Properties

Label 425.2.a.h.1.4
Level $425$
Weight $2$
Character 425.1
Self dual yes
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 2x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.796815\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.31627 q^{2} +0.203185 q^{3} +3.36509 q^{4} +0.470630 q^{6} +0.683735 q^{7} +3.16190 q^{8} -2.95872 q^{9} +3.68135 q^{11} +0.683735 q^{12} +4.43927 q^{13} +1.58371 q^{14} +0.593630 q^{16} -1.00000 q^{17} -6.85317 q^{18} -1.03890 q^{19} +0.138925 q^{21} +8.52699 q^{22} -4.52699 q^{23} +0.642450 q^{24} +10.2825 q^{26} -1.21072 q^{27} +2.30083 q^{28} -3.69127 q^{29} -10.8921 q^{31} -4.94880 q^{32} +0.747995 q^{33} -2.31627 q^{34} -9.95633 q^{36} +0.308729 q^{37} -2.40637 q^{38} +0.901992 q^{39} -6.15198 q^{41} +0.321786 q^{42} +7.88454 q^{43} +12.3881 q^{44} -10.4857 q^{46} +4.43927 q^{47} +0.120617 q^{48} -6.53251 q^{49} -0.203185 q^{51} +14.9385 q^{52} +11.4603 q^{53} -2.80435 q^{54} +2.16190 q^{56} -0.211089 q^{57} -8.54996 q^{58} -2.00000 q^{59} +9.94089 q^{61} -25.2289 q^{62} -2.02298 q^{63} -12.6500 q^{64} +1.73255 q^{66} +9.16944 q^{67} -3.36509 q^{68} -0.919815 q^{69} -9.37262 q^{71} -9.35517 q^{72} -2.26946 q^{73} +0.715099 q^{74} -3.49599 q^{76} +2.51707 q^{77} +2.08925 q^{78} +7.42696 q^{79} +8.63015 q^{81} -14.2496 q^{82} -8.92344 q^{83} +0.467493 q^{84} +18.2627 q^{86} -0.750010 q^{87} +11.6401 q^{88} +11.5523 q^{89} +3.03528 q^{91} -15.2337 q^{92} -2.21310 q^{93} +10.2825 q^{94} -1.00552 q^{96} -12.5500 q^{97} -15.1310 q^{98} -10.8921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{3} + 4 q^{4} + 10 q^{7} + 4 q^{9} - 2 q^{11} + 10 q^{12} + 6 q^{13} - 6 q^{14} - 4 q^{16} - 4 q^{17} - 4 q^{18} + 4 q^{19} + 12 q^{21} + 12 q^{22} + 4 q^{23} - 6 q^{24} + 10 q^{27}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.31627 1.63785 0.818924 0.573903i \(-0.194571\pi\)
0.818924 + 0.573903i \(0.194571\pi\)
\(3\) 0.203185 0.117309 0.0586544 0.998278i \(-0.481319\pi\)
0.0586544 + 0.998278i \(0.481319\pi\)
\(4\) 3.36509 1.68254
\(5\) 0 0
\(6\) 0.470630 0.192134
\(7\) 0.683735 0.258427 0.129214 0.991617i \(-0.458755\pi\)
0.129214 + 0.991617i \(0.458755\pi\)
\(8\) 3.16190 1.11790
\(9\) −2.95872 −0.986239
\(10\) 0 0
\(11\) 3.68135 1.10997 0.554985 0.831861i \(-0.312724\pi\)
0.554985 + 0.831861i \(0.312724\pi\)
\(12\) 0.683735 0.197377
\(13\) 4.43927 1.23123 0.615615 0.788047i \(-0.288908\pi\)
0.615615 + 0.788047i \(0.288908\pi\)
\(14\) 1.58371 0.423264
\(15\) 0 0
\(16\) 0.593630 0.148408
\(17\) −1.00000 −0.242536
\(18\) −6.85317 −1.61531
\(19\) −1.03890 −0.238340 −0.119170 0.992874i \(-0.538023\pi\)
−0.119170 + 0.992874i \(0.538023\pi\)
\(20\) 0 0
\(21\) 0.138925 0.0303158
\(22\) 8.52699 1.81796
\(23\) −4.52699 −0.943942 −0.471971 0.881614i \(-0.656457\pi\)
−0.471971 + 0.881614i \(0.656457\pi\)
\(24\) 0.642450 0.131140
\(25\) 0 0
\(26\) 10.2825 2.01657
\(27\) −1.21072 −0.233003
\(28\) 2.30083 0.434815
\(29\) −3.69127 −0.685452 −0.342726 0.939435i \(-0.611350\pi\)
−0.342726 + 0.939435i \(0.611350\pi\)
\(30\) 0 0
\(31\) −10.8921 −1.95627 −0.978137 0.207962i \(-0.933317\pi\)
−0.978137 + 0.207962i \(0.933317\pi\)
\(32\) −4.94880 −0.874832
\(33\) 0.747995 0.130209
\(34\) −2.31627 −0.397236
\(35\) 0 0
\(36\) −9.95633 −1.65939
\(37\) 0.308729 0.0507548 0.0253774 0.999678i \(-0.491921\pi\)
0.0253774 + 0.999678i \(0.491921\pi\)
\(38\) −2.40637 −0.390365
\(39\) 0.901992 0.144434
\(40\) 0 0
\(41\) −6.15198 −0.960778 −0.480389 0.877056i \(-0.659505\pi\)
−0.480389 + 0.877056i \(0.659505\pi\)
\(42\) 0.321786 0.0496527
\(43\) 7.88454 1.20238 0.601190 0.799106i \(-0.294693\pi\)
0.601190 + 0.799106i \(0.294693\pi\)
\(44\) 12.3881 1.86757
\(45\) 0 0
\(46\) −10.4857 −1.54603
\(47\) 4.43927 0.647533 0.323767 0.946137i \(-0.395051\pi\)
0.323767 + 0.946137i \(0.395051\pi\)
\(48\) 0.120617 0.0174095
\(49\) −6.53251 −0.933215
\(50\) 0 0
\(51\) −0.203185 −0.0284516
\(52\) 14.9385 2.07160
\(53\) 11.4603 1.57420 0.787100 0.616826i \(-0.211582\pi\)
0.787100 + 0.616826i \(0.211582\pi\)
\(54\) −2.80435 −0.381624
\(55\) 0 0
\(56\) 2.16190 0.288896
\(57\) −0.211089 −0.0279594
\(58\) −8.54996 −1.12267
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) 9.94089 1.27280 0.636400 0.771359i \(-0.280423\pi\)
0.636400 + 0.771359i \(0.280423\pi\)
\(62\) −25.2289 −3.20408
\(63\) −2.02298 −0.254871
\(64\) −12.6500 −1.58125
\(65\) 0 0
\(66\) 1.73255 0.213263
\(67\) 9.16944 1.12023 0.560113 0.828417i \(-0.310758\pi\)
0.560113 + 0.828417i \(0.310758\pi\)
\(68\) −3.36509 −0.408077
\(69\) −0.919815 −0.110733
\(70\) 0 0
\(71\) −9.37262 −1.11233 −0.556163 0.831073i \(-0.687727\pi\)
−0.556163 + 0.831073i \(0.687727\pi\)
\(72\) −9.35517 −1.10252
\(73\) −2.26946 −0.265620 −0.132810 0.991141i \(-0.542400\pi\)
−0.132810 + 0.991141i \(0.542400\pi\)
\(74\) 0.715099 0.0831286
\(75\) 0 0
