Properties

Label 425.2.c.c.424.5
Level $425$
Weight $2$
Character 425.424
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(424,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.424");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 16 x^{10} - 4 x^{9} + 111 x^{8} + 4 x^{7} + 394 x^{6} + 236 x^{5} + 581 x^{4} + 1000 x^{3} + \cdots + 845 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.5
Root \(1.10716 - 1.97403i\) of defining polynomial
Character \(\chi\) \(=\) 425.424
Dual form 425.2.c.c.424.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108i q^{2} -1.12261 q^{3} +1.90321 q^{4} +0.349253i q^{6} -3.60843 q^{7} -1.21432i q^{8} -1.73975 q^{9} -5.74499i q^{11} -2.13656 q^{12} -2.59210i q^{13} +1.12261i q^{14} +3.42864 q^{16} +(3.25917 - 2.52543i) q^{17} +0.541249i q^{18} -4.28100 q^{19} +4.05086 q^{21} -1.78731 q^{22} +1.47186 q^{23} +1.36321i q^{24} -0.806424 q^{26} +5.32089 q^{27} -6.86760 q^{28} +5.50439i q^{29} -8.33946i q^{31} -3.49532i q^{32} +6.44938i q^{33} +(-0.785680 - 1.01395i) q^{34} -3.31111 q^{36} -6.20290 q^{37} +1.33185i q^{38} +2.90992i q^{39} +3.95768i q^{41} -1.26025i q^{42} -9.76049i q^{43} -10.9339i q^{44} -0.457908i q^{46} +6.62222i q^{47} -3.84902 q^{48} +6.02074 q^{49} +(-3.65878 + 2.83507i) q^{51} -4.93332i q^{52} -0.658781i q^{53} -1.65537i q^{54} +4.38178i q^{56} +4.80589 q^{57} +1.71246 q^{58} -5.95407 q^{59} +8.76357i q^{61} -2.59447 q^{62} +6.27775 q^{63} +5.76986 q^{64} +2.00645 q^{66} -0.428639i q^{67} +(6.20290 - 4.80642i) q^{68} -1.65233 q^{69} -1.36321i q^{71} +2.11261i q^{72} +3.25917 q^{73} +1.92977i q^{74} -8.14764 q^{76} +20.7304i q^{77} +0.905299 q^{78} -1.89597i q^{79} -0.754037 q^{81} +1.23127 q^{82} +16.6637i q^{83} +7.70964 q^{84} -3.03657 q^{86} -6.17929i q^{87} -6.97626 q^{88} +3.52543 q^{89} +9.35342i q^{91} +2.80127 q^{92} +9.36196i q^{93} +2.06022 q^{94} +3.92388i q^{96} +11.7073 q^{97} -1.87310i q^{98} +9.99483i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 32 q^{9} - 12 q^{16} - 24 q^{19} - 4 q^{21} + 44 q^{26} - 36 q^{34} - 40 q^{36} - 8 q^{49} - 16 q^{51} + 8 q^{59} + 44 q^{64} - 32 q^{66} - 48 q^{69} - 72 q^{76} + 68 q^{81} + 12 q^{84}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.311108i 0.219986i −0.993932 0.109993i \(-0.964917\pi\)
0.993932 0.109993i \(-0.0350829\pi\)
\(3\) −1.12261 −0.648139 −0.324070 0.946033i \(-0.605051\pi\)
−0.324070 + 0.946033i \(0.605051\pi\)
\(4\) 1.90321 0.951606
\(5\) 0 0
\(6\) 0.349253i 0.142582i
\(7\) −3.60843 −1.36386 −0.681929 0.731419i \(-0.738859\pi\)
−0.681929 + 0.731419i \(0.738859\pi\)
\(8\) 1.21432i 0.429327i
\(9\) −1.73975 −0.579916
\(10\) 0 0
\(11\) 5.74499i 1.73218i −0.499888 0.866090i \(-0.666626\pi\)
0.499888 0.866090i \(-0.333374\pi\)
\(12\) −2.13656 −0.616773
\(13\) 2.59210i 0.718920i −0.933160 0.359460i \(-0.882961\pi\)
0.933160 0.359460i \(-0.117039\pi\)
\(14\) 1.12261i 0.300030i
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) 3.25917 2.52543i 0.790466 0.612506i
\(18\) 0.541249i 0.127574i
\(19\) −4.28100 −0.982128 −0.491064 0.871124i \(-0.663392\pi\)
−0.491064 + 0.871124i \(0.663392\pi\)
\(20\) 0 0
\(21\) 4.05086 0.883969
\(22\) −1.78731 −0.381056
\(23\) 1.47186 0.306905 0.153452 0.988156i \(-0.450961\pi\)
0.153452 + 0.988156i \(0.450961\pi\)
\(24\) 1.36321i 0.278264i
\(25\) 0 0
\(26\) −0.806424 −0.158153
\(27\) 5.32089 1.02401
\(28\) −6.86760 −1.29785
\(29\) 5.50439i 1.02214i 0.859539 + 0.511070i \(0.170751\pi\)
−0.859539 + 0.511070i \(0.829249\pi\)
\(30\) 0 0
\(31\) 8.33946i 1.49781i −0.662676 0.748906i \(-0.730579\pi\)
0.662676 0.748906i \(-0.269421\pi\)
\(32\) 3.49532i 0.617890i
\(33\) 6.44938i 1.12269i
\(34\) −0.785680 1.01395i −0.134743 0.173892i
\(35\) 0 0
\(36\) −3.31111 −0.551851
\(37\) −6.20290 −1.01975 −0.509875 0.860248i \(-0.670308\pi\)
−0.509875 + 0.860248i \(0.670308\pi\)
\(38\) 1.33185i 0.216055i
\(39\) 2.90992i 0.465960i
\(40\) 0 0
\(41\) 3.95768i 0.618086i 0.951048 + 0.309043i \(0.100009\pi\)
−0.951048 + 0.309043i \(0.899991\pi\)
\(42\) 1.26025i 0.194461i
\(43\) 9.76049i 1.48846i −0.667923 0.744230i \(-0.732816\pi\)
0.667923 0.744230i \(-0.267184\pi\)
\(44\) 10.9339i 1.64835i
\(45\) 0 0
\(46\) 0.457908i 0.0675148i
\(47\) 6.62222i 0.965949i 0.875634 + 0.482975i \(0.160444\pi\)
−0.875634 + 0.482975i \(0.839556\pi\)
\(48\) −3.84902 −0.555559
\(49\) 6.02074 0.860106
\(50\) 0 0
\(51\) −3.65878 + 2.83507i −0.512332 + 0.396989i
\(52\) 4.93332i 0.684129i
\(53\) 0.658781i 0.0904905i −0.998976 0.0452452i \(-0.985593\pi\)
0.998976 0.0452452i \(-0.0144069\pi\)
\(54\) 1.65537i 0.225267i
\(55\) 0 0
\(56\) 4.38178i 0.585540i
\(57\) 4.80589 0.636555
\(58\) 1.71246 0.224857
\(59\) −5.95407 −0.775154 −0.387577 0.921837i \(-0.626688\pi\)
−0.387577 + 0.921837i \(0.626688\pi\)
\(60\) 0 0
\(61\) 8.76357i 1.12206i 0.827796 + 0.561030i \(0.189595\pi\)
−0.827796 + 0.561030i \(0.810405\pi\)
\(62\) −2.59447 −0.329498
\(63\) 6.27775 0.790922
\(64\) 5.76986 0.721232
\(65\) 0 0
\(66\) 2.00645 0.246977
\(67\) 0.428639i 0.0523666i −0.999657 0.0261833i \(-0.991665\pi\)
