Properties

Label 425.2.j.d.174.1
Level $425$
Weight $2$
Character 425.174
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(149,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 364x^{6} + 519x^{4} + 278x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 174.1
Root \(-2.08389i\) of defining polynomial
Character \(\chi\) \(=\) 425.174
Dual form 425.2.j.d.149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08389 q^{2} +(-1.31060 - 1.31060i) q^{3} +2.34261 q^{4} +(2.73116 + 2.73116i) q^{6} +(-0.971529 + 0.971529i) q^{7} -0.713960 q^{8} +0.435362i q^{9} +O(q^{10})\) \(q-2.08389 q^{2} +(-1.31060 - 1.31060i) q^{3} +2.34261 q^{4} +(2.73116 + 2.73116i) q^{6} +(-0.971529 + 0.971529i) q^{7} -0.713960 q^{8} +0.435362i q^{9} +(-0.384742 - 0.384742i) q^{11} +(-3.07023 - 3.07023i) q^{12} -5.39918i q^{13} +(2.02456 - 2.02456i) q^{14} -3.19740 q^{16} +(3.38083 + 2.36008i) q^{17} -0.907247i q^{18} -4.86186i q^{19} +2.54658 q^{21} +(0.801760 + 0.801760i) q^{22} +(-1.26379 + 1.26379i) q^{23} +(0.935718 + 0.935718i) q^{24} +11.2513i q^{26} +(-3.36122 + 3.36122i) q^{27} +(-2.27591 + 2.27591i) q^{28} +(-1.29694 + 1.29694i) q^{29} +(-5.73710 + 5.73710i) q^{31} +8.09096 q^{32} +1.00849i q^{33} +(-7.04529 - 4.91815i) q^{34} +1.01988i q^{36} +(-4.22194 - 4.22194i) q^{37} +10.1316i q^{38} +(-7.07618 + 7.07618i) q^{39} +(-2.70269 - 2.70269i) q^{41} -5.30680 q^{42} -3.66628 q^{43} +(-0.901299 - 0.901299i) q^{44} +(2.63360 - 2.63360i) q^{46} +9.07290i q^{47} +(4.19053 + 4.19053i) q^{48} +5.11226i q^{49} +(-1.33781 - 7.52406i) q^{51} -12.6482i q^{52} -10.5471 q^{53} +(7.00443 - 7.00443i) q^{54} +(0.693633 - 0.693633i) q^{56} +(-6.37197 + 6.37197i) q^{57} +(2.70269 - 2.70269i) q^{58} +6.52808i q^{59} +(-10.9360 - 10.9360i) q^{61} +(11.9555 - 11.9555i) q^{62} +(-0.422967 - 0.422967i) q^{63} -10.4659 q^{64} -2.10158i q^{66} -5.68704i q^{67} +(7.91997 + 5.52874i) q^{68} +3.31265 q^{69} +(0.749500 - 0.749500i) q^{71} -0.310831i q^{72} +(10.3821 + 10.3821i) q^{73} +(8.79807 + 8.79807i) q^{74} -11.3894i q^{76} +0.747575 q^{77} +(14.7460 - 14.7460i) q^{78} +(0.878559 + 0.878559i) q^{79} +10.1165 q^{81} +(5.63211 + 5.63211i) q^{82} -13.5038 q^{83} +5.96564 q^{84} +7.64014 q^{86} +3.39955 q^{87} +(0.274690 + 0.274690i) q^{88} +0.989860 q^{89} +(5.24546 + 5.24546i) q^{91} +(-2.96056 + 2.96056i) q^{92} +15.0381 q^{93} -18.9070i q^{94} +(-10.6040 - 10.6040i) q^{96} +(-8.05428 - 8.05428i) q^{97} -10.6534i q^{98} +(0.167502 - 0.167502i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 2 q^{3} + 12 q^{4} + 6 q^{6} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 4 q^{2} + 2 q^{3} + 12 q^{4} + 6 q^{6} + 12 q^{8} - 4 q^{11} - 4 q^{12} - 14 q^{14} + 4 q^{16} - 10 q^{17} + 8 q^{21} + 10 q^{22} + 12 q^{23} + 8 q^{24} - 22 q^{27} - 34 q^{28} + 6 q^{29} - 6 q^{31} + 48 q^{32} - 30 q^{34} + 18 q^{37} - 16 q^{39} + 6 q^{41} - 56 q^{42} + 16 q^{43} - 32 q^{44} + 30 q^{46} + 10 q^{48} - 40 q^{51} - 