\(76\) −3.49599 −0.401018
\(77\) 2.51707 0.286846
\(78\) 2.08925 0.236561
\(79\) 7.42696 0.835599 0.417799 0.908539i \(-0.362802\pi\)
0.417799 + 0.908539i \(0.362802\pi\)
\(80\) 0 0
\(81\) 8.63015 0.958905
\(82\) −14.2496 −1.57361
\(83\) −8.92344 −0.979474 −0.489737 0.871870i \(-0.662907\pi\)
−0.489737 + 0.871870i \(0.662907\pi\)
\(84\) 0.467493 0.0510077
\(85\) 0 0
\(86\) 18.2627 1.96932
\(87\) −0.750010 −0.0804096
\(88\) 11.6401 1.24084
\(89\) 11.5523 1.22455 0.612273 0.790646i \(-0.290255\pi\)
0.612273 + 0.790646i \(0.290255\pi\)
\(90\) 0 0
\(91\) 3.03528 0.318184
\(92\) −15.2337 −1.58822
\(93\) −2.21310 −0.229488
\(94\) 10.2825 1.06056
\(95\) 0 0
\(96\) −1.00552 −0.102626
\(97\) −12.5500 −1.27426 −0.637128 0.770758i \(-0.719878\pi\)
−0.637128 + 0.770758i \(0.719878\pi\)
\(98\) −15.1310 −1.52846
\(99\) −10.8921 −1.09469
\(100\) 0 0
\(101\) −6.78653 −0.675285 −0.337642 0.941274i \(-0.609629\pi\)
−0.337642 + 0.941274i \(0.609629\pi\)
\(102\) −0.470630 −0.0465993
\(103\) 8.74799 0.861966 0.430983 0.902360i \(-0.358167\pi\)
0.430983 + 0.902360i \(0.358167\pi\)
\(104\) 14.0365 1.37639
\(105\) 0 0
\(106\) 26.5452 2.57830
\(107\) 8.10078 0.783132 0.391566 0.920150i \(-0.371934\pi\)
0.391566 + 0.920150i \(0.371934\pi\)
\(108\) −4.07418 −0.392038
\(109\) −3.11308 −0.298179 −0.149090 0.988824i \(-0.547634\pi\)
−0.149090 + 0.988824i \(0.547634\pi\)
\(110\) 0 0
\(111\) 0.0627291 0.00595399
\(112\) 0.405885 0.0383526
\(113\) −6.93287 −0.652190 −0.326095 0.945337i \(-0.605733\pi\)
−0.326095 + 0.945337i \(0.605733\pi\)
\(114\) −0.488938 −0.0457932
\(115\) 0 0
\(116\) −12.4214 −1.15330
\(117\) −13.1345 −1.21429
\(118\) −4.63253 −0.426459
\(119\) −0.683735 −0.0626778
\(120\) 0 0
\(121\) 2.55235 0.232031
\(122\) 23.0257 2.08465
\(123\) −1.24999 −0.112708
\(124\) −36.6528 −3.29151
\(125\) 0 0
\(126\) −4.68575 −0.417440
\(127\) 21.1496 1.87672 0.938362 0.345655i \(-0.112343\pi\)
0.938362 + 0.345655i \(0.112343\pi\)
\(128\) −19.4031 −1.71501
\(129\) 1.60202 0.141050
\(130\) 0 0
\(131\) 8.71186 0.761159 0.380580 0.924748i \(-0.375725\pi\)
0.380580 + 0.924748i \(0.375725\pi\)
\(132\) 2.51707 0.219083
\(133\) −0.710332 −0.0615936
\(134\) 21.2388 1.83476
\(135\) 0 0
\(136\) −3.16190 −0.271131
\(137\) 0.243985 0.0208450 0.0104225 0.999946i \(-0.496682\pi\)
0.0104225 + 0.999946i \(0.496682\pi\)
\(138\) −2.13054 −0.181363
\(139\) 12.6884 1.07622 0.538108 0.842876i \(-0.319139\pi\)
0.538108 + 0.842876i \(0.319139\pi\)
\(140\) 0 0
\(141\) 0.901992 0.0759614
\(142\) −21.7095 −1.82182
\(143\) 16.3425 1.36663
\(144\) −1.75638 −0.146365
\(145\) 0 0
\(146\) −5.25667 −0.435045
\(147\) −1.32731 −0.109474
\(148\) 1.03890 0.0853971
\(149\) 12.0103 0.983923 0.491961 0.870617i \(-0.336280\pi\)
0.491961 + 0.870617i \(0.336280\pi\)
\(150\) 0 0
\(151\) 8.95633 0.728856 0.364428 0.931232i \(-0.381265\pi\)
0.364428 + 0.931232i \(0.381265\pi\)
\(152\) −3.28490 −0.266441
\(153\) 2.95872 0.239198
\(154\) 5.83020 0.469811
\(155\) 0 0
\(156\) 3.03528 0.243017
\(157\) −19.9127 −1.58920 −0.794602 0.607131i \(-0.792320\pi\)
−0.794602 + 0.607131i \(0.792320\pi\)
\(158\) 17.2028 1.36858
\(159\) 2.32857 0.184667
\(160\) 0 0
\(161\) −3.09526 −0.243940
\(162\) 19.9897 1.57054
\(163\) 22.4011 1.75459 0.877296 0.479951i \(-0.159345\pi\)
0.877296 + 0.479951i \(0.159345\pi\)
\(164\) −20.7019 −1.61655
\(165\) 0 0
\(166\) −20.6690 −1.60423
\(167\) −4.58133 −0.354514 −0.177257 0.984165i \(-0.556722\pi\)
−0.177257 + 0.984165i \(0.556722\pi\)
\(168\) 0.439266 0.0338901
\(169\) 6.70708 0.515929
\(170\) 0 0
\(171\) 3.07381 0.235060
\(172\) 26.5321 2.02306
\(173\) −8.09764 −0.615652 −0.307826 0.951443i \(-0.599601\pi\)
−0.307826 + 0.951443i \(0.599601\pi\)
\(174\) −1.73722 −0.131699
\(175\) 0 0
\(176\) 2.18536 0.164728
\(177\) −0.406370 −0.0305446
\(178\) 26.7583 2.00562
\(179\) 4.40637 0.329348 0.164674 0.986348i \(-0.447343\pi\)
0.164674 + 0.986348i \(0.447343\pi\)
\(180\) 0 0
\(181\) −5.93727 −0.441314 −0.220657 0.975351i \(-0.570820\pi\)
−0.220657 + 0.975351i \(0.570820\pi\)
\(182\) 7.03051 0.521136
\(183\) 2.01984 0.149311
\(184\) −14.3139 −1.05523
\(185\) 0 0
\(186\) −5.12614 −0.375867
\(187\) −3.68135 −0.269207
\(188\) 14.9385 1.08950
\(189\) −0.827812 −0.0602144
\(190\) 0 0
\(191\) −9.89759 −0.716165 −0.358082 0.933690i \(-0.616569\pi\)
−0.358082 + 0.933690i \(0.616569\pi\)
\(192\) −2.57029 −0.185494
\(193\) −8.47578 −0.610100 −0.305050 0.952336i \(-0.598673\pi\)
−0.305050 + 0.952336i \(0.598673\pi\)
\(194\) −29.0690 −2.08704
\(195\) 0 0
\(196\) −21.9824 −1.57017
\(197\) 13.5381 0.964553 0.482276 0.876019i \(-0.339810\pi\)
0.482276 + 0.876019i \(0.339810\pi\)
\(198\) −25.2289 −1.79294
\(199\) −9.15388 −0.648901 −0.324451 0.945903i \(-0.605179\pi\)
−0.324451 + 0.945903i \(0.605179\pi\)
\(200\) 0 0
\(201\) 1.86309 0.131412
\(202\) −15.7194 −1.10601
