Properties

Label 425.2.c.a.424.4
Level 425425
Weight 22
Character 425.424
Analytic conductor 3.3943.394
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(424,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.424"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 425=5217 425 = 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 425.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-2,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.393642085903.39364208590
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x62x5+2x4+2x3+4x24x+2 x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 424.4
Root 1.451611.45161i1.45161 - 1.45161i of defining polynomial
Character χ\chi == 425.424
Dual form 425.2.c.a.424.3

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+0.311108iq22.21432q3+1.90321q40.688892iq6+1.59210q7+1.21432iq8+1.90321q91.31111iq114.21432q12+3.52543iq13+0.495316iq14+3.42864q16+(0.2143204.11753i)q17+0.592104iq18+4.42864q193.52543q21+0.407896q22+4.96989q232.68889iq241.09679q26+2.42864q27+3.03011q28+8.42864iq29+7.73975iq31+3.49532iq32+2.90321iq33+(1.281000.0666765i)q34+3.62222q36+7.05086q37+1.37778iq387.80642iq393.67307iq411.09679iq42+2.47457iq432.49532iq44+1.54617iq463.33185iq477.59210q484.46520q49+(0.474572+9.11753i)q51+6.70964iq529.18421iq53+0.755569iq54+1.93332iq569.80642q572.62222q581.37778q5915.4193iq612.40790q62+3.03011q63+5.76986q640.903212q66+9.13828iq67+(0.4078967.83654i)q6811.0049q6910.5970iq71+2.31111iq725.57136q73+2.19358iq74+8.42864q762.08742iq77+2.42864q78+7.87310iq7911.0874q81+1.14272q82+7.19850iq836.70964q840.769859q8618.6637iq87+1.59210q8811.6271q89+5.61285iq91+9.45875q9217.1383iq93+1.03657q947.73975iq9615.4795q971.38916iq982.49532iq99+O(q100)q+0.311108i q^{2} -2.21432 q^{3} +1.90321 q^{4} -0.688892i q^{6} +1.59210 q^{7} +1.21432i q^{8} +1.90321 q^{9} -1.31111i q^{11} -4.21432 q^{12} +3.52543i q^{13} +0.495316i q^{14} +3.42864 q^{16} +(-0.214320 - 4.11753i) q^{17} +0.592104i q^{18} +4.42864 q^{19} -3.52543 q^{21} +0.407896 q^{22} +4.96989 q^{23} -2.68889i q^{24} -1.09679 q^{26} +2.42864 q^{27} +3.03011 q^{28} +8.42864i q^{29} +7.73975i q^{31} +3.49532i q^{32} +2.90321i q^{33} +(1.28100 - 0.0666765i) q^{34} +3.62222 q^{36} +7.05086 q^{37} +1.37778i q^{38} -7.80642i q^{39} -3.67307i q^{41} -1.09679i q^{42} +2.47457i q^{43} -2.49532i q^{44} +1.54617i q^{46} -3.33185i q^{47} -7.59210 q^{48} -4.46520 q^{49} +(0.474572 + 9.11753i) q^{51} +6.70964i q^{52} -9.18421i q^{53} +0.755569i q^{54} +1.93332i q^{56} -9.80642 q^{57} -2.62222 q^{58} -1.37778 q^{59} -15.4193i q^{61} -2.40790 q^{62} +3.03011 q^{63} +5.76986 q^{64} -0.903212 q^{66} +9.13828i q^{67} +(-0.407896 - 7.83654i) q^{68} -11.0049 q^{69} -10.5970i q^{71} +2.31111i q^{72} -5.57136 q^{73} +2.19358i q^{74} +8.42864 q^{76} -2.08742i q^{77} +2.42864 q^{78} +7.87310i q^{79} -11.0874 q^{81} +1.14272 q^{82} +7.19850i q^{83} -6.70964 q^{84} -0.769859 q^{86} -18.6637i q^{87} +1.59210 q^{88} -11.6271 q^{89} +5.61285i q^{91} +9.45875 q^{92} -17.1383i q^{93} +1.03657 q^{94} -7.73975i q^{96} -15.4795 q^{97} -1.38916i q^{98} -2.49532i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q2q44q72q912q126q16+12q178q21+16q22+16q2320q2612q27+32q286q34+22q36+16q3732q48+14q49+16q51+40q97+O(q100) 6 q - 2 q^{4} - 4 q^{7} - 2 q^{9} - 12 q^{12} - 6 q^{16} + 12 q^{17} - 8 q^{21} + 16 q^{22} + 16 q^{23} - 20 q^{26} - 12 q^{27} + 32 q^{28} - 6 q^{34} + 22 q^{36} + 16 q^{37} - 32 q^{48} + 14 q^{49} + 16 q^{51}+ \cdots - 40 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/425Z)×\left(\mathbb{Z}/425\mathbb{Z}\right)^\times.

nn 5252 326326
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.311108i 0.219986i 0.993932 + 0.109993i 0.0350829π0.0350829\pi
−0.993932 + 0.109993i 0.964917π0.964917\pi
33 −2.21432 −1.27844 −0.639219 0.769025i 0.720742π-0.720742\pi
−0.639219 + 0.769025i 0.720742π0.720742\pi
44 1.90321 0.951606
55 0 0
66 0.688892i 0.281239i
77 1.59210 0.601759 0.300879 0.953662i 0.402720π-0.402720\pi
0.300879 + 0.953662i 0.402720π0.402720\pi
88 1.21432i 0.429327i
99 1.90321 0.634404
1010 0 0
1111 1.31111i 0.395314i −0.980271 0.197657i 0.936667π-0.936667\pi
0.980271 0.197657i 0.0633332π-0.0633332\pi
1212 −4.21432 −1.21657
1313 3.52543i 0.977778i 0.872346 + 0.488889i 0.162598π0.162598\pi
−0.872346 + 0.488889i 0.837402π0.837402\pi
1414 0.495316i 0.132379i
1515 0 0
1616 3.42864 0.857160
1717 −0.214320 4.11753i −0.0519802 0.998648i
1818 0.592104i 0.139560i
1919 4.42864 1.01600 0.508000 0.861357i 0.330385π-0.330385\pi
0.508000 + 0.861357i 0.330385π0.330385\pi
2020 0 0
2121 −3.52543 −0.769311
2222 0.407896 0.0869637
2323 4.96989 1.03629 0.518147 0.855292i 0.326622π-0.326622\pi
0.518147 + 0.855292i 0.326622π0.326622\pi
2424 2.68889i 0.548868i
2525 0 0
2626 −1.09679 −0.215098
2727 2.42864 0.467392
2828 3.03011 0.572637
2929 8.42864i 1.56516i 0.622551 + 0.782580i 0.286096π0.286096\pi
−0.622551 + 0.782580i 0.713904π0.713904\pi
3030 0 0
3131 7.73975i 1.39010i 0.718962 + 0.695050i 0.244618π0.244618\pi
−0.718962 + 0.695050i 0.755382π0.755382\pi
3232 3.49532i 0.617890i
3333 2.90321i 0.505384i
3434 1.28100 0.0666765i 0.219689 0.0114349i
3535 0 0
3636 3.62222 0.603703
3737 7.05086 1.15915 0.579577 0.814918i 0.303218π-0.303218\pi
0.579577 + 0.814918i 0.303218π0.303218\pi
3838 1.37778i 0.223506i