0.999657 0.0261833i \(-0.00833536\pi\)
\(68\) 6.20290 4.80642i 0.752212 0.582865i
\(69\) −1.65233 −0.198917
\(70\) 0 0
\(71\) 1.36321i 0.161783i −0.996723 0.0808915i \(-0.974223\pi\)
0.996723 0.0808915i \(-0.0257767\pi\)
\(72\) 2.11261i 0.248973i
\(73\) 3.25917 0.381457 0.190729 0.981643i \(-0.438915\pi\)
0.190729 + 0.981643i \(0.438915\pi\)
\(74\) 1.92977i 0.224331i
\(75\) 0 0
\(76\) −8.14764 −0.934599
\(77\) 20.7304i 2.36245i
\(78\) 0.905299 0.102505
\(79\) 1.89597i 0.213313i −0.994296 0.106656i \(-0.965985\pi\)
0.994296 0.106656i \(-0.0340145\pi\)
\(80\) 0 0
\(81\) −0.754037 −0.0837819
\(82\) 1.23127 0.135970
\(83\) 16.6637i 1.82908i 0.404497 + 0.914540i \(0.367447\pi\)
−0.404497 + 0.914540i \(0.632553\pi\)
\(84\) 7.70964 0.841190
\(85\) 0 0
\(86\) −3.03657 −0.327441
\(87\) 6.17929i 0.662489i
\(88\) −6.97626 −0.743671
\(89\) 3.52543 0.373695 0.186847 0.982389i \(-0.440173\pi\)
0.186847 + 0.982389i \(0.440173\pi\)
\(90\) 0 0
\(91\) 9.35342i 0.980505i
\(92\) 2.80127 0.292052
\(93\) 9.36196i 0.970790i
\(94\) 2.06022 0.212496
\(95\) 0 0
\(96\) 3.92388i 0.400479i
\(97\) 11.7073 1.18870 0.594348 0.804208i \(-0.297410\pi\)
0.594348 + 0.804208i \(0.297410\pi\)
\(98\) 1.87310i 0.189212i
\(99\) 9.99483i 1.00452i
\(100\) 0 0
\(101\) 3.96989 0.395019 0.197509 0.980301i \(-0.436715\pi\)
0.197509 + 0.980301i \(0.436715\pi\)
\(102\) 0.882012 + 1.13828i 0.0873322 + 0.112706i
\(103\) 4.23506i 0.417293i 0.977991 + 0.208647i \(0.0669058\pi\)
−0.977991 + 0.208647i \(0.933094\pi\)
\(104\) −3.14764 −0.308652
\(105\) 0 0
\(106\) −0.204952 −0.0199067
\(107\) 11.8392 1.14454 0.572271 0.820065i \(-0.306063\pi\)
0.572271 + 0.820065i \(0.306063\pi\)
\(108\) 10.1268 0.974449
\(109\) 12.0227i 1.15157i −0.817601 0.575785i \(-0.804697\pi\)
0.817601 0.575785i \(-0.195303\pi\)
\(110\) 0 0
\(111\) 6.96343 0.660940
\(112\) −12.3720 −1.16904
\(113\) 10.7915 1.01518 0.507588 0.861600i \(-0.330537\pi\)
0.507588 + 0.861600i \(0.330537\pi\)
\(114\) 1.49515i 0.140034i
\(115\) 0 0
\(116\) 10.4760i 0.972675i
\(117\) 4.50961i 0.416913i
\(118\) 1.85236i 0.170523i
\(119\) −11.7605 + 9.11282i −1.07808 + 0.835371i
\(120\) 0 0
\(121\) −22.0049 −2.00045
\(122\) 2.72641 0.246838
\(123\) 4.44293i 0.400605i
\(124\) 15.8718i 1.42533i
\(125\) 0 0
\(126\) 1.95306i 0.173992i
\(127\) 17.1383i 1.52078i −0.649469 0.760388i \(-0.725009\pi\)
0.649469 0.760388i \(-0.274991\pi\)
\(128\) 8.78568i 0.776552i
\(129\) 10.9572i 0.964730i
\(130\) 0 0
\(131\) 8.89551i 0.777204i −0.921406 0.388602i \(-0.872958\pi\)
0.921406 0.388602i \(-0.127042\pi\)
\(132\) 12.2745i 1.06836i
\(133\) 15.4477 1.33948
\(134\) −0.133353 −0.0115200
\(135\) 0 0
\(136\) −3.06668 3.95768i −0.262965 0.339368i
\(137\) 14.0716i 1.20222i −0.799167 0.601109i \(-0.794726\pi\)
0.799167 0.601109i \(-0.205274\pi\)
\(138\) 0.514052i 0.0437590i
\(139\) 16.7876i 1.42390i −0.702228 0.711952i \(-0.747811\pi\)
0.702228 0.711952i \(-0.252189\pi\)
\(140\) 0 0
\(141\) 7.43416i 0.626070i
\(142\) −0.424104 −0.0355901
\(143\) −14.8916 −1.24530
\(144\) −5.96497 −0.497081
\(145\) 0 0
\(146\) 1.01395i 0.0839155i
\(147\) −6.75895 −0.557468
\(148\) −11.8054 −0.970400
\(149\) 4.76494 0.390359 0.195179 0.980768i \(-0.437471\pi\)
0.195179 + 0.980768i \(0.437471\pi\)
\(150\) 0 0
\(151\) 2.99063 0.243374 0.121687 0.992569i \(-0.461170\pi\)
0.121687 + 0.992569i \(0.461170\pi\)
\(152\) 5.19850i 0.421654i
\(153\) −5.67014 + 4.39361i −0.458404 + 0.355202i
\(154\) 6.44938 0.519706
\(155\) 0 0
\(156\) 5.53820i 0.443411i
\(157\) 13.9447i 1.11291i 0.830878 + 0.556454i \(0.187838\pi\)
−0.830878 + 0.556454i \(0.812162\pi\)
\(158\) −0.589850 −0.0469260
\(159\) 0.739554i 0.0586504i
\(160\) 0 0
\(161\) −5.31111 −0.418574
\(162\) 0.234587i 0.0184309i
\(163\) −8.65491 −0.677905 −0.338953 0.940803i \(-0.610073\pi\)
−0.338953 + 0.940803i \(0.610073\pi\)
\(164\) 7.53230i 0.588174i
\(165\) 0 0
\(166\) 5.18421 0.402373
\(167\) 0.773357 0.0598442 0.0299221 0.999552i \(-0.490474\pi\)
0.0299221 + 0.999552i \(0.490474\pi\)
\(168\) 4.91903i 0.379512i
\(169\) 6.28100 0.483154
\(170\) 0 0
\(171\) 7.44785 0.569551
\(172\) 18.5763i 1.41643i
\(173\) 2.41097 0.183302 0.0916511 0.995791i \(-0.470786\pi\)
0.0916511 + 0.995791i \(0.470786\pi\)
\(174\) −1.92242 −0.145739
\(175\) 0 0
\(176\) 19.6975i 1.48476i
\(177\) 6.68409 0.502407
\(178\) 1.09679i 0.0822077i
\(179\) 18.4558 1.37945 0.689727 0.724070i \(-0.257731\pi\)
0.689727 + 0.724070i \(0.257731\pi\)
\(180\) 0 0
\(181\) 20.6366i 1.53391i 0.641703 + 0.766953i \(0.278228\pi\)
−0.641703 + 0.766953i \(0.721772\pi\)
\(182\) 2.90992 0.215698
\(183\) 9.83807i 0.727251i
\(184\) 1.78731i 0.131762i
\(185\) 0 0
\(186\) 2.91258 0.213561
\(187\) −14.5086 18.7239i −1.06097 1.36923i
\(188\) 12.6035i 0.919203i
\(189\) −19.2000 −1.39660
\(190\) 0 0
\(191\) 22.8113 1.65057 0.825286 0.564716i \(-0.191014\pi\)
0.825286 + 0.564716i \(0.191014\pi\)
\(192\) −6.47730 −0.467459
\(193\) −19.7208 −1.41953 −0.709767 0.704437i \(-0.751200\pi\)
−0.709767 + 0.704437i \(0.751200\pi\)
\(194\) 3.64223i 0.261497i
