Properties

Label 425.2.c.a.424.4
Level $425$
Weight $2$
Character 425.424
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(424,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.424");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.4
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 425.424
Dual form 425.2.c.a.424.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.311108i q^{2} -2.21432 q^{3} +1.90321 q^{4} -0.688892i q^{6} +1.59210 q^{7} +1.21432i q^{8} +1.90321 q^{9} -1.31111i q^{11} -4.21432 q^{12} +3.52543i q^{13} +0.495316i q^{14} +3.42864 q^{16} +(-0.214320 - 4.11753i) q^{17} +0.592104i q^{18} +4.42864 q^{19} -3.52543 q^{21} +0.407896 q^{22} +4.96989 q^{23} -2.68889i q^{24} -1.09679 q^{26} +2.42864 q^{27} +3.03011 q^{28} +8.42864i q^{29} +7.73975i q^{31} +3.49532i q^{32} +2.90321i q^{33} +(1.28100 - 0.0666765i) q^{34} +3.62222 q^{36} +7.05086 q^{37} +1.37778i q^{38} -7.80642i q^{39} -3.67307i q^{41} -1.09679i q^{42} +2.47457i q^{43} -2.49532i q^{44} +1.54617i q^{46} -3.33185i q^{47} -7.59210 q^{48} -4.46520 q^{49} +(0.474572 + 9.11753i) q^{51} +6.70964i q^{52} -9.18421i q^{53} +0.755569i q^{54} +1.93332i q^{56} -9.80642 q^{57} -2.62222 q^{58} -1.37778 q^{59} -15.4193i q^{61} -2.40790 q^{62} +3.03011 q^{63} +5.76986 q^{64} -0.903212 q^{66} +9.13828i q^{67} +(-0.407896 - 7.83654i) q^{68} -11.0049 q^{69} -10.5970i q^{71} +2.31111i q^{72} -5.57136 q^{73} +2.19358i q^{74} +8.42864 q^{76} -2.08742i q^{77} +2.42864 q^{78} +7.87310i q^{79} -11.0874 q^{81} +1.14272 q^{82} +7.19850i q^{83} -6.70964 q^{84} -0.769859 q^{86} -18.6637i q^{87} +1.59210 q^{88} -11.6271 q^{89} +5.61285i q^{91} +9.45875 q^{92} -17.1383i q^{93} +1.03657 q^{94} -7.73975i q^{96} -15.4795 q^{97} -1.38916i q^{98} -2.49532i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 4 q^{7} - 2 q^{9} - 12 q^{12} - 6 q^{16} + 12 q^{17} - 8 q^{21} + 16 q^{22} + 16 q^{23} - 20 q^{26} - 12 q^{27} + 32 q^{28} - 6 q^{34} + 22 q^{36} + 16 q^{37} - 32 q^{48} + 14 q^{49} + 16 q^{51}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108i 0.219986i 0.993932 + 0.109993i \(0.0350829\pi\)
−0.993932 + 0.109993i \(0.964917\pi\)
\(3\) −2.21432 −1.27844 −0.639219 0.769025i \(-0.720742\pi\)
−0.639219 + 0.769025i \(0.720742\pi\)
\(4\) 1.90321 0.951606
\(5\) 0 0
\(6\) 0.688892i 0.281239i
\(7\) 1.59210 0.601759 0.300879 0.953662i \(-0.402720\pi\)
0.300879 + 0.953662i \(0.402720\pi\)
\(8\) 1.21432i 0.429327i
\(9\) 1.90321 0.634404
\(10\) 0 0
\(11\) 1.31111i 0.395314i −0.980271 0.197657i \(-0.936667\pi\)
0.980271 0.197657i \(-0.0633332\pi\)
\(12\) −4.21432 −1.21657
\(13\) 3.52543i 0.977778i 0.872346 + 0.488889i \(0.162598\pi\)
−0.872346 + 0.488889i \(0.837402\pi\)
\(14\) 0.495316i 0.132379i
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) −0.214320 4.11753i −0.0519802 0.998648i
\(18\) 0.592104i 0.139560i
\(19\) 4.42864 1.01600 0.508000 0.861357i \(-0.330385\pi\)
0.508000 + 0.861357i \(0.330385\pi\)
\(20\) 0 0
\(21\) −3.52543 −0.769311
\(22\) 0.407896 0.0869637
\(23\) 4.96989 1.03629 0.518147 0.855292i \(-0.326622\pi\)
0.518147 + 0.855292i \(0.326622\pi\)
\(24\) 2.68889i 0.548868i
\(25\) 0 0
\(26\) −1.09679 −0.215098
\(27\) 2.42864 0.467392
\(28\) 3.03011 0.572637
\(29\) 8.42864i 1.56516i 0.622551 + 0.782580i \(0.286096\pi\)
−0.622551 + 0.782580i \(0.713904\pi\)
\(30\) 0 0
\(31\) 7.73975i 1.39010i 0.718962 + 0.695050i \(0.244618\pi\)
−0.718962 + 0.695050i \(0.755382\pi\)
\(32\) 3.49532i 0.617890i
\(33\) 2.90321i 0.505384i
\(34\) 1.28100 0.0666765i 0.219689 0.0114349i
\(35\) 0 0
\(36\) 3.62222 0.603703
\(37\) 7.05086 1.15915 0.579577 0.814918i \(-0.303218\pi\)
0.579577 + 0.814918i \(0.303218\pi\)
\(38\) 1.37778i 0.223506i
\(39\) 7.80642i 1.25003i
\(40\) 0 0
\(41\) 3.67307i 0.573637i −0.957985 0.286819i \(-0.907402\pi\)
0.957985 0.286819i \(-0.0925977\pi\)
\(42\) 1.09679i 0.169238i
\(43\) 2.47457i 0.377369i 0.982038 + 0.188684i \(0.0604223\pi\)
−0.982038 + 0.188684i \(0.939578\pi\)
\(44\) 2.49532i 0.376183i
\(45\) 0 0
\(46\) 1.54617i 0.227970i
\(47\) 3.33185i 0.486000i −0.970026 0.243000i \(-0.921868\pi\)
0.970026 0.243000i \(-0.0781316\pi\)
\(48\) −7.59210 −1.09583
\(49\) −4.46520 −0.637886
\(50\) 0 0
\(51\) 0.474572 + 9.11753i 0.0664534 + 1.27671i
\(52\) 6.70964i 0.930459i
\(53\) 9.18421i 1.26155i −0.775967 0.630774i \(-0.782737\pi\)
0.775967 0.630774i \(-0.217263\pi\)
\(54\) 0.755569i 0.102820i
\(55\) 0 0
\(56\) 1.93332i 0.258351i
\(57\) −9.80642 −1.29889
\(58\) −2.62222 −0.344314
\(59\) −1.37778 −0.179372 −0.0896861 0.995970i \(-0.528586\pi\)
−0.0896861 + 0.995970i \(0.528586\pi\)
\(60\) 0 0
\(61\) 15.4193i 1.97424i −0.159996 0.987118i \(-0.551148\pi\)
0.159996 0.987118i \(-0.448852\pi\)
\(62\) −2.40790 −0.305803
\(63\) 3.03011 0.381758
\(64\) 5.76986 0.721232
\(65\) 0 0
\(66\) −0.903212 −0.111178
\(67\) 9.13828i 1.11642i 0.829700 + 0.558209i \(0.188511\pi\)
−0.829700 + 0.558209i \(0.811489\pi\)
\(68\) −0.407896 7.83654i −0.0494646 0.950320i
\(69\) −11.0049 −1.32484
\(70\) 0 0
\(71\) 10.5970i 1.25764i −0.777553 0.628818i \(-0.783539\pi\)