3939 7.80642i 1.25003i
4040 0 0
4141 3.67307i 0.573637i −0.957985 0.286819i 0.907402π-0.907402\pi
0.957985 0.286819i 0.0925977π-0.0925977\pi
4242 1.09679i 0.169238i
4343 2.47457i 0.377369i 0.982038 + 0.188684i 0.0604223π0.0604223\pi
−0.982038 + 0.188684i 0.939578π0.939578\pi
4444 2.49532i 0.376183i
4545 0 0
4646 1.54617i 0.227970i
4747 3.33185i 0.486000i −0.970026 0.243000i 0.921868π-0.921868\pi
0.970026 0.243000i 0.0781316π-0.0781316\pi
4848 −7.59210 −1.09583
4949 −4.46520 −0.637886
5050 0 0
5151 0.474572 + 9.11753i 0.0664534 + 1.27671i
5252 6.70964i 0.930459i
5353 9.18421i 1.26155i −0.775967 0.630774i 0.782737π-0.782737\pi
0.775967 0.630774i 0.217263π-0.217263\pi
5454 0.755569i 0.102820i
5555 0 0
5656 1.93332i 0.258351i
5757 −9.80642 −1.29889
5858 −2.62222 −0.344314
5959 −1.37778 −0.179372 −0.0896861 0.995970i 0.528586π-0.528586\pi
−0.0896861 + 0.995970i 0.528586π0.528586\pi
6060 0 0
6161 15.4193i 1.97424i −0.159996 0.987118i 0.551148π-0.551148\pi
0.159996 0.987118i 0.448852π-0.448852\pi
6262 −2.40790 −0.305803
6363 3.03011 0.381758
6464 5.76986 0.721232
6565 0 0
6666 −0.903212 −0.111178
6767 9.13828i 1.11642i 0.829700 + 0.558209i 0.188511π0.188511\pi
−0.829700 + 0.558209i 0.811489π0.811489\pi
6868 −0.407896 7.83654i −0.0494646 0.950320i
6969 −11.0049 −1.32484
7070 0 0
7171 10.5970i 1.25764i −0.777553 0.628818i 0.783539π-0.783539\pi
0.777553 0.628818i 0.216461π-0.216461\pi
7272 2.31111i 0.272367i
7373 −5.57136 −0.652078 −0.326039 0.945356i 0.605714π-0.605714\pi
−0.326039 + 0.945356i 0.605714π0.605714\pi
7474 2.19358i 0.254998i
7575 0 0
7676 8.42864 0.966831
7777 2.08742i 0.237884i
7878 2.42864 0.274989
7979 7.87310i 0.885793i 0.896573 + 0.442897i 0.146049π0.146049\pi
−0.896573 + 0.442897i 0.853951π0.853951\pi
8080 0 0
8181 −11.0874 −1.23194
8282 1.14272 0.126192
8383 7.19850i 0.790138i 0.918651 + 0.395069i 0.129279π0.129279\pi
−0.918651 + 0.395069i 0.870721π0.870721\pi
8484 −6.70964 −0.732081
8585 0 0
8686 −0.769859 −0.0830160
8787 18.6637i 2.00096i
8888 1.59210 0.169719
8989 −11.6271 −1.23247 −0.616237 0.787561i 0.711344π-0.711344\pi
−0.616237 + 0.787561i 0.711344π0.711344\pi
9090 0 0
9191 5.61285i 0.588386i
9292 9.45875 0.986143
9393 17.1383i 1.77716i
9494 1.03657 0.106914
9595 0 0
9696 7.73975i 0.789935i
9797 −15.4795 −1.57170 −0.785852 0.618414i 0.787775π-0.787775\pi
−0.785852 + 0.618414i 0.787775π0.787775\pi
9898 1.38916i 0.140326i
9999 2.49532i 0.250789i
100100 0 0
101101 −14.3827 −1.43113 −0.715566 0.698545i 0.753831π-0.753831\pi
−0.715566 + 0.698545i 0.753831π0.753831\pi
102102 −2.83654 + 0.147643i −0.280859 + 0.0146189i
103103 9.39207i 0.925429i −0.886507 0.462714i 0.846876π-0.846876\pi
0.886507 0.462714i 0.153124π-0.153124\pi
104104 −4.28100 −0.419786
105105 0 0
106106 2.85728 0.277523
107107 6.77631 0.655091 0.327545 0.944835i 0.393779π-0.393779\pi
0.327545 + 0.944835i 0.393779π0.393779\pi
108108 4.62222 0.444773
109109 2.85728i 0.273678i −0.990593 0.136839i 0.956306π-0.956306\pi
0.990593 0.136839i 0.0436942π-0.0436942\pi
110110 0 0
111111 −15.6128 −1.48191
112112 5.45875 0.515803
113113 −5.86665 −0.551888 −0.275944 0.961174i 0.588990π-0.588990\pi
−0.275944 + 0.961174i 0.588990π0.588990\pi
114114 3.05086i 0.285739i
115115 0 0
116116 16.0415i 1.48941i
117117 6.70964i 0.620306i
118118 0.428639i 0.0394595i
119119 −0.341219 6.55554i −0.0312795 0.600945i
120120 0 0
121121 9.28100 0.843727
122122 4.79706 0.434305
123123 8.13335i 0.733360i
124124 14.7304i 1.32283i
125125 0 0
126126 0.942691i 0.0839816i
127127 0.280996i 0.0249344i −0.999922 0.0124672i 0.996031π-0.996031\pi
0.999922 0.0124672i 0.00396853π-0.00396853\pi
128128 8.78568i 0.776552i
129129 5.47949i 0.482443i
130130 0 0
131131 13.4128i 1.17188i 0.810353 + 0.585942i 0.199275π0.199275\pi
−0.810353 + 0.585942i 0.800725π0.800725\pi
132132 5.52543i 0.480927i
133133 7.05086 0.611387
134134 −2.84299 −0.245597
135135 0 0
136136 5.00000 0.260253i 0.428746 0.0223165i
137137 10.2810i 0.878365i −0.898398 0.439182i 0.855268π-0.855268\pi
0.898398 0.439182i 0.144732π-0.144732\pi
138138 3.42372i 0.291446i
139139 18.3017i 1.55233i −0.630528 0.776167i 0.717162π-0.717162\pi
0.630528 0.776167i 0.282838π-0.282838\pi
140140 0 0
141141 7.37778i 0.621322i
142142 3.29682 0.276663
143143 4.62222 0.386529
144144 6.52543 0.543786
145145 0 0
146146 1.73329i 0.143448i
147147 9.88739 0.815498
148148 13.4193 1.10306
149149 4.91750 0.402857 0.201429 0.979503i 0.435442π-0.435442\pi
0.201429 + 0.979503i 0.435442π0.435442\pi
150150 0 0
151151 12.7239 1.03546 0.517729 0.855545i 0.326777π-0.326777\pi
0.517729 + 0.855545i 0.326777π0.326777\pi
152152 5.37778i 0.436196i
153153 −0.407896 7.83654i −0.0329764 0.633546i
154154 0.649413 0.0523312
155155 0 0
156156 14.8573i 1.18953i
157157 9.18421i 0.732980i 0.930422 + 0.366490i 0.119441π0.119441\pi
−0.930422 + 0.366490i 0.880559π0.880559\pi
158158 −2.44938 −0.194862
159159 20.3368i 1.61281i
160160 0 0
161161 7.91258 0.623599
162162 3.44938i 0.271009i
163163 −5.07160 −0.397238 −0.198619 0.980077i 0.563646π-0.563646\pi
−0.198619 + 0.980077i 0.563646π0.563646\pi
164164 6.99063i 0.545877i
165165 0 0
166166 −2.23951 −0.173820
167167 −19.8272 −1.53427 −0.767136 0.641484i 0.778319π-0.778319\pi
−0.767136 + 0.641484i 0.778319π0.778319\pi
168168 4.28100i 0.330286i
169169 0.571361 0.0439508
170170 0 0
