95627 −0.978137 0.207962i 0.933317π-0.933317\pi
−0.978137 + 0.207962i 0.933317π0.933317\pi
3232 −4.94880 −0.874832
3333 0.747995 0.130209
3434 −2.31627 −0.397236
3535 0 0
3636 −9.95633 −1.65939
3737 0.308729 0.0507548 0.0253774 0.999678i 0.491921π-0.491921\pi
0.0253774 + 0.999678i 0.491921π0.491921\pi
3838 −2.40637 −0.390365
3939 0.901992 0.144434
4040 0 0
4141 −6.15198 −0.960778 −0.480389 0.877056i 0.659505π-0.659505\pi
−0.480389 + 0.877056i 0.659505π0.659505\pi
4242 0.321786 0.0496527
4343 7.88454 1.20238 0.601190 0.799106i 0.294693π-0.294693\pi
0.601190 + 0.799106i 0.294693π0.294693\pi
4444 12.3881 1.86757
4545 0 0
4646 −10.4857 −1.54603
4747 4.43927 0.647533 0.323767 0.946137i 0.395051π-0.395051\pi
0.323767 + 0.946137i 0.395051π0.395051\pi
4848 0.120617 0.0174095
4949 −6.53251 −0.933215
5050 0 0
5151 −0.203185 −0.0284516
5252 14.9385 2.07160
5353 11.4603 1.57420 0.787100 0.616826i 0.211582π-0.211582\pi
0.787100 + 0.616826i 0.211582π0.211582\pi
5454 −2.80435 −0.381624
5555 0 0
5656 2.16190 0.288896
5757 −0.211089 −0.0279594
5858 −8.54996 −1.12267
5959 −2.00000 −0.260378 −0.130189 0.991489i 0.541558π-0.541558\pi
−0.130189 + 0.991489i 0.541558π0.541558\pi
6060 0 0
6161 9.94089 1.27280 0.636400 0.771359i 0.280423π-0.280423\pi
0.636400 + 0.771359i 0.280423π0.280423\pi
6262 −25.2289 −3.20408
6363 −2.02298 −0.254871
6464 −12.6500 −1.58125
6565 0 0
6666 1.73255 0.213263
6767 9.16944 1.12023 0.560113 0.828417i 0.310758π-0.310758\pi
0.560113 + 0.828417i 0.310758π0.310758\pi
6868 −3.36509 −0.408077
6969 −0.919815 −0.110733
7070 0 0
7171 −9.37262 −1.11233 −0.556163 0.831073i 0.687727π-0.687727\pi
−0.556163 + 0.831073i 0.687727π0.687727\pi
7272 −9.35517 −1.10252
7373 −2.26946 −0.265620 −0.132810 0.991141i 0.542400π-0.542400\pi
−0.132810 + 0.991141i 0.542400π0.542400\pi
7474 0.715099 0.0831286
7575 0 0
7676 −3.49599 −0.401018
7777 2.51707 0.286846
7878 2.08925 0.236561
7979 7.42696 0.835599 0.417799 0.908539i 0.362802π-0.362802\pi
0.417799 + 0.908539i 0.362802π0.362802\pi
8080 0 0
8181 8.63015 0.958905
8282 −14.2496 −1.57361
8383 −8.92344 −0.979474 −0.489737 0.871870i 0.662907π-0.662907\pi
−0.489737 + 0.871870i 0.662907π0.662907\pi
8484 0.467493 0.0510077
8585 0 0
8686 18.2627 1.96932
8787 −0.750010 −0.0804096
8888 11.6401 1.24084
8989 11.5523 1.22455 0.612273 0.790646i 0.290255π-0.290255\pi
0.612273 + 0.790646i 0.290255π0.290255\pi
9090 0 0
9191 3.03528 0.318184
9292 −15.2337 −1.58822
9393 −2.21310 −0.229488
9494 10.2825 1.06056
9595 0 0
9696 −1.00552 −0.102626
9797 −12.5500 −1.27426 −0.637128 0.770758i 0.719878π-0.719878\pi
−0.637128 + 0.770758i 0.719878π0.719878\pi
9898 −15.1310 −1.52846
9999 −10.8921 −1.09469
100100 0 0
101101 −6.78653 −0.675285 −0.337642 0.941274i 0.609629π-0.609629\pi
−0.337642 + 0.941274i 0.609629π0.609629\pi
102102 −0.470630 −0.0465993
103103 8.74799 0.861966 0.430983 0.902360i 0.358167π-0.358167\pi
0.430983 + 0.902360i 0.358167π0.358167\pi
104104 14.0365 1.37639
105105 0 0
106106 26.5452 2.57830
107107 8.10078 0.783132 0.391566 0.920150i 0.371934π-0.371934\pi
0.391566 + 0.920150i 0.371934π0.371934\pi
108108 −4.07418 −0.392038
109109 −3.11308 −0.298179 −0.149090 0.988824i 0.547634π-0.547634\pi
−0.149090 + 0.988824i 0.547634π0.547634\pi
110110 0 0
111111 0.0627291 0.00595399
112112 0.405885 0.0383526
113113 −6.93287 −0.652190 −0.326095 0.945337i 0.605733π-0.605733\pi
−0.326095 + 0.945337i 0.605733π0.605733\pi
114114 −0.488938 −0.0457932
115115 0 0
116116 −12.4214 −1.15330
117117 −13.1345 −1.21429
118118 −4.63253 −0.426459
119119 −0.683735 −0.0626778
120120 0 0
121121 2.55235 0.232031
122122 23.0257 2.08465
123123 −1.24999 −0.112708
124124 −36.6528 −3.29151
125125 0 0
126126 −4.68575 −0.417440
127127 21.1496 1.87672 0.938362 0.345655i 0.112343π-0.112343\pi
0.938362 + 0.345655i 0.112343π0.112343\pi
128128 −19.4031 −1.71501
129129 1.60202 0.141050
130130 0 0
131131 8.71186 0.761159 0.380580 0.924748i 0.375725π-0.375725\pi
0.380580 + 0.924748i 0.375725π0.375725\pi
132132 2.51707 0.219083
133133 −0.710332 −0.0615936
134134 21.2388 1.83476
135135 0 0
136136 −3.16190 −0.271131
137137 0.243985 0.0208450 0.0104225 0.999946i 0.496682π-0.496682\pi
0.0104225 + 0.999946i 0.496682π0.496682\pi
138138 −2.13054 −0.181363
139139 12.6884 1.07622 0.538108 0.842876i 0.319139π-0.319139\pi
0.538108 + 0.842876i 0.319139π0.319139\pi
140140 0 0
141141 0.901992 0.0759614
142142 −21.7095 −1.82182
143143 16.3425 1.36663
144144 −1.75638 −0.146365
145145 0 0
146146 −5.25667 −0.435045
147147 −1.32731 −0.109474