0.777553 0.628818i \(-0.216461\pi\)
\(72\) 2.31111i 0.272367i
\(73\) −5.57136 −0.652078 −0.326039 0.945356i \(-0.605714\pi\)
−0.326039 + 0.945356i \(0.605714\pi\)
\(74\) 2.19358i 0.254998i
\(75\) 0 0
\(76\) 8.42864 0.966831
\(77\) 2.08742i 0.237884i
\(78\) 2.42864 0.274989
\(79\) 7.87310i 0.885793i 0.896573 + 0.442897i \(0.146049\pi\)
−0.896573 + 0.442897i \(0.853951\pi\)
\(80\) 0 0
\(81\) −11.0874 −1.23194
\(82\) 1.14272 0.126192
\(83\) 7.19850i 0.790138i 0.918651 + 0.395069i \(0.129279\pi\)
−0.918651 + 0.395069i \(0.870721\pi\)
\(84\) −6.70964 −0.732081
\(85\) 0 0
\(86\) −0.769859 −0.0830160
\(87\) 18.6637i 2.00096i
\(88\) 1.59210 0.169719
\(89\) −11.6271 −1.23247 −0.616237 0.787561i \(-0.711344\pi\)
−0.616237 + 0.787561i \(0.711344\pi\)
\(90\) 0 0
\(91\) 5.61285i 0.588386i
\(92\) 9.45875 0.986143
\(93\) 17.1383i 1.77716i
\(94\) 1.03657 0.106914
\(95\) 0 0
\(96\) 7.73975i 0.789935i
\(97\) −15.4795 −1.57170 −0.785852 0.618414i \(-0.787775\pi\)
−0.785852 + 0.618414i \(0.787775\pi\)
\(98\) 1.38916i 0.140326i
\(99\) 2.49532i 0.250789i
\(100\) 0 0
\(101\) −14.3827 −1.43113 −0.715566 0.698545i \(-0.753831\pi\)
−0.715566 + 0.698545i \(0.753831\pi\)
\(102\) −2.83654 + 0.147643i −0.280859 + 0.0146189i
\(103\) 9.39207i 0.925429i −0.886507 0.462714i \(-0.846876\pi\)
0.886507 0.462714i \(-0.153124\pi\)
\(104\) −4.28100 −0.419786
\(105\) 0 0
\(106\) 2.85728 0.277523
\(107\) 6.77631 0.655091 0.327545 0.944835i \(-0.393779\pi\)
0.327545 + 0.944835i \(0.393779\pi\)
\(108\) 4.62222 0.444773
\(109\) 2.85728i 0.273678i −0.990593 0.136839i \(-0.956306\pi\)
0.990593 0.136839i \(-0.0436942\pi\)
\(110\) 0 0
\(111\) −15.6128 −1.48191
\(112\) 5.45875 0.515803
\(113\) −5.86665 −0.551888 −0.275944 0.961174i \(-0.588990\pi\)
−0.275944 + 0.961174i \(0.588990\pi\)
\(114\) 3.05086i 0.285739i
\(115\) 0 0
\(116\) 16.0415i 1.48941i
\(117\) 6.70964i 0.620306i
\(118\) 0.428639i 0.0394595i
\(119\) −0.341219 6.55554i −0.0312795 0.600945i
\(120\) 0 0
\(121\) 9.28100 0.843727
\(122\) 4.79706 0.434305
\(123\) 8.13335i 0.733360i
\(124\) 14.7304i 1.32283i
\(125\) 0 0
\(126\) 0.942691i 0.0839816i
\(127\) 0.280996i 0.0249344i −0.999922 0.0124672i \(-0.996031\pi\)
0.999922 0.0124672i \(-0.00396853\pi\)
\(128\) 8.78568i 0.776552i
\(129\) 5.47949i 0.482443i
\(130\) 0 0
\(131\) 13.4128i 1.17188i 0.810353 + 0.585942i \(0.199275\pi\)
−0.810353 + 0.585942i \(0.800725\pi\)
\(132\) 5.52543i 0.480927i
\(133\) 7.05086 0.611387
\(134\) −2.84299 −0.245597
\(135\) 0 0
\(136\) 5.00000 0.260253i 0.428746 0.0223165i
\(137\) 10.2810i 0.878365i −0.898398 0.439182i \(-0.855268\pi\)
0.898398 0.439182i \(-0.144732\pi\)
\(138\) 3.42372i 0.291446i
\(139\) 18.3017i 1.55233i −0.630528 0.776167i \(-0.717162\pi\)
0.630528 0.776167i \(-0.282838\pi\)
\(140\) 0 0
\(141\) 7.37778i 0.621322i
\(142\) 3.29682 0.276663
\(143\) 4.62222 0.386529
\(144\) 6.52543 0.543786
\(145\) 0 0
\(146\) 1.73329i 0.143448i
\(147\) 9.88739 0.815498
\(148\) 13.4193 1.10306
\(149\) 4.91750 0.402857 0.201429 0.979503i \(-0.435442\pi\)
0.201429 + 0.979503i \(0.435442\pi\)
\(150\) 0 0
\(151\) 12.7239 1.03546 0.517729 0.855545i \(-0.326777\pi\)
0.517729 + 0.855545i \(0.326777\pi\)
\(152\) 5.37778i 0.436196i
\(153\) −0.407896 7.83654i −0.0329764 0.633546i
\(154\) 0.649413 0.0523312
\(155\) 0 0
\(156\) 14.8573i 1.18953i
\(157\) 9.18421i 0.732980i 0.930422 + 0.366490i \(0.119441\pi\)
−0.930422 + 0.366490i \(0.880559\pi\)
\(158\) −2.44938 −0.194862
\(159\) 20.3368i 1.61281i
\(160\) 0 0
\(161\) 7.91258 0.623599
\(162\) 3.44938i 0.271009i
\(163\) −5.07160 −0.397238 −0.198619 0.980077i \(-0.563646\pi\)
−0.198619 + 0.980077i \(0.563646\pi\)
\(164\) 6.99063i 0.545877i
\(165\) 0 0
\(166\) −2.23951 −0.173820
\(167\) −19.8272 −1.53427 −0.767136 0.641484i \(-0.778319\pi\)
−0.767136 + 0.641484i \(0.778319\pi\)
\(168\) 4.28100i 0.330286i
\(169\) 0.571361 0.0439508
\(170\) 0 0
\(171\) 8.42864 0.644554
\(172\) 4.70964i 0.359106i
\(173\) 2.48886 0.189225 0.0946124 0.995514i \(-0.469839\pi\)
0.0946124 + 0.995514i \(0.469839\pi\)
\(174\) 5.80642 0.440184
\(175\) 0 0
\(176\) 4.49532i 0.338847i
\(177\) 3.05086 0.229316
\(178\) 3.61729i 0.271128i
\(179\) 11.6128 0.867985 0.433992 0.900916i \(-0.357104\pi\)
0.433992 + 0.900916i \(0.357104\pi\)
\(180\) 0 0
\(181\) 3.86665i 0.287406i 0.989621 + 0.143703i \(0.0459009\pi\)
−0.989621 + 0.143703i \(0.954099\pi\)
\(182\) −1.74620 −0.129437
\(183\) 34.1432i 2.52394i
\(184\) 6.03503i 0.444909i
\(185\) 0 0
\(186\) 5.33185 0.390950
\(187\) −5.39853 + 0.280996i −0.394779 + 0.0205485i
\(188\) 6.34122i 0.462481i
\(189\) 3.86665 0.281257
\(190\) 0 0
\(191\) −14.9175 −1.07939 −0.539696 0.841860i \(-0.681461\pi\)
−0.539696 + 0.841860i \(0.681461\pi\)
\(192\) −12.7763 −0.922051
\(193\) −17.7462 −1.27740 −0.638700 0.769456i \(-0.720527\pi\)
−0.638700 + 0.769456i \(0.720527\pi\)
\(194\) 4.81579i 0.345754i
\(195\) 0 0
\(196\) −8.49823 −0.607016
\(197\) 9.41927 0.671095 0.335548 0.942023i \(-0.391079\pi\)
0.335548 + 0.942023i \(0.391079\pi\)
\(198\) 0.776312 0.0551701