171171 8.42864 0.644554
172172 4.70964i 0.359106i
173173 2.48886 0.189225 0.0946124 0.995514i 0.469839π-0.469839\pi
0.0946124 + 0.995514i 0.469839π0.469839\pi
174174 5.80642 0.440184
175175 0 0
176176 4.49532i 0.338847i
177177 3.05086 0.229316
178178 3.61729i 0.271128i
179179 11.6128 0.867985 0.433992 0.900916i 0.357104π-0.357104\pi
0.433992 + 0.900916i 0.357104π0.357104\pi
180180 0 0
181181 3.86665i 0.287406i 0.989621 + 0.143703i 0.0459009π0.0459009\pi
−0.989621 + 0.143703i 0.954099π0.954099\pi
182182 −1.74620 −0.129437
183183 34.1432i 2.52394i
184184 6.03503i 0.444909i
185185 0 0
186186 5.33185 0.390950
187187 −5.39853 + 0.280996i −0.394779 + 0.0205485i
188188 6.34122i 0.462481i
189189 3.86665 0.281257
190190 0 0
191191 −14.9175 −1.07939 −0.539696 0.841860i 0.681461π-0.681461\pi
−0.539696 + 0.841860i 0.681461π0.681461\pi
192192 −12.7763 −0.922051
193193 −17.7462 −1.27740 −0.638700 0.769456i 0.720527π-0.720527\pi
−0.638700 + 0.769456i 0.720527π0.720527\pi
194194 4.81579i 0.345754i
195195 0 0
196196 −8.49823 −0.607016
197197 9.41927 0.671095 0.335548 0.942023i 0.391079π-0.391079\pi
0.335548 + 0.942023i 0.391079π0.391079\pi
198198 0.776312 0.0551701
199199 7.21924i 0.511758i 0.966709 + 0.255879i 0.0823649π0.0823649\pi
−0.966709 + 0.255879i 0.917635π0.917635\pi
200200 0 0
201201 20.2351i 1.42727i
202202 4.47457i 0.314830i
203203 13.4193i 0.941848i
204204 0.903212 + 17.3526i 0.0632375 + 1.21492i
205205 0 0
206206 2.92195 0.203582
207207 9.45875 0.657429
208208 12.0874i 0.838112i
209209 5.80642i 0.401639i
210210 0 0
211211 14.8825i 1.02455i −0.858821 0.512276i 0.828803π-0.828803\pi
0.858821 0.512276i 0.171197π-0.171197\pi
212212 17.4795i 1.20050i
213213 23.4652i 1.60781i
214214 2.10816i 0.144111i
215215 0 0
216216 2.94914i 0.200664i
217217 12.3225i 0.836505i
218218 0.888922 0.0602054
219219 12.3368 0.833642
220220 0 0
221221 14.5161 0.755569i 0.976456 0.0508251i
222222 4.85728i 0.325999i
223223 23.4652i 1.57135i −0.618642 0.785673i 0.712317π-0.712317\pi
0.618642 0.785673i 0.287683π-0.287683\pi
224224 5.56491i 0.371821i
225225 0 0
226226 1.82516i 0.121408i
227227 −4.34767 −0.288565 −0.144283 0.989537i 0.546087π-0.546087\pi
−0.144283 + 0.989537i 0.546087π0.546087\pi
228228 −18.6637 −1.23603
229229 −6.47457 −0.427852 −0.213926 0.976850i 0.568625π-0.568625\pi
−0.213926 + 0.976850i 0.568625π0.568625\pi
230230 0 0
231231 4.62222i 0.304119i
232232 −10.2351 −0.671965
233233 −18.5303 −1.21396 −0.606982 0.794716i 0.707620π-0.707620\pi
−0.606982 + 0.794716i 0.707620π0.707620\pi
234234 −2.08742 −0.136459
235235 0 0
236236 −2.62222 −0.170692
237237 17.4336i 1.13243i
238238 2.03948 0.106156i 0.132200 0.00688107i
239239 21.4193 1.38550 0.692749 0.721179i 0.256399π-0.256399\pi
0.692749 + 0.721179i 0.256399π0.256399\pi
240240 0 0
241241 12.2351i 0.788130i 0.919083 + 0.394065i 0.128931π0.128931\pi
−0.919083 + 0.394065i 0.871069π0.871069\pi
242242 2.88739i 0.185608i
243243 17.2652 1.10756
244244 29.3461i 1.87869i
245245 0 0
246246 −2.53035 −0.161329
247247 15.6128i 0.993422i
248248 −9.39853 −0.596807
249249 15.9398i 1.01014i
250250 0 0
251251 −4.52051 −0.285332 −0.142666 0.989771i 0.545567π-0.545567\pi
−0.142666 + 0.989771i 0.545567π0.545567\pi
252252 5.76694 0.363283
253253 6.51606i 0.409661i
254254 0.0874201 0.00548523
255255 0 0
256256 8.80642 0.550401
257257 6.18913i 0.386067i 0.981192 + 0.193034i 0.0618327π0.0618327\pi
−0.981192 + 0.193034i 0.938167π0.938167\pi
258258 1.70471 0.106131
259259 11.2257 0.697531
260260 0 0
261261 16.0415i 0.992943i
262262 −4.17283 −0.257798
263263 8.18913i 0.504963i 0.967602 + 0.252482i 0.0812468π0.0812468\pi
−0.967602 + 0.252482i 0.918753π0.918753\pi
264264 −3.52543 −0.216975
265265 0 0
266266 2.19358i 0.134497i
267267 25.7462 1.57564
268268 17.3921i 1.06239i
269269 3.89829i 0.237683i 0.992913 + 0.118841i 0.0379180π0.0379180\pi
−0.992913 + 0.118841i 0.962082π0.962082\pi
270270 0 0
271271 8.85728 0.538041 0.269021 0.963134i 0.413300π-0.413300\pi
0.269021 + 0.963134i 0.413300π0.413300\pi
272272 −0.734825 14.1175i −0.0445553 0.856001i
273273 12.4286i 0.752215i
274274 3.19850 0.193228
275275 0 0
276276 −20.9447 −1.26072
277277 1.14272 0.0686595 0.0343297 0.999411i 0.489070π-0.489070\pi
0.0343297 + 0.999411i 0.489070π0.489070\pi
278278 5.69381 0.341492
279279 14.7304i 0.881885i
280280 0 0
281281 −14.6953 −0.876651 −0.438325 0.898816i 0.644428π-0.644428\pi
−0.438325 + 0.898816i 0.644428π0.644428\pi
282282 −2.29529 −0.136682
283283 1.97926 0.117655 0.0588273 0.998268i 0.481264π-0.481264\pi
0.0588273 + 0.998268i 0.481264π0.481264\pi
284284 20.1684i 1.19677i
285285 0 0
286286 1.43801i 0.0850312i
287287 5.84791i 0.345191i
288288 6.65233i 0.391992i
289289 −16.9081 + 1.76494i −0.994596 + 0.103820i
290290 0 0
291291 34.2766 2.00933
292292 −10.6035 −0.620522
293293 2.94914i 0.172291i 0.996283 + 0.0861454i 0.0274550π0.0274550\pi
−0.996283 + 0.0861454i 0.972545π0.972545\pi
294294 3.07604i 0.179399i
295295 0 0
296296 8.56199i 0.497656i
297297 3.18421i 0.184767i
298298 1.52987i 0.0886232i
299299 17.5210i 1.01326i
300300 0 0
301301 3.93978i 0.227085i
302302 3.95851i 0.227787i
303303 31.8479 1.82961
304304 15.1842 0.870874
305305 0 0
306306 2.43801 0.126900i 0.139372 0.00725437i
307307 5.68736i 0.324595i 0.986742 + 0.162297i 0.0518904π0.0518904\pi
