Properties

Label 765.2.g.b.271.4
Level $765$
Weight $2$
Character 765.271
Analytic conductor $6.109$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(271,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.271");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.4
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 765.271
Dual form 765.2.g.b.271.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.311108 q^{2} -1.90321 q^{4} +1.00000i q^{5} -1.59210i q^{7} -1.21432 q^{8} +0.311108i q^{10} -1.31111i q^{11} +3.52543 q^{13} -0.495316i q^{14} +3.42864 q^{16} +(-4.11753 - 0.214320i) q^{17} -4.42864 q^{19} -1.90321i q^{20} -0.407896i q^{22} -4.96989i q^{23} -1.00000 q^{25} +1.09679 q^{26} +3.03011i q^{28} -8.42864i q^{29} -7.73975i q^{31} +3.49532 q^{32} +(-1.28100 - 0.0666765i) q^{34} +1.59210 q^{35} -7.05086i q^{37} -1.37778 q^{38} -1.21432i q^{40} -3.67307i q^{41} +2.47457 q^{43} +2.49532i q^{44} -1.54617i q^{46} -3.33185 q^{47} +4.46520 q^{49} -0.311108 q^{50} -6.70964 q^{52} +9.18421 q^{53} +1.31111 q^{55} +1.93332i q^{56} -2.62222i q^{58} -1.37778 q^{59} +15.4193i q^{61} -2.40790i q^{62} -5.76986 q^{64} +3.52543i q^{65} -9.13828 q^{67} +(7.83654 + 0.407896i) q^{68} +0.495316 q^{70} -10.5970i q^{71} -5.57136i q^{73} -2.19358i q^{74} +8.42864 q^{76} -2.08742 q^{77} +7.87310i q^{79} +3.42864i q^{80} -1.14272i q^{82} -7.19850 q^{83} +(0.214320 - 4.11753i) q^{85} +0.769859 q^{86} +1.59210i q^{88} -11.6271 q^{89} -5.61285i q^{91} +9.45875i q^{92} -1.03657 q^{94} -4.42864i q^{95} +15.4795i q^{97} +1.38916 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 2 q^{4} + 6 q^{8} + 8 q^{13} - 6 q^{16} + 2 q^{17} - 6 q^{25} + 20 q^{26} - 6 q^{32} + 6 q^{34} - 4 q^{35} - 8 q^{38} + 28 q^{43} + 20 q^{47} - 14 q^{49} - 2 q^{50} + 28 q^{53} + 8 q^{55}+ \cdots - 86 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108 0.219986 0.109993 0.993932i \(-0.464917\pi\)
0.109993 + 0.993932i \(0.464917\pi\)
\(3\) 0 0
\(4\) −1.90321 −0.951606
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.59210i 0.601759i −0.953662 0.300879i \(-0.902720\pi\)
0.953662 0.300879i \(-0.0972802\pi\)
\(8\) −1.21432 −0.429327
\(9\) 0 0
\(10\) 0.311108i 0.0983809i
\(11\) 1.31111i 0.395314i −0.980271 0.197657i \(-0.936667\pi\)
0.980271 0.197657i \(-0.0633332\pi\)
\(12\) 0 0
\(13\) 3.52543 0.977778 0.488889 0.872346i \(-0.337402\pi\)
0.488889 + 0.872346i \(0.337402\pi\)
\(14\) 0.495316i 0.132379i
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) −4.11753 0.214320i −0.998648 0.0519802i
\(18\) 0 0
\(19\) −4.42864 −1.01600 −0.508000 0.861357i \(-0.669615\pi\)
−0.508000 + 0.861357i \(0.669615\pi\)
\(20\) 1.90321i 0.425571i
\(21\) 0 0
\(22\) 0.407896i 0.0869637i
\(23\) 4.96989i 1.03629i −0.855292 0.518147i \(-0.826622\pi\)
0.855292 0.518147i \(-0.173378\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 1.09679 0.215098
\(27\) 0 0
\(28\) 3.03011i 0.572637i
\(29\) 8.42864i 1.56516i −0.622551 0.782580i \(-0.713904\pi\)
0.622551 0.782580i \(-0.286096\pi\)
\(30\) 0 0
\(31\) 7.73975i 1.39010i −0.718962 0.695050i \(-0.755382\pi\)
0.718962 0.695050i \(-0.244618\pi\)
\(32\) 3.49532 0.617890
\(33\) 0 0
\(34\) −1.28100 0.0666765i −0.219689 0.0114349i
\(35\) 1.59210 0.269115
\(36\) 0 0
\(37\) 7.05086i 1.15915i −0.814918 0.579577i \(-0.803218\pi\)
0.814918 0.579577i \(-0.196782\pi\)
\(38\) −1.37778 −0.223506
\(39\) 0 0
\(40\) 1.21432i 0.192001i
\(41\) 3.67307i 0.573637i −0.957985 0.286819i \(-0.907402\pi\)
0.957985 0.286819i \(-0.0925977\pi\)
\(42\) 0 0
\(43\) 2.47457 0.377369 0.188684 0.982038i \(-0.439578\pi\)
0.188684 + 0.982038i \(0.439578\pi\)
\(44\) 2.49532i 0.376183i
\(45\) 0 0
\(46\) 1.54617i 0.227970i
\(47\) −3.33185 −0.486000 −0.243000 0.970026i \(-0.578132\pi\)
−0.243000 + 0.970026i \(0.578132\pi\)
\(48\) 0 0
\(49\) 4.46520 0.637886
\(50\) −0.311108 −0.0439973
\(51\) 0 0
\(52\) −6.70964 −0.930459
\(53\) 9.18421 1.26155 0.630774 0.775967i \(-0.282737\pi\)
0.630774 + 0.775967i \(0.282737\pi\)
\(54\) 0 0
\(55\) 1.31111 0.176790
\(56\) 1.93332i 0.258351i
\(57\) 0 0
\(58\) 2.62222i 0.344314i
\(59\) −1.37778 −0.179372 −0.0896861 0.995970i \(-0.528586\pi\)
−0.0896861 + 0.995970i \(0.528586\pi\)
\(60\) 0 0
\(61\) 15.4193i 1.97424i 0.159996 + 0.987118i \(0.448852\pi\)
−0.159996 + 0.987118i \(0.551148\pi\)
\(62\) 2.40790i 0.305803i
\(63\) 0 0
\(64\) −5.76986 −0.721232
\(65\) 3.52543i 0.437275i
\(66\) 0 0
\(67\) −9.13828 −1.11642 −0.558209 0.829700i \(-0.688511\pi\)
−0.558209 + 0.829700i \(0.688511\pi\)
\(68\) 7.83654 + 0.407896i 0.950320 + 0.0494646i
\(69\) 0 0
\(70\) 0.495316 0.0592016
\(71\) 10.5970i 1.25764i −0.777553 0.628818i \(-0.783539\pi\)
0.777553 0.628818i \(-0.216461\pi\)
\(72\) 0 0
\(73\) 5.57136i 0.652078i −0.945356 0.326039i \(-0.894286\pi\)