\(203\) −2.52385 −0.177139
\(204\) −0.683735 −0.0478710
\(205\) 0 0
\(206\) 20.2627 1.41177
\(207\) 13.3941 0.930952
\(208\) 2.63528 0.182724
\(209\) −3.82456 −0.264550
\(210\) 0 0
\(211\) 7.72465 0.531787 0.265893 0.964002i \(-0.414333\pi\)
0.265893 + 0.964002i \(0.414333\pi\)
\(212\) 38.5650 2.64866
\(213\) −1.90438 −0.130486
\(214\) 18.7636 1.28265
\(215\) 0 0
\(216\) −3.82818 −0.260475
\(217\) −7.44729 −0.505555
\(218\) −7.21072 −0.488372
\(219\) −0.461120 −0.0311596
\(220\) 0 0
\(221\) −4.43927 −0.298617
\(222\) 0.145297 0.00975172
\(223\) −13.7194 −0.918719 −0.459359 0.888250i \(-0.651921\pi\)
−0.459359 + 0.888250i \(0.651921\pi\)
\(224\) −3.38366 −0.226080
\(225\) 0 0
\(226\) −16.0584 −1.06819
\(227\) −1.80044 −0.119499 −0.0597496 0.998213i \(-0.519030\pi\)
−0.0597496 + 0.998213i \(0.519030\pi\)
\(228\) −0.710332 −0.0470429
\(229\) −3.24838 −0.214659 −0.107330 0.994223i \(-0.534230\pi\)
−0.107330 + 0.994223i \(0.534230\pi\)
\(230\) 0 0
\(231\) 0.511430 0.0336496
\(232\) −11.6714 −0.766267
\(233\) 5.38254 0.352622 0.176311 0.984335i \(-0.443584\pi\)
0.176311 + 0.984335i \(0.443584\pi\)
\(234\) −30.4230 −1.98882
\(235\) 0 0
\(236\) −6.73017 −0.438097
\(237\) 1.50905 0.0980231
\(238\) −1.58371 −0.102657
\(239\) −3.62071 −0.234204 −0.117102 0.993120i \(-0.537361\pi\)
−0.117102 + 0.993120i \(0.537361\pi\)
\(240\) 0 0
\(241\) −7.66781 −0.493927 −0.246964 0.969025i \(-0.579433\pi\)
−0.246964 + 0.969025i \(0.579433\pi\)
\(242\) 5.91191 0.380032
\(243\) 5.38568 0.345491
\(244\) 33.4520 2.14154
\(245\) 0 0
\(246\) −2.89531 −0.184598
\(247\) −4.61196 −0.293452
\(248\) −34.4397 −2.18692
\(249\) −1.81311 −0.114901
\(250\) 0 0
\(251\) −6.04595 −0.381617 −0.190809 0.981627i \(-0.561111\pi\)
−0.190809 + 0.981627i \(0.561111\pi\)
\(252\) −6.80749 −0.428831
\(253\) −16.6654 −1.04775
\(254\) 48.9881 3.07379
\(255\) 0 0
\(256\) −19.6428 −1.22768
\(257\) −6.13054 −0.382412 −0.191206 0.981550i \(-0.561240\pi\)
−0.191206 + 0.981550i \(0.561240\pi\)
\(258\) 3.71070 0.231018
\(259\) 0.211089 0.0131164
\(260\) 0 0
\(261\) 10.9214 0.676019
\(262\) 20.1790 1.24666
\(263\) −12.3012 −0.758525 −0.379263 0.925289i \(-0.623822\pi\)
−0.379263 + 0.925289i \(0.623822\pi\)
\(264\) 2.36509 0.145561
\(265\) 0 0
\(266\) −1.64532 −0.100881
\(267\) 2.34726 0.143650
\(268\) 30.8559 1.88483
\(269\) 9.92508 0.605143 0.302572 0.953127i \(-0.402155\pi\)
0.302572 + 0.953127i \(0.402155\pi\)
\(270\) 0 0
\(271\) 20.3040 1.23338 0.616689 0.787207i \(-0.288474\pi\)
0.616689 + 0.787207i \(0.288474\pi\)
\(272\) −0.593630 −0.0359941
\(273\) 0.616723 0.0373258
\(274\) 0.565133 0.0341410
\(275\) 0 0
\(276\) −3.09526 −0.186313
\(277\) 18.1671 1.09155 0.545776 0.837931i \(-0.316235\pi\)
0.545776 + 0.837931i \(0.316235\pi\)
\(278\) 29.3897 1.76268
\(279\) 32.2265 1.92935
\(280\) 0 0
\(281\) 10.6983 0.638208 0.319104 0.947720i \(-0.396618\pi\)
0.319104 + 0.947720i \(0.396618\pi\)
\(282\) 2.08925 0.124413
\(283\) 10.0773 0.599034 0.299517 0.954091i \(-0.403174\pi\)
0.299517 + 0.954091i \(0.403174\pi\)
\(284\) −31.5397 −1.87154
\(285\) 0 0
\(286\) 37.8536 2.23833
\(287\) −4.20632 −0.248291
\(288\) 14.6421 0.862793
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −2.54996 −0.149481
\(292\) −7.63693 −0.446918
\(293\) −20.5349 −1.19966 −0.599831 0.800127i \(-0.704765\pi\)
−0.599831 + 0.800127i \(0.704765\pi\)
\(294\) −3.07439 −0.179302
\(295\) 0 0
\(296\) 0.976172 0.0567388
\(297\) −4.45709 −0.258627
\(298\) 27.8191 1.61151
\(299\) −20.0965 −1.16221
\(300\) 0 0
\(301\) 5.39093 0.310728
\(302\) 20.7452 1.19375
\(303\) −1.37892 −0.0792169
\(304\) −0.616723 −0.0353715
\(305\) 0 0
\(306\) 6.85317 0.391770
\(307\) 13.1177 0.748669 0.374335 0.927294i \(-0.377871\pi\)
0.374335 + 0.927294i \(0.377871\pi\)
\(308\) 8.47015 0.482631
\(309\) 1.77746 0.101116
\(310\) 0 0
\(311\) −12.3646 −0.701132 −0.350566 0.936538i \(-0.614011\pi\)
−0.350566 + 0.936538i \(0.614011\pi\)
\(312\) 2.85201 0.161463
\(313\) −5.16000 −0.291661 −0.145830 0.989310i \(-0.546585\pi\)
−0.145830 + 0.989310i \(0.546585\pi\)
\(314\) −46.1230 −2.60287
\(315\) 0 0
\(316\) 24.9924 1.40593
\(317\) −23.7655 −1.33480 −0.667400 0.744699i \(-0.732593\pi\)
−0.667400 + 0.744699i \(0.732593\pi\)
\(318\) 5.39358 0.302457
\(319\) −13.5889 −0.760830
\(320\) 0 0
\(321\) 1.64596 0.0918683
\(322\) −7.16944 −0.399537
\(323\) 1.03890 0.0578060
\(324\) 29.0412 1.61340
\(325\) 0 0
\(326\) 51.8869 2.87375
\(327\) −0.632531 −0.0349790
\(328\) −19.4520 −1.07405
\(329\) 3.03528 0.167340
\(330\) 0 0
\(331\) 20.8341 1.14514 0.572572 0.819854i \(-0.305946\pi\)
0.572572 + 0.819854i \(0.305946\pi\)
\(332\) −30.0281 −1.64801
\(333\) −0.913442 −0.0500563
\(334\) −10.6116 −0.580639
\(335\) 0 0
\(336\) 0.0824698 0.00449910
\(337\) 14.3080 0.779406 0.389703 0.920941i \(-0.372578\pi\)
0.389703 + 0.920941i \(0.372578\pi\)