148148 1.03890 0.0853971
149149 12.0103 0.983923 0.491961 0.870617i 0.336280π-0.336280\pi
0.491961 + 0.870617i 0.336280π0.336280\pi
150150 0 0
151151 8.95633 0.728856 0.364428 0.931232i 0.381265π-0.381265\pi
0.364428 + 0.931232i 0.381265π0.381265\pi
152152 −3.28490 −0.266441
153153 2.95872 0.239198
154154 5.83020 0.469811
155155 0 0
156156 3.03528 0.243017
157157 −19.9127 −1.58920 −0.794602 0.607131i 0.792320π-0.792320\pi
−0.794602 + 0.607131i 0.792320π0.792320\pi
158158 17.2028 1.36858
159159 2.32857 0.184667
160160 0 0
161161 −3.09526 −0.243940
162162 19.9897 1.57054
163163 22.4011 1.75459 0.877296 0.479951i 0.159345π-0.159345\pi
0.877296 + 0.479951i 0.159345π0.159345\pi
164164 −20.7019 −1.61655
165165 0 0
166166 −20.6690 −1.60423
167167 −4.58133 −0.354514 −0.177257 0.984165i 0.556722π-0.556722\pi
−0.177257 + 0.984165i 0.556722π0.556722\pi
168168 0.439266 0.0338901
169169 6.70708 0.515929
170170 0 0
171171 3.07381 0.235060
172172 26.5321 2.02306
173173 −8.09764 −0.615652 −0.307826 0.951443i 0.599601π-0.599601\pi
−0.307826 + 0.951443i 0.599601π0.599601\pi
174174 −1.73722 −0.131699
175175 0 0
176176 2.18536 0.164728
177177 −0.406370 −0.0305446
178178 26.7583 2.00562
179179 4.40637 0.329348 0.164674 0.986348i 0.447343π-0.447343\pi
0.164674 + 0.986348i 0.447343π0.447343\pi
180180 0 0
181181 −5.93727 −0.441314 −0.220657 0.975351i 0.570820π-0.570820\pi
−0.220657 + 0.975351i 0.570820π0.570820\pi
182182 7.03051 0.521136
183183 2.01984 0.149311
184184 −14.3139 −1.05523
185185 0 0
186186 −5.12614 −0.375867
187187 −3.68135 −0.269207
188188 14.9385 1.08950
189189 −0.827812 −0.0602144
190190 0 0
191191 −9.89759 −0.716165 −0.358082 0.933690i 0.616569π-0.616569\pi
−0.358082 + 0.933690i 0.616569π0.616569\pi
192192 −2.57029 −0.185494
193193 −8.47578 −0.610100 −0.305050 0.952336i 0.598673π-0.598673\pi
−0.305050 + 0.952336i 0.598673π0.598673\pi
194194 −29.0690 −2.08704
195195 0 0
196196 −21.9824 −1.57017
197197 13.5381 0.964553 0.482276 0.876019i 0.339810π-0.339810\pi
0.482276 + 0.876019i 0.339810π0.339810\pi
198198 −25.2289 −1.79294
199199 −9.15388 −0.648901 −0.324451 0.945903i 0.605179π-0.605179\pi
−0.324451 + 0.945903i 0.605179π0.605179\pi
200200 0 0
201201 1.86309 0.131412
202202 −15.7194 −1.10601
203203 −2.52385 −0.177139
204204 −0.683735 −0.0478710
205205 0 0
206206 20.2627 1.41177
207207 13.3941 0.930952
208208 2.63528 0.182724
209209 −3.82456 −0.264550
210210 0 0
211211 7.72465 0.531787 0.265893 0.964002i 0.414333π-0.414333\pi
0.265893 + 0.964002i 0.414333π0.414333\pi
212212 38.5650 2.64866
213213 −1.90438 −0.130486
214214 18.7636 1.28265
215215 0 0
216216 −3.82818 −0.260475
217217 −7.44729 −0.505555
218218 −7.21072 −0.488372
219219 −0.461120 −0.0311596
220220 0 0
221221 −4.43927 −0.298617
222222 0.145297 0.00975172
223223 −13.7194 −0.918719 −0.459359 0.888250i 0.651921π-0.651921\pi
−0.459359 + 0.888250i 0.651921π0.651921\pi
224224 −3.38366 −0.226080
225225 0 0
226226 −16.0584 −1.06819
227227 −1.80044 −0.119499 −0.0597496 0.998213i 0.519030π-0.519030\pi
−0.0597496 + 0.998213i 0.519030π0.519030\pi
228228 −0.710332 −0.0470429
229229 −3.24838 −0.214659 −0.107330 0.994223i 0.534230π-0.534230\pi
−0.107330 + 0.994223i 0.534230π0.534230\pi
230230 0 0
231231 0.511430 0.0336496
232232 −11.6714 −0.766267
233233 5.38254 0.352622 0.176311 0.984335i 0.443584π-0.443584\pi
0.176311 + 0.984335i 0.443584π0.443584\pi
234234 −30.4230 −1.98882
235235 0 0
236236 −6.73017 −0.438097
237237 1.50905 0.0980231
238238 −1.58371 −0.102657
239239 −3.62071 −0.234204 −0.117102 0.993120i 0.537361π-0.537361\pi
−0.117102 + 0.993120i 0.537361π0.537361\pi
240240 0 0
241241 −7.66781 −0.493927 −0.246964 0.969025i 0.579433π-0.579433\pi
−0.246964 + 0.969025i 0.579433π0.579433\pi
242242 5.91191 0.380032
243243 5.38568 0.345491
244244 33.4520 2.14154
245245 0 0
246246 −2.89531 −0.184598
247247 −4.61196 −0.293452
248248 −34.4397 −2.18692
249249 −1.81311 −0.114901
250250 0 0
251251 −6.04595 −0.381617 −0.190809 0.981627i 0.561111π-0.561111\pi
−0.190809 + 0.981627i 0.561111π0.561111\pi
252252 −6.80749 −0.428831
253253 −16.6654 −1.04775
254254 48.9881 3.07379
255255 0 0
256256 −19.6428 −1.22768
257257 −6.13054 −0.382412 −0.191206 0.981550i 0.561240π-0.561240\pi
−0.191206 + 0.981550i 0.561240π0.561240\pi
258258 3.71070 0.231018
259259 0.211089 0.0131164
260260 0 0
261261 10.9214 0.676019
262262 20.1790 1.24666
263263 −12.3012 −0.758525 −0.379263 0.925289i 0.623822π-0.623822\pi
−0.379263 + 0.925289i 0.623822π0.623822\pi
264264 2.36509 0.145561