0.945356 0.326039i \(-0.105714\pi\)
\(74\) 2.19358i 0.254998i
\(75\) 0 0
\(76\) 8.42864 0.966831
\(77\) −2.08742 −0.237884
\(78\) 0 0
\(79\) 7.87310i 0.885793i 0.896573 + 0.442897i \(0.146049\pi\)
−0.896573 + 0.442897i \(0.853951\pi\)
\(80\) 3.42864i 0.383334i
\(81\) 0 0
\(82\) 1.14272i 0.126192i
\(83\) −7.19850 −0.790138 −0.395069 0.918651i \(-0.629279\pi\)
−0.395069 + 0.918651i \(0.629279\pi\)
\(84\) 0 0
\(85\) 0.214320 4.11753i 0.0232462 0.446609i
\(86\) 0.769859 0.0830160
\(87\) 0 0
\(88\) 1.59210i 0.169719i
\(89\) −11.6271 −1.23247 −0.616237 0.787561i \(-0.711344\pi\)
−0.616237 + 0.787561i \(0.711344\pi\)
\(90\) 0 0
\(91\) 5.61285i 0.588386i
\(92\) 9.45875i 0.986143i
\(93\) 0 0
\(94\) −1.03657 −0.106914
\(95\) 4.42864i 0.454369i
\(96\) 0 0
\(97\) 15.4795i 1.57170i 0.618414 + 0.785852i \(0.287775\pi\)
−0.618414 + 0.785852i \(0.712225\pi\)
\(98\) 1.38916 0.140326
\(99\) 0 0
\(100\) 1.90321 0.190321
\(101\) 14.3827 1.43113 0.715566 0.698545i \(-0.246169\pi\)
0.715566 + 0.698545i \(0.246169\pi\)
\(102\) 0 0
\(103\) −9.39207 −0.925429 −0.462714 0.886507i \(-0.653124\pi\)
−0.462714 + 0.886507i \(0.653124\pi\)
\(104\) −4.28100 −0.419786
\(105\) 0 0
\(106\) 2.85728 0.277523
\(107\) 6.77631i 0.655091i 0.944835 + 0.327545i \(0.106221\pi\)
−0.944835 + 0.327545i \(0.893779\pi\)
\(108\) 0 0
\(109\) 2.85728i 0.273678i −0.990593 0.136839i \(-0.956306\pi\)
0.990593 0.136839i \(-0.0436942\pi\)
\(110\) 0.407896 0.0388913
\(111\) 0 0
\(112\) 5.45875i 0.515803i
\(113\) 5.86665i 0.551888i 0.961174 + 0.275944i \(0.0889904\pi\)
−0.961174 + 0.275944i \(0.911010\pi\)
\(114\) 0 0
\(115\) 4.96989 0.463444
\(116\) 16.0415i 1.48941i
\(117\) 0 0
\(118\) −0.428639 −0.0394595
\(119\) −0.341219 + 6.55554i −0.0312795 + 0.600945i
\(120\) 0 0
\(121\) 9.28100 0.843727
\(122\) 4.79706i 0.434305i
\(123\) 0 0
\(124\) 14.7304i 1.32283i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 0.280996 0.0249344 0.0124672 0.999922i \(-0.496031\pi\)
0.0124672 + 0.999922i \(0.496031\pi\)
\(128\) −8.78568 −0.776552
\(129\) 0 0
\(130\) 1.09679i 0.0961947i
\(131\) 13.4128i 1.17188i 0.810353 + 0.585942i \(0.199275\pi\)
−0.810353 + 0.585942i \(0.800725\pi\)
\(132\) 0 0
\(133\) 7.05086i 0.611387i
\(134\) −2.84299 −0.245597
\(135\) 0 0
\(136\) 5.00000 + 0.260253i 0.428746 + 0.0223165i
\(137\) −10.2810 −0.878365 −0.439182 0.898398i \(-0.644732\pi\)
−0.439182 + 0.898398i \(0.644732\pi\)
\(138\) 0 0
\(139\) 18.3017i 1.55233i −0.630528 0.776167i \(-0.717162\pi\)
0.630528 0.776167i \(-0.282838\pi\)
\(140\) −3.03011 −0.256091
\(141\) 0 0
\(142\) 3.29682i 0.276663i
\(143\) 4.62222i 0.386529i
\(144\) 0 0
\(145\) 8.42864 0.699960
\(146\) 1.73329i 0.143448i
\(147\) 0 0
\(148\) 13.4193i 1.10306i
\(149\) 4.91750 0.402857 0.201429 0.979503i \(-0.435442\pi\)
0.201429 + 0.979503i \(0.435442\pi\)
\(150\) 0 0
\(151\) 12.7239 1.03546 0.517729 0.855545i \(-0.326777\pi\)
0.517729 + 0.855545i \(0.326777\pi\)
\(152\) 5.37778 0.436196
\(153\) 0 0
\(154\) −0.649413 −0.0523312
\(155\) 7.73975 0.621671
\(156\) 0 0
\(157\) −9.18421 −0.732980 −0.366490 0.930422i \(-0.619441\pi\)
−0.366490 + 0.930422i \(0.619441\pi\)
\(158\) 2.44938i 0.194862i
\(159\) 0 0
\(160\) 3.49532i 0.276329i
\(161\) −7.91258 −0.623599
\(162\) 0 0
\(163\) 5.07160i 0.397238i −0.980077 0.198619i \(-0.936354\pi\)
0.980077 0.198619i \(-0.0636457\pi\)
\(164\) 6.99063i 0.545877i
\(165\) 0 0
\(166\) −2.23951 −0.173820
\(167\) 19.8272i 1.53427i −0.641484 0.767136i \(-0.721681\pi\)
0.641484 0.767136i \(-0.278319\pi\)
\(168\) 0 0
\(169\) −0.571361 −0.0439508
\(170\) 0.0666765 1.28100i 0.00511386 0.0982479i
\(171\) 0 0
\(172\) −4.70964 −0.359106
\(173\) 2.48886i 0.189225i −0.995514 0.0946124i \(-0.969839\pi\)
0.995514 0.0946124i \(-0.0301612\pi\)
\(174\) 0 0
\(175\) 1.59210i 0.120352i
\(176\) 4.49532i 0.338847i
\(177\) 0 0
\(178\) −3.61729 −0.271128
\(179\) 11.6128 0.867985 0.433992 0.900916i \(-0.357104\pi\)
0.433992 + 0.900916i \(0.357104\pi\)
\(180\) 0 0
\(181\) 3.86665i 0.287406i −0.989621 0.143703i \(-0.954099\pi\)
0.989621 0.143703i \(-0.0459009\pi\)
\(182\) 1.74620i 0.129437i
\(183\) 0 0
\(184\) 6.03503i 0.444909i
\(185\) 7.05086 0.518389
\(186\) 0 0
\(187\) −0.280996 + 5.39853i −0.0205485 + 0.394779i
\(188\) 6.34122 0.462481
\(189\) 0 0
\(190\) 1.37778i 0.0999550i
\(191\) 14.9175 1.07939 0.539696 0.841860i \(-0.318539\pi\)
0.539696 + 0.841860i \(0.318539\pi\)
\(192\) 0 0
\(193\) 17.7462i 1.27740i −0.769456 0.638700i \(-0.779473\pi\)
0.769456 0.638700i \(-0.220527\pi\)
\(194\) 4.81579i 0.345754i
\(195\) 0 0
\(196\) −8.49823 −0.607016
\(197\) 9.41927i 0.671095i 0.942023 + 0.335548i \(0.108921\pi\)
−0.942023 + 0.335548i \(0.891079\pi\)
\(198\) 0 0
\(199\) 7.21924i 0.511758i 0.966709 + 0.255879i \(0.0823649\pi\)
−0.966709 + 0.255879i \(0.917635\pi\)