\(195\) 0 0
\(196\) 11.4588 0.818482
\(197\) −12.8870 −0.918160 −0.459080 0.888395i \(-0.651821\pi\)
−0.459080 + 0.888395i \(0.651821\pi\)
\(198\) 3.10947 0.220980
\(199\) 6.44350i 0.456767i 0.973571 + 0.228384i \(0.0733441\pi\)
−0.973571 + 0.228384i \(0.926656\pi\)
\(200\) 0 0
\(201\) 0.481195i 0.0339409i
\(202\) 1.23506i 0.0868988i
\(203\) 19.8622i 1.39405i
\(204\) −6.96343 + 5.39574i −0.487538 + 0.377777i
\(205\) 0 0
\(206\) 1.31756 0.0917988
\(207\) −2.56067 −0.177979
\(208\) 8.88739i 0.616230i
\(209\) 24.5943i 1.70122i
\(210\) 0 0
\(211\) 11.3580i 0.781920i −0.920408 0.390960i \(-0.872143\pi\)
0.920408 0.390960i \(-0.127857\pi\)
\(212\) 1.25380i 0.0861113i
\(213\) 1.53035i 0.104858i
\(214\) 3.68328i 0.251784i
\(215\) 0 0
\(216\) 6.46126i 0.439633i
\(217\) 30.0923i 2.04280i
\(218\) −3.74037 −0.253330
\(219\) −3.65878 −0.247237
\(220\) 0 0
\(221\) −6.54617 8.44812i −0.440343 0.568282i
\(222\) 2.16638i 0.145398i
\(223\) 0.888922i 0.0595266i 0.999557 + 0.0297633i \(0.00947535\pi\)
−0.999557 + 0.0297633i \(0.990525\pi\)
\(224\) 12.6126i 0.842714i
\(225\) 0 0
\(226\) 3.35731i 0.223325i
\(227\) −12.9280 −0.858064 −0.429032 0.903289i \(-0.641145\pi\)
−0.429032 + 0.903289i \(0.641145\pi\)
\(228\) 9.14662 0.605750
\(229\) −2.83161 −0.187118 −0.0935591 0.995614i \(-0.529824\pi\)
−0.0935591 + 0.995614i \(0.529824\pi\)
\(230\) 0 0
\(231\) 23.2721i 1.53119i
\(232\) 6.68409 0.438832
\(233\) 19.9381 1.30619 0.653094 0.757277i \(-0.273471\pi\)
0.653094 + 0.757277i \(0.273471\pi\)
\(234\) 1.40297 0.0917153
\(235\) 0 0
\(236\) −11.3319 −0.737641
\(237\) 2.12843i 0.138256i
\(238\) 2.83507 + 3.65878i 0.183770 + 0.237164i
\(239\) −27.2859 −1.76498 −0.882490 0.470332i \(-0.844134\pi\)
−0.882490 + 0.470332i \(0.844134\pi\)
\(240\) 0 0
\(241\) 3.57462i 0.230262i 0.993350 + 0.115131i \(0.0367287\pi\)
−0.993350 + 0.115131i \(0.963271\pi\)
\(242\) 6.84590i 0.440071i
\(243\) −15.1162 −0.969703
\(244\) 16.6789i 1.06776i
\(245\) 0 0
\(246\) −1.38223 −0.0881278
\(247\) 11.0968i 0.706072i
\(248\) −10.1268 −0.643051
\(249\) 18.7068i 1.18550i
\(250\) 0 0
\(251\) 17.6128 1.11171 0.555857 0.831278i \(-0.312390\pi\)
0.555857 + 0.831278i \(0.312390\pi\)
\(252\) 11.9479 0.752646
\(253\) 8.45584i 0.531614i
\(254\) −5.33185 −0.334550
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) 20.5462i 1.28163i −0.767693 0.640817i \(-0.778596\pi\)
0.767693 0.640817i \(-0.221404\pi\)
\(258\) 3.40888 0.212227
\(259\) 22.3827 1.39079
\(260\) 0 0
\(261\) 9.57625i 0.592755i
\(262\) −2.76746 −0.170974
\(263\) 8.38715i 0.517174i 0.965988 + 0.258587i \(0.0832569\pi\)
−0.965988 + 0.258587i \(0.916743\pi\)
\(264\) 7.83161 0.482002
\(265\) 0 0
\(266\) 4.80589i 0.294668i
\(267\) −3.95768 −0.242206
\(268\) 0.815792i 0.0498324i
\(269\) 12.4058i 0.756395i −0.925725 0.378197i \(-0.876544\pi\)
0.925725 0.378197i \(-0.123456\pi\)
\(270\) 0 0
\(271\) −7.13828 −0.433619 −0.216810 0.976214i \(-0.569565\pi\)
−0.216810 + 0.976214i \(0.569565\pi\)
\(272\) 11.1745 8.65878i 0.677556 0.525016i
\(273\) 10.5002i 0.635503i
\(274\) −4.37778 −0.264472
\(275\) 0 0
\(276\) −3.14473 −0.189290
\(277\) −20.4193 −1.22688 −0.613438 0.789743i \(-0.710214\pi\)
−0.613438 + 0.789743i \(0.710214\pi\)
\(278\) −5.22275 −0.313240
\(279\) 14.5086i 0.868605i
\(280\) 0 0
\(281\) 29.1432 1.73854 0.869269 0.494340i \(-0.164590\pi\)
0.869269 + 0.494340i \(0.164590\pi\)
\(282\) −2.31283 −0.137727
\(283\) −9.16991 −0.545095 −0.272547 0.962142i \(-0.587866\pi\)
−0.272547 + 0.962142i \(0.587866\pi\)
\(284\) 2.59447i 0.153954i
\(285\) 0 0
\(286\) 4.63290i 0.273949i
\(287\) 14.2810i 0.842981i
\(288\) 6.08097i 0.358324i
\(289\) 4.24443 16.4616i 0.249672 0.968330i
\(290\) 0 0
\(291\) −13.1427 −0.770440
\(292\) 6.20290 0.362997
\(293\) 16.2351i 0.948463i −0.880400 0.474231i \(-0.842726\pi\)
0.880400 0.474231i \(-0.157274\pi\)
\(294\) 2.10276i 0.122636i
\(295\) 0 0
\(296\) 7.53230i 0.437806i
\(297\) 30.5684i 1.77376i
\(298\) 1.48241i 0.0858737i
\(299\) 3.81522i 0.220640i
\(300\) 0 0
\(301\) 35.2200i 2.03005i
\(302\) 0.930409i 0.0535390i
\(303\) −4.45664 −0.256027
\(304\) −14.6780 −0.841841
\(305\) 0 0
\(306\) 1.36689 + 1.76402i 0.0781396 + 0.100843i
\(307\) 3.37778i 0.192780i −0.995344 0.0963902i \(-0.969270\pi\)
0.995344 0.0963902i \(-0.0307297\pi\)
\(308\) 39.4543i 2.24812i
\(309\) 4.75432i 0.270464i
\(310\) 0 0
\(311\) 7.95641i 0.451166i −0.974224 0.225583i \(-0.927571\pi\)
0.974224 0.225583i \(-0.0724288\pi\)
\(312\) 3.53358 0.200049
\(313\) 6.83380 0.386269 0.193135 0.981172i \(-0.438135\pi\)
0.193135 + 0.981172i \(0.438135\pi\)
\(314\) 4.33830 0.244825
\(315\) 0 0
\(316\) 3.60843i 0.202990i
\(317\) 27.1550 1.52517 0.762587 0.646886i \(-0.223929\pi\)
0.762587 + 0.646886i \(0.223929\pi\)
\(318\) 0.230081 0.0129023
\(319\) 31.6227 1.77053
\(320\) 0 0
\(321\) −13.2908 −0.741822
\(322\) 1.65233i 0.0920806i
\(323\) −13.9525 + 10.8113i −0.776339 + 0.601559i
\(324\) −1.43509 −0.0797274
\(325\) 0 0
\(326\) 2.69261i 0.149130i
\(327\) 13.4968i 0.746377i
\(328\) 4.80589 0.265361
\(329\) 23.8958i 1.31742i