265265 0 0
266266 −1.64532 −0.100881
267267 2.34726 0.143650
268268 30.8559 1.88483
269269 9.92508 0.605143 0.302572 0.953127i 0.402155π-0.402155\pi
0.302572 + 0.953127i 0.402155π0.402155\pi
270270 0 0
271271 20.3040 1.23338 0.616689 0.787207i 0.288474π-0.288474\pi
0.616689 + 0.787207i 0.288474π0.288474\pi
272272 −0.593630 −0.0359941
273273 0.616723 0.0373258
274274 0.565133 0.0341410
275275 0 0
276276 −3.09526 −0.186313
277277 18.1671 1.09155 0.545776 0.837931i 0.316235π-0.316235\pi
0.545776 + 0.837931i 0.316235π0.316235\pi
278278 29.3897 1.76268
279279 32.2265 1.92935
280280 0 0
281281 10.6983 0.638208 0.319104 0.947720i 0.396618π-0.396618\pi
0.319104 + 0.947720i 0.396618π0.396618\pi
282282 2.08925 0.124413
283283 10.0773 0.599034 0.299517 0.954091i 0.403174π-0.403174\pi
0.299517 + 0.954091i 0.403174π0.403174\pi
284284 −31.5397 −1.87154
285285 0 0
286286 37.8536 2.23833
287287 −4.20632 −0.248291
288288 14.6421 0.862793
289289 1.00000 0.0588235
290290 0 0
291291 −2.54996 −0.149481
292292 −7.63693 −0.446918
293293 −20.5349 −1.19966 −0.599831 0.800127i 0.704765π-0.704765\pi
−0.599831 + 0.800127i 0.704765π0.704765\pi
294294 −3.07439 −0.179302
295295 0 0
296296 0.976172 0.0567388
297297 −4.45709 −0.258627
298298 27.8191 1.61151
299299 −20.0965 −1.16221
300300 0 0
301301 5.39093 0.310728
302302 20.7452 1.19375
303303 −1.37892 −0.0792169
304304 −0.616723 −0.0353715
305305 0 0
306306 6.85317 0.391770
307307 13.1177 0.748669 0.374335 0.927294i 0.377871π-0.377871\pi
0.374335 + 0.927294i 0.377871π0.377871\pi
308308 8.47015 0.482631
309309 1.77746 0.101116
310310 0 0
311311 −12.3646 −0.701132 −0.350566 0.936538i 0.614011π-0.614011\pi
−0.350566 + 0.936538i 0.614011π0.614011\pi
312312 2.85201 0.161463
313313 −5.16000 −0.291661 −0.145830 0.989310i 0.546585π-0.546585\pi
−0.145830 + 0.989310i 0.546585π0.546585\pi
314314 −46.1230 −2.60287
315315 0 0
316316 24.9924 1.40593
317317 −23.7655 −1.33480 −0.667400 0.744699i 0.732593π-0.732593\pi
−0.667400 + 0.744699i 0.732593π0.732593\pi
318318 5.39358 0.302457
319319 −13.5889 −0.760830
320320 0 0
321321 1.64596 0.0918683
322322 −7.16944 −0.399537
323323 1.03890 0.0578060
324324 29.0412 1.61340
325325 0 0
326326 51.8869 2.87375
327327 −0.632531 −0.0349790
328328 −19.4520 −1.07405
329329 3.03528 0.167340
330330 0 0
331331 20.8341 1.14514 0.572572 0.819854i 0.305946π-0.305946\pi
0.572572 + 0.819854i 0.305946π0.305946\pi
332332 −30.0281 −1.64801
333333 −0.913442 −0.0500563
334334 −10.6116 −0.580639
335335 0 0
336336 0.0824698 0.00449910
337337 14.3080 0.779406 0.389703 0.920941i 0.372578π-0.372578\pi
0.389703 + 0.920941i 0.372578π0.372578\pi
338338 15.5354 0.845013
339339 −1.40865 −0.0765076
340340 0 0
341341 −40.0975 −2.17140
342342 7.11976 0.384993
343343 −9.25264 −0.499596
344344 24.9301 1.34414
345345 0 0
346346 −18.7563 −1.00834
347347 −21.9988 −1.18096 −0.590478 0.807054i 0.701061π-0.701061\pi
−0.590478 + 0.807054i 0.701061π0.701061\pi
348348 −2.52385 −0.135293
349349 −6.06199 −0.324491 −0.162246 0.986750i 0.551874π-0.551874\pi
−0.162246 + 0.986750i 0.551874π0.551874\pi
350350 0 0
351351 −5.37471 −0.286881
352352 −18.2183 −0.971036
353353 −20.8785 −1.11125 −0.555626 0.831432i 0.687521π-0.687521\pi
−0.555626 + 0.831432i 0.687521π0.687521\pi
354354 −0.941260 −0.0500274
355355 0 0
356356 38.8746 2.06035
357357 −0.138925 −0.00735267
358358 10.2063 0.539421
359359 18.4842 0.975557 0.487779 0.872967i 0.337807π-0.337807\pi
0.487779 + 0.872967i 0.337807π0.337807\pi
360360 0 0
361361 −17.9207 −0.943194
362362 −13.7523 −0.722805
363363 0.518598 0.0272193
364364 10.2140 0.535358
365365 0 0
366366 4.67848 0.244548
367367 23.6044 1.23214 0.616070 0.787691i 0.288724π-0.288724\pi
0.616070 + 0.787691i 0.288724π0.288724\pi
368368 −2.68736 −0.140088
369369 18.2020 0.947556
370370 0 0
371371 7.83583 0.406816
372372 −7.44729 −0.386124
373373 18.0123 0.932643 0.466321 0.884615i 0.345579π-0.345579\pi
0.466321 + 0.884615i 0.345579π0.345579\pi
374374 −8.52699 −0.440920
375375 0 0
376376 14.0365 0.723878
377377 −16.3865 −0.843949
378378 −1.91743 −0.0986221
379379 −5.74523 −0.295112 −0.147556 0.989054i 0.547141π-0.547141\pi
−0.147556 + 0.989054i 0.547141π0.547141\pi
380380 0 0
381381 4.29728 0.220156
382382 −22.9255 −1.17297
383383 35.3281 1.80518 0.902591 0.430499i 0.141663π-0.141663\pi
0.902591 + 0.430499i 0.141663π0.141663\pi
384384 −3.94242 −0.201186
385385 0 0
386386 −19.6322 −0.999251
387387 −23.3281 −1.18583
388388 −42.2317 −2.14399