\(199\) 7.21924i 0.511758i 0.966709 + 0.255879i \(0.0823649\pi\)
−0.966709 + 0.255879i \(0.917635\pi\)
\(200\) 0 0
\(201\) 20.2351i 1.42727i
\(202\) 4.47457i 0.314830i
\(203\) 13.4193i 0.941848i
\(204\) 0.903212 + 17.3526i 0.0632375 + 1.21492i
\(205\) 0 0
\(206\) 2.92195 0.203582
\(207\) 9.45875 0.657429
\(208\) 12.0874i 0.838112i
\(209\) 5.80642i 0.401639i
\(210\) 0 0
\(211\) 14.8825i 1.02455i −0.858821 0.512276i \(-0.828803\pi\)
0.858821 0.512276i \(-0.171197\pi\)
\(212\) 17.4795i 1.20050i
\(213\) 23.4652i 1.60781i
\(214\) 2.10816i 0.144111i
\(215\) 0 0
\(216\) 2.94914i 0.200664i
\(217\) 12.3225i 0.836505i
\(218\) 0.888922 0.0602054
\(219\) 12.3368 0.833642
\(220\) 0 0
\(221\) 14.5161 0.755569i 0.976456 0.0508251i
\(222\) 4.85728i 0.325999i
\(223\) 23.4652i 1.57135i −0.618642 0.785673i \(-0.712317\pi\)
0.618642 0.785673i \(-0.287683\pi\)
\(224\) 5.56491i 0.371821i
\(225\) 0 0
\(226\) 1.82516i 0.121408i
\(227\) −4.34767 −0.288565 −0.144283 0.989537i \(-0.546087\pi\)
−0.144283 + 0.989537i \(0.546087\pi\)
\(228\) −18.6637 −1.23603
\(229\) −6.47457 −0.427852 −0.213926 0.976850i \(-0.568625\pi\)
−0.213926 + 0.976850i \(0.568625\pi\)
\(230\) 0 0
\(231\) 4.62222i 0.304119i
\(232\) −10.2351 −0.671965
\(233\) −18.5303 −1.21396 −0.606982 0.794716i \(-0.707620\pi\)
−0.606982 + 0.794716i \(0.707620\pi\)
\(234\) −2.08742 −0.136459
\(235\) 0 0
\(236\) −2.62222 −0.170692
\(237\) 17.4336i 1.13243i
\(238\) 2.03948 0.106156i 0.132200 0.00688107i
\(239\) 21.4193 1.38550 0.692749 0.721179i \(-0.256399\pi\)
0.692749 + 0.721179i \(0.256399\pi\)
\(240\) 0 0
\(241\) 12.2351i 0.788130i 0.919083 + 0.394065i \(0.128931\pi\)
−0.919083 + 0.394065i \(0.871069\pi\)
\(242\) 2.88739i 0.185608i
\(243\) 17.2652 1.10756
\(244\) 29.3461i 1.87869i
\(245\) 0 0
\(246\) −2.53035 −0.161329
\(247\) 15.6128i 0.993422i
\(248\) −9.39853 −0.596807
\(249\) 15.9398i 1.01014i
\(250\) 0 0
\(251\) −4.52051 −0.285332 −0.142666 0.989771i \(-0.545567\pi\)
−0.142666 + 0.989771i \(0.545567\pi\)
\(252\) 5.76694 0.363283
\(253\) 6.51606i 0.409661i
\(254\) 0.0874201 0.00548523
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) 6.18913i 0.386067i 0.981192 + 0.193034i \(0.0618327\pi\)
−0.981192 + 0.193034i \(0.938167\pi\)
\(258\) 1.70471 0.106131
\(259\) 11.2257 0.697531
\(260\) 0 0
\(261\) 16.0415i 0.992943i
\(262\) −4.17283 −0.257798
\(263\) 8.18913i 0.504963i 0.967602 + 0.252482i \(0.0812468\pi\)
−0.967602 + 0.252482i \(0.918753\pi\)
\(264\) −3.52543 −0.216975
\(265\) 0 0
\(266\) 2.19358i 0.134497i
\(267\) 25.7462 1.57564
\(268\) 17.3921i 1.06239i
\(269\) 3.89829i 0.237683i 0.992913 + 0.118841i \(0.0379180\pi\)
−0.992913 + 0.118841i \(0.962082\pi\)
\(270\) 0 0
\(271\) 8.85728 0.538041 0.269021 0.963134i \(-0.413300\pi\)
0.269021 + 0.963134i \(0.413300\pi\)
\(272\) −0.734825 14.1175i −0.0445553 0.856001i
\(273\) 12.4286i 0.752215i
\(274\) 3.19850 0.193228
\(275\) 0 0
\(276\) −20.9447 −1.26072
\(277\) 1.14272 0.0686595 0.0343297 0.999411i \(-0.489070\pi\)
0.0343297 + 0.999411i \(0.489070\pi\)
\(278\) 5.69381 0.341492
\(279\) 14.7304i 0.881885i
\(280\) 0 0
\(281\) −14.6953 −0.876651 −0.438325 0.898816i \(-0.644428\pi\)
−0.438325 + 0.898816i \(0.644428\pi\)
\(282\) −2.29529 −0.136682
\(283\) 1.97926 0.117655 0.0588273 0.998268i \(-0.481264\pi\)
0.0588273 + 0.998268i \(0.481264\pi\)
\(284\) 20.1684i 1.19677i
\(285\) 0 0
\(286\) 1.43801i 0.0850312i
\(287\) 5.84791i 0.345191i
\(288\) 6.65233i 0.391992i
\(289\) −16.9081 + 1.76494i −0.994596 + 0.103820i
\(290\) 0 0
\(291\) 34.2766 2.00933
\(292\) −10.6035 −0.620522
\(293\) 2.94914i 0.172291i 0.996283 + 0.0861454i \(0.0274550\pi\)
−0.996283 + 0.0861454i \(0.972545\pi\)
\(294\) 3.07604i 0.179399i
\(295\) 0 0
\(296\) 8.56199i 0.497656i
\(297\) 3.18421i 0.184767i
\(298\) 1.52987i 0.0886232i
\(299\) 17.5210i 1.01326i
\(300\) 0 0
\(301\) 3.93978i 0.227085i
\(302\) 3.95851i 0.227787i
\(303\) 31.8479 1.82961
\(304\) 15.1842 0.870874
\(305\) 0 0
\(306\) 2.43801 0.126900i 0.139372 0.00725437i
\(307\) 5.68736i 0.324595i 0.986742 + 0.162297i \(0.0518904\pi\)
−0.986742 + 0.162297i \(0.948110\pi\)
\(308\) 3.97280i 0.226371i
\(309\) 20.7971i 1.18310i
\(310\) 0 0
\(311\) 23.7210i 1.34510i −0.740054 0.672548i \(-0.765200\pi\)
0.740054 0.672548i \(-0.234800\pi\)
\(312\) 9.47949 0.536671
\(313\) 30.8988 1.74650 0.873251 0.487271i \(-0.162008\pi\)
0.873251 + 0.487271i \(0.162008\pi\)
\(314\) −2.85728 −0.161246
\(315\) 0 0
\(316\) 14.9842i 0.842926i
\(317\) 13.7047 0.769733 0.384867 0.922972i \(-0.374247\pi\)
0.384867 + 0.922972i \(0.374247\pi\)
\(318\) −6.32693 −0.354797
\(319\) 11.0509 0.618729
\(320\) 0 0
\(321\) −15.0049 −0.837493
\(322\) 2.46167i 0.137183i
\(323\) −0.949145 18.2351i −0.0528118 1.01463i
\(324\) −21.1017 −1.17232
\(325\) 0 0
\(326\) 1.57781i 0.0873870i
\(327\) 6.32693i 0.349880i
\(328\) 4.46028 0.246278
\(329\) 5.30465i 0.292455i
\(330\) 0 0
\(331\) 24.8988 1.36856 0.684280 0.729219i \(-0.260117\pi\)
0.684280 + 0.729219i \(0.260117\pi\)
\(332\) 13.7003i 0.751900i
\(333\) 13.4193 0.735372
\(334\) 6.16839i 0.337519i