\(330\) 0 0
\(331\) −20.3783 −1.12009 −0.560045 0.828462i \(-0.689216\pi\)
−0.560045 + 0.828462i \(0.689216\pi\)
\(332\) 31.7146i 1.74056i
\(333\) 10.7915 0.591369
\(334\) 0.240597i 0.0131649i
\(335\) 0 0
\(336\) 13.8889 0.757703
\(337\) −4.70775 −0.256447 −0.128224 0.991745i \(-0.540928\pi\)
−0.128224 + 0.991745i \(0.540928\pi\)
\(338\) 1.95407i 0.106287i
\(339\) −12.1146 −0.657976
\(340\) 0 0
\(341\) −47.9101 −2.59448
\(342\) 2.31708i 0.125294i
\(343\) 3.53358 0.190795
\(344\) −11.8524 −0.639036
\(345\) 0 0
\(346\) 0.750070i 0.0403240i
\(347\) −35.3520 −1.89779 −0.948896 0.315588i \(-0.897798\pi\)
−0.948896 + 0.315588i \(0.897798\pi\)
\(348\) 11.7605i 0.630428i
\(349\) 25.0558 1.34121 0.670603 0.741817i \(-0.266036\pi\)
0.670603 + 0.741817i \(0.266036\pi\)
\(350\) 0 0
\(351\) 13.7923i 0.736178i
\(352\) −20.0806 −1.07030
\(353\) 13.6953i 0.728930i 0.931217 + 0.364465i \(0.118748\pi\)
−0.931217 + 0.364465i \(0.881252\pi\)
\(354\) 2.07947i 0.110523i
\(355\) 0 0
\(356\) 6.70964 0.355610
\(357\) 13.2024 10.2301i 0.698747 0.541436i
\(358\) 5.74176i 0.303461i
\(359\) −2.53480 −0.133781 −0.0668907 0.997760i \(-0.521308\pi\)
−0.0668907 + 0.997760i \(0.521308\pi\)
\(360\) 0 0
\(361\) −0.673071 −0.0354248
\(362\) 6.42021 0.337439
\(363\) 24.7029 1.29657
\(364\) 17.8015i 0.933054i
\(365\) 0 0
\(366\) −3.06070 −0.159985
\(367\) 36.3426 1.89707 0.948535 0.316673i \(-0.102566\pi\)
0.948535 + 0.316673i \(0.102566\pi\)
\(368\) 5.04649 0.263066
\(369\) 6.88536i 0.358438i
\(370\) 0 0
\(371\) 2.37716i 0.123416i
\(372\) 17.8178i 0.923810i
\(373\) 12.7714i 0.661278i −0.943757 0.330639i \(-0.892736\pi\)
0.943757 0.330639i \(-0.107264\pi\)
\(374\) −5.82516 + 4.51373i −0.301212 + 0.233399i
\(375\) 0 0
\(376\) 8.04149 0.414708
\(377\) 14.2680 0.734837
\(378\) 5.97328i 0.307232i
\(379\) 22.1495i 1.13774i −0.822426 0.568872i \(-0.807380\pi\)
0.822426 0.568872i \(-0.192620\pi\)
\(380\) 0 0
\(381\) 19.2396i 0.985674i
\(382\) 7.09679i 0.363103i
\(383\) 1.95407i 0.0998482i −0.998753 0.0499241i \(-0.984102\pi\)
0.998753 0.0499241i \(-0.0158979\pi\)
\(384\) 9.86289i 0.503314i
\(385\) 0 0
\(386\) 6.13529i 0.312278i
\(387\) 16.9808i 0.863182i
\(388\) 22.2815 1.13117
\(389\) 7.91258 0.401184 0.200592 0.979675i \(-0.435713\pi\)
0.200592 + 0.979675i \(0.435713\pi\)
\(390\) 0 0
\(391\) 4.79706 3.71708i 0.242598 0.187981i
\(392\) 7.31111i 0.369267i
\(393\) 9.98619i 0.503736i
\(394\) 4.00924i 0.201983i
\(395\) 0 0
\(396\) 19.0223i 0.955906i
\(397\) 9.24476 0.463981 0.231991 0.972718i \(-0.425476\pi\)
0.231991 + 0.972718i \(0.425476\pi\)
\(398\) 2.00462 0.100483
\(399\) −17.3417 −0.868171
\(400\) 0 0
\(401\) 21.4848i 1.07290i 0.843932 + 0.536450i \(0.180235\pi\)
−0.843932 + 0.536450i \(0.819765\pi\)
\(402\) 0.149703 0.00746653
\(403\) −21.6168 −1.07681
\(404\) 7.55554 0.375902
\(405\) 0 0
\(406\) −6.17929 −0.306673
\(407\) 35.6356i 1.76639i
\(408\) 3.44268 + 4.44293i 0.170438 + 0.219958i
\(409\) −18.1669 −0.898293 −0.449147 0.893458i \(-0.648272\pi\)
−0.449147 + 0.893458i \(0.648272\pi\)
\(410\) 0 0
\(411\) 15.7969i 0.779204i
\(412\) 8.06022i 0.397099i
\(413\) 21.4848 1.05720
\(414\) 0.796644i 0.0391529i
\(415\) 0 0
\(416\) −9.06022 −0.444214
\(417\) 18.8459i 0.922888i
\(418\) 7.65147 0.374246
\(419\) 14.3589i 0.701476i 0.936474 + 0.350738i \(0.114069\pi\)
−0.936474 + 0.350738i \(0.885931\pi\)
\(420\) 0 0
\(421\) 3.96989 0.193481 0.0967403 0.995310i \(-0.469158\pi\)
0.0967403 + 0.995310i \(0.469158\pi\)
\(422\) −3.53358 −0.172012
\(423\) 11.5210i 0.560169i
\(424\) −0.799970 −0.0388500
\(425\) 0 0
\(426\) 0.476104 0.0230673
\(427\) 31.6227i 1.53033i
\(428\) 22.5326 1.08915
\(429\) 16.7175 0.807127
\(430\) 0 0
\(431\) 32.9337i 1.58636i 0.608985 + 0.793181i \(0.291577\pi\)
−0.608985 + 0.793181i \(0.708423\pi\)
\(432\) 18.2434 0.877736
\(433\) 38.2306i 1.83725i 0.395135 + 0.918623i \(0.370698\pi\)
−0.395135 + 0.918623i \(0.629302\pi\)
\(434\) 9.36196 0.449389
\(435\) 0 0
\(436\) 22.8818i 1.09584i
\(437\) −6.30104 −0.301420
\(438\) 1.13828i 0.0543889i
\(439\) 0.664702i 0.0317245i −0.999874 0.0158622i \(-0.994951\pi\)
0.999874 0.0158622i \(-0.00504932\pi\)
\(440\) 0 0
\(441\) −10.4746 −0.498789
\(442\) −2.62828 + 2.03657i −0.125014 + 0.0968695i
\(443\) 27.5669i 1.30974i −0.755740 0.654872i \(-0.772723\pi\)
0.755740 0.654872i \(-0.227277\pi\)
\(444\) 13.2529 0.628954
\(445\) 0 0
\(446\) 0.276551 0.0130950
\(447\) −5.34916 −0.253007
\(448\) −20.8201 −0.983658
\(449\) 17.4756i 0.824723i −0.911020 0.412362i \(-0.864704\pi\)
0.911020 0.412362i \(-0.135296\pi\)
\(450\) 0 0
\(451\) 22.7368 1.07064
\(452\) 20.5385 0.966048
\(453\) −3.35731 −0.157740
\(454\) 4.02201i 0.188762i
\(455\) 0 0
\(456\) 5.83589i 0.273290i
\(457\) 13.0350i 0.609753i 0.952392 + 0.304877i \(0.0986152\pi\)
−0.952392 + 0.304877i \(0.901385\pi\)
\(458\) 0.880937i 0.0411635i
\(459\) 17.3417 13.4375i 0.809441 0.627209i
\(460\) 0 0
\(461\) −10.9491 −0.509953 −0.254976 0.966947i \(-0.582068\pi\)
−0.254976 + 0.966947i \(0.582068\pi\)
\(462\) −7.24014 −0.336842