\(338\) 15.5354 0.845013
\(339\) −1.40865 −0.0765076
\(340\) 0 0
\(341\) −40.0975 −2.17140
\(342\) 7.11976 0.384993
\(343\) −9.25264 −0.499596
\(344\) 24.9301 1.34414
\(345\) 0 0
\(346\) −18.7563 −1.00834
\(347\) −21.9988 −1.18096 −0.590478 0.807054i \(-0.701061\pi\)
−0.590478 + 0.807054i \(0.701061\pi\)
\(348\) −2.52385 −0.135293
\(349\) −6.06199 −0.324491 −0.162246 0.986750i \(-0.551874\pi\)
−0.162246 + 0.986750i \(0.551874\pi\)
\(350\) 0 0
\(351\) −5.37471 −0.286881
\(352\) −18.2183 −0.971036
\(353\) −20.8785 −1.11125 −0.555626 0.831432i \(-0.687521\pi\)
−0.555626 + 0.831432i \(0.687521\pi\)
\(354\) −0.941260 −0.0500274
\(355\) 0 0
\(356\) 38.8746 2.06035
\(357\) −0.138925 −0.00735267
\(358\) 10.2063 0.539421
\(359\) 18.4842 0.975557 0.487779 0.872967i \(-0.337807\pi\)
0.487779 + 0.872967i \(0.337807\pi\)
\(360\) 0 0
\(361\) −17.9207 −0.943194
\(362\) −13.7523 −0.722805
\(363\) 0.518598 0.0272193
\(364\) 10.2140 0.535358
\(365\) 0 0
\(366\) 4.67848 0.244548
\(367\) 23.6044 1.23214 0.616070 0.787691i \(-0.288724\pi\)
0.616070 + 0.787691i \(0.288724\pi\)
\(368\) −2.68736 −0.140088
\(369\) 18.2020 0.947556
\(370\) 0 0
\(371\) 7.83583 0.406816
\(372\) −7.44729 −0.386124
\(373\) 18.0123 0.932643 0.466321 0.884615i \(-0.345579\pi\)
0.466321 + 0.884615i \(0.345579\pi\)
\(374\) −8.52699 −0.440920
\(375\) 0 0
\(376\) 14.0365 0.723878
\(377\) −16.3865 −0.843949
\(378\) −1.91743 −0.0986221
\(379\) −5.74523 −0.295112 −0.147556 0.989054i \(-0.547141\pi\)
−0.147556 + 0.989054i \(0.547141\pi\)
\(380\) 0 0
\(381\) 4.29728 0.220156
\(382\) −22.9255 −1.17297
\(383\) 35.3281 1.80518 0.902591 0.430499i \(-0.141663\pi\)
0.902591 + 0.430499i \(0.141663\pi\)
\(384\) −3.94242 −0.201186
\(385\) 0 0
\(386\) −19.6322 −0.999251
\(387\) −23.3281 −1.18583
\(388\) −42.2317 −2.14399
\(389\) −18.2627 −0.925955 −0.462977 0.886370i \(-0.653219\pi\)
−0.462977 + 0.886370i \(0.653219\pi\)
\(390\) 0 0
\(391\) 4.52699 0.228940
\(392\) −20.6551 −1.04324
\(393\) 1.77012 0.0892907
\(394\) 31.3579 1.57979
\(395\) 0 0
\(396\) −36.6528 −1.84187
\(397\) −4.64092 −0.232921 −0.116461 0.993195i \(-0.537155\pi\)
−0.116461 + 0.993195i \(0.537155\pi\)
\(398\) −21.2028 −1.06280
\(399\) −0.144329 −0.00722548
\(400\) 0 0
\(401\) −27.4049 −1.36853 −0.684267 0.729232i \(-0.739878\pi\)
−0.684267 + 0.729232i \(0.739878\pi\)
\(402\) 4.31541 0.215233
\(403\) −48.3528 −2.40862
\(404\) −22.8372 −1.13620
\(405\) 0 0
\(406\) −5.84590 −0.290127
\(407\) 1.13654 0.0563363
\(408\) −0.642450 −0.0318060
\(409\) 1.38254 0.0683623 0.0341811 0.999416i \(-0.489118\pi\)
0.0341811 + 0.999416i \(0.489118\pi\)
\(410\) 0 0
\(411\) 0.0495740 0.00244531
\(412\) 29.4378 1.45029
\(413\) −1.36747 −0.0672888
\(414\) 31.0242 1.52476
\(415\) 0 0
\(416\) −21.9690 −1.07712
\(417\) 2.57809 0.126250
\(418\) −8.85869 −0.433293
\(419\) −33.2300 −1.62339 −0.811695 0.584081i \(-0.801455\pi\)
−0.811695 + 0.584081i \(0.801455\pi\)
\(420\) 0 0
\(421\) 4.61109 0.224731 0.112365 0.993667i \(-0.464157\pi\)
0.112365 + 0.993667i \(0.464157\pi\)
\(422\) 17.8923 0.870986
\(423\) −13.1345 −0.638622
\(424\) 36.2365 1.75980
\(425\) 0 0
\(426\) −4.41104 −0.213715
\(427\) 6.79693 0.328927
\(428\) 27.2598 1.31765
\(429\) 3.32055 0.160318
\(430\) 0 0
\(431\) 7.33812 0.353465 0.176732 0.984259i \(-0.443447\pi\)
0.176732 + 0.984259i \(0.443447\pi\)
\(432\) −0.718721 −0.0345795
\(433\) −15.3487 −0.737610 −0.368805 0.929507i \(-0.620233\pi\)
−0.368805 + 0.929507i \(0.620233\pi\)
\(434\) −17.2499 −0.828021
\(435\) 0 0
\(436\) −10.4758 −0.501699
\(437\) 4.70309 0.224979
\(438\) −1.06808 −0.0510347
\(439\) −5.60355 −0.267443 −0.133721 0.991019i \(-0.542693\pi\)
−0.133721 + 0.991019i \(0.542693\pi\)
\(440\) 0 0
\(441\) 19.3278 0.920373
\(442\) −10.2825 −0.489089
\(443\) −29.6338 −1.40794 −0.703971 0.710228i \(-0.748592\pi\)
−0.703971 + 0.710228i \(0.748592\pi\)
\(444\) 0.211089 0.0100178
\(445\) 0 0
\(446\) −31.7778 −1.50472
\(447\) 2.44031 0.115423
\(448\) −8.64923 −0.408638
\(449\) −34.4203 −1.62439 −0.812197 0.583383i \(-0.801729\pi\)
−0.812197 + 0.583383i \(0.801729\pi\)
\(450\) 0 0
\(451\) −22.6476 −1.06643
\(452\) −23.3297 −1.09734
\(453\) 1.81979 0.0855013
\(454\) −4.17029 −0.195721
\(455\) 0 0
\(456\) −0.667442 −0.0312558
\(457\) 9.32504 0.436207 0.218103 0.975926i \(-0.430013\pi\)
0.218103 + 0.975926i \(0.430013\pi\)
\(458\) −7.52412 −0.351579
\(459\) 1.21072 0.0565116
\(460\) 0 0
\(461\) 19.1715 0.892904 0.446452 0.894808i \(-0.352687\pi\)
0.446452 + 0.894808i \(0.352687\pi\)
\(462\) 1.18461 0.0551129
\(463\) 19.6385 0.912680 0.456340 0.889805i \(-0.349160\pi\)
0.456340 + 0.889805i \(0.349160\pi\)
\(464\) −2.19125 −0.101726
\(465\) 0 0
\(466\) 12.4674 0.577541
\(467\) −21.1027 −0.976515 −0.488258 0.872699i \(-0.662367\pi\)
−0.488258 + 0.872699i \(0.662367\pi\)
\(468\) −44.1988 −2.04309