\(335\) 0 0
\(336\) −12.0874 −0.659423
\(337\) 5.28592 0.287942 0.143971 0.989582i \(-0.454013\pi\)
0.143971 + 0.989582i \(0.454013\pi\)
\(338\) 0.177755i 0.00966858i
\(339\) 12.9906 0.705554
\(340\) 0 0
\(341\) 10.1476 0.549526
\(342\) 2.62222i 0.141793i
\(343\) −18.2538 −0.985613
\(344\) −3.00492 −0.162015
\(345\) 0 0
\(346\) 0.774305i 0.0416269i
\(347\) −31.6019 −1.69648 −0.848241 0.529611i \(-0.822338\pi\)
−0.848241 + 0.529611i \(0.822338\pi\)
\(348\) 35.5210i 1.90412i
\(349\) −26.5116 −1.41913 −0.709567 0.704638i \(-0.751109\pi\)
−0.709567 + 0.704638i \(0.751109\pi\)
\(350\) 0 0
\(351\) 8.56199i 0.457005i
\(352\) 4.58274 0.244261
\(353\) 3.71456i 0.197706i −0.995102 0.0988530i \(-0.968483\pi\)
0.995102 0.0988530i \(-0.0315174\pi\)
\(354\) 0.949145i 0.0504465i
\(355\) 0 0
\(356\) −22.1289 −1.17283
\(357\) 0.755569 + 14.5161i 0.0399889 + 0.768271i
\(358\) 3.61285i 0.190945i
\(359\) −10.6637 −0.562809 −0.281404 0.959589i \(-0.590800\pi\)
−0.281404 + 0.959589i \(0.590800\pi\)
\(360\) 0 0
\(361\) 0.612848 0.0322551
\(362\) −1.20294 −0.0632253
\(363\) −20.5511 −1.07865
\(364\) 10.6824i 0.559912i
\(365\) 0 0
\(366\) −10.6222 −0.555232
\(367\) −10.8780 −0.567828 −0.283914 0.958850i \(-0.591633\pi\)
−0.283914 + 0.958850i \(0.591633\pi\)
\(368\) 17.0400 0.888269
\(369\) 6.99063i 0.363918i
\(370\) 0 0
\(371\) 14.6222i 0.759148i
\(372\) 32.6178i 1.69115i
\(373\) 16.5575i 0.857317i −0.903467 0.428659i \(-0.858986\pi\)
0.903467 0.428659i \(-0.141014\pi\)
\(374\) −0.0874201 1.67952i −0.00452039 0.0868461i
\(375\) 0 0
\(376\) 4.04593 0.208653
\(377\) −29.7146 −1.53038
\(378\) 1.20294i 0.0618728i
\(379\) 8.16839i 0.419582i −0.977746 0.209791i \(-0.932722\pi\)
0.977746 0.209791i \(-0.0672783\pi\)
\(380\) 0 0
\(381\) 0.622216i 0.0318771i
\(382\) 4.64095i 0.237452i
\(383\) 36.7926i 1.88001i 0.341154 + 0.940007i \(0.389182\pi\)
−0.341154 + 0.940007i \(0.610818\pi\)
\(384\) 19.4543i 0.992773i
\(385\) 0 0
\(386\) 5.52098i 0.281011i
\(387\) 4.70964i 0.239404i
\(388\) −29.4608 −1.49564
\(389\) −12.5348 −0.635539 −0.317770 0.948168i \(-0.602934\pi\)
−0.317770 + 0.948168i \(0.602934\pi\)
\(390\) 0 0
\(391\) −1.06515 20.4637i −0.0538667 1.03489i
\(392\) 5.42219i 0.273862i
\(393\) 29.7003i 1.49818i
\(394\) 2.93041i 0.147632i
\(395\) 0 0
\(396\) 4.74912i 0.238652i
\(397\) 32.1017 1.61114 0.805569 0.592502i \(-0.201860\pi\)
0.805569 + 0.592502i \(0.201860\pi\)
\(398\) −2.24596 −0.112580
\(399\) −15.6128 −0.781620
\(400\) 0 0
\(401\) 13.0321i 0.650793i 0.945578 + 0.325396i \(0.105498\pi\)
−0.945578 + 0.325396i \(0.894502\pi\)
\(402\) 6.29529 0.313980
\(403\) −27.2859 −1.35921
\(404\) −27.3733 −1.36187
\(405\) 0 0
\(406\) −4.17484 −0.207194
\(407\) 9.24443i 0.458229i
\(408\) −11.0716 + 0.576283i −0.548126 + 0.0285302i
\(409\) −3.12399 −0.154471 −0.0772356 0.997013i \(-0.524609\pi\)
−0.0772356 + 0.997013i \(0.524609\pi\)
\(410\) 0 0
\(411\) 22.7654i 1.12294i
\(412\) 17.8751i 0.880643i
\(413\) −2.19358 −0.107939
\(414\) 2.94269i 0.144625i
\(415\) 0 0
\(416\) −12.3225 −0.604159
\(417\) 40.5259i 1.98456i
\(418\) 1.80642 0.0883551
\(419\) 13.1590i 0.642860i 0.946933 + 0.321430i \(0.104164\pi\)
−0.946933 + 0.321430i \(0.895836\pi\)
\(420\) 0 0
\(421\) −27.6686 −1.34849 −0.674243 0.738509i \(-0.735530\pi\)
−0.674243 + 0.738509i \(0.735530\pi\)
\(422\) 4.63005 0.225387
\(423\) 6.34122i 0.308321i
\(424\) 11.1526 0.541616
\(425\) 0 0
\(426\) −7.30021 −0.353696
\(427\) 24.5491i 1.18801i
\(428\) 12.8968 0.623388
\(429\) −10.2351 −0.494154
\(430\) 0 0
\(431\) 17.6795i 0.851593i −0.904819 0.425796i \(-0.859994\pi\)
0.904819 0.425796i \(-0.140006\pi\)
\(432\) 8.32693 0.400630
\(433\) 24.9447i 1.19877i −0.800462 0.599383i \(-0.795413\pi\)
0.800462 0.599383i \(-0.204587\pi\)
\(434\) −3.83362 −0.184020
\(435\) 0 0
\(436\) 5.43801i 0.260433i
\(437\) 22.0098 1.05287
\(438\) 3.83807i 0.183390i
\(439\) 11.9748i 0.571527i −0.958300 0.285763i \(-0.907753\pi\)
0.958300 0.285763i \(-0.0922471\pi\)
\(440\) 0 0
\(441\) −8.49823 −0.404678
\(442\) 0.235063 + 4.51606i 0.0111808 + 0.214807i
\(443\) 30.6909i 1.45817i −0.684424 0.729084i \(-0.739946\pi\)
0.684424 0.729084i \(-0.260054\pi\)
\(444\) −29.7146 −1.41019
\(445\) 0 0
\(446\) 7.30021 0.345675
\(447\) −10.8889 −0.515028
\(448\) 9.18622 0.434008
\(449\) 13.6543i 0.644388i −0.946674 0.322194i \(-0.895580\pi\)
0.946674 0.322194i \(-0.104420\pi\)
\(450\) 0 0
\(451\) −4.81579 −0.226767
\(452\) −11.1655 −0.525180
\(453\) −28.1748 −1.32377
\(454\) 1.35260i 0.0634804i
\(455\) 0 0
\(456\) 11.9081i 0.557649i
\(457\) 8.20787i 0.383948i 0.981400 + 0.191974i \(0.0614889\pi\)
−0.981400 + 0.191974i \(0.938511\pi\)
\(458\) 2.01429i 0.0941216i
\(459\) −0.520505 10.0000i −0.0242951 0.466760i
\(460\) 0 0
\(461\) 5.18421 0.241453 0.120726 0.992686i \(-0.461478\pi\)
0.120726 + 0.992686i \(0.461478\pi\)
\(462\) −1.43801 −0.0669022
\(463\) 23.1985i 1.07813i 0.842266 + 0.539063i \(0.181221\pi\)
−0.842266 + 0.539063i \(0.818779\pi\)
\(464\) 28.8988i 1.34159i
\(465\) 0 0
\(466\) 5.76494i 0.267056i