\(200\) 1.21432 0.0858654
\(201\) 0 0
\(202\) 4.47457 0.314830
\(203\) −13.4193 −0.941848
\(204\) 0 0
\(205\) 3.67307 0.256538
\(206\) −2.92195 −0.203582
\(207\) 0 0
\(208\) 12.0874 0.838112
\(209\) 5.80642i 0.401639i
\(210\) 0 0
\(211\) 14.8825i 1.02455i 0.858821 + 0.512276i \(0.171197\pi\)
−0.858821 + 0.512276i \(0.828803\pi\)
\(212\) −17.4795 −1.20050
\(213\) 0 0
\(214\) 2.10816i 0.144111i
\(215\) 2.47457i 0.168764i
\(216\) 0 0
\(217\) −12.3225 −0.836505
\(218\) 0.888922i 0.0602054i
\(219\) 0 0
\(220\) −2.49532 −0.168234
\(221\) −14.5161 0.755569i −0.976456 0.0508251i
\(222\) 0 0
\(223\) −23.4652 −1.57135 −0.785673 0.618642i \(-0.787683\pi\)
−0.785673 + 0.618642i \(0.787683\pi\)
\(224\) 5.56491i 0.371821i
\(225\) 0 0
\(226\) 1.82516i 0.121408i
\(227\) 4.34767i 0.288565i −0.989537 0.144283i \(-0.953913\pi\)
0.989537 0.144283i \(-0.0460874\pi\)
\(228\) 0 0
\(229\) 6.47457 0.427852 0.213926 0.976850i \(-0.431375\pi\)
0.213926 + 0.976850i \(0.431375\pi\)
\(230\) 1.54617 0.101952
\(231\) 0 0
\(232\) 10.2351i 0.671965i
\(233\) 18.5303i 1.21396i 0.794716 + 0.606982i \(0.207620\pi\)
−0.794716 + 0.606982i \(0.792380\pi\)
\(234\) 0 0
\(235\) 3.33185i 0.217346i
\(236\) 2.62222 0.170692
\(237\) 0 0
\(238\) −0.106156 + 2.03948i −0.00688107 + 0.132200i
\(239\) 21.4193 1.38550 0.692749 0.721179i \(-0.256399\pi\)
0.692749 + 0.721179i \(0.256399\pi\)
\(240\) 0 0
\(241\) 12.2351i 0.788130i −0.919083 0.394065i \(-0.871069\pi\)
0.919083 0.394065i \(-0.128931\pi\)
\(242\) 2.88739 0.185608
\(243\) 0 0
\(244\) 29.3461i 1.87869i
\(245\) 4.46520i 0.285271i
\(246\) 0 0
\(247\) −15.6128 −0.993422
\(248\) 9.39853i 0.596807i
\(249\) 0 0
\(250\) 0.311108i 0.0196762i
\(251\) 4.52051 0.285332 0.142666 0.989771i \(-0.454433\pi\)
0.142666 + 0.989771i \(0.454433\pi\)
\(252\) 0 0
\(253\) −6.51606 −0.409661
\(254\) 0.0874201 0.00548523
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) 6.18913 0.386067 0.193034 0.981192i \(-0.438167\pi\)
0.193034 + 0.981192i \(0.438167\pi\)
\(258\) 0 0
\(259\) −11.2257 −0.697531
\(260\) 6.70964i 0.416114i
\(261\) 0 0
\(262\) 4.17283i 0.257798i
\(263\) −8.18913 −0.504963 −0.252482 0.967602i \(-0.581247\pi\)
−0.252482 + 0.967602i \(0.581247\pi\)
\(264\) 0 0
\(265\) 9.18421i 0.564181i
\(266\) 2.19358i 0.134497i
\(267\) 0 0
\(268\) 17.3921 1.06239
\(269\) 3.89829i 0.237683i −0.992913 0.118841i \(-0.962082\pi\)
0.992913 0.118841i \(-0.0379180\pi\)
\(270\) 0 0
\(271\) 8.85728 0.538041 0.269021 0.963134i \(-0.413300\pi\)
0.269021 + 0.963134i \(0.413300\pi\)
\(272\) −14.1175 0.734825i −0.856001 0.0445553i
\(273\) 0 0
\(274\) −3.19850 −0.193228
\(275\) 1.31111i 0.0790628i
\(276\) 0 0
\(277\) 1.14272i 0.0686595i −0.999411 0.0343297i \(-0.989070\pi\)
0.999411 0.0343297i \(-0.0109296\pi\)
\(278\) 5.69381i 0.341492i
\(279\) 0 0
\(280\) −1.93332 −0.115538
\(281\) 14.6953 0.876651 0.438325 0.898816i \(-0.355572\pi\)
0.438325 + 0.898816i \(0.355572\pi\)
\(282\) 0 0
\(283\) 1.97926i 0.117655i 0.998268 + 0.0588273i \(0.0187361\pi\)
−0.998268 + 0.0588273i \(0.981264\pi\)
\(284\) 20.1684i 1.19677i
\(285\) 0 0
\(286\) 1.43801i 0.0850312i
\(287\) −5.84791 −0.345191
\(288\) 0 0
\(289\) 16.9081 + 1.76494i 0.994596 + 0.103820i
\(290\) 2.62222 0.153982
\(291\) 0 0
\(292\) 10.6035i 0.620522i
\(293\) −2.94914 −0.172291 −0.0861454 0.996283i \(-0.527455\pi\)
−0.0861454 + 0.996283i \(0.527455\pi\)
\(294\) 0 0
\(295\) 1.37778i 0.0802177i
\(296\) 8.56199i 0.497656i
\(297\) 0 0
\(298\) 1.52987 0.0886232
\(299\) 17.5210i 1.01326i
\(300\) 0 0
\(301\) 3.93978i 0.227085i
\(302\) 3.95851 0.227787
\(303\) 0 0
\(304\) −15.1842 −0.870874
\(305\) −15.4193 −0.882905
\(306\) 0 0
\(307\) −5.68736 −0.324595 −0.162297 0.986742i \(-0.551890\pi\)
−0.162297 + 0.986742i \(0.551890\pi\)
\(308\) 3.97280 0.226371
\(309\) 0 0
\(310\) 2.40790 0.136759
\(311\) 23.7210i 1.34510i −0.740054 0.672548i \(-0.765200\pi\)
0.740054 0.672548i \(-0.234800\pi\)
\(312\) 0 0
\(313\) 30.8988i 1.74650i 0.487271 + 0.873251i \(0.337992\pi\)
−0.487271 + 0.873251i \(0.662008\pi\)
\(314\) −2.85728 −0.161246
\(315\) 0 0
\(316\) 14.9842i 0.842926i
\(317\) 13.7047i 0.769733i 0.922972 + 0.384867i \(0.125753\pi\)
−0.922972 + 0.384867i \(0.874247\pi\)
\(318\) 0 0
\(319\) −11.0509 −0.618729
\(320\) 5.76986i 0.322545i
\(321\) 0 0
\(322\) −2.46167 −0.137183
\(323\) 18.2351 + 0.949145i 1.01463 + 0.0528118i
\(324\) 0 0
\(325\) −3.52543 −0.195556
\(326\) 1.57781i 0.0873870i
\(327\) 0 0
\(328\) 4.46028i 0.246278i
\(329\) 5.30465i 0.292455i
\(330\) 0 0
\(331\) 24.8988 1.36856 0.684280 0.729219i \(-0.260117\pi\)
0.684280 + 0.729219i \(0.260117\pi\)
\(332\) 13.7003 0.751900
\(333\) 0 0
\(334\) 6.16839i 0.337519i
\(335\) 9.13828i 0.499277i
\(336\) 0 0
\(337\) 5.28592i 0.287942i −0.989582 0.143971i \(-0.954013\pi\)