\(463\) 17.2400i 0.801210i 0.916251 + 0.400605i \(0.131200\pi\)
−0.916251 + 0.400605i \(0.868800\pi\)
\(464\) 18.8726i 0.876138i
\(465\) 0 0
\(466\) 6.20290i 0.287344i
\(467\) 0.0414872i 0.00191980i 1.00000 0.000959899i \(0.000305545\pi\)
−1.00000 0.000959899i \(0.999694\pi\)
\(468\) 8.58274i 0.396737i
\(469\) 1.54671i 0.0714206i
\(470\) 0 0
\(471\) 15.6545i 0.721319i
\(472\) 7.23014i 0.332794i
\(473\) −56.0739 −2.57828
\(474\) 0.662171 0.0304145
\(475\) 0 0
\(476\) −22.3827 + 17.3436i −1.02591 + 0.794944i
\(477\) 1.14611i 0.0524769i
\(478\) 8.48886i 0.388272i
\(479\) 35.4606i 1.62024i 0.586266 + 0.810118i \(0.300597\pi\)
−0.586266 + 0.810118i \(0.699403\pi\)
\(480\) 0 0
\(481\) 16.0786i 0.733119i
\(482\) 1.11209 0.0506545
\(483\) 5.96230 0.271294
\(484\) −41.8800 −1.90364
\(485\) 0 0
\(486\) 4.70276i 0.213321i
\(487\) −24.6691 −1.11787 −0.558933 0.829213i \(-0.688789\pi\)
−0.558933 + 0.829213i \(0.688789\pi\)
\(488\) 10.6418 0.481730
\(489\) 9.71609 0.439377
\(490\) 0 0
\(491\) 8.58073 0.387243 0.193621 0.981076i \(-0.437977\pi\)
0.193621 + 0.981076i \(0.437977\pi\)
\(492\) 8.45584i 0.381219i
\(493\) 13.9009 + 17.9398i 0.626067 + 0.807967i
\(494\) 3.45230 0.155326
\(495\) 0 0
\(496\) 28.5930i 1.28386i
\(497\) 4.91903i 0.220649i
\(498\) −5.81984 −0.260793
\(499\) 8.48917i 0.380027i −0.981781 0.190014i \(-0.939147\pi\)
0.981781 0.190014i \(-0.0608532\pi\)
\(500\) 0 0
\(501\) −0.868178 −0.0387873
\(502\) 5.47949i 0.244562i
\(503\) 24.1879 1.07849 0.539244 0.842150i \(-0.318710\pi\)
0.539244 + 0.842150i \(0.318710\pi\)
\(504\) 7.62320i 0.339564i
\(505\) 0 0
\(506\) −2.63068 −0.116948
\(507\) −7.05111 −0.313151
\(508\) 32.6178i 1.44718i
\(509\) 25.8671 1.14654 0.573270 0.819366i \(-0.305675\pi\)
0.573270 + 0.819366i \(0.305675\pi\)
\(510\) 0 0
\(511\) −11.7605 −0.520253
\(512\) 20.3111i 0.897633i
\(513\) −22.7787 −1.00570
\(514\) −6.39207 −0.281942
\(515\) 0 0
\(516\) 20.8539i 0.918042i
\(517\) 38.0446 1.67320
\(518\) 6.96343i 0.305956i
\(519\) −2.70657 −0.118805
\(520\) 0 0
\(521\) 11.4900i 0.503385i 0.967807 + 0.251693i \(0.0809872\pi\)
−0.967807 + 0.251693i \(0.919013\pi\)
\(522\) −2.97925 −0.130398
\(523\) 33.0509i 1.44521i −0.691260 0.722606i \(-0.742944\pi\)
0.691260 0.722606i \(-0.257056\pi\)
\(524\) 16.9300i 0.739592i
\(525\) 0 0
\(526\) 2.60931 0.113771
\(527\) −21.0607 27.1798i −0.917419 1.18397i
\(528\) 22.1126i 0.962328i
\(529\) −20.8336 −0.905810
\(530\) 0 0
\(531\) 10.3586 0.449524
\(532\) 29.4002 1.27466
\(533\) 10.2587 0.444354
\(534\) 1.23127i 0.0532820i
\(535\) 0 0
\(536\) −0.520505 −0.0224824
\(537\) −20.7187 −0.894078
\(538\) −3.85954 −0.166397
\(539\) 34.5891i 1.48986i
\(540\) 0 0
\(541\) 19.7884i 0.850770i −0.905013 0.425385i \(-0.860139\pi\)
0.905013 0.425385i \(-0.139861\pi\)
\(542\) 2.22077i 0.0953904i
\(543\) 23.1669i 0.994185i
\(544\) −8.82717 11.3918i −0.378462 0.488421i
\(545\) 0 0
\(546\) −3.26671 −0.139802
\(547\) −15.4815 −0.661940 −0.330970 0.943641i \(-0.607376\pi\)
−0.330970 + 0.943641i \(0.607376\pi\)
\(548\) 26.7812i 1.14404i
\(549\) 15.2464i 0.650700i
\(550\) 0 0
\(551\) 23.5643i 1.00387i
\(552\) 2.00645i 0.0854003i
\(553\) 6.84146i 0.290928i
\(554\) 6.35260i 0.269896i
\(555\) 0 0
\(556\) 31.9503i 1.35500i
\(557\) 15.3477i 0.650302i −0.945662 0.325151i \(-0.894585\pi\)
0.945662 0.325151i \(-0.105415\pi\)
\(558\) 4.51373 0.191081
\(559\) −25.3002 −1.07008
\(560\) 0 0
\(561\) 16.2874 + 21.0197i 0.687657 + 0.887451i
\(562\) 9.06668i 0.382455i
\(563\) 14.3827i 0.606159i −0.952965 0.303079i \(-0.901985\pi\)
0.952965 0.303079i \(-0.0980147\pi\)
\(564\) 14.1488i 0.595772i
\(565\) 0 0
\(566\) 2.85283i 0.119913i
\(567\) 2.72089 0.114267
\(568\) −1.65537 −0.0694578
\(569\) 12.1432 0.509069 0.254535 0.967064i \(-0.418078\pi\)
0.254535 + 0.967064i \(0.418078\pi\)
\(570\) 0 0
\(571\) 2.88663i 0.120802i 0.998174 + 0.0604009i \(0.0192379\pi\)
−0.998174 + 0.0604009i \(0.980762\pi\)
\(572\) −28.3419 −1.18503
\(573\) −25.6082 −1.06980
\(574\) −4.44293 −0.185444
\(575\) 0 0
\(576\) −10.0381 −0.418254
\(577\) 3.10970i 0.129458i −0.997903 0.0647291i \(-0.979382\pi\)
0.997903 0.0647291i \(-0.0206183\pi\)
\(578\) −5.12134 1.32048i −0.213020 0.0549246i
\(579\) 22.1388 0.920055
\(580\) 0 0
\(581\) 60.1298i 2.49460i
\(582\) 4.08880i 0.169486i
\(583\) −3.78469 −0.156746
\(584\) 3.95768i 0.163770i
\(585\) 0 0
\(586\) −5.05086 −0.208649
\(587\) 10.2034i 0.421140i 0.977579 + 0.210570i \(0.0675320\pi\)
−0.977579 + 0.210570i \(0.932468\pi\)
\(588\) −12.8637 −0.530490
\(589\) 35.7012i 1.47104i
\(590\) 0 0
\(591\) 14.4671 0.595095
\(592\) −21.2675 −0.874089
\(593\) 16.2301i 0.666492i 0.942840 + 0.333246i \(0.108144\pi\)
−0.942840 + 0.333246i \(0.891856\pi\)
\(594\) −9.51008 −0.390203
\(595\) 0 0
\(596\) 9.06868 0.371468
\(597\) 7.23353i 0.296049i
\(598\) −1.18694 −0.0485378
\(599\) 8.43309 0.344567 0.172283 0.985047i \(-0.444886\pi\)
0.172283 + 0.985047i \(0.444886\pi\)
\(600\) 0 0
\(601\) 20.2535i 0.826160i −0.910695 0.413080i \(-0.864453\pi\)
0.910695 0.413080i \(-0.135547\pi\)
\(602\) 10.9572 0.446583