389389 −18.2627 −0.925955 −0.462977 0.886370i 0.653219π-0.653219\pi
−0.462977 + 0.886370i 0.653219π0.653219\pi
390390 0 0
391391 4.52699 0.228940
392392 −20.6551 −1.04324
393393 1.77012 0.0892907
394394 31.3579 1.57979
395395 0 0
396396 −36.6528 −1.84187
397397 −4.64092 −0.232921 −0.116461 0.993195i 0.537155π-0.537155\pi
−0.116461 + 0.993195i 0.537155π0.537155\pi
398398 −21.2028 −1.06280
399399 −0.144329 −0.00722548
400400 0 0
401401 −27.4049 −1.36853 −0.684267 0.729232i 0.739878π-0.739878\pi
−0.684267 + 0.729232i 0.739878π0.739878\pi
402402 4.31541 0.215233
403403 −48.3528 −2.40862
404404 −22.8372 −1.13620
405405 0 0
406406 −5.84590 −0.290127
407407 1.13654 0.0563363
408408 −0.642450 −0.0318060
409409 1.38254 0.0683623 0.0341811 0.999416i 0.489118π-0.489118\pi
0.0341811 + 0.999416i 0.489118π0.489118\pi
410410 0 0
411411 0.0495740 0.00244531
412412 29.4378 1.45029
413413 −1.36747 −0.0672888
414414 31.0242 1.52476
415415 0 0
416416 −21.9690 −1.07712
417417 2.57809 0.126250
418418 −8.85869 −0.433293
419419 −33.2300 −1.62339 −0.811695 0.584081i 0.801455π-0.801455\pi
−0.811695 + 0.584081i 0.801455π0.801455\pi
420420 0 0
421421 4.61109 0.224731 0.112365 0.993667i 0.464157π-0.464157\pi
0.112365 + 0.993667i 0.464157π0.464157\pi
422422 17.8923 0.870986
423423 −13.1345 −0.638622
424424 36.2365 1.75980
425425 0 0
426426 −4.41104 −0.213715
427427 6.79693 0.328927
428428 27.2598 1.31765
429429 3.32055 0.160318
430430 0 0
431431 7.33812 0.353465 0.176732 0.984259i 0.443447π-0.443447\pi
0.176732 + 0.984259i 0.443447π0.443447\pi
432432 −0.718721 −0.0345795
433433 −15.3487 −0.737610 −0.368805 0.929507i 0.620233π-0.620233\pi
−0.368805 + 0.929507i 0.620233π0.620233\pi
434434 −17.2499 −0.828021
435435 0 0
436436 −10.4758 −0.501699
437437 4.70309 0.224979
438438 −1.06808 −0.0510347
439439 −5.60355 −0.267443 −0.133721 0.991019i 0.542693π-0.542693\pi
−0.133721 + 0.991019i 0.542693π0.542693\pi
440440 0 0
441441 19.3278 0.920373
442442 −10.2825 −0.489089
443443 −29.6338 −1.40794 −0.703971 0.710228i 0.748592π-0.748592\pi
−0.703971 + 0.710228i 0.748592π0.748592\pi
444444 0.211089 0.0100178
445445 0 0
446446 −31.7778 −1.50472
447447 2.44031 0.115423
448448 −8.64923 −0.408638
449449 −34.4203 −1.62439 −0.812197 0.583383i 0.801729π-0.801729\pi
−0.812197 + 0.583383i 0.801729π0.801729\pi
450450 0 0
451451 −22.6476 −1.06643
452452 −23.3297 −1.09734
453453 1.81979 0.0855013
454454 −4.17029 −0.195721
455455 0 0
456456 −0.667442 −0.0312558
457457 9.32504 0.436207 0.218103 0.975926i 0.430013π-0.430013\pi
0.218103 + 0.975926i 0.430013π0.430013\pi
458458 −7.52412 −0.351579
459459 1.21072 0.0565116
460460 0 0
461461 19.1715 0.892904 0.446452 0.894808i 0.352687π-0.352687\pi
0.446452 + 0.894808i 0.352687π0.352687\pi
462462 1.18461 0.0551129
463463 19.6385 0.912680 0.456340 0.889805i 0.349160π-0.349160\pi
0.456340 + 0.889805i 0.349160π0.349160\pi
464464 −2.19125 −0.101726
465465 0 0
466466 12.4674 0.577541
467467 −21.1027 −0.976515 −0.488258 0.872699i 0.662367π-0.662367\pi
−0.488258 + 0.872699i 0.662367π0.662367\pi
468468 −44.1988 −2.04309
469469 6.26946 0.289497
470470 0 0
471471 −4.04595 −0.186428
472472 −6.32380 −0.291077
473473 29.0257 1.33461
474474 3.49535 0.160547
475475 0 0
476476 −2.30083 −0.105458
477477 −33.9079 −1.55254
478478 −8.38653 −0.383591
479479 −28.6762 −1.31025 −0.655125 0.755521i 0.727384π-0.727384\pi
−0.655125 + 0.755521i 0.727384π0.727384\pi
480480 0 0
481481 1.37053 0.0624909
482482 −17.7607 −0.808977
483483 −0.628909 −0.0286164
484484 8.58886 0.390403
485485 0 0
486486 12.4747 0.565862
487487 39.2139 1.77695 0.888475 0.458925i 0.151766π-0.151766\pi
0.888475 + 0.458925i 0.151766π0.151766\pi
488488 31.4321 1.42287
489489 4.55157 0.205829
490490 0 0
491491 −36.3499 −1.64045 −0.820224 0.572042i 0.806151π-0.806151\pi
−0.820224 + 0.572042i 0.806151π0.806151\pi
492492 −4.20632 −0.189636
493493 3.69127 0.166246
494494 −10.6825 −0.480629
495495 0 0
496496 −6.46586 −0.290326
497497 −6.40839 −0.287455
498498 −4.19964 −0.188190
499499 −8.52061 −0.381435 −0.190718 0.981645i 0.561081π-0.561081\pi
−0.190718 + 0.981645i 0.561081π0.561081\pi
500500 0 0
501501 −0.930856 −0.0415876
502502 −14.0040 −0.625030
503503 18.6790 0.832854 0.416427 0.909169i 0.363282π-0.363282\pi
0.416427 + 0.909169i 0.363282π0.363282\pi
504504 −6.39645 −0.284921
505505 0 0
506506 −38.6016 −1.71605
507507 1.36278 0.0605231
508508 71.1702 3.15767
509509 3.53567 0.156716 0.0783579 0.996925i 0.475032π-0.475032\pi
0.0783579 + 0.996925i 0.475032π0.475032\pi
510510 0 0