0.989582 0.143971i \(-0.0459873\pi\)
\(338\) −0.177755 −0.00966858
\(339\) 0 0
\(340\) −0.407896 + 7.83654i −0.0221213 + 0.424996i
\(341\) −10.1476 −0.549526
\(342\) 0 0
\(343\) 18.2538i 0.985613i
\(344\) −3.00492 −0.162015
\(345\) 0 0
\(346\) 0.774305i 0.0416269i
\(347\) 31.6019i 1.69648i −0.529611 0.848241i \(-0.677662\pi\)
0.529611 0.848241i \(-0.322338\pi\)
\(348\) 0 0
\(349\) 26.5116 1.41913 0.709567 0.704638i \(-0.248891\pi\)
0.709567 + 0.704638i \(0.248891\pi\)
\(350\) 0.495316i 0.0264758i
\(351\) 0 0
\(352\) 4.58274i 0.244261i
\(353\) 3.71456 0.197706 0.0988530 0.995102i \(-0.468483\pi\)
0.0988530 + 0.995102i \(0.468483\pi\)
\(354\) 0 0
\(355\) 10.5970 0.562432
\(356\) 22.1289 1.17283
\(357\) 0 0
\(358\) 3.61285 0.190945
\(359\) −10.6637 −0.562809 −0.281404 0.959589i \(-0.590800\pi\)
−0.281404 + 0.959589i \(0.590800\pi\)
\(360\) 0 0
\(361\) 0.612848 0.0322551
\(362\) 1.20294i 0.0632253i
\(363\) 0 0
\(364\) 10.6824i 0.559912i
\(365\) 5.57136 0.291618
\(366\) 0 0
\(367\) 10.8780i 0.567828i 0.958850 + 0.283914i \(0.0916330\pi\)
−0.958850 + 0.283914i \(0.908367\pi\)
\(368\) 17.0400i 0.888269i
\(369\) 0 0
\(370\) 2.19358 0.114039
\(371\) 14.6222i 0.759148i
\(372\) 0 0
\(373\) −16.5575 −0.857317 −0.428659 0.903467i \(-0.641014\pi\)
−0.428659 + 0.903467i \(0.641014\pi\)
\(374\) −0.0874201 + 1.67952i −0.00452039 + 0.0868461i
\(375\) 0 0
\(376\) 4.04593 0.208653
\(377\) 29.7146i 1.53038i
\(378\) 0 0
\(379\) 8.16839i 0.419582i −0.977746 0.209791i \(-0.932722\pi\)
0.977746 0.209791i \(-0.0672783\pi\)
\(380\) 8.42864i 0.432380i
\(381\) 0 0
\(382\) 4.64095 0.237452
\(383\) −36.7926 −1.88001 −0.940007 0.341154i \(-0.889182\pi\)
−0.940007 + 0.341154i \(0.889182\pi\)
\(384\) 0 0
\(385\) 2.08742i 0.106385i
\(386\) 5.52098i 0.281011i
\(387\) 0 0
\(388\) 29.4608i 1.49564i
\(389\) −12.5348 −0.635539 −0.317770 0.948168i \(-0.602934\pi\)
−0.317770 + 0.948168i \(0.602934\pi\)
\(390\) 0 0
\(391\) −1.06515 + 20.4637i −0.0538667 + 1.03489i
\(392\) −5.42219 −0.273862
\(393\) 0 0
\(394\) 2.93041i 0.147632i
\(395\) −7.87310 −0.396139
\(396\) 0 0
\(397\) 32.1017i 1.61114i −0.592502 0.805569i \(-0.701860\pi\)
0.592502 0.805569i \(-0.298140\pi\)
\(398\) 2.24596i 0.112580i
\(399\) 0 0
\(400\) −3.42864 −0.171432
\(401\) 13.0321i 0.650793i 0.945578 + 0.325396i \(0.105498\pi\)
−0.945578 + 0.325396i \(0.894502\pi\)
\(402\) 0 0
\(403\) 27.2859i 1.35921i
\(404\) −27.3733 −1.36187
\(405\) 0 0
\(406\) −4.17484 −0.207194
\(407\) −9.24443 −0.458229
\(408\) 0 0
\(409\) 3.12399 0.154471 0.0772356 0.997013i \(-0.475391\pi\)
0.0772356 + 0.997013i \(0.475391\pi\)
\(410\) 1.14272 0.0564350
\(411\) 0 0
\(412\) 17.8751 0.880643
\(413\) 2.19358i 0.107939i
\(414\) 0 0
\(415\) 7.19850i 0.353360i
\(416\) 12.3225 0.604159
\(417\) 0 0
\(418\) 1.80642i 0.0883551i
\(419\) 13.1590i 0.642860i −0.946933 0.321430i \(-0.895836\pi\)
0.946933 0.321430i \(-0.104164\pi\)
\(420\) 0 0
\(421\) −27.6686 −1.34849 −0.674243 0.738509i \(-0.735530\pi\)
−0.674243 + 0.738509i \(0.735530\pi\)
\(422\) 4.63005i 0.225387i
\(423\) 0 0
\(424\) −11.1526 −0.541616
\(425\) 4.11753 + 0.214320i 0.199730 + 0.0103960i
\(426\) 0 0
\(427\) 24.5491 1.18801
\(428\) 12.8968i 0.623388i
\(429\) 0 0
\(430\) 0.769859i 0.0371259i
\(431\) 17.6795i 0.851593i −0.904819 0.425796i \(-0.859994\pi\)
0.904819 0.425796i \(-0.140006\pi\)
\(432\) 0 0
\(433\) −24.9447 −1.19877 −0.599383 0.800462i \(-0.704587\pi\)
−0.599383 + 0.800462i \(0.704587\pi\)
\(434\) −3.83362 −0.184020
\(435\) 0 0
\(436\) 5.43801i 0.260433i
\(437\) 22.0098i 1.05287i
\(438\) 0 0
\(439\) 11.9748i 0.571527i −0.958300 0.285763i \(-0.907753\pi\)
0.958300 0.285763i \(-0.0922471\pi\)
\(440\) −1.59210 −0.0759006
\(441\) 0 0
\(442\) −4.51606 0.235063i −0.214807 0.0111808i
\(443\) 30.6909 1.45817 0.729084 0.684424i \(-0.239946\pi\)
0.729084 + 0.684424i \(0.239946\pi\)
\(444\) 0 0
\(445\) 11.6271i 0.551179i
\(446\) −7.30021 −0.345675
\(447\) 0 0
\(448\) 9.18622i 0.434008i
\(449\) 13.6543i 0.644388i 0.946674 + 0.322194i \(0.104420\pi\)
−0.946674 + 0.322194i \(0.895580\pi\)
\(450\) 0 0
\(451\) −4.81579 −0.226767
\(452\) 11.1655i 0.525180i
\(453\) 0 0
\(454\) 1.35260i 0.0634804i
\(455\) 5.61285 0.263134
\(456\) 0 0
\(457\) −8.20787 −0.383948 −0.191974 0.981400i \(-0.561489\pi\)
−0.191974 + 0.981400i \(0.561489\pi\)
\(458\) 2.01429 0.0941216
\(459\) 0 0
\(460\) −9.45875 −0.441017
\(461\) −5.18421 −0.241453 −0.120726 0.992686i \(-0.538522\pi\)
−0.120726 + 0.992686i \(0.538522\pi\)
\(462\) 0 0
\(463\) 23.1985 1.07813 0.539063 0.842266i \(-0.318779\pi\)
0.539063 + 0.842266i \(0.318779\pi\)
\(464\) 28.8988i 1.34159i
\(465\) 0 0
\(466\) 5.76494i 0.267056i
\(467\) 35.2400 1.63071 0.815356 0.578960i \(-0.196541\pi\)
0.815356 + 0.578960i \(0.196541\pi\)