−0.986742 + 0.162297i 0.948110π0.948110\pi
308308 3.97280i 0.226371i
309309 20.7971i 1.18310i
310310 0 0
311311 23.7210i 1.34510i −0.740054 0.672548i 0.765200π-0.765200\pi
0.740054 0.672548i 0.234800π-0.234800\pi
312312 9.47949 0.536671
313313 30.8988 1.74650 0.873251 0.487271i 0.162008π-0.162008\pi
0.873251 + 0.487271i 0.162008π0.162008\pi
314314 −2.85728 −0.161246
315315 0 0
316316 14.9842i 0.842926i
317317 13.7047 0.769733 0.384867 0.922972i 0.374247π-0.374247\pi
0.384867 + 0.922972i 0.374247π0.374247\pi
318318 −6.32693 −0.354797
319319 11.0509 0.618729
320320 0 0
321321 −15.0049 −0.837493
322322 2.46167i 0.137183i
323323 −0.949145 18.2351i −0.0528118 1.01463i
324324 −21.1017 −1.17232
325325 0 0
326326 1.57781i 0.0873870i
327327 6.32693i 0.349880i
328328 4.46028 0.246278
329329 5.30465i 0.292455i
330330 0 0
331331 24.8988 1.36856 0.684280 0.729219i 0.260117π-0.260117\pi
0.684280 + 0.729219i 0.260117π0.260117\pi
332332 13.7003i 0.751900i
333333 13.4193 0.735372
334334 6.16839i 0.337519i
335335 0 0
336336 −12.0874 −0.659423
337337 5.28592 0.287942 0.143971 0.989582i 0.454013π-0.454013\pi
0.143971 + 0.989582i 0.454013π0.454013\pi
338338 0.177755i 0.00966858i
339339 12.9906 0.705554
340340 0 0
341341 10.1476 0.549526
342342 2.62222i 0.141793i
343343 −18.2538 −0.985613
344344 −3.00492 −0.162015
345345 0 0
346346 0.774305i 0.0416269i
347347 −31.6019 −1.69648 −0.848241 0.529611i 0.822338π-0.822338\pi
−0.848241 + 0.529611i 0.822338π0.822338\pi
348348 35.5210i 1.90412i
349349 −26.5116 −1.41913 −0.709567 0.704638i 0.751109π-0.751109\pi
−0.709567 + 0.704638i 0.751109π0.751109\pi
350350 0 0
351351 8.56199i 0.457005i
352352 4.58274 0.244261
353353 3.71456i 0.197706i −0.995102 0.0988530i 0.968483π-0.968483\pi
0.995102 0.0988530i 0.0315174π-0.0315174\pi
354354 0.949145i 0.0504465i
355355 0 0
356356 −22.1289 −1.17283
357357 0.755569 + 14.5161i 0.0399889 + 0.768271i
358358 3.61285i 0.190945i
359359 −10.6637 −0.562809 −0.281404 0.959589i 0.590800π-0.590800\pi
−0.281404 + 0.959589i 0.590800π0.590800\pi
360360 0 0
361361 0.612848 0.0322551
362362 −1.20294 −0.0632253
363363 −20.5511 −1.07865
364364 10.6824i 0.559912i
365365 0 0
366366 −10.6222 −0.555232
367367 −10.8780 −0.567828 −0.283914 0.958850i 0.591633π-0.591633\pi
−0.283914 + 0.958850i 0.591633π0.591633\pi
368368 17.0400 0.888269
369369 6.99063i 0.363918i
370370 0 0
371371 14.6222i 0.759148i
372372 32.6178i 1.69115i
373373 16.5575i 0.857317i −0.903467 0.428659i 0.858986π-0.858986\pi
0.903467 0.428659i 0.141014π-0.141014\pi
374374 −0.0874201 1.67952i −0.00452039 0.0868461i
375375 0 0
376376 4.04593 0.208653
377377 −29.7146 −1.53038
378378 1.20294i 0.0618728i
379379 8.16839i 0.419582i −0.977746 0.209791i 0.932722π-0.932722\pi
0.977746 0.209791i 0.0672783π-0.0672783\pi
380380 0 0
381381 0.622216i 0.0318771i
382382 4.64095i 0.237452i
383383 36.7926i 1.88001i 0.341154 + 0.940007i 0.389182π0.389182\pi
−0.341154 + 0.940007i 0.610818π0.610818\pi
384384 19.4543i 0.992773i
385385 0 0
386386 5.52098i 0.281011i
387387 4.70964i 0.239404i
388388 −29.4608 −1.49564
389389 −12.5348 −0.635539 −0.317770 0.948168i 0.602934π-0.602934\pi
−0.317770 + 0.948168i 0.602934π0.602934\pi
390390 0 0
391391 −1.06515 20.4637i −0.0538667 1.03489i
392392 5.42219i 0.273862i
393393 29.7003i 1.49818i
394394 2.93041i 0.147632i
395395 0 0
396396 4.74912i 0.238652i
397397 32.1017 1.61114 0.805569 0.592502i 0.201860π-0.201860\pi
0.805569 + 0.592502i 0.201860π0.201860\pi
398398 −2.24596 −0.112580
399399 −15.6128 −0.781620
400400 0 0
401401 13.0321i 0.650793i 0.945578 + 0.325396i 0.105498π0.105498\pi
−0.945578 + 0.325396i 0.894502π0.894502\pi
402402 6.29529 0.313980
403403 −27.2859 −1.35921
404404 −27.3733 −1.36187
405405 0 0
406406 −4.17484 −0.207194
407407 9.24443i 0.458229i
408408 −11.0716 + 0.576283i −0.548126 + 0.0285302i
409409 −3.12399 −0.154471 −0.0772356 0.997013i 0.524609π-0.524609\pi
−0.0772356 + 0.997013i 0.524609π0.524609\pi
410410 0 0
411411 22.7654i 1.12294i
412412 17.8751i 0.880643i
413413 −2.19358 −0.107939
414414 2.94269i 0.144625i
415415 0 0
416416 −12.3225 −0.604159
417417 40.5259i 1.98456i
418418 1.80642 0.0883551
419419 13.1590i 0.642860i 0.946933 + 0.321430i 0.104164π0.104164\pi
−0.946933 + 0.321430i 0.895836π0.895836\pi
420420 0 0
421421 −27.6686 −1.34849 −0.674243 0.738509i 0.735530π-0.735530\pi
−0.674243 + 0.738509i 0.735530π0.735530\pi
422422 4.63005 0.225387
423423 6.34122i 0.308321i
424424 11.1526 0.541616
425425 0 0
426426 −7.30021 −0.353696
427427 24.5491i 1.18801i
428428 12.8968 0.623388
429429 −10.2351 −0.494154
430430 0 0
431431 17.6795i 0.851593i −0.904819 0.425796i 0.859994π-0.859994\pi
0.904819 0.425796i 0.140006π-0.140006\pi
432432 8.32693 0.400630
433433 24.9447i 1.19877i −0.800462 0.599383i 0.795413π-0.795413\pi
0.800462 0.599383i 0.204587π-0.204587\pi
434434 −3.83362 −0.184020
435435 0 0
436436 5.43801i 0.260433i
437437 22.0098 1.05287
438438 3.83807i 0.183390i
439439 11.9748i 0.571527i −0.958300 0.285763i 0.907753π-0.907753\pi
0.958300 0.285763i 0.0922471π-0.0922471\pi
440440 0 0
441441 −8.49823 −0.404678
442442 0.235063 + 4.51606i 0.0111808 + 0.214807i
443443 30.6909i 1.45817i −0.684424 0.729084i 0.739946π-0.739946\pi
0.684424 0.729084i 0.260054π-0.260054\pi
444444 −29.7146 −1.41019
445445 0 0
446446 7.30021 0.345675
447447 −10.8889 −0.515028