\(469\) 6.26946 0.289497
\(470\) 0 0
\(471\) −4.04595 −0.186428
\(472\) −6.32380 −0.291077
\(473\) 29.0257 1.33461
\(474\) 3.49535 0.160547
\(475\) 0 0
\(476\) −2.30083 −0.105458
\(477\) −33.9079 −1.55254
\(478\) −8.38653 −0.383591
\(479\) −28.6762 −1.31025 −0.655125 0.755521i \(-0.727384\pi\)
−0.655125 + 0.755521i \(0.727384\pi\)
\(480\) 0 0
\(481\) 1.37053 0.0624909
\(482\) −17.7607 −0.808977
\(483\) −0.628909 −0.0286164
\(484\) 8.58886 0.390403
\(485\) 0 0
\(486\) 12.4747 0.565862
\(487\) 39.2139 1.77695 0.888475 0.458925i \(-0.151766\pi\)
0.888475 + 0.458925i \(0.151766\pi\)
\(488\) 31.4321 1.42287
\(489\) 4.55157 0.205829
\(490\) 0 0
\(491\) −36.3499 −1.64045 −0.820224 0.572042i \(-0.806151\pi\)
−0.820224 + 0.572042i \(0.806151\pi\)
\(492\) −4.20632 −0.189636
\(493\) 3.69127 0.166246
\(494\) −10.6825 −0.480629
\(495\) 0 0
\(496\) −6.46586 −0.290326
\(497\) −6.40839 −0.287455
\(498\) −4.19964 −0.188190
\(499\) −8.52061 −0.381435 −0.190718 0.981645i \(-0.561081\pi\)
−0.190718 + 0.981645i \(0.561081\pi\)
\(500\) 0 0
\(501\) −0.930856 −0.0415876
\(502\) −14.0040 −0.625030
\(503\) 18.6790 0.832854 0.416427 0.909169i \(-0.363282\pi\)
0.416427 + 0.909169i \(0.363282\pi\)
\(504\) −6.39645 −0.284921
\(505\) 0 0
\(506\) −38.6016 −1.71605
\(507\) 1.36278 0.0605231
\(508\) 71.1702 3.15767
\(509\) 3.53567 0.156716 0.0783579 0.996925i \(-0.475032\pi\)
0.0783579 + 0.996925i \(0.475032\pi\)
\(510\) 0 0
\(511\) −1.55171 −0.0686436
\(512\) −6.69175 −0.295737
\(513\) 1.25782 0.0555341
\(514\) −14.1999 −0.626333
\(515\) 0 0
\(516\) 5.39093 0.237322
\(517\) 16.3425 0.718742
\(518\) 0.488938 0.0214827
\(519\) −1.64532 −0.0722215
\(520\) 0 0
\(521\) −4.64206 −0.203373 −0.101686 0.994817i \(-0.532424\pi\)
−0.101686 + 0.994817i \(0.532424\pi\)
\(522\) 25.2969 1.10722
\(523\) 18.3331 0.801649 0.400824 0.916155i \(-0.368724\pi\)
0.400824 + 0.916155i \(0.368724\pi\)
\(524\) 29.3162 1.28068
\(525\) 0 0
\(526\) −28.4929 −1.24235
\(527\) 10.8921 0.474466
\(528\) 0.444032 0.0193240
\(529\) −2.50639 −0.108974
\(530\) 0 0
\(531\) 5.91743 0.256795
\(532\) −2.39033 −0.103634
\(533\) −27.3103 −1.18294
\(534\) 5.43688 0.235277
\(535\) 0 0
\(536\) 28.9928 1.25230
\(537\) 0.895308 0.0386354
\(538\) 22.9891 0.991132
\(539\) −24.0485 −1.03584
\(540\) 0 0
\(541\) 22.4428 0.964891 0.482445 0.875926i \(-0.339749\pi\)
0.482445 + 0.875926i \(0.339749\pi\)
\(542\) 47.0294 2.02008
\(543\) −1.20636 −0.0517700
\(544\) 4.94880 0.212178
\(545\) 0 0
\(546\) 1.42849 0.0611339
\(547\) −25.9778 −1.11073 −0.555365 0.831607i \(-0.687422\pi\)
−0.555365 + 0.831607i \(0.687422\pi\)
\(548\) 0.821029 0.0350726
\(549\) −29.4123 −1.25529
\(550\) 0 0
\(551\) 3.83486 0.163371
\(552\) −2.90836 −0.123788
\(553\) 5.07807 0.215942
\(554\) 42.0797 1.78780
\(555\) 0 0
\(556\) 42.6976 1.81078
\(557\) −4.86144 −0.205986 −0.102993 0.994682i \(-0.532842\pi\)
−0.102993 + 0.994682i \(0.532842\pi\)
\(558\) 74.6452 3.15998
\(559\) 35.0015 1.48041
\(560\) 0 0
\(561\) −0.747995 −0.0315804
\(562\) 24.7802 1.04529
\(563\) −1.53365 −0.0646357 −0.0323179 0.999478i \(-0.510289\pi\)
−0.0323179 + 0.999478i \(0.510289\pi\)
\(564\) 3.03528 0.127808
\(565\) 0 0
\(566\) 23.3417 0.981127
\(567\) 5.90073 0.247807
\(568\) −29.6353 −1.24347
\(569\) −16.5770 −0.694946 −0.347473 0.937690i \(-0.612960\pi\)
−0.347473 + 0.937690i \(0.612960\pi\)
\(570\) 0 0
\(571\) −14.2904 −0.598036 −0.299018 0.954248i \(-0.596659\pi\)
−0.299018 + 0.954248i \(0.596659\pi\)
\(572\) 54.9939 2.29941
\(573\) −2.01104 −0.0840125
\(574\) −9.74296 −0.406663
\(575\) 0 0
\(576\) 37.4277 1.55949
\(577\) −28.5424 −1.18824 −0.594119 0.804377i \(-0.702499\pi\)
−0.594119 + 0.804377i \(0.702499\pi\)
\(578\) 2.31627 0.0963439
\(579\) −1.72215 −0.0715702
\(580\) 0 0
\(581\) −6.10126 −0.253123
\(582\) −5.90639 −0.244828
\(583\) 42.1895 1.74731
\(584\) −7.17581 −0.296937
\(585\) 0 0
\(586\) −47.5643 −1.96486
\(587\) 33.5281 1.38385 0.691927 0.721967i \(-0.256762\pi\)
0.691927 + 0.721967i \(0.256762\pi\)
\(588\) −4.46650 −0.184195
\(589\) 11.3158 0.466259
\(590\) 0 0
\(591\) 2.75075 0.113151
\(592\) 0.183271 0.00753239
\(593\) −42.4729 −1.74415 −0.872077 0.489368i \(-0.837227\pi\)
−0.872077 + 0.489368i \(0.837227\pi\)
\(594\) −10.3238 −0.423591
\(595\) 0 0
\(596\) 40.4157 1.65549
\(597\) −1.85993 −0.0761219
\(598\) −46.5488 −1.90352
\(599\) −7.00705 −0.286300 −0.143150 0.989701i \(-0.545723\pi\)
−0.143150 + 0.989701i \(0.545723\pi\)
\(600\) 0 0
\(601\) 39.3146 1.60368 0.801839 0.597541i \(-0.203855\pi\)
0.801839 + 0.597541i \(0.203855\pi\)
\(602\) 12.4868 0.508925
\(603\) −27.1298 −1.10481
\(604\) 30.1388 1.22633
\(605\) 0 0
\(606\) −3.19394 −0.129745
\(607\) 18.7928 0.762777 0.381389 0.924415i \(-0.375446\pi\)
0.381389 + 0.924415i \(0.375446\pi\)
\(608\) 5.14131 0.208508
\(609\) −0.512808 −0.0207800