\(467\) 35.2400i 1.63071i 0.578960 + 0.815356i \(0.303459\pi\)
−0.578960 + 0.815356i \(0.696541\pi\)
\(468\) 12.7699i 0.590287i
\(469\) 14.5491i 0.671814i
\(470\) 0 0
\(471\) 20.3368i 0.937069i
\(472\) 1.67307i 0.0770093i
\(473\) 3.24443 0.149179
\(474\) 5.42372 0.249120
\(475\) 0 0
\(476\) −0.649413 12.4766i −0.0297658 0.571863i
\(477\) 17.4795i 0.800331i
\(478\) 6.66370i 0.304791i
\(479\) 11.4445i 0.522911i −0.965216 0.261455i \(-0.915798\pi\)
0.965216 0.261455i \(-0.0842024\pi\)
\(480\) 0 0
\(481\) 24.8573i 1.13339i
\(482\) −3.80642 −0.173378
\(483\) −17.5210 −0.797232
\(484\) 17.6637 0.802896
\(485\) 0 0
\(486\) 5.37133i 0.243649i
\(487\) −29.7540 −1.34828 −0.674142 0.738602i \(-0.735486\pi\)
−0.674142 + 0.738602i \(0.735486\pi\)
\(488\) 18.7239 0.847592
\(489\) 11.2301 0.507845
\(490\) 0 0
\(491\) 25.4193 1.14716 0.573578 0.819151i \(-0.305555\pi\)
0.573578 + 0.819151i \(0.305555\pi\)
\(492\) 15.4795i 0.697870i
\(493\) 34.7052 1.80642i 1.56304 0.0813572i
\(494\) −4.85728 −0.218539
\(495\) 0 0
\(496\) 26.5368i 1.19154i
\(497\) 16.8716i 0.756793i
\(498\) 4.95899 0.222218
\(499\) 14.8035i 0.662696i −0.943509 0.331348i \(-0.892497\pi\)
0.943509 0.331348i \(-0.107503\pi\)
\(500\) 0 0
\(501\) 43.9037 1.96147
\(502\) 1.40636i 0.0627691i
\(503\) −4.34767 −0.193853 −0.0969266 0.995292i \(-0.530901\pi\)
−0.0969266 + 0.995292i \(0.530901\pi\)
\(504\) 3.67952i 0.163899i
\(505\) 0 0
\(506\) 2.02720 0.0901199
\(507\) −1.26517 −0.0561884
\(508\) 0.534795i 0.0237277i
\(509\) 15.9813 0.708357 0.354179 0.935178i \(-0.384761\pi\)
0.354179 + 0.935178i \(0.384761\pi\)
\(510\) 0 0
\(511\) −8.87019 −0.392394
\(512\) 20.3111i 0.897633i
\(513\) 10.7556 0.474870
\(514\) −1.92549 −0.0849296
\(515\) 0 0
\(516\) 10.4286i 0.459095i
\(517\) −4.36842 −0.192123
\(518\) 3.49240i 0.153447i
\(519\) −5.51114 −0.241912
\(520\) 0 0
\(521\) 27.9081i 1.22268i 0.791369 + 0.611339i \(0.209369\pi\)
−0.791369 + 0.611339i \(0.790631\pi\)
\(522\) −4.99063 −0.218434
\(523\) 15.8938i 0.694989i 0.937682 + 0.347495i \(0.112968\pi\)
−0.937682 + 0.347495i \(0.887032\pi\)
\(524\) 25.5274i 1.11517i
\(525\) 0 0
\(526\) −2.54770 −0.111085
\(527\) 31.8687 1.65878i 1.38822 0.0722576i
\(528\) 9.95407i 0.433195i
\(529\) 1.69979 0.0739040
\(530\) 0 0
\(531\) −2.62222 −0.113794
\(532\) 13.4193 0.581799
\(533\) 12.9491 0.560890
\(534\) 8.00984i 0.346620i
\(535\) 0 0
\(536\) −11.0968 −0.479308
\(537\) −25.7146 −1.10967
\(538\) −1.21279 −0.0522870
\(539\) 5.85436i 0.252165i
\(540\) 0 0
\(541\) 24.2449i 1.04237i −0.853444 0.521185i \(-0.825490\pi\)
0.853444 0.521185i \(-0.174510\pi\)
\(542\) 2.75557i 0.118362i
\(543\) 8.56199i 0.367430i
\(544\) 14.3921 0.749115i 0.617055 0.0321181i
\(545\) 0 0
\(546\) 3.86665 0.165477
\(547\) 11.7255 0.501344 0.250672 0.968072i \(-0.419348\pi\)
0.250672 + 0.968072i \(0.419348\pi\)
\(548\) 19.5669i 0.835857i
\(549\) 29.3461i 1.25246i
\(550\) 0 0
\(551\) 37.3274i 1.59020i
\(552\) 13.3635i 0.568788i
\(553\) 12.5348i 0.533034i
\(554\) 0.355509i 0.0151041i
\(555\) 0 0
\(556\) 34.8321i 1.47721i
\(557\) 31.4336i 1.33188i 0.746004 + 0.665941i \(0.231970\pi\)
−0.746004 + 0.665941i \(0.768030\pi\)
\(558\) −4.58274 −0.194003
\(559\) −8.72393 −0.368983
\(560\) 0 0
\(561\) 11.9541 0.622216i 0.504701 0.0262700i
\(562\) 4.57184i 0.192851i
\(563\) 11.9353i 0.503014i 0.967855 + 0.251507i \(0.0809262\pi\)
−0.967855 + 0.251507i \(0.919074\pi\)
\(564\) 14.0415i 0.591253i
\(565\) 0 0
\(566\) 0.615762i 0.0258824i
\(567\) −17.6523 −0.741328
\(568\) 12.8682 0.539937
\(569\) −1.14272 −0.0479054 −0.0239527 0.999713i \(-0.507625\pi\)
−0.0239527 + 0.999713i \(0.507625\pi\)
\(570\) 0 0
\(571\) 26.7402i 1.11904i 0.828816 + 0.559522i \(0.189015\pi\)
−0.828816 + 0.559522i \(0.810985\pi\)
\(572\) 8.79706 0.367823
\(573\) 33.0321 1.37994
\(574\) 1.81933 0.0759374
\(575\) 0 0
\(576\) 10.9813 0.457553
\(577\) 27.9956i 1.16547i −0.812662 0.582735i \(-0.801983\pi\)
0.812662 0.582735i \(-0.198017\pi\)
\(578\) −0.549086 5.26025i −0.0228389 0.218798i
\(579\) 39.2958 1.63308
\(580\) 0 0
\(581\) 11.4608i 0.475472i
\(582\) 10.6637i 0.442025i
\(583\) −12.0415 −0.498707
\(584\) 6.76541i 0.279955i
\(585\) 0 0
\(586\) −0.917502 −0.0379017
\(587\) 6.60793i 0.272738i −0.990658 0.136369i \(-0.956457\pi\)
0.990658 0.136369i \(-0.0435433\pi\)
\(588\) 18.8178 0.776033
\(589\) 34.2766i 1.41234i
\(590\) 0 0
\(591\) −20.8573 −0.857954
\(592\) 24.1748 0.993580
\(593\) 4.82564i 0.198165i −0.995079 0.0990826i \(-0.968409\pi\)
0.995079 0.0990826i \(-0.0315908\pi\)
\(594\) 0.990632 0.0406461
\(595\) 0 0
\(596\) 9.35905 0.383362
\(597\) 15.9857i 0.654252i
\(598\) −5.45091 −0.222904
\(599\) 39.0005 1.59352 0.796758 0.604298i \(-0.206546\pi\)
0.796758 + 0.604298i \(0.206546\pi\)
\(600\) 0 0
\(601\) 7.19405i 0.293452i −0.989177 0.146726i \(-0.953127\pi\)
0.989177 0.146726i \(-0.0468735\pi\)
\(602\) −1.22570 −0.0499556
\(603\) 17.3921i 0.708260i
\(604\) 24.2163 0.985348
\(605\) 0 0
\(606\) 9.90813i 0.402490i
\(607\) 7.23353 0.293600 0.146800 0.989166i \(-0.453103\pi\)
0.146800 + 0.989166i \(0.453103\pi\)