48 q^{53} - 16 q^{54} - 56 q^{56} + 18 q^{57} - 6 q^{58} - 8 q^{61} + 22 q^{62} + 30 q^{63} + 44 q^{64} - 18 q^{68} + 72 q^{69} - 20 q^{71} + 18 q^{73} + 26 q^{74} - 24 q^{77} + 38 q^{78} + 14 q^{79} - 8 q^{81} - 10 q^{82} - 52 q^{83} - 36 q^{84} + 84 q^{86} + 48 q^{87} - 66 q^{88} + 24 q^{89} + 12 q^{91} + 32 q^{92} + 60 q^{93} + 22 q^{96} - 52 q^{97} - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08389 −1.47353 −0.736767 0.676146i \(-0.763649\pi\)
−0.736767 + 0.676146i \(0.763649\pi\)
\(3\) −1.31060 1.31060i −0.756677 0.756677i 0.219039 0.975716i \(-0.429708\pi\)
−0.975716 + 0.219039i \(0.929708\pi\)
\(4\) 2.34261 1.17130
\(5\) 0 0
\(6\) 2.73116 + 2.73116i 1.11499 + 1.11499i
\(7\) −0.971529 + 0.971529i −0.367204 + 0.367204i −0.866456 0.499253i \(-0.833608\pi\)
0.499253 + 0.866456i \(0.333608\pi\)
\(8\) −0.713960 −0.252423
\(9\) 0.435362i 0.145121i
\(10\) 0 0
\(11\) −0.384742 0.384742i −0.116004 0.116004i 0.646722 0.762726i \(-0.276139\pi\)
−0.762726 + 0.646722i \(0.776139\pi\)
\(12\) −3.07023 3.07023i −0.886299 0.886299i
\(13\) 5.39918i 1.49746i −0.662874 0.748731i \(-0.730663\pi\)
0.662874 0.748731i \(-0.269337\pi\)
\(14\) 2.02456 2.02456i 0.541087 0.541087i
\(15\) 0 0
\(16\) −3.19740 −0.799351
\(17\) 3.38083 + 2.36008i 0.819973 + 0.572403i
\(18\) 0.907247i 0.213840i
\(19\) 4.86186i 1.11539i −0.830047 0.557694i \(-0.811686\pi\)
0.830047 0.557694i \(-0.188314\pi\)
\(20\) 0 0
\(21\) 2.54658 0.555709
\(22\) 0.801760 + 0.801760i 0.170936 + 0.170936i
\(23\) −1.26379 + 1.26379i −0.263518 + 0.263518i −0.826482 0.562963i \(-0.809661\pi\)
0.562963 + 0.826482i \(0.309661\pi\)
\(24\) 0.935718 + 0.935718i 0.191003 + 0.191003i
\(25\) 0 0
\(26\) 11.2513i 2.20656i
\(27\) −3.36122 + 3.36122i −0.646868 + 0.646868i
\(28\) −2.27591 + 2.27591i −0.430107 + 0.430107i
\(29\) −1.29694 + 1.29694i −0.240836 + 0.240836i −0.817196 0.576360i \(-0.804473\pi\)
0.576360 + 0.817196i \(0.304473\pi\)
\(30\) 0 0
\(31\) −5.73710 + 5.73710i −1.03041 + 1.03041i −0.0308916 + 0.999523i \(0.509835\pi\)
−0.999523 + 0.0308916i \(0.990165\pi\)
\(32\) 8.09096 1.43029
\(33\) 1.00849i 0.175555i
\(34\) −7.04529 4.91815i −1.20826 0.843455i
\(35\) 0 0
\(36\) 1.01988i 0.169980i
\(37\) −4.22194 4.22194i −0.694083 0.694083i 0.269045 0.963128i \(-0.413292\pi\)
−0.963128 + 0.269045i \(0.913292\pi\)
\(38\) 10.1316i 1.64356i
\(39\) −7.07618 + 7.07618i −1.13310 + 1.13310i
\(40\) 0 0
\(41\) −2.70269 2.70269i −0.422089 0.422089i 0.463834 0.885922i \(-0.346474\pi\)
−0.885922 + 0.463834i \(0.846474\pi\)
\(42\) −5.30680 −0.818857
\(43\) −3.66628 −0.559103 −0.279551 0.960131i \(-0.590186\pi\)
−0.279551 + 0.960131i \(0.590186\pi\)
\(44\) −0.901299 0.901299i −0.135876 0.135876i
\(45\) 0 0
\(46\) 2.63360 2.63360i 0.388303 0.388303i
\(47\) 9.07290i 1.32342i 0.749760 + 0.661709i \(0.230169\pi\)
−0.749760 + 0.661709i \(0.769831\pi\)
\(48\) 4.19053 + 4.19053i 0.604850 + 0.604850i
\(49\) 5.11226i 0.730323i
\(50\) 0 0