448448 9.18622 0.434008
449449 13.6543i 0.644388i −0.946674 0.322194i 0.895580π-0.895580\pi
0.946674 0.322194i 0.104420π-0.104420\pi
450450 0 0
451451 −4.81579 −0.226767
452452 −11.1655 −0.525180
453453 −28.1748 −1.32377
454454 1.35260i 0.0634804i
455455 0 0
456456 11.9081i 0.557649i
457457 8.20787i 0.383948i 0.981400 + 0.191974i 0.0614889π0.0614889\pi
−0.981400 + 0.191974i 0.938511π0.938511\pi
458458 2.01429i 0.0941216i
459459 −0.520505 10.0000i −0.0242951 0.466760i
460460 0 0
461461 5.18421 0.241453 0.120726 0.992686i 0.461478π-0.461478\pi
0.120726 + 0.992686i 0.461478π0.461478\pi
462462 −1.43801 −0.0669022
463463 23.1985i 1.07813i 0.842266 + 0.539063i 0.181221π0.181221\pi
−0.842266 + 0.539063i 0.818779π0.818779\pi
464464 28.8988i 1.34159i
465465 0 0
466466 5.76494i 0.267056i
467467 35.2400i 1.63071i 0.578960 + 0.815356i 0.303459π0.303459\pi
−0.578960 + 0.815356i 0.696541π0.696541\pi
468468 12.7699i 0.590287i
469469 14.5491i 0.671814i
470470 0 0
471471 20.3368i 0.937069i
472472 1.67307i 0.0770093i
473473 3.24443 0.149179
474474 5.42372 0.249120
475475 0 0
476476 −0.649413 12.4766i −0.0297658 0.571863i
477477 17.4795i 0.800331i
478478 6.66370i 0.304791i
479479 11.4445i 0.522911i −0.965216 0.261455i 0.915798π-0.915798\pi
0.965216 0.261455i 0.0842024π-0.0842024\pi
480480 0 0
481481 24.8573i 1.13339i
482482 −3.80642 −0.173378
483483 −17.5210 −0.797232
484484 17.6637 0.802896
485485 0 0
486486 5.37133i 0.243649i
487487 −29.7540 −1.34828 −0.674142 0.738602i 0.735486π-0.735486\pi
−0.674142 + 0.738602i 0.735486π0.735486\pi
488488 18.7239 0.847592
489489 11.2301 0.507845
490490 0 0
491491 25.4193 1.14716 0.573578 0.819151i 0.305555π-0.305555\pi
0.573578 + 0.819151i 0.305555π0.305555\pi
492492 15.4795i 0.697870i
493493 34.7052 1.80642i 1.56304 0.0813572i
494494 −4.85728 −0.218539
495495 0 0
496496 26.5368i 1.19154i
497497 16.8716i 0.756793i
498498 4.95899 0.222218
499499 14.8035i 0.662696i −0.943509 0.331348i 0.892497π-0.892497\pi
0.943509 0.331348i 0.107503π-0.107503\pi
500500 0 0
501501 43.9037 1.96147
502502 1.40636i 0.0627691i
503503 −4.34767 −0.193853 −0.0969266 0.995292i 0.530901π-0.530901\pi
−0.0969266 + 0.995292i 0.530901π0.530901\pi
504504 3.67952i 0.163899i
505505 0 0
506506 2.02720 0.0901199
507507 −1.26517 −0.0561884
508508 0.534795i 0.0237277i
509509 15.9813 0.708357 0.354179 0.935178i 0.384761π-0.384761\pi
0.354179 + 0.935178i 0.384761π0.384761\pi
510510 0 0
511511 −8.87019 −0.392394
512512 20.3111i 0.897633i
513513 10.7556 0.474870
514514 −1.92549 −0.0849296
515515 0 0
516516 10.4286i 0.459095i
517517 −4.36842 −0.192123
518518 3.49240i 0.153447i
519519 −5.51114 −0.241912
520520 0 0
521521 27.9081i 1.22268i 0.791369 + 0.611339i 0.209369π0.209369\pi
−0.791369 + 0.611339i 0.790631π0.790631\pi
522522 −4.99063 −0.218434
523523 15.8938i 0.694989i 0.937682 + 0.347495i 0.112968π0.112968\pi
−0.937682 + 0.347495i 0.887032π0.887032\pi
524524 25.5274i 1.11517i
525525 0 0
526526 −2.54770 −0.111085
527527 31.8687 1.65878i 1.38822 0.0722576i
528528 9.95407i 0.433195i
529529 1.69979 0.0739040
530530 0 0
531531 −2.62222 −0.113794
532532 13.4193 0.581799
533533 12.9491 0.560890
534534 8.00984i 0.346620i
535535 0 0
536536 −11.0968 −0.479308
537537 −25.7146 −1.10967
538538 −1.21279 −0.0522870
539539 5.85436i 0.252165i
540540 0 0
541541 24.2449i 1.04237i −0.853444 0.521185i 0.825490π-0.825490\pi
0.853444 0.521185i 0.174510π-0.174510\pi
542542 2.75557i 0.118362i
543543 8.56199i 0.367430i
544544 14.3921 0.749115i 0.617055 0.0321181i
545545 0 0
546546 3.86665 0.165477
547547 11.7255 0.501344 0.250672 0.968072i 0.419348π-0.419348\pi
0.250672 + 0.968072i 0.419348π0.419348\pi
548548 19.5669i 0.835857i
549549 29.3461i 1.25246i
550550 0 0
551551 37.3274i 1.59020i
552552 13.3635i 0.568788i
553553 12.5348i 0.533034i
554554 0.355509i 0.0151041i
555555 0 0
556556 34.8321i 1.47721i
557557 31.4336i 1.33188i 0.746004 + 0.665941i 0.231970π0.231970\pi
−0.746004 + 0.665941i 0.768030π0.768030\pi
558558 −4.58274 −0.194003
559559 −8.72393 −0.368983
560560 0 0
561561 11.9541 0.622216i 0.504701 0.0262700i
562562 4.57184i 0.192851i
563563 11.9353i 0.503014i 0.967855 + 0.251507i 0.0809262π0.0809262\pi
−0.967855 + 0.251507i 0.919074π0.919074\pi
564564 14.0415i 0.591253i
565565 0 0
566566 0.615762i 0.0258824i
567567 −17.6523 −0.741328
568568 12.8682 0.539937
569569 −1.14272 −0.0479054 −0.0239527 0.999713i 0.507625π-0.507625\pi
−0.0239527 + 0.999713i 0.507625π0.507625\pi
570570 0 0
571571 26.7402i 1.11904i 0.828816 + 0.559522i 0.189015π0.189015\pi
−0.828816 + 0.559522i 0.810985π0.810985\pi
572572 8.79706 0.367823
573573 33.0321 1.37994
574574 1.81933 0.0759374
575575 0 0
576576 10.9813 0.457553
577577 27.9956i 1.16547i −0.812662 0.582735i 0.801983π-0.801983\pi
0.812662 0.582735i 0.198017π-0.198017\pi
578578 −0.549086 5.26025i −0.0228389 0.218798i
579579 39.2958 1.63308
580580 0 0
581581 11.4608i 0.475472i
582582 10.6637i 0.442025i
583583 −12.0415 −0.498707
584584 6.76541i 0.279955i
585585 0 0
586586 −0.917502 −0.0379017
587587 6.60793i 0.272738i −0.990658 0.136369i 0.956457π-0.956457\pi
0.990658 0.136369i 0.0435433π-0.0435433\pi
588588 18.8178 0.776033
589589 34.2766i 1.41234i
590590 0 0
591591 −20.8573 −0.857954
592592 24.1748 0.993580
593593 4.82564i 0.198165i −0.995079 0.0990826i 0.968409π-0.968409\pi