\(468\) 0 0
\(469\) 14.5491i 0.671814i
\(470\) 1.03657i 0.0478132i
\(471\) 0 0
\(472\) 1.67307 0.0770093
\(473\) 3.24443i 0.149179i
\(474\) 0 0
\(475\) 4.42864 0.203200
\(476\) 0.649413 12.4766i 0.0297658 0.571863i
\(477\) 0 0
\(478\) 6.66370 0.304791
\(479\) 11.4445i 0.522911i 0.965216 + 0.261455i \(0.0842024\pi\)
−0.965216 + 0.261455i \(0.915798\pi\)
\(480\) 0 0
\(481\) 24.8573i 1.13339i
\(482\) 3.80642i 0.173378i
\(483\) 0 0
\(484\) −17.6637 −0.802896
\(485\) −15.4795 −0.702888
\(486\) 0 0
\(487\) 29.7540i 1.34828i 0.738602 + 0.674142i \(0.235486\pi\)
−0.738602 + 0.674142i \(0.764514\pi\)
\(488\) 18.7239i 0.847592i
\(489\) 0 0
\(490\) 1.38916i 0.0627559i
\(491\) −25.4193 −1.14716 −0.573578 0.819151i \(-0.694445\pi\)
−0.573578 + 0.819151i \(0.694445\pi\)
\(492\) 0 0
\(493\) −1.80642 + 34.7052i −0.0813572 + 1.56304i
\(494\) −4.85728 −0.218539
\(495\) 0 0
\(496\) 26.5368i 1.19154i
\(497\) −16.8716 −0.756793
\(498\) 0 0
\(499\) 14.8035i 0.662696i −0.943509 0.331348i \(-0.892497\pi\)
0.943509 0.331348i \(-0.107503\pi\)
\(500\) 1.90321i 0.0851142i
\(501\) 0 0
\(502\) 1.40636 0.0627691
\(503\) 4.34767i 0.193853i 0.995292 + 0.0969266i \(0.0309012\pi\)
−0.995292 + 0.0969266i \(0.969099\pi\)
\(504\) 0 0
\(505\) 14.3827i 0.640022i
\(506\) −2.02720 −0.0901199
\(507\) 0 0
\(508\) −0.534795 −0.0237277
\(509\) 15.9813 0.708357 0.354179 0.935178i \(-0.384761\pi\)
0.354179 + 0.935178i \(0.384761\pi\)
\(510\) 0 0
\(511\) −8.87019 −0.392394
\(512\) 20.3111 0.897633
\(513\) 0 0
\(514\) 1.92549 0.0849296
\(515\) 9.39207i 0.413864i
\(516\) 0 0
\(517\) 4.36842i 0.192123i
\(518\) −3.49240 −0.153447
\(519\) 0 0
\(520\) 4.28100i 0.187734i
\(521\) 27.9081i 1.22268i 0.791369 + 0.611339i \(0.209369\pi\)
−0.791369 + 0.611339i \(0.790631\pi\)
\(522\) 0 0
\(523\) 15.8938 0.694989 0.347495 0.937682i \(-0.387032\pi\)
0.347495 + 0.937682i \(0.387032\pi\)
\(524\) 25.5274i 1.11517i
\(525\) 0 0
\(526\) −2.54770 −0.111085
\(527\) −1.65878 + 31.8687i −0.0722576 + 1.38822i
\(528\) 0 0
\(529\) −1.69979 −0.0739040
\(530\) 2.85728i 0.124112i
\(531\) 0 0
\(532\) 13.4193i 0.581799i
\(533\) 12.9491i 0.560890i
\(534\) 0 0
\(535\) −6.77631 −0.292966
\(536\) 11.0968 0.479308
\(537\) 0 0
\(538\) 1.21279i 0.0522870i
\(539\) 5.85436i 0.252165i
\(540\) 0 0
\(541\) 24.2449i 1.04237i 0.853444 + 0.521185i \(0.174510\pi\)
−0.853444 + 0.521185i \(0.825490\pi\)
\(542\) 2.75557 0.118362
\(543\) 0 0
\(544\) −14.3921 0.749115i −0.617055 0.0321181i
\(545\) 2.85728 0.122392
\(546\) 0 0
\(547\) 11.7255i 0.501344i −0.968072 0.250672i \(-0.919348\pi\)
0.968072 0.250672i \(-0.0806516\pi\)
\(548\) 19.5669 0.835857
\(549\) 0 0
\(550\) 0.407896i 0.0173927i
\(551\) 37.3274i 1.59020i
\(552\) 0 0
\(553\) 12.5348 0.533034
\(554\) 0.355509i 0.0151041i
\(555\) 0 0
\(556\) 34.8321i 1.47721i
\(557\) 31.4336 1.33188 0.665941 0.746004i \(-0.268030\pi\)
0.665941 + 0.746004i \(0.268030\pi\)
\(558\) 0 0
\(559\) 8.72393 0.368983
\(560\) 5.45875 0.230674
\(561\) 0 0
\(562\) 4.57184 0.192851
\(563\) −11.9353 −0.503014 −0.251507 0.967855i \(-0.580926\pi\)
−0.251507 + 0.967855i \(0.580926\pi\)
\(564\) 0 0
\(565\) −5.86665 −0.246812
\(566\) 0.615762i 0.0258824i
\(567\) 0 0
\(568\) 12.8682i 0.539937i
\(569\) −1.14272 −0.0479054 −0.0239527 0.999713i \(-0.507625\pi\)
−0.0239527 + 0.999713i \(0.507625\pi\)
\(570\) 0 0
\(571\) 26.7402i 1.11904i −0.828816 0.559522i \(-0.810985\pi\)
0.828816 0.559522i \(-0.189015\pi\)
\(572\) 8.79706i 0.367823i
\(573\) 0 0
\(574\) −1.81933 −0.0759374
\(575\) 4.96989i 0.207259i
\(576\) 0 0
\(577\) 27.9956 1.16547 0.582735 0.812662i \(-0.301983\pi\)
0.582735 + 0.812662i \(0.301983\pi\)
\(578\) 5.26025 + 0.549086i 0.218798 + 0.0228389i
\(579\) 0 0
\(580\) −16.0415 −0.666087
\(581\) 11.4608i 0.475472i
\(582\) 0 0
\(583\) 12.0415i 0.498707i
\(584\) 6.76541i 0.279955i
\(585\) 0 0
\(586\) −0.917502 −0.0379017
\(587\) −6.60793 −0.272738 −0.136369 0.990658i \(-0.543543\pi\)
−0.136369 + 0.990658i \(0.543543\pi\)
\(588\) 0 0
\(589\) 34.2766i 1.41234i
\(590\) 0.428639i 0.0176468i
\(591\) 0 0
\(592\) 24.1748i 0.993580i
\(593\) 4.82564 0.198165 0.0990826 0.995079i \(-0.468409\pi\)
0.0990826 + 0.995079i \(0.468409\pi\)
\(594\) 0 0
\(595\) −6.55554 0.341219i −0.268751 0.0139886i
\(596\) −9.35905 −0.383362
\(597\) 0 0
\(598\) 5.45091i 0.222904i
\(599\) 39.0005 1.59352 0.796758 0.604298i \(-0.206546\pi\)
0.796758 + 0.604298i \(0.206546\pi\)
\(600\) 0 0
\(601\) 7.19405i 0.293452i 0.989177 + 0.146726i \(0.0468735\pi\)
−0.989177 + 0.146726i \(0.953127\pi\)
\(602\) 1.22570i 0.0499556i
\(603\) 0 0
\(604\) −24.2163 −0.985348
\(605\) 9.28100i 0.377326i
\(606\) 0 0
\(607\) 7.23353i 0.293600i −0.989166 0.146800i \(-0.953103\pi\)
0.989166 0.146800i \(-0.0468974\pi\)
\(608\) −15.4795 −0.627776
\(609\) 0 0