\(51\) −1.33781 7.52406i −0.187330 1.05358i
\(52\) 12.6482i 1.75398i
\(53\) −10.5471 −1.44875 −0.724376 0.689405i \(-0.757872\pi\)
−0.724376 + 0.689405i \(0.757872\pi\)
\(54\) 7.00443 7.00443i 0.953182 0.953182i
\(55\) 0 0
\(56\) 0.693633 0.693633i 0.0926906 0.0926906i
\(57\) −6.37197 + 6.37197i −0.843988 + 0.843988i
\(58\) 2.70269 2.70269i 0.354880 0.354880i
\(59\) 6.52808i 0.849884i 0.905221 + 0.424942i \(0.139705\pi\)
−0.905221 + 0.424942i \(0.860295\pi\)
\(60\) 0 0
\(61\) −10.9360 10.9360i −1.40021 1.40021i −0.799355 0.600859i \(-0.794825\pi\)
−0.600859 0.799355i \(-0.705175\pi\)
\(62\) 11.9555 11.9555i 1.51835 1.51835i
\(63\) −0.422967 0.422967i −0.0532888 0.0532888i
\(64\) −10.4659 −1.30824
\(65\) 0 0
\(66\) 2.10158i 0.258686i
\(67\) 5.68704i 0.694782i −0.937720 0.347391i \(-0.887068\pi\)
0.937720 0.347391i \(-0.112932\pi\)
\(68\) 7.91997 + 5.52874i 0.960437 + 0.670458i
\(69\) 3.31265 0.398797
\(70\) 0 0
\(71\) 0.749500 0.749500i 0.0889492 0.0889492i −0.661232 0.750181i \(-0.729966\pi\)
0.750181 + 0.661232i \(0.229966\pi\)
\(72\) 0.310831i 0.0366317i
\(73\) 10.3821 + 10.3821i 1.21513 + 1.21513i 0.969316 + 0.245819i \(0.0790567\pi\)
0.245819 + 0.969316i \(0.420943\pi\)
\(74\) 8.79807 + 8.79807i 1.02275 + 1.02275i
\(75\) 0 0
\(76\) 11.3894i 1.30646i
\(77\) 0.747575 0.0851941
\(78\) 14.7460 14.7460i 1.66966 1.66966i
\(79\) 0.878559 + 0.878559i 0.0988456 + 0.0988456i 0.754800 0.655955i \(-0.227734\pi\)
−0.655955 + 0.754800i \(0.727734\pi\)
\(80\) 0 0
\(81\) 10.1165 1.12406
\(82\) 5.63211 + 5.63211i 0.621962 + 0.621962i
\(83\) −13.5038 −1.48224 −0.741119 0.671374i \(-0.765704\pi\)
−0.741119 + 0.671374i \(0.765704\pi\)
\(84\) 5.96564 0.650904
\(85\) 0 0
\(86\) 7.64014 0.823858
\(87\) 3.39955 0.364470
\(88\) 0.274690 + 0.274690i 0.0292820 + 0.0292820i
\(89\) 0.989860 0.104925 0.0524625 0.998623i \(-0.483293\pi\)
0.0524625 + 0.998623i \(0.483293\pi\)
\(90\) 0 0
\(91\) 5.24546 + 5.24546i 0.549873 + 0.549873i
\(92\) −2.96056 + 2.96056i −0.308660 + 0.308660i
\(93\) 15.0381 1.55938
\(94\) 18.9070i 1.95010i
\(95\) 0 0
\(96\) −10.6040 10.6040i −1.08227 1.08227i
\(97\) −8.05428 8.05428i −0.817788 0.817788i 0.167999 0.985787i \(-0.446269\pi\)
−0.985787 + 0.167999i \(0.946269\pi\)
\(98\) 10.6534i 1.07616i
\(99\) 0.167502 0.167502i 0.0168346 0.0168346i
\(100\) 0 0
\(101\) 6.02268 0.599279 0.299639 0.954053i \(-0.403134\pi\)
0.299639 + 0.954053i \(0.403134\pi\)
\(102\) 2.78785 + 15.6793i 0.276038 + 1.55248i
\(103\) 18.1789i 1.79122i −0.444836 0.895612i \(-0.646738\pi\)
0.444836 0.895612i \(-0.353262\pi\)
\(104\) 3.85479i 0.377994i
\(105\) 0 0
\(106\) 21.9790 2.13479
\(107\) 6.77836 + 6.77836i 0.655289 + 0.655289i 0.954262 0.298973i \(-0.0966439\pi\)
−0.298973 + 0.954262i \(0.596644\pi\)
\(108\) −7.87403 + 7.87403i −0.757679 + 0.757679i
\(109\) 2.81350 + 2.81350i 0.269484 + 0.269484i 0.828892 0.559408i \(-0.188972\pi\)
−0.559408 + 0.828892i \(0.688972\pi\)
\(110\) 0 0