\(608\) 15.4795i 0.627776i
\(609\) 29.7146i 1.20409i
\(610\) 0 0
\(611\) 11.7462 0.475200
\(612\) −0.776312 14.9146i −0.0313806 0.602886i
\(613\) 14.7654i 0.596369i 0.954508 + 0.298185i \(0.0963811\pi\)
−0.954508 + 0.298185i \(0.903619\pi\)
\(614\) −1.76938 −0.0714065
\(615\) 0 0
\(616\) 2.53480 0.102130
\(617\) 10.5205 0.423540 0.211770 0.977320i \(-0.432077\pi\)
0.211770 + 0.977320i \(0.432077\pi\)
\(618\) −6.47013 −0.260267
\(619\) 7.94623i 0.319386i 0.987167 + 0.159693i \(0.0510504\pi\)
−0.987167 + 0.159693i \(0.948950\pi\)
\(620\) 0 0
\(621\) 12.0701 0.484355
\(622\) 7.37979 0.295903
\(623\) −18.5116 −0.741652
\(624\) 26.7654i 1.07147i
\(625\) 0 0
\(626\) 9.61285i 0.384207i
\(627\) 12.8573i 0.513470i
\(628\) 17.4795i 0.697508i
\(629\) −1.51114 29.0321i −0.0602530 1.15759i
\(630\) 0 0
\(631\) −14.2636 −0.567827 −0.283913 0.958850i \(-0.591633\pi\)
−0.283913 + 0.958850i \(0.591633\pi\)
\(632\) −9.56046 −0.380295
\(633\) 32.9545i 1.30983i
\(634\) 4.26364i 0.169331i
\(635\) 0 0
\(636\) 38.7052i 1.53476i
\(637\) 15.7418i 0.623711i
\(638\) 3.43801i 0.136112i
\(639\) 20.1684i 0.797849i
\(640\) 0 0
\(641\) 25.4509i 1.00525i −0.864504 0.502625i \(-0.832368\pi\)
0.864504 0.502625i \(-0.167632\pi\)
\(642\) 4.66815i 0.184237i
\(643\) −16.1126 −0.635419 −0.317710 0.948188i \(-0.602914\pi\)
−0.317710 + 0.948188i \(0.602914\pi\)
\(644\) 15.0593 0.593420
\(645\) 0 0
\(646\) 5.67307 0.295286i 0.223204 0.0116179i
\(647\) 40.4558i 1.59048i −0.606293 0.795242i \(-0.707344\pi\)
0.606293 0.795242i \(-0.292656\pi\)
\(648\) 13.4637i 0.528903i
\(649\) 1.80642i 0.0709083i
\(650\) 0 0
\(651\) 27.2859i 1.06942i
\(652\) −9.65233 −0.378014
\(653\) −6.87601 −0.269079 −0.134540 0.990908i \(-0.542956\pi\)
−0.134540 + 0.990908i \(0.542956\pi\)
\(654\) −1.96836 −0.0769689
\(655\) 0 0
\(656\) 12.5936i 0.491699i
\(657\) −10.6035 −0.413681
\(658\) 1.65032 0.0643361
\(659\) −16.0286 −0.624385 −0.312192 0.950019i \(-0.601063\pi\)
−0.312192 + 0.950019i \(0.601063\pi\)
\(660\) 0 0
\(661\) −31.1655 −1.21220 −0.606098 0.795390i \(-0.707266\pi\)
−0.606098 + 0.795390i \(0.707266\pi\)
\(662\) 7.74620i 0.301065i
\(663\) −32.1432 + 1.67307i −1.24834 + 0.0649767i
\(664\) −8.74128 −0.339227
\(665\) 0 0
\(666\) 4.17484i 0.161772i
\(667\) 41.8894i 1.62196i
\(668\) −37.7353 −1.46002
\(669\) 51.9595i 2.00887i
\(670\) 0 0
\(671\) −20.2163 −0.780443
\(672\) 12.3225i 0.475350i
\(673\) −19.8479 −0.765081 −0.382540 0.923939i \(-0.624951\pi\)
−0.382540 + 0.923939i \(0.624951\pi\)
\(674\) 1.64449i 0.0633434i
\(675\) 0 0
\(676\) 1.08742 0.0418239
\(677\) 28.8385 1.10836 0.554178 0.832398i \(-0.313033\pi\)
0.554178 + 0.832398i \(0.313033\pi\)
\(678\) 4.04149i 0.155212i
\(679\) −24.6450 −0.945787
\(680\) 0 0
\(681\) 9.62714 0.368913
\(682\) 3.15701i 0.120888i
\(683\) 19.2050 0.734857 0.367429 0.930052i \(-0.380238\pi\)
0.367429 + 0.930052i \(0.380238\pi\)
\(684\) 16.0415 0.613362
\(685\) 0 0
\(686\) 5.67890i 0.216821i
\(687\) 14.3368 0.546982
\(688\) 8.48442i 0.323465i
\(689\) 32.3783 1.23351
\(690\) 0 0
\(691\) 34.5555i 1.31455i −0.753649 0.657277i \(-0.771708\pi\)
0.753649 0.657277i \(-0.228292\pi\)
\(692\) 4.73683 0.180067
\(693\) 3.97280i 0.150914i
\(694\) 9.83161i 0.373203i
\(695\) 0 0
\(696\) 22.6637 0.859065
\(697\) −15.1240 + 0.787212i −0.572862 + 0.0298178i
\(698\) 8.24797i 0.312190i
\(699\) 41.0321 1.55198
\(700\) 0 0
\(701\) −20.9131 −0.789875 −0.394938 0.918708i \(-0.629234\pi\)
−0.394938 + 0.918708i \(0.629234\pi\)
\(702\) −2.66370 −0.100535
\(703\) 31.2257 1.17770
\(704\) 7.56491i 0.285113i
\(705\) 0 0
\(706\) 1.15563 0.0434926
\(707\) −22.8988 −0.861197
\(708\) 5.80642 0.218219
\(709\) 32.9906i 1.23899i 0.785001 + 0.619495i \(0.212662\pi\)
−0.785001 + 0.619495i \(0.787338\pi\)
\(710\) 0 0
\(711\) 14.9842i 0.561951i
\(712\) 14.1191i 0.529134i
\(713\) 38.4657i 1.44055i
\(714\) −4.51606 + 0.235063i −0.169009 + 0.00879702i
\(715\) 0 0
\(716\) 22.1017 0.825980
\(717\) −47.4291 −1.77127
\(718\) 3.31756i 0.123810i
\(719\) 10.5141i 0.392108i 0.980593 + 0.196054i \(0.0628128\pi\)
−0.980593 + 0.196054i \(0.937187\pi\)
\(720\) 0 0
\(721\) 14.9532i 0.556885i
\(722\) 0.190662i 0.00709569i
\(723\) 27.0923i 1.00758i
\(724\) 7.35905i 0.273497i
\(725\) 0 0
\(726\) 6.39361i 0.237289i
\(727\) 43.2815i 1.60522i −0.596503 0.802610i \(-0.703444\pi\)
0.596503 0.802610i \(-0.296556\pi\)
\(728\) −6.81579 −0.252610
\(729\) −4.96836 −0.184013
\(730\) 0 0
\(731\) 10.1891 0.530350i 0.376859 0.0196157i
\(732\) 64.9817i 2.40179i
\(733\) 22.8859i 0.845308i −0.906291 0.422654i \(-0.861098\pi\)
0.906291 0.422654i \(-0.138902\pi\)
\(734\) 3.38424i 0.124914i
\(735\) 0 0
\(736\) 17.3713i 0.640316i
\(737\) 11.9813 0.441336
\(738\) 2.17484 0.0800570
\(739\) −0.815792 −0.0300094 −0.0150047 0.999887i \(-0.504776\pi\)
−0.0150047 + 0.999887i \(0.504776\pi\)
\(740\) 0 0
\(741\) 34.5718i 1.27003i
\(742\) 4.54909 0.167002
\(743\) −30.1639 −1.10661 −0.553304 0.832980i \(-0.686633\pi\)
−0.553304 + 0.832980i \(0.686633\pi\)
\(744\) 20.8113 0.762981
\(745\) 0 0
\(746\) 5.15118 0.188598