\(610\) −4.79706 −0.194227
\(611\) −11.7462 −0.475200
\(612\) 0 0
\(613\) 14.7654 0.596369 0.298185 0.954508i \(-0.403619\pi\)
0.298185 + 0.954508i \(0.403619\pi\)
\(614\) −1.76938 −0.0714065
\(615\) 0 0
\(616\) 2.53480 0.102130
\(617\) 10.5205i 0.423540i 0.977320 + 0.211770i \(0.0679227\pi\)
−0.977320 + 0.211770i \(0.932077\pi\)
\(618\) 0 0
\(619\) 7.94623i 0.319386i 0.987167 + 0.159693i \(0.0510504\pi\)
−0.987167 + 0.159693i \(0.948950\pi\)
\(620\) −14.7304 −0.591586
\(621\) 0 0
\(622\) 7.37979i 0.295903i
\(623\) 18.5116i 0.741652i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 9.61285i 0.384207i
\(627\) 0 0
\(628\) 17.4795 0.697508
\(629\) −1.51114 + 29.0321i −0.0602530 + 1.15759i
\(630\) 0 0
\(631\) −14.2636 −0.567827 −0.283913 0.958850i \(-0.591633\pi\)
−0.283913 + 0.958850i \(0.591633\pi\)
\(632\) 9.56046i 0.380295i
\(633\) 0 0
\(634\) 4.26364i 0.169331i
\(635\) 0.280996i 0.0111510i
\(636\) 0 0
\(637\) 15.7418 0.623711
\(638\) −3.43801 −0.136112
\(639\) 0 0
\(640\) 8.78568i 0.347285i
\(641\) 25.4509i 1.00525i −0.864504 0.502625i \(-0.832368\pi\)
0.864504 0.502625i \(-0.167632\pi\)
\(642\) 0 0
\(643\) 16.1126i 0.635419i −0.948188 0.317710i \(-0.897086\pi\)
0.948188 0.317710i \(-0.102914\pi\)
\(644\) 15.0593 0.593420
\(645\) 0 0
\(646\) 5.67307 + 0.295286i 0.223204 + 0.0116179i
\(647\) −40.4558 −1.59048 −0.795242 0.606293i \(-0.792656\pi\)
−0.795242 + 0.606293i \(0.792656\pi\)
\(648\) 0 0
\(649\) 1.80642i 0.0709083i
\(650\) −1.09679 −0.0430196
\(651\) 0 0
\(652\) 9.65233i 0.378014i
\(653\) 6.87601i 0.269079i 0.990908 + 0.134540i \(0.0429556\pi\)
−0.990908 + 0.134540i \(0.957044\pi\)
\(654\) 0 0
\(655\) −13.4128 −0.524082
\(656\) 12.5936i 0.491699i
\(657\) 0 0
\(658\) 1.65032i 0.0643361i
\(659\) −16.0286 −0.624385 −0.312192 0.950019i \(-0.601063\pi\)
−0.312192 + 0.950019i \(0.601063\pi\)
\(660\) 0 0
\(661\) −31.1655 −1.21220 −0.606098 0.795390i \(-0.707266\pi\)
−0.606098 + 0.795390i \(0.707266\pi\)
\(662\) 7.74620 0.301065
\(663\) 0 0
\(664\) 8.74128 0.339227
\(665\) −7.05086 −0.273420
\(666\) 0 0
\(667\) −41.8894 −1.62196
\(668\) 37.7353i 1.46002i
\(669\) 0 0
\(670\) 2.84299i 0.109834i
\(671\) 20.2163 0.780443
\(672\) 0 0
\(673\) 19.8479i 0.765081i −0.923939 0.382540i \(-0.875049\pi\)
0.923939 0.382540i \(-0.124951\pi\)
\(674\) 1.64449i 0.0633434i
\(675\) 0 0
\(676\) 1.08742 0.0418239
\(677\) 28.8385i 1.10836i 0.832398 + 0.554178i \(0.186967\pi\)
−0.832398 + 0.554178i \(0.813033\pi\)
\(678\) 0 0
\(679\) 24.6450 0.945787
\(680\) −0.260253 + 5.00000i −0.00998024 + 0.191741i
\(681\) 0 0
\(682\) −3.15701 −0.120888
\(683\) 19.2050i 0.734857i −0.930052 0.367429i \(-0.880238\pi\)
0.930052 0.367429i \(-0.119762\pi\)
\(684\) 0 0
\(685\) 10.2810i 0.392817i
\(686\) 5.67890i 0.216821i
\(687\) 0 0
\(688\) 8.48442 0.323465
\(689\) 32.3783 1.23351
\(690\) 0 0
\(691\) 34.5555i 1.31455i 0.753649 + 0.657277i \(0.228292\pi\)
−0.753649 + 0.657277i \(0.771708\pi\)
\(692\) 4.73683i 0.180067i
\(693\) 0 0
\(694\) 9.83161i 0.373203i
\(695\) 18.3017 0.694225
\(696\) 0 0
\(697\) −0.787212 + 15.1240i −0.0298178 + 0.572862i
\(698\) 8.24797 0.312190
\(699\) 0 0
\(700\) 3.03011i 0.114527i
\(701\) 20.9131 0.789875 0.394938 0.918708i \(-0.370766\pi\)
0.394938 + 0.918708i \(0.370766\pi\)
\(702\) 0 0
\(703\) 31.2257i 1.17770i
\(704\) 7.56491i 0.285113i
\(705\) 0 0
\(706\) 1.15563 0.0434926
\(707\) 22.8988i 0.861197i
\(708\) 0 0
\(709\) 32.9906i 1.23899i 0.785001 + 0.619495i \(0.212662\pi\)
−0.785001 + 0.619495i \(0.787338\pi\)
\(710\) 3.29682 0.123727
\(711\) 0 0
\(712\) 14.1191 0.529134
\(713\) −38.4657 −1.44055
\(714\) 0 0
\(715\) 4.62222 0.172861
\(716\) −22.1017 −0.825980
\(717\) 0 0
\(718\) −3.31756 −0.123810
\(719\) 10.5141i 0.392108i −0.980593 0.196054i \(-0.937187\pi\)
0.980593 0.196054i \(-0.0628128\pi\)
\(720\) 0 0
\(721\) 14.9532i 0.556885i
\(722\) 0.190662 0.00709569
\(723\) 0 0
\(724\) 7.35905i 0.273497i
\(725\) 8.42864i 0.313032i
\(726\) 0 0
\(727\) 43.2815 1.60522 0.802610 0.596503i \(-0.203444\pi\)
0.802610 + 0.596503i \(0.203444\pi\)
\(728\) 6.81579i 0.252610i
\(729\) 0 0
\(730\) 1.73329 0.0641521
\(731\) −10.1891 0.530350i −0.376859 0.0196157i
\(732\) 0 0
\(733\) −22.8859 −0.845308 −0.422654 0.906291i \(-0.638902\pi\)
−0.422654 + 0.906291i \(0.638902\pi\)
\(734\) 3.38424i 0.124914i
\(735\) 0 0
\(736\) 17.3713i 0.640316i
\(737\) 11.9813i 0.441336i
\(738\) 0 0
\(739\) 0.815792 0.0300094 0.0150047 0.999887i \(-0.495224\pi\)
0.0150047 + 0.999887i \(0.495224\pi\)
\(740\) −13.4193 −0.493302
\(741\) 0 0
\(742\) 4.54909i 0.167002i
\(743\) 30.1639i 1.10661i 0.832980 + 0.553304i \(0.186633\pi\)
−0.832980 + 0.553304i \(0.813367\pi\)
\(744\) 0 0
\(745\) 4.91750i 0.180163i
\(746\) −5.15118 −0.188598
\(747\) 0 0
\(748\) 0.534795 10.2745i 0.0195541 0.375674i