\(610\) 0 0
\(611\) 19.7071 0.797263
\(612\) 9.95633 0.402461
\(613\) 1.83560 0.0741392 0.0370696 0.999313i \(-0.488198\pi\)
0.0370696 + 0.999313i \(0.488198\pi\)
\(614\) 30.3842 1.22621
\(615\) 0 0
\(616\) 7.95872 0.320666
\(617\) −29.0011 −1.16754 −0.583771 0.811918i \(-0.698423\pi\)
−0.583771 + 0.811918i \(0.698423\pi\)
\(618\) 4.11707 0.165613
\(619\) 27.7941 1.11714 0.558569 0.829458i \(-0.311351\pi\)
0.558569 + 0.829458i \(0.311351\pi\)
\(620\) 0 0
\(621\) 5.48092 0.219942
\(622\) −28.6397 −1.14835
\(623\) 7.89874 0.316456
\(624\) 0.535450 0.0214351
\(625\) 0 0
\(626\) −11.9519 −0.477695
\(627\) −0.777092 −0.0310341
\(628\) −67.0078 −2.67390
\(629\) −0.308729 −0.0123098
\(630\) 0 0
\(631\) −14.1785 −0.564437 −0.282219 0.959350i \(-0.591070\pi\)
−0.282219 + 0.959350i \(0.591070\pi\)
\(632\) 23.4833 0.934116
\(633\) 1.56953 0.0623833
\(634\) −55.0471 −2.18620
\(635\) 0 0
\(636\) 7.83583 0.310711
\(637\) −28.9995 −1.14900
\(638\) −31.4754 −1.24612
\(639\) 27.7309 1.09702
\(640\) 0 0
\(641\) −27.8734 −1.10093 −0.550466 0.834857i \(-0.685550\pi\)
−0.550466 + 0.834857i \(0.685550\pi\)
\(642\) 3.81247 0.150466
\(643\) −25.8277 −1.01854 −0.509272 0.860605i \(-0.670085\pi\)
−0.509272 + 0.860605i \(0.670085\pi\)
\(644\) −10.4158 −0.410440
\(645\) 0 0
\(646\) 2.40637 0.0946774
\(647\) −4.40912 −0.173340 −0.0866702 0.996237i \(-0.527623\pi\)
−0.0866702 + 0.996237i \(0.527623\pi\)
\(648\) 27.2877 1.07196
\(649\) −7.36270 −0.289011
\(650\) 0 0
\(651\) −1.51318 −0.0593060
\(652\) 75.3817 2.95217
\(653\) 30.9245 1.21017 0.605084 0.796161i \(-0.293139\pi\)
0.605084 + 0.796161i \(0.293139\pi\)
\(654\) −1.46511 −0.0572903
\(655\) 0 0
\(656\) −3.65200 −0.142587
\(657\) 6.71469 0.261965
\(658\) 7.03051 0.274078
\(659\) 39.7992 1.55036 0.775179 0.631742i \(-0.217660\pi\)
0.775179 + 0.631742i \(0.217660\pi\)
\(660\) 0 0
\(661\) −13.0969 −0.509409 −0.254704 0.967019i \(-0.581978\pi\)
−0.254704 + 0.967019i \(0.581978\pi\)
\(662\) 48.2573 1.87557
\(663\) −0.901992 −0.0350305
\(664\) −28.2150 −1.09496
\(665\) 0 0
\(666\) −2.11578 −0.0819846
\(667\) 16.7103 0.647027
\(668\) −15.4166 −0.596485
\(669\) −2.78757 −0.107774
\(670\) 0 0
\(671\) 36.5959 1.41277
\(672\) −0.687509 −0.0265212
\(673\) 22.2830 0.858946 0.429473 0.903080i \(-0.358699\pi\)
0.429473 + 0.903080i \(0.358699\pi\)
\(674\) 33.1411 1.27655
\(675\) 0 0
\(676\) 22.5699 0.868073
\(677\) −10.5576 −0.405762 −0.202881 0.979203i \(-0.565030\pi\)
−0.202881 + 0.979203i \(0.565030\pi\)
\(678\) −3.26282 −0.125308
\(679\) −8.58084 −0.329303
\(680\) 0 0
\(681\) −0.365822 −0.0140183
\(682\) −92.8766 −3.55643
\(683\) 1.80882 0.0692128 0.0346064 0.999401i \(-0.488982\pi\)
0.0346064 + 0.999401i \(0.488982\pi\)
\(684\) 10.3436 0.395499
\(685\) 0 0
\(686\) −21.4316 −0.818261
\(687\) −0.660022 −0.0251814
\(688\) 4.68050 0.178442
\(689\) 50.8755 1.93820
\(690\) 0 0
\(691\) 3.84649 0.146327 0.0731636 0.997320i \(-0.476690\pi\)
0.0731636 + 0.997320i \(0.476690\pi\)
\(692\) −27.2493 −1.03586
\(693\) −7.44729 −0.282899
\(694\) −50.9550 −1.93423
\(695\) 0 0
\(696\) −2.37146 −0.0898899
\(697\) 6.15198 0.233023
\(698\) −14.0412 −0.531467
\(699\) 1.09365 0.0413657
\(700\) 0 0
\(701\) 43.9484 1.65991 0.829955 0.557830i \(-0.188366\pi\)
0.829955 + 0.557830i \(0.188366\pi\)
\(702\) −12.4493 −0.469867
\(703\) −0.320739 −0.0120969
\(704\) −46.5690 −1.75514
\(705\) 0 0
\(706\) −48.3602 −1.82006
\(707\) −4.64018 −0.174512
\(708\) −1.36747 −0.0513926
\(709\) 45.9706 1.72646 0.863232 0.504808i \(-0.168437\pi\)
0.863232 + 0.504808i \(0.168437\pi\)
\(710\) 0 0
\(711\) −21.9743 −0.824100
\(712\) 36.5274 1.36892
\(713\) 49.3083 1.84661
\(714\) −0.321786 −0.0120425
\(715\) 0 0
\(716\) 14.8278 0.554141
\(717\) −0.735674 −0.0274742
\(718\) 42.8142 1.59781
\(719\) 6.24809 0.233014 0.116507 0.993190i \(-0.462830\pi\)
0.116507 + 0.993190i \(0.462830\pi\)
\(720\) 0 0
\(721\) 5.98131 0.222755
\(722\) −41.5091 −1.54481
\(723\) −1.55798 −0.0579420
\(724\) −19.9794 −0.742529
\(725\) 0 0
\(726\) 1.20121 0.0445811
\(727\) 49.9606 1.85294 0.926469 0.376372i \(-0.122829\pi\)
0.926469 + 0.376372i \(0.122829\pi\)
\(728\) 9.59725 0.355698
\(729\) −24.7962 −0.918376
\(730\) 0 0
\(731\) −7.88454 −0.291620
\(732\) 6.79693 0.251222
\(733\) −37.4111 −1.38181 −0.690906 0.722945i \(-0.742788\pi\)
−0.690906 + 0.722945i \(0.742788\pi\)
\(734\) 54.6741 2.01806
\(735\) 0 0
\(736\) 22.4031 0.825790
\(737\) 33.7559 1.24342
\(738\) 42.1606 1.55195
\(739\) 38.9348 1.43224 0.716120 0.697978i \(-0.245916\pi\)
0.716120 + 0.697978i \(0.245916\pi\)
\(740\) 0 0
\(741\) −0.937080 −0.0344245
\(742\) 18.1499 0.666303
\(743\) 13.0253 0.477850 0.238925 0.971038i \(-0.423205\pi\)
0.238925 + 0.971038i \(0.423205\pi\)
\(744\) −6.99762 −0.256545
\(745\) 0 0
\(746\) 41.7213 1.52753
\(747\) 26.4019 0.965996
\(748\) −12.3881 −0.452952