\(747\) 13.7003i 0.501267i
\(748\) −10.2745 + 0.534795i −0.375674 + 0.0195541i
\(749\) 10.7886 0.394207
\(750\) 0 0
\(751\) 2.17728i 0.0794500i 0.999211 + 0.0397250i \(0.0126482\pi\)
−0.999211 + 0.0397250i \(0.987352\pi\)
\(752\) 11.4237i 0.416580i
\(753\) 10.0098 0.364779
\(754\) 9.24443i 0.336662i
\(755\) 0 0
\(756\) 7.35905 0.267646
\(757\) 29.3230i 1.06576i −0.846190 0.532881i \(-0.821110\pi\)
0.846190 0.532881i \(-0.178890\pi\)
\(758\) 2.54125 0.0923023
\(759\) 14.4286i 0.523726i
\(760\) 0 0
\(761\) 49.2212 1.78427 0.892134 0.451770i \(-0.149207\pi\)
0.892134 + 0.451770i \(0.149207\pi\)
\(762\) −0.193576 −0.00701252
\(763\) 4.54909i 0.164688i
\(764\) −28.3912 −1.02716
\(765\) 0 0
\(766\) −11.4465 −0.413578
\(767\) 4.85728i 0.175386i
\(768\) −19.5002 −0.703654
\(769\) −37.0178 −1.33490 −0.667449 0.744656i \(-0.732614\pi\)
−0.667449 + 0.744656i \(0.732614\pi\)
\(770\) 0 0
\(771\) 13.7047i 0.493563i
\(772\) −33.7748 −1.21558
\(773\) 4.20787i 0.151346i −0.997133 0.0756732i \(-0.975889\pi\)
0.997133 0.0756732i \(-0.0241106\pi\)
\(774\) −1.46520 −0.0526657
\(775\) 0 0
\(776\) 18.7971i 0.674775i
\(777\) −24.8573 −0.891750
\(778\) 3.89967i 0.139810i
\(779\) 16.2667i 0.582815i
\(780\) 0 0
\(781\) −13.8938 −0.497161
\(782\) 6.36641 0.331375i 0.227662 0.0118499i
\(783\) 20.4701i 0.731543i
\(784\) −15.3096 −0.546771
\(785\) 0 0
\(786\) 9.23999 0.329579
\(787\) 23.8557 0.850366 0.425183 0.905108i \(-0.360210\pi\)
0.425183 + 0.905108i \(0.360210\pi\)
\(788\) 17.9269 0.638618
\(789\) 18.1334i 0.645564i
\(790\) 0 0
\(791\) −9.34031 −0.332103
\(792\) 3.03011 0.107670
\(793\) 54.3595 1.93036
\(794\) 9.98709i 0.354429i
\(795\) 0 0
\(796\) 13.7397i 0.486992i
\(797\) 34.4415i 1.21998i 0.792408 + 0.609991i \(0.208827\pi\)
−0.792408 + 0.609991i \(0.791173\pi\)
\(798\) 4.85728i 0.171946i
\(799\) −13.7190 + 0.714082i −0.485343 + 0.0252624i
\(800\) 0 0
\(801\) −22.1289 −0.781886
\(802\) −4.05439 −0.143166
\(803\) 7.30465i 0.257776i
\(804\) 38.5116i 1.35820i
\(805\) 0 0
\(806\) 8.48886i 0.299007i
\(807\) 8.63206i 0.303863i
\(808\) 17.4652i 0.614424i
\(809\) 40.2578i 1.41539i 0.706518 + 0.707695i \(0.250265\pi\)
−0.706518 + 0.707695i \(0.749735\pi\)
\(810\) 0 0
\(811\) 20.4953i 0.719688i 0.933013 + 0.359844i \(0.117170\pi\)
−0.933013 + 0.359844i \(0.882830\pi\)
\(812\) 25.5397i 0.896268i
\(813\) −19.6128 −0.687853
\(814\) 2.87601 0.100804
\(815\) 0 0
\(816\) 1.62714 + 31.2607i 0.0569612 + 1.09434i
\(817\) 10.9590i 0.383407i
\(818\) 0.971896i 0.0339816i
\(819\) 10.6824i 0.373275i
\(820\) 0 0
\(821\) 33.6958i 1.17599i 0.808864 + 0.587996i \(0.200083\pi\)
−0.808864 + 0.587996i \(0.799917\pi\)
\(822\) −7.08250 −0.247030
\(823\) 16.6113 0.579034 0.289517 0.957173i \(-0.406505\pi\)
0.289517 + 0.957173i \(0.406505\pi\)
\(824\) 11.4050 0.397311
\(825\) 0 0
\(826\) 0.682439i 0.0237451i
\(827\) 0.316030 0.0109894 0.00549472 0.999985i \(-0.498251\pi\)
0.00549472 + 0.999985i \(0.498251\pi\)
\(828\) 18.0020 0.625613
\(829\) −18.2034 −0.632231 −0.316115 0.948721i \(-0.602379\pi\)
−0.316115 + 0.948721i \(0.602379\pi\)
\(830\) 0 0
\(831\) −2.53035 −0.0877769
\(832\) 20.3412i 0.705205i
\(833\) 0.956981 + 18.3856i 0.0331574 + 0.637024i
\(834\) −12.6079 −0.436577
\(835\) 0 0
\(836\) 11.0509i 0.382202i
\(837\) 18.7971i 0.649721i
\(838\) −4.09387 −0.141421
\(839\) 2.63851i 0.0910916i −0.998962 0.0455458i \(-0.985497\pi\)
0.998962 0.0455458i \(-0.0145027\pi\)
\(840\) 0 0
\(841\) −42.0420 −1.44972
\(842\) 8.60793i 0.296649i
\(843\) 32.5402 1.12074
\(844\) 28.3245i 0.974969i
\(845\) 0 0
\(846\) 1.97280 0.0678264
\(847\) 14.7763 0.507720
\(848\) 31.4893i 1.08135i
\(849\) −4.38271 −0.150414
\(850\) 0 0
\(851\) 35.0420 1.20122
\(852\) 44.6593i 1.53000i
\(853\) 4.68244 0.160324 0.0801618 0.996782i \(-0.474456\pi\)
0.0801618 + 0.996782i \(0.474456\pi\)
\(854\) 7.63741 0.261347
\(855\) 0 0
\(856\) 8.22861i 0.281248i
\(857\) 47.3689 1.61809 0.809045 0.587746i \(-0.199985\pi\)
0.809045 + 0.587746i \(0.199985\pi\)
\(858\) 3.18421i 0.108707i
\(859\) −16.1748 −0.551878 −0.275939 0.961175i \(-0.588989\pi\)
−0.275939 + 0.961175i \(0.588989\pi\)
\(860\) 0 0
\(861\) 12.9491i 0.441306i
\(862\) 5.50024 0.187339
\(863\) 32.5674i 1.10861i −0.832315 0.554303i \(-0.812985\pi\)
0.832315 0.554303i \(-0.187015\pi\)
\(864\) 8.48886i 0.288797i
\(865\) 0 0
\(866\) 7.76049 0.263712
\(867\) 37.4400 3.90813i 1.27153 0.132727i
\(868\) 23.4523i 0.796023i
\(869\) 10.3225 0.350166
\(870\) 0 0
\(871\) −32.2163 −1.09161
\(872\) 3.46965 0.117497
\(873\) −29.4608 −0.997096
\(874\) 6.84743i 0.231618i
\(875\) 0 0
\(876\) 23.4795 0.793299
\(877\) 13.2543 0.447565 0.223783 0.974639i \(-0.428159\pi\)
0.223783 + 0.974639i \(0.428159\pi\)
\(878\) 3.72546 0.125728
\(879\) 6.53035i 0.220263i
\(880\) 0 0
\(881\) 2.78721i 0.0939035i 0.998897 + 0.0469518i \(0.0149507\pi\)
−0.998897 + 0.0469518i \(0.985049\pi\)
\(882\) 2.64387i 0.0890236i
\(883\) 27.1985i 0.915302i −0.889132 0.457651i \(-0.848691\pi\)
0.889132 0.457651i \(-0.151309\pi\)
\(884\) 27.6271 1.43801i 0.929201 0.0483654i