\(749\) 10.7886 0.394207
\(750\) 0 0
\(751\) 2.17728i 0.0794500i −0.999211 0.0397250i \(-0.987352\pi\)
0.999211 0.0397250i \(-0.0126482\pi\)
\(752\) −11.4237 −0.416580
\(753\) 0 0
\(754\) 9.24443i 0.336662i
\(755\) 12.7239i 0.463071i
\(756\) 0 0
\(757\) 29.3230 1.06576 0.532881 0.846190i \(-0.321110\pi\)
0.532881 + 0.846190i \(0.321110\pi\)
\(758\) 2.54125i 0.0923023i
\(759\) 0 0
\(760\) 5.37778i 0.195073i
\(761\) −49.2212 −1.78427 −0.892134 0.451770i \(-0.850793\pi\)
−0.892134 + 0.451770i \(0.850793\pi\)
\(762\) 0 0
\(763\) −4.54909 −0.164688
\(764\) −28.3912 −1.02716
\(765\) 0 0
\(766\) −11.4465 −0.413578
\(767\) −4.85728 −0.175386
\(768\) 0 0
\(769\) 37.0178 1.33490 0.667449 0.744656i \(-0.267386\pi\)
0.667449 + 0.744656i \(0.267386\pi\)
\(770\) 0.649413i 0.0234032i
\(771\) 0 0
\(772\) 33.7748i 1.21558i
\(773\) 4.20787 0.151346 0.0756732 0.997133i \(-0.475889\pi\)
0.0756732 + 0.997133i \(0.475889\pi\)
\(774\) 0 0
\(775\) 7.73975i 0.278020i
\(776\) 18.7971i 0.674775i
\(777\) 0 0
\(778\) −3.89967 −0.139810
\(779\) 16.2667i 0.582815i
\(780\) 0 0
\(781\) −13.8938 −0.497161
\(782\) −0.331375 + 6.36641i −0.0118499 + 0.227662i
\(783\) 0 0
\(784\) 15.3096 0.546771
\(785\) 9.18421i 0.327798i
\(786\) 0 0
\(787\) 23.8557i 0.850366i −0.905108 0.425183i \(-0.860210\pi\)
0.905108 0.425183i \(-0.139790\pi\)
\(788\) 17.9269i 0.638618i
\(789\) 0 0
\(790\) −2.44938 −0.0871451
\(791\) 9.34031 0.332103
\(792\) 0 0
\(793\) 54.3595i 1.93036i
\(794\) 9.98709i 0.354429i
\(795\) 0 0
\(796\) 13.7397i 0.486992i
\(797\) 34.4415 1.21998 0.609991 0.792408i \(-0.291173\pi\)
0.609991 + 0.792408i \(0.291173\pi\)
\(798\) 0 0
\(799\) 13.7190 + 0.714082i 0.485343 + 0.0252624i
\(800\) −3.49532 −0.123578
\(801\) 0 0
\(802\) 4.05439i 0.143166i
\(803\) −7.30465 −0.257776
\(804\) 0 0
\(805\) 7.91258i 0.278882i
\(806\) 8.48886i 0.299007i
\(807\) 0 0
\(808\) −17.4652 −0.614424
\(809\) 40.2578i 1.41539i −0.706518 0.707695i \(-0.749735\pi\)
0.706518 0.707695i \(-0.250265\pi\)
\(810\) 0 0
\(811\) 20.4953i 0.719688i −0.933013 0.359844i \(-0.882830\pi\)
0.933013 0.359844i \(-0.117170\pi\)
\(812\) 25.5397 0.896268
\(813\) 0 0
\(814\) −2.87601 −0.100804
\(815\) 5.07160 0.177650
\(816\) 0 0
\(817\) −10.9590 −0.383407
\(818\) 0.971896 0.0339816
\(819\) 0 0
\(820\) −6.99063 −0.244123
\(821\) 33.6958i 1.17599i 0.808864 + 0.587996i \(0.200083\pi\)
−0.808864 + 0.587996i \(0.799917\pi\)
\(822\) 0 0
\(823\) 16.6113i 0.579034i 0.957173 + 0.289517i \(0.0934947\pi\)
−0.957173 + 0.289517i \(0.906505\pi\)
\(824\) 11.4050 0.397311
\(825\) 0 0
\(826\) 0.682439i 0.0237451i
\(827\) 0.316030i 0.0109894i 0.999985 + 0.00549472i \(0.00174903\pi\)
−0.999985 + 0.00549472i \(0.998251\pi\)
\(828\) 0 0
\(829\) 18.2034 0.632231 0.316115 0.948721i \(-0.397621\pi\)
0.316115 + 0.948721i \(0.397621\pi\)
\(830\) 2.23951i 0.0777345i
\(831\) 0 0
\(832\) −20.3412 −0.705205
\(833\) −18.3856 0.956981i −0.637024 0.0331574i
\(834\) 0 0
\(835\) 19.8272 0.686147
\(836\) 11.0509i 0.382202i
\(837\) 0 0
\(838\) 4.09387i 0.141421i
\(839\) 2.63851i 0.0910916i 0.998962 + 0.0455458i \(0.0145027\pi\)
−0.998962 + 0.0455458i \(0.985497\pi\)
\(840\) 0 0
\(841\) −42.0420 −1.44972
\(842\) −8.60793 −0.296649
\(843\) 0 0
\(844\) 28.3245i 0.974969i
\(845\) 0.571361i 0.0196554i
\(846\) 0 0
\(847\) 14.7763i 0.507720i
\(848\) 31.4893 1.08135
\(849\) 0 0
\(850\) 1.28100 + 0.0666765i 0.0439378 + 0.00228699i
\(851\) −35.0420 −1.20122
\(852\) 0 0
\(853\) 4.68244i 0.160324i 0.996782 + 0.0801618i \(0.0255437\pi\)
−0.996782 + 0.0801618i \(0.974456\pi\)
\(854\) 7.63741 0.261347
\(855\) 0 0
\(856\) 8.22861i 0.281248i
\(857\) 47.3689i 1.61809i 0.587746 + 0.809045i \(0.300015\pi\)
−0.587746 + 0.809045i \(0.699985\pi\)
\(858\) 0 0
\(859\) 16.1748 0.551878 0.275939 0.961175i \(-0.411011\pi\)
0.275939 + 0.961175i \(0.411011\pi\)
\(860\) 4.70964i 0.160597i
\(861\) 0 0
\(862\) 5.50024i 0.187339i
\(863\) 32.5674 1.10861 0.554303 0.832315i \(-0.312985\pi\)
0.554303 + 0.832315i \(0.312985\pi\)
\(864\) 0 0
\(865\) 2.48886 0.0846239
\(866\) −7.76049 −0.263712
\(867\) 0 0
\(868\) 23.4523 0.796023
\(869\) 10.3225 0.350166
\(870\) 0 0
\(871\) −32.2163 −1.09161
\(872\) 3.46965i 0.117497i
\(873\) 0 0
\(874\) 6.84743i 0.231618i
\(875\) −1.59210 −0.0538229
\(876\) 0 0
\(877\) 13.2543i 0.447565i −0.974639 0.223783i \(-0.928159\pi\)
0.974639 0.223783i \(-0.0718405\pi\)
\(878\) 3.72546i 0.125728i
\(879\) 0 0
\(880\) 4.49532 0.151537
\(881\) 2.78721i 0.0939035i 0.998897 + 0.0469518i \(0.0149507\pi\)
−0.998897 + 0.0469518i \(0.985049\pi\)
\(882\) 0 0
\(883\) −27.1985 −0.915302 −0.457651 0.889132i \(-0.651309\pi\)
−0.457651 + 0.889132i \(0.651309\pi\)
\(884\) 27.6271 + 1.43801i 0.929201 + 0.0483654i
\(885\) 0 0
\(886\) 9.54818 0.320777