511511 −1.55171 −0.0686436
512512 −6.69175 −0.295737
513513 1.25782 0.0555341
514514 −14.1999 −0.626333
515515 0 0
516516 5.39093 0.237322
517517 16.3425 0.718742
518518 0.488938 0.0214827
519519 −1.64532 −0.0722215
520520 0 0
521521 −4.64206 −0.203373 −0.101686 0.994817i 0.532424π-0.532424\pi
−0.101686 + 0.994817i 0.532424π0.532424\pi
522522 25.2969 1.10722
523523 18.3331 0.801649 0.400824 0.916155i 0.368724π-0.368724\pi
0.400824 + 0.916155i 0.368724π0.368724\pi
524524 29.3162 1.28068
525525 0 0
526526 −28.4929 −1.24235
527527 10.8921 0.474466
528528 0.444032 0.0193240
529529 −2.50639 −0.108974
530530 0 0
531531 5.91743 0.256795
532532 −2.39033 −0.103634
533533 −27.3103 −1.18294
534534 5.43688 0.235277
535535 0 0
536536 28.9928 1.25230
537537 0.895308 0.0386354
538538 22.9891 0.991132
539539 −24.0485 −1.03584
540540 0 0
541541 22.4428 0.964891 0.482445 0.875926i 0.339749π-0.339749\pi
0.482445 + 0.875926i 0.339749π0.339749\pi
542542 47.0294 2.02008
543543 −1.20636 −0.0517700
544544 4.94880 0.212178
545545 0 0
546546 1.42849 0.0611339
547547 −25.9778 −1.11073 −0.555365 0.831607i 0.687422π-0.687422\pi
−0.555365 + 0.831607i 0.687422π0.687422\pi
548548 0.821029 0.0350726
549549 −29.4123 −1.25529
550550 0 0
551551 3.83486 0.163371
552552 −2.90836 −0.123788
553553 5.07807 0.215942
554554 42.0797 1.78780
555555 0 0
556556 42.6976 1.81078
557557 −4.86144 −0.205986 −0.102993 0.994682i 0.532842π-0.532842\pi
−0.102993 + 0.994682i 0.532842π0.532842\pi
558558 74.6452 3.15998
559559 35.0015 1.48041
560560 0 0
561561 −0.747995 −0.0315804
562562 24.7802 1.04529
563563 −1.53365 −0.0646357 −0.0323179 0.999478i 0.510289π-0.510289\pi
−0.0323179 + 0.999478i 0.510289π0.510289\pi
564564 3.03528 0.127808
565565 0 0
566566 23.3417 0.981127
567567 5.90073 0.247807
568568 −29.6353 −1.24347
569569 −16.5770 −0.694946 −0.347473 0.937690i 0.612960π-0.612960\pi
−0.347473 + 0.937690i 0.612960π0.612960\pi
570570 0 0
571571 −14.2904 −0.598036 −0.299018 0.954248i 0.596659π-0.596659\pi
−0.299018 + 0.954248i 0.596659π0.596659\pi
572572 54.9939 2.29941
573573 −2.01104 −0.0840125
574574 −9.74296 −0.406663
575575 0 0
576576 37.4277 1.55949
577577 −28.5424 −1.18824 −0.594119 0.804377i 0.702499π-0.702499\pi
−0.594119 + 0.804377i 0.702499π0.702499\pi
578578 2.31627 0.0963439
579579 −1.72215 −0.0715702
580580 0 0
581581 −6.10126 −0.253123
582582 −5.90639 −0.244828
583583 42.1895 1.74731
584584 −7.17581 −0.296937
585585 0 0
586586 −47.5643 −1.96486
587587 33.5281 1.38385 0.691927 0.721967i 0.256762π-0.256762\pi
0.691927 + 0.721967i 0.256762π0.256762\pi
588588 −4.46650 −0.184195
589589 11.3158 0.466259
590590 0 0
591591 2.75075 0.113151
592592 0.183271 0.00753239
593593 −42.4729 −1.74415 −0.872077 0.489368i 0.837227π-0.837227\pi
−0.872077 + 0.489368i 0.837227π0.837227\pi
594594 −10.3238 −0.423591
595595 0 0
596596 40.4157 1.65549
597597 −1.85993 −0.0761219
598598 −46.5488 −1.90352
599599 −7.00705 −0.286300 −0.143150 0.989701i 0.545723π-0.545723\pi
−0.143150 + 0.989701i 0.545723π0.545723\pi
600600 0 0
601601 39.3146 1.60368 0.801839 0.597541i 0.203855π-0.203855\pi
0.801839 + 0.597541i 0.203855π0.203855\pi
602602 12.4868 0.508925
603603 −27.1298 −1.10481
604604 30.1388 1.22633
605605 0 0
606606 −3.19394 −0.129745
607607 18.7928 0.762777 0.381389 0.924415i 0.375446π-0.375446\pi
0.381389 + 0.924415i 0.375446π0.375446\pi
608608 5.14131 0.208508
609609 −0.512808 −0.0207800
610610 0 0
611611 19.7071 0.797263
612612 9.95633 0.402461
613613 1.83560 0.0741392 0.0370696 0.999313i 0.488198π-0.488198\pi
0.0370696 + 0.999313i 0.488198π0.488198\pi
614614 30.3842 1.22621
615615 0 0
616616 7.95872 0.320666
617617 −29.0011 −1.16754 −0.583771 0.811918i 0.698423π-0.698423\pi
−0.583771 + 0.811918i 0.698423π0.698423\pi
618618 4.11707 0.165613
619619 27.7941 1.11714 0.558569 0.829458i 0.311351π-0.311351\pi
0.558569 + 0.829458i 0.311351π0.311351\pi
620620 0 0
621621 5.48092 0.219942
622622 −28.6397 −1.14835
623623 7.89874 0.316456
624624 0.535450 0.0214351
625625 0 0
626626 −11.9519 −0.477695
627627 −0.777092 −0.0310341
628628 −67.0078 −2.67390
629629 −0.308729 −0.0123098
630630 0 0
631631 −14.1785 −0.564437 −0.282219 0.959350i 0.591070π-0.591070\pi
−0.282219 + 0.959350i 0.591070π0.591070\pi
632632 23.4833 0.934116
633633 1.56953 0.0623833
634634 −55.0471 −2.18620
635635 0 0
636636 7.83583 0.310711
637637 −28.9995 −1.14900
638638 −31.4754 −1.24612
639639 27.7309 1.09702
640640 0 0
641641 −27.8734 −1.10093 −0.550466 0.834857i 0.685550π-0.685550\pi