\(749\) 5.53878 0.202383
\(750\) 0 0
\(751\) −42.3558 −1.54559 −0.772793 0.634659i \(-0.781141\pi\)
−0.772793 + 0.634659i \(0.781141\pi\)
\(752\) 2.63528 0.0960989
\(753\) −1.22845 −0.0447671
\(754\) −37.9556 −1.38226
\(755\) 0 0
\(756\) −2.78566 −0.101313
\(757\) 4.20834 0.152955 0.0764773 0.997071i \(-0.475633\pi\)
0.0764773 + 0.997071i \(0.475633\pi\)
\(758\) −13.3075 −0.483349
\(759\) −3.38616 −0.122910
\(760\) 0 0
\(761\) 31.8563 1.15479 0.577395 0.816465i \(-0.304069\pi\)
0.577395 + 0.816465i \(0.304069\pi\)
\(762\) 9.95364 0.360582
\(763\) −2.12852 −0.0770576
\(764\) −33.3062 −1.20498
\(765\) 0 0
\(766\) 81.8293 2.95661
\(767\) −8.87853 −0.320585
\(768\) −3.99113 −0.144017
\(769\) −7.43010 −0.267936 −0.133968 0.990986i \(-0.542772\pi\)
−0.133968 + 0.990986i \(0.542772\pi\)
\(770\) 0 0
\(771\) −1.24563 −0.0448604
\(772\) −28.5217 −1.02652
\(773\) 7.33384 0.263780 0.131890 0.991264i \(-0.457895\pi\)
0.131890 + 0.991264i \(0.457895\pi\)
\(774\) −54.0341 −1.94221
\(775\) 0 0
\(776\) −39.6817 −1.42449
\(777\) 0.0428901 0.00153867
\(778\) −42.3012 −1.51657
\(779\) 6.39130 0.228992
\(780\) 0 0
\(781\) −34.5039 −1.23465
\(782\) 10.4857 0.374968
\(783\) 4.46910 0.159713
\(784\) −3.87789 −0.138496
\(785\) 0 0
\(786\) 4.10007 0.146244
\(787\) −35.7257 −1.27348 −0.636742 0.771077i \(-0.719718\pi\)
−0.636742 + 0.771077i \(0.719718\pi\)
\(788\) 45.5570 1.62290
\(789\) −2.49942 −0.0889817
\(790\) 0 0
\(791\) −4.74024 −0.168544
\(792\) −34.4397 −1.22376
\(793\) 44.1303 1.56711
\(794\) −10.7496 −0.381489
\(795\) 0 0
\(796\) −30.8036 −1.09180
\(797\) 28.2025 0.998985 0.499492 0.866318i \(-0.333520\pi\)
0.499492 + 0.866318i \(0.333520\pi\)
\(798\) −0.334304 −0.0118342
\(799\) −4.43927 −0.157050
\(800\) 0 0
\(801\) −34.1801 −1.20769
\(802\) −63.4769 −2.24145
\(803\) −8.35468 −0.294830
\(804\) 6.26946 0.221107
\(805\) 0 0
\(806\) −111.998 −3.94496
\(807\) 2.01663 0.0709886
\(808\) −21.4583 −0.754901
\(809\) −41.9318 −1.47424 −0.737121 0.675761i \(-0.763815\pi\)
−0.737121 + 0.675761i \(0.763815\pi\)
\(810\) 0 0
\(811\) 4.46604 0.156824 0.0784119 0.996921i \(-0.475015\pi\)
0.0784119 + 0.996921i \(0.475015\pi\)
\(812\) −8.49297 −0.298045
\(813\) 4.12546 0.144686
\(814\) 2.63253 0.0922702
\(815\) 0 0
\(816\) −0.120617 −0.00422243
\(817\) −8.19125 −0.286576
\(818\) 3.20233 0.111967
\(819\) −8.98053 −0.313805
\(820\) 0 0
\(821\) 19.6083 0.684334 0.342167 0.939639i \(-0.388839\pi\)
0.342167 + 0.939639i \(0.388839\pi\)
\(822\) 0.114827 0.00400504
\(823\) 46.9128 1.63528 0.817638 0.575732i \(-0.195283\pi\)
0.817638 + 0.575732i \(0.195283\pi\)
\(824\) 27.6603 0.963592
\(825\) 0 0
\(826\) −3.16742 −0.110209
\(827\) 14.0134 0.487295 0.243648 0.969864i \(-0.421656\pi\)
0.243648 + 0.969864i \(0.421656\pi\)
\(828\) 45.0722 1.56637
\(829\) −40.5206 −1.40734 −0.703669 0.710528i \(-0.748456\pi\)
−0.703669 + 0.710528i \(0.748456\pi\)
\(830\) 0 0
\(831\) 3.69127 0.128049
\(832\) −56.1566 −1.94688
\(833\) 6.53251 0.226338
\(834\) 5.97154 0.206778
\(835\) 0 0
\(836\) −12.8700 −0.445117
\(837\) 13.1873 0.455818
\(838\) −76.9694 −2.65887
\(839\) 8.68840 0.299957 0.149978 0.988689i \(-0.452080\pi\)
0.149978 + 0.988689i \(0.452080\pi\)
\(840\) 0 0
\(841\) −15.3745 −0.530156
\(842\) 10.6805 0.368074
\(843\) 2.17374 0.0748675
\(844\) 25.9941 0.894754
\(845\) 0 0
\(846\) −30.4230 −1.04597
\(847\) 1.74513 0.0599633
\(848\) 6.80321 0.233623
\(849\) 2.04756 0.0702720
\(850\) 0 0
\(851\) −1.39761 −0.0479096
\(852\) −6.40839 −0.219548
\(853\) −23.1523 −0.792721 −0.396361 0.918095i \(-0.629727\pi\)
−0.396361 + 0.918095i \(0.629727\pi\)
\(854\) 15.7435 0.538731
\(855\) 0 0
\(856\) 25.6139 0.875464
\(857\) 43.6043 1.48950 0.744748 0.667346i \(-0.232570\pi\)
0.744748 + 0.667346i \(0.232570\pi\)
\(858\) 7.69127 0.262576
\(859\) −14.2532 −0.486314 −0.243157 0.969987i \(-0.578183\pi\)
−0.243157 + 0.969987i \(0.578183\pi\)
\(860\) 0 0
\(861\) −0.854661 −0.0291268
\(862\) 16.9970 0.578921
\(863\) −24.1162 −0.820926 −0.410463 0.911877i \(-0.634633\pi\)
−0.410463 + 0.911877i \(0.634633\pi\)
\(864\) 5.99161 0.203839
\(865\) 0 0
\(866\) −35.5516 −1.20809
\(867\) 0.203185 0.00690052
\(868\) −25.0608 −0.850617
\(869\) 27.3413 0.927489
\(870\) 0 0
\(871\) 40.7056 1.37926
\(872\) −9.84325 −0.333335
\(873\) 37.1318 1.25672
\(874\) 10.8936 0.368482
\(875\) 0 0
\(876\) −1.55171 −0.0524274
\(877\) −1.56540 −0.0528599 −0.0264299 0.999651i \(-0.508414\pi\)
−0.0264299 + 0.999651i \(0.508414\pi\)
\(878\) −12.9793 −0.438030
\(879\) −4.17238 −0.140731
\(880\) 0 0
\(881\) −39.0973 −1.31722 −0.658610 0.752484i \(-0.728855\pi\)
−0.658610 + 0.752484i \(0.728855\pi\)
\(882\) 44.7684 1.50743
\(883\) −30.9249 −1.04071 −0.520354 0.853951i \(-0.674200\pi\)
−0.520354 + 0.853951i \(0.674200\pi\)
\(884\) −14.9385 −0.502436
\(885\) 0 0
\(886\) −68.6397 −2.30599