\(887\) 48.2657i 1.62060i 0.586014 + 0.810301i \(0.300696\pi\)
−0.586014 + 0.810301i \(0.699304\pi\)
\(888\) 0 0
\(889\) 0.447375i 0.0150045i
\(890\) 3.61729i 0.121252i
\(891\) 0 0
\(892\) 44.6593 1.49530
\(893\) 14.7556 0.493776
\(894\) 0 0
\(895\) 11.6128i 0.388175i
\(896\) 13.9877i 0.467297i
\(897\) 0 0
\(898\) 4.24797i 0.141757i
\(899\) −65.2355 −2.17573
\(900\) 0 0
\(901\) −37.8163 1.96836i −1.25984 0.0655755i
\(902\) −1.49823 −0.0498856
\(903\) 0 0
\(904\) 7.12399i 0.236940i
\(905\) 3.86665 0.128532
\(906\) 0 0
\(907\) 8.93825i 0.296790i 0.988928 + 0.148395i \(0.0474106\pi\)
−0.988928 + 0.148395i \(0.952589\pi\)
\(908\) 8.27454i 0.274600i
\(909\) 0 0
\(910\) 1.74620 0.0578860
\(911\) 51.6795i 1.71222i 0.516794 + 0.856110i \(0.327125\pi\)
−0.516794 + 0.856110i \(0.672875\pi\)
\(912\) 0 0
\(913\) 9.43801i 0.312352i
\(914\) −2.55353 −0.0844633
\(915\) 0 0
\(916\) −12.3225 −0.407146
\(917\) 21.3546 0.705191
\(918\) 0 0
\(919\) 18.9719 0.625825 0.312913 0.949782i \(-0.398695\pi\)
0.312913 + 0.949782i \(0.398695\pi\)
\(920\) −6.03503 −0.198969
\(921\) 0 0
\(922\) −1.61285 −0.0531163
\(923\) 37.3590i 1.22969i
\(924\) 0 0
\(925\) 7.05086i 0.231831i
\(926\) 7.21723 0.237173
\(927\) 0 0
\(928\) 29.4608i 0.967097i
\(929\) 50.3912i 1.65328i 0.562731 + 0.826640i \(0.309751\pi\)
−0.562731 + 0.826640i \(0.690249\pi\)
\(930\) 0 0
\(931\) −19.7748 −0.648092
\(932\) 35.2672i 1.15521i
\(933\) 0 0
\(934\) 10.9634 0.358735
\(935\) −5.39853 0.280996i −0.176551 0.00918956i
\(936\) 0 0
\(937\) 58.1530 1.89978 0.949889 0.312589i \(-0.101196\pi\)
0.949889 + 0.312589i \(0.101196\pi\)
\(938\) 4.52633i 0.147790i
\(939\) 0 0
\(940\) 6.34122i 0.206828i
\(941\) 9.25734i 0.301781i −0.988551 0.150890i \(-0.951786\pi\)
0.988551 0.150890i \(-0.0482140\pi\)
\(942\) 0 0
\(943\) −18.2548 −0.594457
\(944\) −4.72393 −0.153751
\(945\) 0 0
\(946\) 1.00937i 0.0328174i
\(947\) 43.9516i 1.42824i −0.700025 0.714118i \(-0.746828\pi\)
0.700025 0.714118i \(-0.253172\pi\)
\(948\) 0 0
\(949\) 19.6414i 0.637588i
\(950\) 1.37778 0.0447012
\(951\) 0 0
\(952\) 0.414349 7.96052i 0.0134291 0.258002i
\(953\) 38.1891 1.23707 0.618534 0.785758i \(-0.287727\pi\)
0.618534 + 0.785758i \(0.287727\pi\)
\(954\) 0 0
\(955\) 14.9175i 0.482719i
\(956\) −40.7654 −1.31845
\(957\) 0 0
\(958\) 3.56046i 0.115033i
\(959\) 16.3684i 0.528564i
\(960\) 0 0
\(961\) −28.9037 −0.932377
\(962\) 7.73329i 0.249331i
\(963\) 0 0
\(964\) 23.2859i 0.749989i
\(965\) 17.7462 0.571270
\(966\) 0 0
\(967\) −7.36043 −0.236696 −0.118348 0.992972i \(-0.537760\pi\)
−0.118348 + 0.992972i \(0.537760\pi\)
\(968\) −11.2701 −0.362235
\(969\) 0 0
\(970\) −4.81579 −0.154626
\(971\) 35.2257 1.13045 0.565223 0.824938i \(-0.308790\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(972\) 0 0
\(973\) −29.1383 −0.934130
\(974\) 9.25671i 0.296604i
\(975\) 0 0
\(976\) 52.8671i 1.69224i
\(977\) 46.9273 1.50134 0.750669 0.660678i \(-0.229731\pi\)
0.750669 + 0.660678i \(0.229731\pi\)
\(978\) 0 0
\(979\) 15.2444i 0.487214i
\(980\) 8.49823i 0.271466i
\(981\) 0 0
\(982\) −7.90813 −0.252359
\(983\) 8.21432i 0.261996i −0.991383 0.130998i \(-0.958182\pi\)
0.991383 0.130998i \(-0.0418182\pi\)
\(984\) 0 0
\(985\) −9.41927 −0.300123
\(986\) −0.561993 + 10.7971i −0.0178975 + 0.343848i
\(987\) 0 0
\(988\) 29.7146 0.945346
\(989\) 12.2983i 0.391065i
\(990\) 0 0
\(991\) 17.7683i 0.564430i 0.959351 + 0.282215i \(0.0910691\pi\)
−0.959351 + 0.282215i \(0.908931\pi\)
\(992\) 27.0529i 0.858929i
\(993\) 0 0
\(994\) −5.24888 −0.166484
\(995\) −7.21924 −0.228865
\(996\) 0 0
\(997\) 11.6958i 0.370410i −0.982700 0.185205i \(-0.940705\pi\)
0.982700 0.185205i \(-0.0592950\pi\)
\(998\) 4.60549i 0.145784i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.g.b.271.4 6
3.2 odd 2 85.2.d.a.16.3 6
12.11 even 2 1360.2.c.f.1121.6 6
15.2 even 4 425.2.c.a.424.3 6
15.8 even 4 425.2.c.b.424.4 6
15.14 odd 2 425.2.d.c.101.4 6
17.16 even 2 inner 765.2.g.b.271.3 6
51.38 odd 4 1445.2.a.j.1.2 3
51.47 odd 4 1445.2.a.k.1.2 3
51.50 odd 2 85.2.d.a.16.4 yes 6
204.203 even 2 1360.2.c.f.1121.1 6
255.89 odd 4 7225.2.a.q.1.2 3
255.149 odd 4 7225.2.a.r.1.2 3
255.152 even 4 425.2.c.b.424.3 6
255.203 even 4 425.2.c.a.424.4 6
255.254 odd 2 425.2.d.c.101.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.3 6 3.2 odd 2
85.2.d.a.16.4 yes 6 51.50 odd 2
425.2.c.a.424.3 6 15.2 even 4
425.2.c.a.424.4 6 255.203 even 4
425.2.c.b.424.3 6 255.152 even 4
425.2.c.b.424.4 6 15.8 even 4
425.2.d.c.101.3 6 255.254 odd 2
425.2.d.c.101.4 6 15.14 odd 2
765.2.g.b.271.3 6 17.16 even 2 inner
765.2.g.b.271.4 6 1.1 even 1 trivial
1360.2.c.f.1121.1 6 204.203 even 2
1360.2.c.f.1121.6 6 12.11 even 2
1445.2.a.j.1.2 3 51.38 odd 4
1445.2.a.k.1.2 3 51.47 odd 4
7225.2.a.q.1.2 3 255.89 odd 4
7225.2.a.r.1.2 3 255.149 odd 4