\(885\) 0 0
\(886\) 9.54818 0.320777
\(887\) 48.2657 1.62060 0.810301 0.586014i \(-0.199304\pi\)
0.810301 + 0.586014i \(0.199304\pi\)
\(888\) 18.9590i 0.636222i
\(889\) 0.447375i 0.0150045i
\(890\) 0 0
\(891\) 14.5368i 0.487001i
\(892\) 44.6593i 1.49530i
\(893\) 14.7556i 0.493776i
\(894\) 3.38763i 0.113299i
\(895\) 0 0
\(896\) 13.9877i 0.467297i
\(897\) 38.7971i 1.29540i
\(898\) 4.24797 0.141757
\(899\) −65.2355 −2.17573
\(900\) 0 0
\(901\) −37.8163 + 1.96836i −1.25984 + 0.0655755i
\(902\) 1.49823i 0.0498856i
\(903\) 8.72393i 0.290314i
\(904\) 7.12399i 0.236940i
\(905\) 0 0
\(906\) 8.76541i 0.291211i
\(907\) −8.93825 −0.296790 −0.148395 0.988928i \(-0.547411\pi\)
−0.148395 + 0.988928i \(0.547411\pi\)
\(908\) −8.27454 −0.274600
\(909\) −27.3733 −0.907916
\(910\) 0 0
\(911\) 51.6795i 1.71222i 0.516794 + 0.856110i \(0.327125\pi\)
−0.516794 + 0.856110i \(0.672875\pi\)
\(912\) −33.6227 −1.11336
\(913\) 9.43801 0.312352
\(914\) −2.55353 −0.0844633
\(915\) 0 0
\(916\) −12.3225 −0.407146
\(917\) 21.3546i 0.705191i
\(918\) 3.11108 0.161933i 0.102681 0.00534460i
\(919\) −18.9719 −0.625825 −0.312913 0.949782i \(-0.601305\pi\)
−0.312913 + 0.949782i \(0.601305\pi\)
\(920\) 0 0
\(921\) 12.5936i 0.414974i
\(922\) 1.61285i 0.0531163i
\(923\) 37.3590 1.22969
\(924\) 8.79706i 0.289402i
\(925\) 0 0
\(926\) −7.21723 −0.237173
\(927\) 17.8751i 0.587096i
\(928\) −29.4608 −0.967097
\(929\) 50.3912i 1.65328i −0.562731 0.826640i \(-0.690249\pi\)
0.562731 0.826640i \(-0.309751\pi\)
\(930\) 0 0
\(931\) −19.7748 −0.648092
\(932\) −35.2672 −1.15521
\(933\) 52.5259i 1.71962i
\(934\) −10.9634 −0.358735
\(935\) 0 0
\(936\) −8.14764 −0.266314
\(937\) 58.1530i 1.89978i −0.312589 0.949889i \(-0.601196\pi\)
0.312589 0.949889i \(-0.398804\pi\)
\(938\) −4.52633 −0.147790
\(939\) −68.4197 −2.23279
\(940\) 0 0
\(941\) 9.25734i 0.301781i −0.988551 0.150890i \(-0.951786\pi\)
0.988551 0.150890i \(-0.0482140\pi\)
\(942\) 6.32693 0.206142
\(943\) 18.2548i 0.594457i
\(944\) −4.72393 −0.153751
\(945\) 0 0
\(946\) 1.00937i 0.0328174i
\(947\) −43.9516 −1.42824 −0.714118 0.700025i \(-0.753172\pi\)
−0.714118 + 0.700025i \(0.753172\pi\)
\(948\) 33.1798i 1.07763i
\(949\) 19.6414i 0.637588i
\(950\) 0 0
\(951\) −30.3466 −0.984057
\(952\) 7.96052 0.414349i 0.258002 0.0134291i
\(953\) 38.1891i 1.23707i −0.785758 0.618534i \(-0.787727\pi\)
0.785758 0.618534i \(-0.212273\pi\)
\(954\) 5.43801 0.176062
\(955\) 0 0
\(956\) 40.7654 1.31845
\(957\) −24.4701 −0.791007
\(958\) 3.56046 0.115033
\(959\) 16.3684i 0.528564i
\(960\) 0 0
\(961\) −28.9037 −0.932377
\(962\) −7.73329 −0.249331
\(963\) 12.8968 0.415592
\(964\) 23.2859i 0.749989i
\(965\) 0 0
\(966\) 5.45091i 0.175380i
\(967\) 7.36043i 0.236696i 0.992972 + 0.118348i \(0.0377598\pi\)
−0.992972 + 0.118348i \(0.962240\pi\)
\(968\) 11.2701i 0.362235i
\(969\) 2.10171 + 40.3783i 0.0675167 + 1.29714i
\(970\) 0 0
\(971\) −35.2257 −1.13045 −0.565223 0.824938i \(-0.691210\pi\)
−0.565223 + 0.824938i \(0.691210\pi\)
\(972\) 32.8593 1.05396
\(973\) 29.1383i 0.934130i
\(974\) 9.25671i 0.296604i
\(975\) 0 0
\(976\) 52.8671i 1.69224i
\(977\) 46.9273i 1.50134i 0.660678 + 0.750669i \(0.270269\pi\)
−0.660678 + 0.750669i \(0.729731\pi\)
\(978\) 3.49378i 0.111719i
\(979\) 15.2444i 0.487214i
\(980\) 0 0
\(981\) 5.43801i 0.173622i
\(982\) 7.90813i 0.252359i
\(983\) 8.21432 0.261996 0.130998 0.991383i \(-0.458182\pi\)
0.130998 + 0.991383i \(0.458182\pi\)
\(984\) −9.87649 −0.314851
\(985\) 0 0
\(986\) 0.561993 + 10.7971i 0.0178975 + 0.343848i
\(987\) 11.7462i 0.373886i
\(988\) 29.7146i 0.945346i
\(989\) 12.2983i 0.391065i
\(990\) 0 0
\(991\) 17.7683i 0.564430i −0.959351 0.282215i \(-0.908931\pi\)
0.959351 0.282215i \(-0.0910691\pi\)
\(992\) −27.0529 −0.858929
\(993\) −55.1338 −1.74962
\(994\) 5.24888 0.166484
\(995\) 0 0
\(996\) 30.3368i 0.961257i
\(997\) 11.6958 0.370410 0.185205 0.982700i \(-0.440705\pi\)
0.185205 + 0.982700i \(0.440705\pi\)
\(998\) 4.60549 0.145784
\(999\) 17.1240 0.541779
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.c.a.424.4 6
5.2 odd 4 85.2.d.a.16.4 yes 6
5.3 odd 4 425.2.d.c.101.3 6
5.4 even 2 425.2.c.b.424.3 6
15.2 even 4 765.2.g.b.271.3 6
17.16 even 2 425.2.c.b.424.4 6
20.7 even 4 1360.2.c.f.1121.1 6
85.13 odd 4 7225.2.a.q.1.2 3
85.33 odd 4 425.2.d.c.101.4 6
85.38 odd 4 7225.2.a.r.1.2 3
85.47 odd 4 1445.2.a.j.1.2 3
85.67 odd 4 85.2.d.a.16.3 6
85.72 odd 4 1445.2.a.k.1.2 3
85.84 even 2 inner 425.2.c.a.424.3 6
255.152 even 4 765.2.g.b.271.4 6
340.67 even 4 1360.2.c.f.1121.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.3 6 85.67 odd 4
85.2.d.a.16.4 yes 6 5.2 odd 4
425.2.c.a.424.3 6 85.84 even 2 inner
425.2.c.a.424.4 6 1.1 even 1 trivial
425.2.c.b.424.3 6 5.4 even 2
425.2.c.b.424.4 6 17.16 even 2
425.2.d.c.101.3 6 5.3 odd 4
425.2.d.c.101.4 6 85.33 odd 4
765.2.g.b.271.3 6 15.2 even 4
765.2.g.b.271.4 6 255.152 even 4
1360.2.c.f.1121.1 6 20.7 even 4
1360.2.c.f.1121.6 6 340.67 even 4
1445.2.a.j.1.2 3 85.47 odd 4
1445.2.a.k.1.2 3 85.72 odd 4
7225.2.a.q.1.2 3 85.13 odd 4
7225.2.a.r.1.2 3 85.38 odd 4