−0.550466 + 0.834857i 0.685550π0.685550\pi
642642 3.81247 0.150466
643643 −25.8277 −1.01854 −0.509272 0.860605i 0.670085π-0.670085\pi
−0.509272 + 0.860605i 0.670085π0.670085\pi
644644 −10.4158 −0.410440
645645 0 0
646646 2.40637 0.0946774
647647 −4.40912 −0.173340 −0.0866702 0.996237i 0.527623π-0.527623\pi
−0.0866702 + 0.996237i 0.527623π0.527623\pi
648648 27.2877 1.07196
649649 −7.36270 −0.289011
650650 0 0
651651 −1.51318 −0.0593060
652652 75.3817 2.95217
653653 30.9245 1.21017 0.605084 0.796161i 0.293139π-0.293139\pi
0.605084 + 0.796161i 0.293139π0.293139\pi
654654 −1.46511 −0.0572903
655655 0 0
656656 −3.65200 −0.142587
657657 6.71469 0.261965
658658 7.03051 0.274078
659659 39.7992 1.55036 0.775179 0.631742i 0.217660π-0.217660\pi
0.775179 + 0.631742i 0.217660π0.217660\pi
660660 0 0
661661 −13.0969 −0.509409 −0.254704 0.967019i 0.581978π-0.581978\pi
−0.254704 + 0.967019i 0.581978π0.581978\pi
662662 48.2573 1.87557
663663 −0.901992 −0.0350305
664664 −28.2150 −1.09496
665665 0 0
666666 −2.11578 −0.0819846
667667 16.7103 0.647027
668668 −15.4166 −0.596485
669669 −2.78757 −0.107774
670670 0 0
671671 36.5959 1.41277
672672 −0.687509 −0.0265212
673673 22.2830 0.858946 0.429473 0.903080i 0.358699π-0.358699\pi
0.429473 + 0.903080i 0.358699π0.358699\pi
674674 33.1411 1.27655
675675 0 0
676676 22.5699 0.868073
677677 −10.5576 −0.405762 −0.202881 0.979203i 0.565030π-0.565030\pi
−0.202881 + 0.979203i 0.565030π0.565030\pi
678678 −3.26282 −0.125308
679679 −8.58084 −0.329303
680680 0 0
681681 −0.365822 −0.0140183
682682 −92.8766 −3.55643
683683 1.80882 0.0692128 0.0346064 0.999401i 0.488982π-0.488982\pi
0.0346064 + 0.999401i 0.488982π0.488982\pi
684684 10.3436 0.395499
685685 0 0
686686 −21.4316 −0.818261
687687 −0.660022 −0.0251814
688688 4.68050 0.178442
689689 50.8755 1.93820
690690 0 0
691691 3.84649 0.146327 0.0731636 0.997320i 0.476690π-0.476690\pi
0.0731636 + 0.997320i 0.476690π0.476690\pi
692692 −27.2493 −1.03586
693693 −7.44729 −0.282899
694694 −50.9550 −1.93423
695695 0 0
696696 −2.37146 −0.0898899
697697 6.15198 0.233023
698698 −14.0412 −0.531467
699699 1.09365 0.0413657
700700 0 0
701701 43.9484 1.65991 0.829955 0.557830i 0.188366π-0.188366\pi
0.829955 + 0.557830i 0.188366π0.188366\pi
702702 −12.4493 −0.469867
703703 −0.320739 −0.0120969
704704 −46.5690 −1.75514
705705 0 0
706706 −48.3602 −1.82006
707707 −4.64018 −0.174512
708708 −1.36747 −0.0513926
709709 45.9706 1.72646 0.863232 0.504808i 0.168437π-0.168437\pi
0.863232 + 0.504808i 0.168437π0.168437\pi
710710 0 0
711711 −21.9743 −0.824100
712712 36.5274 1.36892
713713 49.3083 1.84661
714714 −0.321786 −0.0120425
715715 0 0
716716 14.8278 0.554141
717717 −0.735674 −0.0274742
718718 42.8142 1.59781
719719 6.24809 0.233014 0.116507 0.993190i 0.462830π-0.462830\pi
0.116507 + 0.993190i 0.462830π0.462830\pi
720720 0 0
721721 5.98131 0.222755
722722 −41.5091 −1.54481
723723 −1.55798 −0.0579420
724724 −19.9794 −0.742529
725725 0 0
726726 1.20121 0.0445811
727727 49.9606 1.85294 0.926469 0.376372i 0.122829π-0.122829\pi
0.926469 + 0.376372i 0.122829π0.122829\pi
728728 9.59725 0.355698
729729 −24.7962 −0.918376
730730 0 0
731731 −7.88454 −0.291620
732732 6.79693 0.251222
733733 −37.4111 −1.38181 −0.690906 0.722945i 0.742788π-0.742788\pi
−0.690906 + 0.722945i 0.742788π0.742788\pi
734734 54.6741 2.01806
735735 0 0
736736 22.4031 0.825790
737737 33.7559 1.24342
738738 42.1606 1.55195
739739 38.9348 1.43224 0.716120 0.697978i 0.245916π-0.245916\pi
0.716120 + 0.697978i 0.245916π0.245916\pi
740740 0 0
741741 −0.937080 −0.0344245
742742 18.1499 0.666303
743743 13.0253 0.477850 0.238925 0.971038i 0.423205π-0.423205\pi
0.238925 + 0.971038i 0.423205π0.423205\pi
744744 −6.99762 −0.256545
745745 0 0
746746 41.7213 1.52753
747747 26.4019 0.965996
748748 −12.3881 −0.452952
749749 5.53878 0.202383
750750 0 0
751751 −42.3558 −1.54559 −0.772793 0.634659i 0.781141π-0.781141\pi
−0.772793 + 0.634659i 0.781141π0.781141\pi
752752 2.63528 0.0960989
753753 −1.22845 −0.0447671
754754 −37.9556 −1.38226
755755 0 0
756756 −2.78566 −0.101313
757757 4.20834 0.152955 0.0764773 0.997071i 0.475633π-0.475633\pi
0.0764773 + 0.997071i 0.475633π0.475633\pi
758758 −13.3075 −0.483349
759759 −3.38616 −0.122910
760760 0 0
761761 31.8563 1.15479 0.577395 0.816465i 0.304069π-0.304069\pi
0.577395 + 0.816465i 0.304069π0.304069\pi
762762 9.95364 0.360582
763763 −2.12852 −0.0770576
764764 −33.3062 −1.20498
765765 0 0
766766 81.8293 2.95661
767767 −8.87853 −0.320585
768768 −3.99113 −0.144017