\(603\) 0.745724i 0.0303682i
\(604\) 5.69181 0.231596
\(605\) 0 0
\(606\) 1.38649i 0.0563225i
\(607\) 22.7732 0.924334 0.462167 0.886793i \(-0.347072\pi\)
0.462167 + 0.886793i \(0.347072\pi\)
\(608\) 14.9634i 0.606847i
\(609\) 22.2975i 0.903540i
\(610\) 0 0
\(611\) 17.1655 0.694441
\(612\) −10.7915 + 8.36196i −0.436220 + 0.338012i
\(613\) 8.40636i 0.339530i 0.985485 + 0.169765i \(0.0543008\pi\)
−0.985485 + 0.169765i \(0.945699\pi\)
\(614\) −1.05086 −0.0424091
\(615\) 0 0
\(616\) 25.1733 1.01426
\(617\) 14.8168 0.596500 0.298250 0.954488i \(-0.403597\pi\)
0.298250 + 0.954488i \(0.403597\pi\)
\(618\) −1.47911 −0.0594984
\(619\) 31.6221i 1.27100i 0.772101 + 0.635500i \(0.219206\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(620\) 0 0
\(621\) 7.83161 0.314272
\(622\) −2.47530 −0.0992505
\(623\) −12.7212 −0.509666
\(624\) 9.97707i 0.399403i
\(625\) 0 0
\(626\) 2.12605i 0.0849740i
\(627\) 27.6098i 1.10263i
\(628\) 26.5397i 1.05905i
\(629\) −20.2163 + 15.6650i −0.806078 + 0.624603i
\(630\) 0 0
\(631\) −17.3733 −0.691622 −0.345811 0.938304i \(-0.612396\pi\)
−0.345811 + 0.938304i \(0.612396\pi\)
\(632\) −2.30231 −0.0915810
\(633\) 12.7506i 0.506793i
\(634\) 8.44812i 0.335518i
\(635\) 0 0
\(636\) 1.40753i 0.0558121i
\(637\) 15.6064i 0.618348i
\(638\) 9.83807i 0.389493i
\(639\) 2.37164i 0.0938205i
\(640\) 0 0
\(641\) 7.26842i 0.287085i 0.989644 + 0.143543i \(0.0458494\pi\)
−0.989644 + 0.143543i \(0.954151\pi\)
\(642\) 4.13488i 0.163191i
\(643\) −4.40507 −0.173719 −0.0868595 0.996221i \(-0.527683\pi\)
−0.0868595 + 0.996221i \(0.527683\pi\)
\(644\) −10.1082 −0.398317
\(645\) 0 0
\(646\) 3.36349 + 4.34074i 0.132335 + 0.170784i
\(647\) 0.198022i 0.00778504i 0.999992 + 0.00389252i \(0.00123903\pi\)
−0.999992 + 0.00389252i \(0.998761\pi\)
\(648\) 0.915643i 0.0359698i
\(649\) 34.2061i 1.34271i
\(650\) 0 0
\(651\) 33.7820i 1.32402i
\(652\) −16.4721 −0.645098
\(653\) −9.92723 −0.388482 −0.194241 0.980954i \(-0.562224\pi\)
−0.194241 + 0.980954i \(0.562224\pi\)
\(654\) 4.19897 0.164193
\(655\) 0 0
\(656\) 13.5695i 0.529798i
\(657\) −5.67014 −0.221213
\(658\) −7.43416 −0.289814
\(659\) −3.00492 −0.117055 −0.0585276 0.998286i \(-0.518641\pi\)
−0.0585276 + 0.998286i \(0.518641\pi\)
\(660\) 0 0
\(661\) 23.6923 0.921523 0.460762 0.887524i \(-0.347576\pi\)
0.460762 + 0.887524i \(0.347576\pi\)
\(662\) 6.33984i 0.246405i
\(663\) 7.34880 + 9.48394i 0.285404 + 0.368326i
\(664\) 20.2351 0.785273
\(665\) 0 0
\(666\) 3.35731i 0.130093i
\(667\) 8.10171i 0.313699i
\(668\) 1.47186 0.0569481
\(669\) 0.997912i 0.0385815i
\(670\) 0 0
\(671\) 50.3466 1.94361
\(672\) 14.1590i 0.546196i
\(673\) 30.1968 1.16400 0.582001 0.813188i \(-0.302270\pi\)
0.582001 + 0.813188i \(0.302270\pi\)
\(674\) 1.46462i 0.0564150i
\(675\) 0 0
\(676\) 11.9541 0.459772
\(677\) −47.9413 −1.84253 −0.921266 0.388933i \(-0.872844\pi\)
−0.921266 + 0.388933i \(0.872844\pi\)
\(678\) 3.76895i 0.144746i
\(679\) −42.2449 −1.62121
\(680\) 0 0
\(681\) 14.5131 0.556145
\(682\) 14.9052i 0.570750i
\(683\) −1.41477 −0.0541347 −0.0270674 0.999634i \(-0.508617\pi\)
−0.0270674 + 0.999634i \(0.508617\pi\)
\(684\) 14.1748 0.541989
\(685\) 0 0
\(686\) 1.09932i 0.0419723i
\(687\) 3.17880 0.121279
\(688\) 33.4652i 1.27585i
\(689\) −1.70763 −0.0650554
\(690\) 0 0
\(691\) 1.36321i 0.0518588i 0.999664 + 0.0259294i \(0.00825452\pi\)
−0.999664 + 0.0259294i \(0.991745\pi\)
\(692\) 4.58858 0.174432
\(693\) 36.0656i 1.37002i
\(694\) 10.9983i 0.417489i
\(695\) 0 0
\(696\) −7.50363 −0.284424
\(697\) 9.99483 + 12.8988i 0.378581 + 0.488576i
\(698\) 7.79505i 0.295047i
\(699\) −22.3827 −0.846592
\(700\) 0 0
\(701\) −40.1990 −1.51829 −0.759147 0.650919i \(-0.774384\pi\)
−0.759147 + 0.650919i \(0.774384\pi\)
\(702\) −4.29089 −0.161949
\(703\) 26.5546 1.00153
\(704\) 33.1478i 1.24930i
\(705\) 0 0
\(706\) 4.26073 0.160355
\(707\) −14.3251 −0.538749
\(708\) 12.7212 0.478094
\(709\) 19.4729i 0.731322i −0.930748 0.365661i \(-0.880843\pi\)
0.930748 0.365661i \(-0.119157\pi\)
\(710\) 0 0
\(711\) 3.29850i 0.123704i
\(712\) 4.28100i 0.160437i
\(713\) 12.2745i 0.459685i
\(714\) −3.18268 4.10738i −0.119109 0.153715i
\(715\) 0 0
\(716\) 35.1254 1.31270
\(717\) 30.6314 1.14395
\(718\) 0.788595i 0.0294301i
\(719\) 21.9765i 0.819586i −0.912179 0.409793i \(-0.865601\pi\)
0.912179 0.409793i \(-0.134399\pi\)
\(720\) 0 0
\(721\) 15.2819i 0.569128i
\(722\) 0.209398i 0.00779297i
\(723\) 4.01291i 0.149242i
\(724\) 39.2758i 1.45967i
\(725\) 0 0
\(726\) 7.68528i 0.285227i
\(727\) 36.7007i 1.36116i 0.732676 + 0.680578i \(0.238271\pi\)
−0.732676 + 0.680578i \(0.761729\pi\)
\(728\) 11.3580 0.420957
\(729\) 19.2317 0.712284
\(730\) 0 0
\(731\) −24.6494 31.8111i −0.911691 1.17658i
\(732\) 18.7239i 0.692056i
\(733\) 24.8666i 0.918471i −0.888315 0.459235i \(-0.848123\pi\)
0.888315 0.459235i \(-0.151877\pi\)
\(734\) 11.3065i 0.417330i
\(735\) 0 0
\(736\) 5.14462i 0.189633i
\(737\) −2.46253 −0.0907085
\(738\) −2.14209 −0.0788514
\(739\) 32.7368 1.20424 0.602122 0.798404i \(-0.294322\pi\)
0.602122 + 0.798404i \(0.294322\pi\)