0.995079 0.0990826i 0.0315908π-0.0315908\pi
594594 0.990632 0.0406461
595595 0 0
596596 9.35905 0.383362
597597 15.9857i 0.654252i
598598 −5.45091 −0.222904
599599 39.0005 1.59352 0.796758 0.604298i 0.206546π-0.206546\pi
0.796758 + 0.604298i 0.206546π0.206546\pi
600600 0 0
601601 7.19405i 0.293452i −0.989177 0.146726i 0.953127π-0.953127\pi
0.989177 0.146726i 0.0468735π-0.0468735\pi
602602 −1.22570 −0.0499556
603603 17.3921i 0.708260i
604604 24.2163 0.985348
605605 0 0
606606 9.90813i 0.402490i
607607 7.23353 0.293600 0.146800 0.989166i 0.453103π-0.453103\pi
0.146800 + 0.989166i 0.453103π0.453103\pi
608608 15.4795i 0.627776i
609609 29.7146i 1.20409i
610610 0 0
611611 11.7462 0.475200
612612 −0.776312 14.9146i −0.0313806 0.602886i
613613 14.7654i 0.596369i 0.954508 + 0.298185i 0.0963811π0.0963811\pi
−0.954508 + 0.298185i 0.903619π0.903619\pi
614614 −1.76938 −0.0714065
615615 0 0
616616 2.53480 0.102130
617617 10.5205 0.423540 0.211770 0.977320i 0.432077π-0.432077\pi
0.211770 + 0.977320i 0.432077π0.432077\pi
618618 −6.47013 −0.260267
619619 7.94623i 0.319386i 0.987167 + 0.159693i 0.0510504π0.0510504\pi
−0.987167 + 0.159693i 0.948950π0.948950\pi
620620 0 0
621621 12.0701 0.484355
622622 7.37979 0.295903
623623 −18.5116 −0.741652
624624 26.7654i 1.07147i
625625 0 0
626626 9.61285i 0.384207i
627627 12.8573i 0.513470i
628628 17.4795i 0.697508i
629629 −1.51114 29.0321i −0.0602530 1.15759i
630630 0 0
631631 −14.2636 −0.567827 −0.283913 0.958850i 0.591633π-0.591633\pi
−0.283913 + 0.958850i 0.591633π0.591633\pi
632632 −9.56046 −0.380295
633633 32.9545i 1.30983i
634634 4.26364i 0.169331i
635635 0 0
636636 38.7052i 1.53476i
637637 15.7418i 0.623711i
638638 3.43801i 0.136112i
639639 20.1684i 0.797849i
640640 0 0
641641 25.4509i 1.00525i −0.864504 0.502625i 0.832368π-0.832368\pi
0.864504 0.502625i 0.167632π-0.167632\pi
642642 4.66815i 0.184237i
643643 −16.1126 −0.635419 −0.317710 0.948188i 0.602914π-0.602914\pi
−0.317710 + 0.948188i 0.602914π0.602914\pi
644644 15.0593 0.593420
645645 0 0
646646 5.67307 0.295286i 0.223204 0.0116179i
647647 40.4558i 1.59048i −0.606293 0.795242i 0.707344π-0.707344\pi
0.606293 0.795242i 0.292656π-0.292656\pi
648648 13.4637i 0.528903i
649649 1.80642i 0.0709083i
650650 0 0
651651 27.2859i 1.06942i
652652 −9.65233 −0.378014
653653 −6.87601 −0.269079 −0.134540 0.990908i 0.542956π-0.542956\pi
−0.134540 + 0.990908i 0.542956π0.542956\pi
654654 −1.96836 −0.0769689
655655 0 0
656656 12.5936i 0.491699i
657657 −10.6035 −0.413681
658658 1.65032 0.0643361
659659 −16.0286 −0.624385 −0.312192 0.950019i 0.601063π-0.601063\pi
−0.312192 + 0.950019i 0.601063π0.601063\pi
660660 0 0
661661 −31.1655 −1.21220 −0.606098 0.795390i 0.707266π-0.707266\pi
−0.606098 + 0.795390i 0.707266π0.707266\pi
662662 7.74620i 0.301065i
663663 −32.1432 + 1.67307i −1.24834 + 0.0649767i
664664 −8.74128 −0.339227
665665 0 0
666666 4.17484i 0.161772i
667667 41.8894i 1.62196i
668668 −37.7353 −1.46002
669669 51.9595i 2.00887i
670670 0 0
671671 −20.2163 −0.780443
672672 12.3225i 0.475350i
673673 −19.8479 −0.765081 −0.382540 0.923939i 0.624951π-0.624951\pi
−0.382540 + 0.923939i 0.624951π0.624951\pi
674674 1.64449i 0.0633434i
675675 0 0
676676 1.08742 0.0418239
677677 28.8385 1.10836 0.554178 0.832398i 0.313033π-0.313033\pi
0.554178 + 0.832398i 0.313033π0.313033\pi
678678 4.04149i 0.155212i
679679 −24.6450 −0.945787
680680 0 0
681681 9.62714 0.368913
682682 3.15701i 0.120888i
683683 19.2050 0.734857 0.367429 0.930052i 0.380238π-0.380238\pi
0.367429 + 0.930052i 0.380238π0.380238\pi
684684 16.0415 0.613362
685685 0 0
686686 5.67890i 0.216821i
687687 14.3368 0.546982
688688 8.48442i 0.323465i
689689 32.3783 1.23351
690690 0 0
691691 34.5555i 1.31455i −0.753649 0.657277i 0.771708π-0.771708\pi
0.753649 0.657277i 0.228292π-0.228292\pi
692692 4.73683 0.180067
693693 3.97280i 0.150914i
694694 9.83161i 0.373203i
695695 0 0
696696 22.6637 0.859065
697697 −15.1240 + 0.787212i −0.572862 + 0.0298178i
698698 8.24797i 0.312190i
699699 41.0321 1.55198
700700 0 0
701701 −20.9131 −0.789875 −0.394938 0.918708i 0.629234π-0.629234\pi
−0.394938 + 0.918708i 0.629234π0.629234\pi
702702 −2.66370 −0.100535
703703 31.2257 1.17770
704704 7.56491i 0.285113i
705705 0 0
706706 1.15563 0.0434926
707707 −22.8988 −0.861197
708708 5.80642 0.218219
709709 32.9906i 1.23899i 0.785001 + 0.619495i 0.212662π0.212662\pi
−0.785001 + 0.619495i 0.787338π0.787338\pi
710710 0 0
711711 14.9842i 0.561951i
712712 14.1191i 0.529134i
713713 38.4657i 1.44055i
714714 −4.51606 + 0.235063i −0.169009 + 0.00879702i
715715 0 0
716716 22.1017 0.825980
717717 −47.4291 −1.77127
718718 3.31756i 0.123810i
719719 10.5141i 0.392108i 0.980593 + 0.196054i 0.0628128π0.0628128\pi
−0.980593 + 0.196054i 0.937187π0.937187\pi
720720 0 0
721721 14.9532i 0.556885i
722722 0.190662i 0.00709569i
723723 27.0923i 1.00758i
724724 7.35905i 0.273497i
725725 0 0
726726 6.39361i 0.237289i
727727 43.2815i 1.60522i −0.596503 0.802610i 0.703444π-0.703444\pi
0.596503 0.802610i 0.296556π-0.296556\pi
728728 −6.81579 −0.252610
729729 −4.96836 −0.184013
730730 0 0
731731 10.1891 0.530350i 0.376859 0.0196157i
732732 64.9817i 2.40179i
733733 22.8859i 0.845308i −0.906291 0.422654i 0.861098π-0.861098\pi
0.906291 0.422654i 0.138902π-0.138902\pi
734734 3.38424i 0.124914i