769769 −7.43010 −0.267936 −0.133968 0.990986i 0.542772π-0.542772\pi
−0.133968 + 0.990986i 0.542772π0.542772\pi
770770 0 0
771771 −1.24563 −0.0448604
772772 −28.5217 −1.02652
773773 7.33384 0.263780 0.131890 0.991264i 0.457895π-0.457895\pi
0.131890 + 0.991264i 0.457895π0.457895\pi
774774 −54.0341 −1.94221
775775 0 0
776776 −39.6817 −1.42449
777777 0.0428901 0.00153867
778778 −42.3012 −1.51657
779779 6.39130 0.228992
780780 0 0
781781 −34.5039 −1.23465
782782 10.4857 0.374968
783783 4.46910 0.159713
784784 −3.87789 −0.138496
785785 0 0
786786 4.10007 0.146244
787787 −35.7257 −1.27348 −0.636742 0.771077i 0.719718π-0.719718\pi
−0.636742 + 0.771077i 0.719718π0.719718\pi
788788 45.5570 1.62290
789789 −2.49942 −0.0889817
790790 0 0
791791 −4.74024 −0.168544
792792 −34.4397 −1.22376
793793 44.1303 1.56711
794794 −10.7496 −0.381489
795795 0 0
796796 −30.8036 −1.09180
797797 28.2025 0.998985 0.499492 0.866318i 0.333520π-0.333520\pi
0.499492 + 0.866318i 0.333520π0.333520\pi
798798 −0.334304 −0.0118342
799799 −4.43927 −0.157050
800800 0 0
801801 −34.1801 −1.20769
802802 −63.4769 −2.24145
803803 −8.35468 −0.294830
804804 6.26946 0.221107
805805 0 0
806806 −111.998 −3.94496
807807 2.01663 0.0709886
808808 −21.4583 −0.754901
809809 −41.9318 −1.47424 −0.737121 0.675761i 0.763815π-0.763815\pi
−0.737121 + 0.675761i 0.763815π0.763815\pi
810810 0 0
811811 4.46604 0.156824 0.0784119 0.996921i 0.475015π-0.475015\pi
0.0784119 + 0.996921i 0.475015π0.475015\pi
812812 −8.49297 −0.298045
813813 4.12546 0.144686
814814 2.63253 0.0922702
815815 0 0
816816 −0.120617 −0.00422243
817817 −8.19125 −0.286576
818818 3.20233 0.111967
819819 −8.98053 −0.313805
820820 0 0
821821 19.6083 0.684334 0.342167 0.939639i 0.388839π-0.388839\pi
0.342167 + 0.939639i 0.388839π0.388839\pi
822822 0.114827 0.00400504
823823 46.9128 1.63528 0.817638 0.575732i 0.195283π-0.195283\pi
0.817638 + 0.575732i 0.195283π0.195283\pi
824824 27.6603 0.963592
825825 0 0
826826 −3.16742 −0.110209
827827 14.0134 0.487295 0.243648 0.969864i 0.421656π-0.421656\pi
0.243648 + 0.969864i 0.421656π0.421656\pi
828828 45.0722 1.56637
829829 −40.5206 −1.40734 −0.703669 0.710528i 0.748456π-0.748456\pi
−0.703669 + 0.710528i 0.748456π0.748456\pi
830830 0 0
831831 3.69127 0.128049
832832 −56.1566 −1.94688
833833 6.53251 0.226338
834834 5.97154 0.206778
835835 0 0
836836 −12.8700 −0.445117
837837 13.1873 0.455818
838838 −76.9694 −2.65887
839839 8.68840 0.299957 0.149978 0.988689i 0.452080π-0.452080\pi
0.149978 + 0.988689i 0.452080π0.452080\pi
840840 0 0
841841 −15.3745 −0.530156
842842 10.6805 0.368074
843843 2.17374 0.0748675
844844 25.9941 0.894754
845845 0 0
846846 −30.4230 −1.04597
847847 1.74513 0.0599633
848848 6.80321 0.233623
849849 2.04756 0.0702720
850850 0 0
851851 −1.39761 −0.0479096
852852 −6.40839 −0.219548
853853 −23.1523 −0.792721 −0.396361 0.918095i 0.629727π-0.629727\pi
−0.396361 + 0.918095i 0.629727π0.629727\pi
854854 15.7435 0.538731
855855 0 0
856856 25.6139 0.875464
857857 43.6043 1.48950 0.744748 0.667346i 0.232570π-0.232570\pi
0.744748 + 0.667346i 0.232570π0.232570\pi
858858 7.69127 0.262576
859859 −14.2532 −0.486314 −0.243157 0.969987i 0.578183π-0.578183\pi
−0.243157 + 0.969987i 0.578183π0.578183\pi
860860 0 0
861861 −0.854661 −0.0291268
862862 16.9970 0.578921
863863 −24.1162 −0.820926 −0.410463 0.911877i 0.634633π-0.634633\pi
−0.410463 + 0.911877i 0.634633π0.634633\pi
864864 5.99161 0.203839
865865 0 0
866866 −35.5516 −1.20809
867867 0.203185 0.00690052
868868 −25.0608 −0.850617
869869 27.3413 0.927489
870870 0 0
871871 40.7056 1.37926
872872 −9.84325 −0.333335
873873 37.1318 1.25672
874874 10.8936 0.368482
875875 0 0
876876 −1.55171 −0.0524274
877877 −1.56540 −0.0528599 −0.0264299 0.999651i 0.508414π-0.508414\pi
−0.0264299 + 0.999651i 0.508414π0.508414\pi
878878 −12.9793 −0.438030
879879 −4.17238 −0.140731
880880 0 0
881881 −39.0973 −1.31722 −0.658610 0.752484i 0.728855π-0.728855\pi
−0.658610 + 0.752484i 0.728855π0.728855\pi
882882 44.7684 1.50743
883883 −30.9249 −1.04071 −0.520354 0.853951i 0.674200π-0.674200\pi
−0.520354 + 0.853951i 0.674200π0.674200\pi
884884 −14.9385 −0.502436
885885 0 0
886886 −68.6397 −2.30599
887887 −45.1839 −1.51713 −0.758564 0.651599i 0.774099π-0.774099\pi
−0.758564 + 0.651599i 0.774099π0.774099\pi
888888 0.198343 0.00665597
889889 14.4607 0.484997
890890 0 0
891891 31.7706 1.06436
892892 −46.1670 −1.54578
893893 −4.61196 −0.154333
894894 5.65241 0.189045
895895 0 0
896896 −13.2666 −0.443206
897897 −4.08330 −0.136338