\(740\) 0 0
\(741\) 12.4574i 0.457633i
\(742\) 0.739554 0.0271499
\(743\) −21.3762 −0.784215 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(744\) 11.3684 0.416786
\(745\) 0 0
\(746\) −3.97328 −0.145472
\(747\) 28.9906i 1.06071i
\(748\) −27.6129 35.6356i −1.00963 1.30297i
\(749\) −42.7210 −1.56099
\(750\) 0 0
\(751\) 44.5557i 1.62586i 0.582362 + 0.812930i \(0.302129\pi\)
−0.582362 + 0.812930i \(0.697871\pi\)
\(752\) 22.7052i 0.827973i
\(753\) −19.7724 −0.720545
\(754\) 4.43887i 0.161654i
\(755\) 0 0
\(756\) −36.5417 −1.32901
\(757\) 12.1793i 0.442664i 0.975199 + 0.221332i \(0.0710404\pi\)
−0.975199 + 0.221332i \(0.928960\pi\)
\(758\) −6.89089 −0.250288
\(759\) 9.49260i 0.344560i
\(760\) 0 0
\(761\) 7.18712 0.260533 0.130266 0.991479i \(-0.458417\pi\)
0.130266 + 0.991479i \(0.458417\pi\)
\(762\) 5.98559 0.216835
\(763\) 43.3832i 1.57058i
\(764\) 43.4148 1.57069
\(765\) 0 0
\(766\) −0.607926 −0.0219652
\(767\) 15.4336i 0.557274i
\(768\) −9.88618 −0.356737
\(769\) −14.9748 −0.540005 −0.270003 0.962860i \(-0.587025\pi\)
−0.270003 + 0.962860i \(0.587025\pi\)
\(770\) 0 0
\(771\) 23.0653i 0.830678i
\(772\) −37.5328 −1.35084
\(773\) 26.2938i 0.945721i 0.881137 + 0.472860i \(0.156778\pi\)
−0.881137 + 0.472860i \(0.843222\pi\)
\(774\) 5.28286 0.189888
\(775\) 0 0
\(776\) 14.2164i 0.510339i
\(777\) −25.1270 −0.901428
\(778\) 2.46167i 0.0882550i
\(779\) 16.9428i 0.607039i
\(780\) 0 0
\(781\) −7.83161 −0.280237
\(782\) −1.15641 1.49240i −0.0413533 0.0533682i
\(783\) 29.2883i 1.04668i
\(784\) 20.6430 0.737249
\(785\) 0 0
\(786\) 3.10678 0.110815
\(787\) −9.35342 −0.333413 −0.166707 0.986007i \(-0.553313\pi\)
−0.166707 + 0.986007i \(0.553313\pi\)
\(788\) −24.5267 −0.873727
\(789\) 9.41550i 0.335201i
\(790\) 0 0
\(791\) −38.9403 −1.38456
\(792\) 12.1369 0.431267
\(793\) 22.7161 0.806672
\(794\) 2.87612i 0.102070i
\(795\) 0 0
\(796\) 12.2633i 0.434663i
\(797\) 29.4800i 1.04423i −0.852874 0.522117i \(-0.825142\pi\)
0.852874 0.522117i \(-0.174858\pi\)
\(798\) 5.39514i 0.190986i
\(799\) 16.7239 + 21.5830i 0.591650 + 0.763550i
\(800\) 0 0
\(801\) −6.13335 −0.216711
\(802\) 6.68409 0.236024
\(803\) 18.7239i 0.660753i
\(804\) 0.915816i 0.0322983i
\(805\) 0 0
\(806\) 6.72514i 0.236883i
\(807\) 13.9269i 0.490249i
\(808\) 4.82071i 0.169592i
\(809\) 35.1219i 1.23482i −0.786642 0.617410i \(-0.788182\pi\)
0.786642 0.617410i \(-0.211818\pi\)
\(810\) 0 0
\(811\) 17.5682i 0.616902i 0.951240 + 0.308451i \(0.0998106\pi\)
−0.951240 + 0.308451i \(0.900189\pi\)
\(812\) 37.8020i 1.32659i
\(813\) 8.01350 0.281046
\(814\) 11.0865 0.388582
\(815\) 0 0
\(816\) −12.5446 + 9.72043i −0.439150 + 0.340283i
\(817\) 41.7846i 1.46186i
\(818\) 5.65185i 0.197612i
\(819\) 16.2726i 0.568610i
\(820\) 0 0
\(821\) 13.1043i 0.457343i 0.973504 + 0.228672i \(0.0734382\pi\)
−0.973504 + 0.228672i \(0.926562\pi\)
\(822\) 4.91454 0.171414
\(823\) 23.7638 0.828355 0.414178 0.910196i \(-0.364069\pi\)
0.414178 + 0.910196i \(0.364069\pi\)
\(824\) 5.14272 0.179155
\(825\) 0 0
\(826\) 6.68409i 0.232569i
\(827\) 28.9423 1.00642 0.503211 0.864164i \(-0.332152\pi\)
0.503211 + 0.864164i \(0.332152\pi\)
\(828\) −4.87350 −0.169366
\(829\) −48.3131 −1.67798 −0.838992 0.544144i \(-0.816855\pi\)
−0.838992 + 0.544144i \(0.816855\pi\)
\(830\) 0 0
\(831\) 22.9229 0.795187
\(832\) 14.9561i 0.518509i
\(833\) 19.6227 15.2050i 0.679885 0.526820i
\(834\) 5.86311 0.203023
\(835\) 0 0
\(836\) 46.8081i 1.61889i
\(837\) 44.3733i 1.53377i
\(838\) 4.46715 0.154315
\(839\) 36.8238i 1.27130i 0.771978 + 0.635650i \(0.219268\pi\)
−0.771978 + 0.635650i \(0.780732\pi\)
\(840\) 0 0
\(841\) −1.29835 −0.0447707
\(842\) 1.23506i 0.0425631i
\(843\) −32.7164 −1.12681
\(844\) 21.6168i 0.744079i
\(845\) 0 0
\(846\) −3.58427 −0.123230
\(847\) 79.4031 2.72832
\(848\) 2.25872i 0.0775648i
\(849\) 10.2942 0.353297
\(850\) 0 0
\(851\) −9.12981 −0.312966
\(852\) 2.91258i 0.0997833i
\(853\) 29.8138 1.02080 0.510402 0.859936i \(-0.329497\pi\)
0.510402 + 0.859936i \(0.329497\pi\)
\(854\) −9.83807 −0.336652
\(855\) 0 0
\(856\) 14.3766i 0.491383i
\(857\) 1.71246 0.0584965 0.0292483 0.999572i \(-0.490689\pi\)
0.0292483 + 0.999572i \(0.490689\pi\)
\(858\) 5.20094i 0.177557i
\(859\) −22.5749 −0.770246 −0.385123 0.922865i \(-0.625841\pi\)
−0.385123 + 0.922865i \(0.625841\pi\)
\(860\) 0 0
\(861\) 16.0320i 0.546369i
\(862\) 10.2459 0.348978
\(863\) 54.2578i 1.84696i 0.383650 + 0.923479i \(0.374667\pi\)
−0.383650 + 0.923479i \(0.625333\pi\)
\(864\) 18.5982i 0.632723i
\(865\) 0 0
\(866\) 11.8938 0.404169
\(867\) −4.76484 + 18.4800i −0.161822 + 0.627613i
\(868\) 57.2721i 1.94394i
\(869\) −10.8923 −0.369496
\(870\) 0 0
\(871\) −1.11108 −0.0376474
\(872\) −14.5995 −0.494400
\(873\) −20.3677 −0.689343
\(874\) 1.96030i 0.0663082i
\(875\) 0 0
\(876\) −6.96343 −0.235273
\(877\) 14.8989 0.503099 0.251549 0.967844i \(-0.419060\pi\)
0.251549 + 0.967844i \(0.419060\pi\)
\(878\) −0.206794 −0.00697896
\(879\) 18.2256i 0.614736i
\(880\) 0 0
\(881\) 22.3330i 0.752419i 0.926535 + 0.376209i \(0.122773\pi\)