735735 0 0
736736 17.3713i 0.640316i
737737 11.9813 0.441336
738738 2.17484 0.0800570
739739 −0.815792 −0.0300094 −0.0150047 0.999887i 0.504776π-0.504776\pi
−0.0150047 + 0.999887i 0.504776π0.504776\pi
740740 0 0
741741 34.5718i 1.27003i
742742 4.54909 0.167002
743743 −30.1639 −1.10661 −0.553304 0.832980i 0.686633π-0.686633\pi
−0.553304 + 0.832980i 0.686633π0.686633\pi
744744 20.8113 0.762981
745745 0 0
746746 5.15118 0.188598
747747 13.7003i 0.501267i
748748 −10.2745 + 0.534795i −0.375674 + 0.0195541i
749749 10.7886 0.394207
750750 0 0
751751 2.17728i 0.0794500i 0.999211 + 0.0397250i 0.0126482π0.0126482\pi
−0.999211 + 0.0397250i 0.987352π0.987352\pi
752752 11.4237i 0.416580i
753753 10.0098 0.364779
754754 9.24443i 0.336662i
755755 0 0
756756 7.35905 0.267646
757757 29.3230i 1.06576i −0.846190 0.532881i 0.821110π-0.821110\pi
0.846190 0.532881i 0.178890π-0.178890\pi
758758 2.54125 0.0923023
759759 14.4286i 0.523726i
760760 0 0
761761 49.2212 1.78427 0.892134 0.451770i 0.149207π-0.149207\pi
0.892134 + 0.451770i 0.149207π0.149207\pi
762762 −0.193576 −0.00701252
763763 4.54909i 0.164688i
764764 −28.3912 −1.02716
765765 0 0
766766 −11.4465 −0.413578
767767 4.85728i 0.175386i
768768 −19.5002 −0.703654
769769 −37.0178 −1.33490 −0.667449 0.744656i 0.732614π-0.732614\pi
−0.667449 + 0.744656i 0.732614π0.732614\pi
770770 0 0
771771 13.7047i 0.493563i
772772 −33.7748 −1.21558
773773 4.20787i 0.151346i −0.997133 0.0756732i 0.975889π-0.975889\pi
0.997133 0.0756732i 0.0241106π-0.0241106\pi
774774 −1.46520 −0.0526657
775775 0 0
776776 18.7971i 0.674775i
777777 −24.8573 −0.891750
778778 3.89967i 0.139810i
779779 16.2667i 0.582815i
780780 0 0
781781 −13.8938 −0.497161
782782 6.36641 0.331375i 0.227662 0.0118499i
783783 20.4701i 0.731543i
784784 −15.3096 −0.546771
785785 0 0
786786 9.23999 0.329579
787787 23.8557 0.850366 0.425183 0.905108i 0.360210π-0.360210\pi
0.425183 + 0.905108i 0.360210π0.360210\pi
788788 17.9269 0.638618
789789 18.1334i 0.645564i
790790 0 0
791791 −9.34031 −0.332103
792792 3.03011 0.107670
793793 54.3595 1.93036
794794 9.98709i 0.354429i
795795 0 0
796796 13.7397i 0.486992i
797797 34.4415i 1.21998i 0.792408 + 0.609991i 0.208827π0.208827\pi
−0.792408 + 0.609991i 0.791173π0.791173\pi
798798 4.85728i 0.171946i
799799 −13.7190 + 0.714082i −0.485343 + 0.0252624i
800800 0 0
801801 −22.1289 −0.781886
802802 −4.05439 −0.143166
803803 7.30465i 0.257776i
804804 38.5116i 1.35820i
805805 0 0
806806 8.48886i 0.299007i
807807 8.63206i 0.303863i
808808 17.4652i 0.614424i
809809 40.2578i 1.41539i 0.706518 + 0.707695i 0.250265π0.250265\pi
−0.706518 + 0.707695i 0.749735π0.749735\pi
810810 0 0
811811 20.4953i 0.719688i 0.933013 + 0.359844i 0.117170π0.117170\pi
−0.933013 + 0.359844i 0.882830π0.882830\pi
812812 25.5397i 0.896268i
813813 −19.6128 −0.687853
814814 2.87601 0.100804
815815 0 0
816816 1.62714 + 31.2607i 0.0569612 + 1.09434i
817817 10.9590i 0.383407i
818818 0.971896i 0.0339816i
819819 10.6824i 0.373275i
820820 0 0
821821 33.6958i 1.17599i 0.808864 + 0.587996i 0.200083π0.200083\pi
−0.808864 + 0.587996i 0.799917π0.799917\pi
822822 −7.08250 −0.247030
823823 16.6113 0.579034 0.289517 0.957173i 0.406505π-0.406505\pi
0.289517 + 0.957173i 0.406505π0.406505\pi
824824 11.4050 0.397311
825825 0 0
826826 0.682439i 0.0237451i
827827 0.316030 0.0109894 0.00549472 0.999985i 0.498251π-0.498251\pi
0.00549472 + 0.999985i 0.498251π0.498251\pi
828828 18.0020 0.625613
829829 −18.2034 −0.632231 −0.316115 0.948721i 0.602379π-0.602379\pi
−0.316115 + 0.948721i 0.602379π0.602379\pi
830830 0 0
831831 −2.53035 −0.0877769
832832 20.3412i 0.705205i
833833 0.956981 + 18.3856i 0.0331574 + 0.637024i
834834 −12.6079 −0.436577
835835 0 0
836836 11.0509i 0.382202i
837837 18.7971i 0.649721i
838838 −4.09387 −0.141421
839839 2.63851i 0.0910916i −0.998962 0.0455458i 0.985497π-0.985497\pi
0.998962 0.0455458i 0.0145027π-0.0145027\pi
840840 0 0
841841 −42.0420 −1.44972
842842 8.60793i 0.296649i
843843 32.5402 1.12074
844844 28.3245i 0.974969i
845845 0 0
846846 1.97280 0.0678264
847847 14.7763 0.507720
848848 31.4893i 1.08135i
849849 −4.38271 −0.150414
850850 0 0
851851 35.0420 1.20122
852852 44.6593i 1.53000i
853853 4.68244 0.160324 0.0801618 0.996782i 0.474456π-0.474456\pi
0.0801618 + 0.996782i 0.474456π0.474456\pi
854854 7.63741 0.261347
855855 0 0
856856 8.22861i 0.281248i
857857 47.3689 1.61809 0.809045 0.587746i 0.199985π-0.199985\pi
0.809045 + 0.587746i 0.199985π0.199985\pi
858858 3.18421i 0.108707i
859859 −16.1748 −0.551878 −0.275939 0.961175i 0.588989π-0.588989\pi
−0.275939 + 0.961175i 0.588989π0.588989\pi
860860 0 0
861861 12.9491i 0.441306i
862862 5.50024 0.187339
863863 32.5674i 1.10861i −0.832315 0.554303i 0.812985π-0.812985\pi
0.832315 0.554303i 0.187015π-0.187015\pi
864864 8.48886i 0.288797i
865865 0 0
866866 7.76049 0.263712
867867 37.4400 3.90813i 1.27153 0.132727i
868868 23.4523i 0.796023i
869869 10.3225 0.350166
870870 0 0
871871 −32.2163 −1.09161
872872 3.46965 0.117497
873873 −29.4608 −0.997096
874874 6.84743i 0.231618i
875875 0 0
876876 23.4795 0.793299
877877 13.2543 0.447565 0.223783 0.974639i 0.428159π-0.428159\pi
0.223783 + 0.974639i 0.428159π0.428159\pi
878878 3.72546 0.125728
879879 6.53035i 0.220263i
880880 0 0
881881 2.78721i 0.0939035i 0.998897 + 0.0469518i 0.0149507π0.0149507\pi