898898 −79.7265 −2.66051
899899 40.2056 1.34093
900900 0 0
901901 −11.4603 −0.381799
902902 −52.4579 −1.74666
903903 1.09536 0.0364511
904904 −21.9211 −0.729083
905905 0 0
906906 4.21512 0.140038
907907 −33.9862 −1.12849 −0.564246 0.825606i 0.690833π-0.690833\pi
−0.564246 + 0.825606i 0.690833π0.690833\pi
908908 −6.05862 −0.201062
909909 20.0794 0.665992
910910 0 0
911911 22.1997 0.735509 0.367754 0.929923i 0.380127π-0.380127\pi
0.367754 + 0.929923i 0.380127π0.380127\pi
912912 −0.125309 −0.00414939
913913 −32.8503 −1.08719
914914 21.5993 0.714440
915915 0 0
916916 −10.9311 −0.361173
917917 5.95660 0.196704
918918 2.80435 0.0925574
919919 −8.84668 −0.291825 −0.145913 0.989297i 0.546612π-0.546612\pi
−0.145913 + 0.989297i 0.546612π0.546612\pi
920920 0 0
921921 2.66533 0.0878256
922922 44.4062 1.46244
923923 −41.6076 −1.36953
924924 1.72101 0.0566169
925925 0 0
926926 45.4881 1.49483
927927 −25.8828 −0.850104
928928 18.2673 0.599655
929929 13.9941 0.459131 0.229566 0.973293i 0.426269π-0.426269\pi
0.229566 + 0.973293i 0.426269π0.426269\pi
930930 0 0
931931 6.78663 0.222423
932932 18.1127 0.593302
933933 −2.51230 −0.0822490
934934 −48.8794 −1.59938
935935 0 0
936936 −41.5301 −1.35745
937937 5.19129 0.169592 0.0847960 0.996398i 0.472976π-0.472976\pi
0.0847960 + 0.996398i 0.472976π0.472976\pi
938938 14.5217 0.474151
939939 −1.04843 −0.0342144
940940 0 0
941941 −26.2746 −0.856527 −0.428264 0.903654i 0.640875π-0.640875\pi
−0.428264 + 0.903654i 0.640875π0.640875\pi
942942 −9.37150 −0.305340
943943 27.8499 0.906919
944944 −1.18726 −0.0386420
945945 0 0
946946 67.2313 2.18588
947947 −13.9416 −0.453040 −0.226520 0.974007i 0.572735π-0.572735\pi
−0.226520 + 0.974007i 0.572735π0.572735\pi
948948 5.07807 0.164928
949949 −10.0747 −0.327040
950950 0 0
951951 −4.82878 −0.156584
952952 −2.16190 −0.0700676
953953 −19.3298 −0.626154 −0.313077 0.949728i 0.601360π-0.601360\pi
−0.313077 + 0.949728i 0.601360π0.601360\pi
954954 −78.5397 −2.54282
955955 0 0
956956 −12.1840 −0.394059
957957 −2.76105 −0.0892521
958958 −66.4217 −2.14599
959959 0.166821 0.00538692
960960 0 0
961961 87.6372 2.82701
962962 3.17451 0.102350
963963 −23.9679 −0.772355
964964 −25.8028 −0.831053
965965 0 0
966966 −1.45672 −0.0468692
967967 −27.0663 −0.870393 −0.435197 0.900335i 0.643321π-0.643321\pi
−0.435197 + 0.900335i 0.643321π0.643321\pi
968968 8.07027 0.259388
969969 0.211089 0.00678115
970970 0 0
971971 9.36344 0.300487 0.150244 0.988649i 0.451994π-0.451994\pi
0.150244 + 0.988649i 0.451994π0.451994\pi
972972 18.1233 0.581304
973973 8.67550 0.278124
974974 90.8297 2.91037
975975 0 0
976976 5.90121 0.188893
977977 −14.1127 −0.451506 −0.225753 0.974185i 0.572484π-0.572484\pi
−0.225753 + 0.974185i 0.572484π0.572484\pi
978978 10.5426 0.337116
979979 42.5282 1.35921
980980 0 0
981981 9.21072 0.294076
982982 −84.1961 −2.68680
983983 48.9970 1.56276 0.781381 0.624054i 0.214515π-0.214515\pi
0.781381 + 0.624054i 0.214515π0.214515\pi
984984 −3.95234 −0.125996
985985 0 0
986986 8.54996 0.272286
987987 0.616723 0.0196305
988988 −15.5196 −0.493745
989989 −35.6932 −1.13498
990990 0 0
991991 −20.7542 −0.659279 −0.329639 0.944107i 0.606927π-0.606927\pi
−0.329639 + 0.944107i 0.606927π0.606927\pi
992992 53.9026 1.71141
993993 4.23317 0.134336
994994 −14.8435 −0.470808
995995 0 0
996996 −6.10126 −0.193326
997997 9.54268 0.302220 0.151110 0.988517i 0.451715π-0.451715\pi
0.151110 + 0.988517i 0.451715π0.451715\pi
998998 −19.7360 −0.624732
999999 −0.373785 −0.0118260
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.a.h.1.4 4
3.2 odd 2 3825.2.a.bh.1.1 4
4.3 odd 2 6800.2.a.bt.1.3 4
5.2 odd 4 85.2.b.a.69.8 yes 8
5.3 odd 4 85.2.b.a.69.1 8
5.4 even 2 425.2.a.g.1.1 4
15.2 even 4 765.2.b.c.154.1 8
15.8 even 4 765.2.b.c.154.8 8
15.14 odd 2 3825.2.a.bj.1.4 4
17.16 even 2 7225.2.a.w.1.4 4
20.3 even 4 1360.2.e.d.1089.4 8
20.7 even 4 1360.2.e.d.1089.5 8
20.19 odd 2 6800.2.a.bw.1.2 4
85.33 odd 4 1445.2.b.e.579.1 8
85.67 odd 4 1445.2.b.e.579.8 8
85.84 even 2 7225.2.a.v.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.1 8 5.3 odd 4
85.2.b.a.69.8 yes 8 5.2 odd 4
425.2.a.g.1.1 4 5.4 even 2
425.2.a.h.1.4 4 1.1 even 1 trivial
765.2.b.c.154.1 8 15.2 even 4
765.2.b.c.154.8 8 15.8 even 4
1360.2.e.d.1089.4 8 20.3 even 4
1360.2.e.d.1089.5 8 20.7 even 4
1445.2.b.e.579.1 8 85.33 odd 4
1445.2.b.e.579.8 8 85.67 odd 4
3825.2.a.bh.1.1 4 3.2 odd 2
3825.2.a.bj.1.4 4 15.14 odd 2
6800.2.a.bt.1.3 4 4.3 odd 2
6800.2.a.bw.1.2 4 20.19 odd 2
7225.2.a.v.1.1 4 85.84 even 2
7225.2.a.w.1.4 4 17.16 even 2