\(887\) −45.1839 −1.51713 −0.758564 0.651599i \(-0.774099\pi\)
−0.758564 + 0.651599i \(0.774099\pi\)
\(888\) 0.198343 0.00665597
\(889\) 14.4607 0.484997
\(890\) 0 0
\(891\) 31.7706 1.06436
\(892\) −46.1670 −1.54578
\(893\) −4.61196 −0.154333
\(894\) 5.65241 0.189045
\(895\) 0 0
\(896\) −13.2666 −0.443206
\(897\) −4.08330 −0.136338
\(898\) −79.7265 −2.66051
\(899\) 40.2056 1.34093
\(900\) 0 0
\(901\) −11.4603 −0.381799
\(902\) −52.4579 −1.74666
\(903\) 1.09536 0.0364511
\(904\) −21.9211 −0.729083
\(905\) 0 0
\(906\) 4.21512 0.140038
\(907\) −33.9862 −1.12849 −0.564246 0.825606i \(-0.690833\pi\)
−0.564246 + 0.825606i \(0.690833\pi\)
\(908\) −6.05862 −0.201062
\(909\) 20.0794 0.665992
\(910\) 0 0
\(911\) 22.1997 0.735509 0.367754 0.929923i \(-0.380127\pi\)
0.367754 + 0.929923i \(0.380127\pi\)
\(912\) −0.125309 −0.00414939
\(913\) −32.8503 −1.08719
\(914\) 21.5993 0.714440
\(915\) 0 0
\(916\) −10.9311 −0.361173
\(917\) 5.95660 0.196704
\(918\) 2.80435 0.0925574
\(919\) −8.84668 −0.291825 −0.145913 0.989297i \(-0.546612\pi\)
−0.145913 + 0.989297i \(0.546612\pi\)
\(920\) 0 0
\(921\) 2.66533 0.0878256
\(922\) 44.4062 1.46244
\(923\) −41.6076 −1.36953
\(924\) 1.72101 0.0566169
\(925\) 0 0
\(926\) 45.4881 1.49483
\(927\) −25.8828 −0.850104
\(928\) 18.2673 0.599655
\(929\) 13.9941 0.459131 0.229566 0.973293i \(-0.426269\pi\)
0.229566 + 0.973293i \(0.426269\pi\)
\(930\) 0 0
\(931\) 6.78663 0.222423
\(932\) 18.1127 0.593302
\(933\) −2.51230 −0.0822490
\(934\) −48.8794 −1.59938
\(935\) 0 0
\(936\) −41.5301 −1.35745
\(937\) 5.19129 0.169592 0.0847960 0.996398i \(-0.472976\pi\)
0.0847960 + 0.996398i \(0.472976\pi\)
\(938\) 14.5217 0.474151
\(939\) −1.04843 −0.0342144
\(940\) 0 0
\(941\) −26.2746 −0.856527 −0.428264 0.903654i \(-0.640875\pi\)
−0.428264 + 0.903654i \(0.640875\pi\)
\(942\) −9.37150 −0.305340
\(943\) 27.8499 0.906919
\(944\) −1.18726 −0.0386420
\(945\) 0 0
\(946\) 67.2313 2.18588
\(947\) −13.9416 −0.453040 −0.226520 0.974007i \(-0.572735\pi\)
−0.226520 + 0.974007i \(0.572735\pi\)
\(948\) 5.07807 0.164928
\(949\) −10.0747 −0.327040
\(950\) 0 0
\(951\) −4.82878 −0.156584
\(952\) −2.16190 −0.0700676
\(953\) −19.3298 −0.626154 −0.313077 0.949728i \(-0.601360\pi\)
−0.313077 + 0.949728i \(0.601360\pi\)
\(954\) −78.5397 −2.54282
\(955\) 0 0
\(956\) −12.1840 −0.394059
\(957\) −2.76105 −0.0892521
\(958\) −66.4217 −2.14599
\(959\) 0.166821 0.00538692
\(960\) 0 0
\(961\) 87.6372 2.82701
\(962\) 3.17451 0.102350
\(963\) −23.9679 −0.772355
\(964\) −25.8028 −0.831053
\(965\) 0 0
\(966\) −1.45672 −0.0468692
\(967\) −27.0663 −0.870393 −0.435197 0.900335i \(-0.643321\pi\)
−0.435197 + 0.900335i \(0.643321\pi\)
\(968\) 8.07027 0.259388
\(969\) 0.211089 0.00678115
\(970\) 0 0
\(971\) 9.36344 0.300487 0.150244 0.988649i \(-0.451994\pi\)
0.150244 + 0.988649i \(0.451994\pi\)
\(972\) 18.1233 0.581304
\(973\) 8.67550 0.278124
\(974\) 90.8297 2.91037
\(975\) 0 0
\(976\) 5.90121 0.188893
\(977\) −14.1127 −0.451506 −0.225753 0.974185i \(-0.572484\pi\)
−0.225753 + 0.974185i \(0.572484\pi\)
\(978\) 10.5426 0.337116
\(979\) 42.5282 1.35921
\(980\) 0 0
\(981\) 9.21072 0.294076
\(982\) −84.1961 −2.68680
\(983\) 48.9970 1.56276 0.781381 0.624054i \(-0.214515\pi\)
0.781381 + 0.624054i \(0.214515\pi\)
\(984\) −3.95234 −0.125996
\(985\) 0 0
\(986\) 8.54996 0.272286
\(987\) 0.616723 0.0196305
\(988\) −15.5196 −0.493745
\(989\) −35.6932 −1.13498
\(990\) 0 0
\(991\) −20.7542 −0.659279 −0.329639 0.944107i \(-0.606927\pi\)
−0.329639 + 0.944107i \(0.606927\pi\)
\(992\) 53.9026 1.71141
\(993\) 4.23317 0.134336
\(994\) −14.8435 −0.470808
\(995\) 0 0
\(996\) −6.10126 −0.193326
\(997\) 9.54268 0.302220 0.151110 0.988517i \(-0.451715\pi\)
0.151110 + 0.988517i \(0.451715\pi\)
\(998\) −19.7360 −0.624732
\(999\) −0.373785 −0.0118260
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.a.h.1.4 4
3.2 odd 2 3825.2.a.bh.1.1 4
4.3 odd 2 6800.2.a.bt.1.3 4
5.2 odd 4 85.2.b.a.69.8 yes 8
5.3 odd 4 85.2.b.a.69.1 8
5.4 even 2 425.2.a.g.1.1 4
15.2 even 4 765.2.b.c.154.1 8
15.8 even 4 765.2.b.c.154.8 8
15.14 odd 2 3825.2.a.bj.1.4 4
17.16 even 2 7225.2.a.w.1.4 4
20.3 even 4 1360.2.e.d.1089.4 8
20.7 even 4 1360.2.e.d.1089.5 8
20.19 odd 2 6800.2.a.bw.1.2 4
85.33 odd 4 1445.2.b.e.579.1 8
85.67 odd 4 1445.2.b.e.579.8 8
85.84 even 2 7225.2.a.v.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.b.a.69.1 8 5.3 odd 4
85.2.b.a.69.8 yes 8 5.2 odd 4
425.2.a.g.1.1 4 5.4 even 2
425.2.a.h.1.4 4 1.1 even 1 trivial
765.2.b.c.154.1 8 15.2 even 4
765.2.b.c.154.8 8 15.8 even 4
1360.2.e.d.1089.4 8 20.3 even 4
1360.2.e.d.1089.5 8 20.7 even 4
1445.2.b.e.579.1 8 85.33 odd 4
1445.2.b.e.579.8 8 85.67 odd 4
3825.2.a.bh.1.1 4 3.2 odd 2
3825.2.a.bj.1.4 4 15.14 odd 2
6800.2.a.bt.1.3 4 4.3 odd 2
6800.2.a.bw.1.2 4 20.19 odd 2
7225.2.a.v.1.1 4 85.84 even 2
7225.2.a.w.1.4 4 17.16 even 2