−0.998897 + 0.0469518i 0.985049π0.985049\pi
882882 2.64387i 0.0890236i
883883 27.1985i 0.915302i −0.889132 0.457651i 0.848691π-0.848691\pi
0.889132 0.457651i 0.151309π-0.151309\pi
884884 27.6271 1.43801i 0.929201 0.0483654i
885885 0 0
886886 9.54818 0.320777
887887 48.2657 1.62060 0.810301 0.586014i 0.199304π-0.199304\pi
0.810301 + 0.586014i 0.199304π0.199304\pi
888888 18.9590i 0.636222i
889889 0.447375i 0.0150045i
890890 0 0
891891 14.5368i 0.487001i
892892 44.6593i 1.49530i
893893 14.7556i 0.493776i
894894 3.38763i 0.113299i
895895 0 0
896896 13.9877i 0.467297i
897897 38.7971i 1.29540i
898898 4.24797 0.141757
899899 −65.2355 −2.17573
900900 0 0
901901 −37.8163 + 1.96836i −1.25984 + 0.0655755i
902902 1.49823i 0.0498856i
903903 8.72393i 0.290314i
904904 7.12399i 0.236940i
905905 0 0
906906 8.76541i 0.291211i
907907 −8.93825 −0.296790 −0.148395 0.988928i 0.547411π-0.547411\pi
−0.148395 + 0.988928i 0.547411π0.547411\pi
908908 −8.27454 −0.274600
909909 −27.3733 −0.907916
910910 0 0
911911 51.6795i 1.71222i 0.516794 + 0.856110i 0.327125π0.327125\pi
−0.516794 + 0.856110i 0.672875π0.672875\pi
912912 −33.6227 −1.11336
913913 9.43801 0.312352
914914 −2.55353 −0.0844633
915915 0 0
916916 −12.3225 −0.407146
917917 21.3546i 0.705191i
918918 3.11108 0.161933i 0.102681 0.00534460i
919919 −18.9719 −0.625825 −0.312913 0.949782i 0.601305π-0.601305\pi
−0.312913 + 0.949782i 0.601305π0.601305\pi
920920 0 0
921921 12.5936i 0.414974i
922922 1.61285i 0.0531163i
923923 37.3590 1.22969
924924 8.79706i 0.289402i
925925 0 0
926926 −7.21723 −0.237173
927927 17.8751i 0.587096i
928928 −29.4608 −0.967097
929929 50.3912i 1.65328i −0.562731 0.826640i 0.690249π-0.690249\pi
0.562731 0.826640i 0.309751π-0.309751\pi
930930 0 0
931931 −19.7748 −0.648092
932932 −35.2672 −1.15521
933933 52.5259i 1.71962i
934934 −10.9634 −0.358735
935935 0 0
936936 −8.14764 −0.266314
937937 58.1530i 1.89978i −0.312589 0.949889i 0.601196π-0.601196\pi
0.312589 0.949889i 0.398804π-0.398804\pi
938938 −4.52633 −0.147790
939939 −68.4197 −2.23279
940940 0 0
941941 9.25734i 0.301781i −0.988551 0.150890i 0.951786π-0.951786\pi
0.988551 0.150890i 0.0482140π-0.0482140\pi
942942 6.32693 0.206142
943943 18.2548i 0.594457i
944944 −4.72393 −0.153751
945945 0 0
946946 1.00937i 0.0328174i
947947 −43.9516 −1.42824 −0.714118 0.700025i 0.753172π-0.753172\pi
−0.714118 + 0.700025i 0.753172π0.753172\pi
948948 33.1798i 1.07763i
949949 19.6414i 0.637588i
950950 0 0
951951 −30.3466 −0.984057
952952 7.96052 0.414349i 0.258002 0.0134291i
953953 38.1891i 1.23707i −0.785758 0.618534i 0.787727π-0.787727\pi
0.785758 0.618534i 0.212273π-0.212273\pi
954954 5.43801 0.176062
955955 0 0
956956 40.7654 1.31845
957957 −24.4701 −0.791007
958958 3.56046 0.115033
959959 16.3684i 0.528564i
960960 0 0
961961 −28.9037 −0.932377
962962 −7.73329 −0.249331
963963 12.8968 0.415592
964964 23.2859i 0.749989i
965965 0 0
966966 5.45091i 0.175380i
967967 7.36043i 0.236696i 0.992972 + 0.118348i 0.0377598π0.0377598\pi
−0.992972 + 0.118348i 0.962240π0.962240\pi
968968 11.2701i 0.362235i
969969 2.10171 + 40.3783i 0.0675167 + 1.29714i
970970 0 0
971971 −35.2257 −1.13045 −0.565223 0.824938i 0.691210π-0.691210\pi
−0.565223 + 0.824938i 0.691210π0.691210\pi
972972 32.8593 1.05396
973973 29.1383i 0.934130i
974974 9.25671i 0.296604i
975975 0 0
976976 52.8671i 1.69224i
977977 46.9273i 1.50134i 0.660678 + 0.750669i 0.270269π0.270269\pi
−0.660678 + 0.750669i 0.729731π0.729731\pi
978978 3.49378i 0.111719i
979979 15.2444i 0.487214i
980980 0 0
981981 5.43801i 0.173622i
982982 7.90813i 0.252359i
983983 8.21432 0.261996 0.130998 0.991383i 0.458182π-0.458182\pi
0.130998 + 0.991383i 0.458182π0.458182\pi
984984 −9.87649 −0.314851
985985 0 0
986986 0.561993 + 10.7971i 0.0178975 + 0.343848i
987987 11.7462i 0.373886i
988988 29.7146i 0.945346i
989989 12.2983i 0.391065i
990990 0 0
991991 17.7683i 0.564430i −0.959351 0.282215i 0.908931π-0.908931\pi
0.959351 0.282215i 0.0910691π-0.0910691\pi
992992 −27.0529 −0.858929
993993 −55.1338 −1.74962
994994 5.24888 0.166484
995995 0 0
996996 30.3368i 0.961257i
997997 11.6958 0.370410 0.185205 0.982700i 0.440705π-0.440705\pi
0.185205 + 0.982700i 0.440705π0.440705\pi
998998 4.60549 0.145784
999999 17.1240 0.541779
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.c.a.424.4 6
5.2 odd 4 85.2.d.a.16.4 yes 6
5.3 odd 4 425.2.d.c.101.3 6
5.4 even 2 425.2.c.b.424.3 6
15.2 even 4 765.2.g.b.271.3 6
17.16 even 2 425.2.c.b.424.4 6
20.7 even 4 1360.2.c.f.1121.1 6
85.13 odd 4 7225.2.a.q.1.2 3
85.33 odd 4 425.2.d.c.101.4 6
85.38 odd 4 7225.2.a.r.1.2 3
85.47 odd 4 1445.2.a.j.1.2 3
85.67 odd 4 85.2.d.a.16.3 6
85.72 odd 4 1445.2.a.k.1.2 3
85.84 even 2 inner 425.2.c.a.424.3 6
255.152 even 4 765.2.g.b.271.4 6
340.67 even 4 1360.2.c.f.1121.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.3 6 85.67 odd 4
85.2.d.a.16.4 yes 6 5.2 odd 4
425.2.c.a.424.3 6 85.84 even 2 inner
425.2.c.a.424.4 6 1.1 even 1 trivial
425.2.c.b.424.3 6 5.4 even 2
425.2.c.b.424.4 6 17.16 even 2
425.2.d.c.101.3 6 5.3 odd 4
425.2.d.c.101.4 6 85.33 odd 4
765.2.g.b.271.3 6 15.2 even 4
765.2.g.b.271.4 6 255.152 even 4
1360.2.c.f.1121.1 6 20.7 even 4
1360.2.c.f.1121.6 6 340.67 even 4
1445.2.a.j.1.2 3 85.47 odd 4
1445.2.a.k.1.2 3 85.72 odd 4
7225.2.a.q.1.2 3 85.13 odd 4
7225.2.a.r.1.2 3 85.38 odd 4