−0.926535 + 0.376209i \(0.877227\pi\)
\(882\) 3.25872i 0.109727i
\(883\) 25.3319i 0.852485i 0.904609 + 0.426242i \(0.140163\pi\)
−0.904609 + 0.426242i \(0.859837\pi\)
\(884\) −12.4588 16.0786i −0.419033 0.540780i
\(885\) 0 0
\(886\) −8.57628 −0.288126
\(887\) 6.35813 0.213485 0.106743 0.994287i \(-0.465958\pi\)
0.106743 + 0.994287i \(0.465958\pi\)
\(888\) 8.45584i 0.283759i
\(889\) 61.8422i 2.07412i
\(890\) 0 0
\(891\) 4.33194i 0.145125i
\(892\) 1.69181i 0.0566459i
\(893\) 28.3497i 0.948686i
\(894\) 1.66417i 0.0556581i
\(895\) 0 0
\(896\) 31.7025i 1.05911i
\(897\) 4.28300i 0.143005i
\(898\) −5.43679 −0.181428
\(899\) 45.9037 1.53097
\(900\) 0 0
\(901\) −1.66370 2.14708i −0.0554260 0.0715296i
\(902\) 7.07361i 0.235525i
\(903\) 39.5383i 1.31575i
\(904\) 13.1043i 0.435843i
\(905\) 0 0
\(906\) 1.04449i 0.0347007i
\(907\) 13.0295 0.432636 0.216318 0.976323i \(-0.430595\pi\)
0.216318 + 0.976323i \(0.430595\pi\)
\(908\) −24.6048 −0.816539
\(909\) −6.90660 −0.229078
\(910\) 0 0
\(911\) 20.7685i 0.688093i −0.938953 0.344046i \(-0.888202\pi\)
0.938953 0.344046i \(-0.111798\pi\)
\(912\) 16.4777 0.545630
\(913\) 95.7328 3.16829
\(914\) 4.05530 0.134137
\(915\) 0 0
\(916\) −5.38916 −0.178063
\(917\) 32.0988i 1.06000i
\(918\) −4.18052 5.39514i −0.137978 0.178066i
\(919\) 5.10970 0.168553 0.0842766 0.996442i \(-0.473142\pi\)
0.0842766 + 0.996442i \(0.473142\pi\)
\(920\) 0 0
\(921\) 3.79193i 0.124948i
\(922\) 3.40636i 0.112183i
\(923\) −3.53358 −0.116309
\(924\) 44.2918i 1.45709i
\(925\) 0 0
\(926\) 5.36349 0.176255
\(927\) 7.36794i 0.241995i
\(928\) 19.2396 0.631571
\(929\) 39.6073i 1.29947i −0.760159 0.649737i \(-0.774879\pi\)
0.760159 0.649737i \(-0.225121\pi\)
\(930\) 0 0
\(931\) −25.7748 −0.844734
\(932\) 37.9464 1.24298
\(933\) 8.93194i 0.292419i
\(934\) 0.0129070 0.000422330
\(935\) 0 0
\(936\) 5.47610 0.178992
\(937\) 39.5575i 1.29229i 0.763215 + 0.646144i \(0.223620\pi\)
−0.763215 + 0.646144i \(0.776380\pi\)
\(938\) 0.481195 0.0157116
\(939\) −7.67169 −0.250356
\(940\) 0 0
\(941\) 53.2283i 1.73519i −0.497268 0.867597i \(-0.665663\pi\)
0.497268 0.867597i \(-0.334337\pi\)
\(942\) −4.87022 −0.158680
\(943\) 5.82516i 0.189693i
\(944\) −20.4143 −0.664430
\(945\) 0 0
\(946\) 17.4450i 0.567187i
\(947\) 0.773357 0.0251307 0.0125654 0.999921i \(-0.496000\pi\)
0.0125654 + 0.999921i \(0.496000\pi\)
\(948\) 4.05086i 0.131566i
\(949\) 8.44812i 0.274238i
\(950\) 0 0
\(951\) −30.4844 −0.988525
\(952\) 11.0659 + 14.2810i 0.358647 + 0.462850i
\(953\) 36.8731i 1.19444i −0.802079 0.597218i \(-0.796273\pi\)
0.802079 0.597218i \(-0.203727\pi\)
\(954\) 0.356564 0.0115442
\(955\) 0 0
\(956\) −51.9309 −1.67956
\(957\) −35.4999 −1.14755
\(958\) 11.0321 0.356430
\(959\) 50.7763i 1.63965i
\(960\) 0 0
\(961\) −38.5466 −1.24344
\(962\) 5.00217 0.161276
\(963\) −20.5973 −0.663738
\(964\) 6.80327i 0.219118i
\(965\) 0 0
\(966\) 1.85492i 0.0596810i
\(967\) 17.8306i 0.573392i 0.958022 + 0.286696i \(0.0925570\pi\)
−0.958022 + 0.286696i \(0.907443\pi\)
\(968\) 26.7210i 0.858846i
\(969\) 15.6632 12.1369i 0.503175 0.389894i
\(970\) 0 0
\(971\) −20.3783 −0.653970 −0.326985 0.945030i \(-0.606033\pi\)
−0.326985 + 0.945030i \(0.606033\pi\)
\(972\) −28.7693 −0.922775
\(973\) 60.5768i 1.94200i
\(974\) 7.67476i 0.245915i
\(975\) 0 0
\(976\) 30.0471i 0.961785i
\(977\) 8.64587i 0.276606i −0.990390 0.138303i \(-0.955835\pi\)
0.990390 0.138303i \(-0.0441648\pi\)
\(978\) 3.02275i 0.0966569i
\(979\) 20.2535i 0.647306i
\(980\) 0 0
\(981\) 20.9165i 0.667813i
\(982\) 2.66953i 0.0851882i
\(983\) 61.1615 1.95075 0.975374 0.220558i \(-0.0707877\pi\)
0.975374 + 0.220558i \(0.0707877\pi\)
\(984\) −5.39514 −0.171991
\(985\) 0 0
\(986\) 5.58120 4.32469i 0.177742 0.137726i
\(987\) 26.8256i 0.853869i
\(988\) 21.1195i 0.671902i
\(989\) 14.3661i 0.456815i
\(990\) 0 0
\(991\) 27.0979i 0.860792i 0.902640 + 0.430396i \(0.141626\pi\)
−0.902640 + 0.430396i \(0.858374\pi\)
\(992\) −29.1491 −0.925484
\(993\) 22.8768 0.725974
\(994\) 1.53035 0.0485397
\(995\) 0 0
\(996\) 35.6031i 1.12813i
\(997\) 48.3759 1.53208 0.766040 0.642793i \(-0.222225\pi\)
0.766040 + 0.642793i \(0.222225\pi\)
\(998\) −2.64105 −0.0836009
\(999\) −33.0049 −1.04423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.c.c.424.5 12
5.2 odd 4 425.2.d.b.101.4 yes 6
5.3 odd 4 425.2.d.a.101.3 6
5.4 even 2 inner 425.2.c.c.424.8 12
17.16 even 2 inner 425.2.c.c.424.6 12
85.13 odd 4 7225.2.a.bg.1.4 6
85.33 odd 4 425.2.d.a.101.4 yes 6
85.38 odd 4 7225.2.a.bg.1.3 6
85.47 odd 4 7225.2.a.ba.1.3 6
85.67 odd 4 425.2.d.b.101.3 yes 6
85.72 odd 4 7225.2.a.ba.1.4 6
85.84 even 2 inner 425.2.c.c.424.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.c.c.424.5 12 1.1 even 1 trivial
425.2.c.c.424.6 12 17.16 even 2 inner
425.2.c.c.424.7 12 85.84 even 2 inner
425.2.c.c.424.8 12 5.4 even 2 inner
425.2.d.a.101.3 6 5.3 odd 4
425.2.d.a.101.4 yes 6 85.33 odd 4
425.2.d.b.101.3 yes 6 85.67 odd 4
425.2.d.b.101.4 yes 6 5.2 odd 4
7225.2.a.ba.1.3 6 85.47 odd 4
7225.2.a.ba.1.4 6 85.72 odd 4
7225.2.a.bg.1.3 6 85.38 odd 4
7225.2.a.bg.1.4 6 85.13 odd 4