\(111\) 11.0666i 1.05039i
\(112\) 3.10637 3.10637i 0.293524 0.293524i
\(113\) 2.51696 2.51696i 0.236776 0.236776i −0.578738 0.815514i \(-0.696455\pi\)
0.815514 + 0.578738i \(0.196455\pi\)
\(114\) 13.2785 13.2785i 1.24365 1.24365i
\(115\) 0 0
\(116\) −3.03823 + 3.03823i −0.282092 + 0.282092i
\(117\) 2.35059 0.217313
\(118\) 13.6038i 1.25233i
\(119\) −5.57746 + 0.991695i −0.511285 + 0.0909085i
\(120\) 0 0
\(121\) 10.7039i 0.973086i
\(122\) 22.7895 + 22.7895i 2.06326 + 2.06326i
\(123\) 7.08430i 0.638770i
\(124\) −13.4398 + 13.4398i −1.20693 + 1.20693i
\(125\) 0 0
\(126\) 0.881417 + 0.881417i 0.0785229 + 0.0785229i
\(127\) −7.76925 −0.689409 −0.344705 0.938711i \(-0.612021\pi\)
−0.344705 + 0.938711i \(0.612021\pi\)
\(128\) 5.62787 0.497438
\(129\) 4.80504 + 4.80504i 0.423060 + 0.423060i
\(130\) 0 0
\(131\) −14.2801 + 14.2801i −1.24765 + 1.24765i −0.290902 + 0.956753i \(0.593955\pi\)
−0.956753 + 0.290902i \(0.906045\pi\)
\(132\) 2.36249i 0.205628i
\(133\) 4.72344 + 4.72344i 0.409574 + 0.409574i
\(134\) 11.8512i 1.02379i
\(135\) 0 0
\(136\) −2.41378 1.68500i −0.206980 0.144488i
\(137\) 16.6892i 1.42585i −0.701239 0.712926i \(-0.747370\pi\)
0.701239 0.712926i \(-0.252630\pi\)
\(138\) −6.90321 −0.587641
\(139\) −4.38272 + 4.38272i −0.371738 + 0.371738i −0.868110 0.496372i \(-0.834665\pi\)
0.496372 + 0.868110i \(0.334665\pi\)
\(140\) 0 0
\(141\) 11.8910 11.8910i 1.00140 1.00140i
\(142\) −1.56188 + 1.56188i −0.131070 + 0.131070i
\(143\) −2.07729 + 2.07729i −0.173712 + 0.173712i
\(144\) 1.39203i 0.116002i
\(145\) 0 0
\(146\) −21.6352 21.6352i −1.79054 1.79054i
\(147\) 6.70015 6.70015i 0.552619 0.552619i
\(148\) −9.89035 9.89035i −0.812982 0.812982i
\(149\) 4.48964 0.367805 0.183903 0.982944i \(-0.441127\pi\)
0.183903 + 0.982944i \(0.441127\pi\)
\(150\) 0 0
\(151\) 6.35198i 0.516917i 0.966022 + 0.258458i \(0.0832145\pi\)
−0.966022 + 0.258458i \(0.916786\pi\)
\(152\) 3.47117i 0.281549i
\(153\) −1.02749 + 1.47189i −0.0830674 + 0.118995i
\(154\) −1.55787 −0.125536
\(155\) 0 0
\(156\) −16.5767 + 16.5767i −1.32720 + 1.32720i
\(157\) 6.37303i 0.508624i 0.967122 + 0.254312i \(0.0818489\pi\)
−0.967122 + 0.254312i \(0.918151\pi\)
\(158\) −1.83082 1.83082i −0.145652 0.145652i
\(159\) 13.8230 + 13.8230i 1.09624 + 1.09624i
\(160\) 0 0
\(161\) 2.45562i 0.193530i
\(162\) −21.0818 −1.65634
\(163\) 2.96192 2.96192i 0.231996 0.231996i −0.581530 0.813525i \(-0.697546\pi\)
0.813525 + 0.581530i \(0.197546\pi\)
\(164\) −6.33133 6.33133i −0.494394 0.494394i
\(165\) 0 0
\(166\) 28.1405 2.18413
\(167\) −9.35974 9.35974i −0.724278 0.724278i 0.245195 0.969474i \(-0.421148\pi\)
−0.969474 + 0.245195i \(0.921148\pi\)
\(168\) −1.81815 −0.140274
\(169\) −16.1511 −1.24239
\(170\) 0 0
\(171\) 2.11667 0.161866
\(172\) −8.58867 −0.654880
\(173\) −6.24926 6.24926i −0.475123 0.475123i 0.428445 0.903568i \(-0.359062\pi\)
−0.903568 + 0.428445i \(0.859062\pi\)
\(174\) −7.08430 −0.537059
\(175\) 0 0
\(176\) 1.23017 + 1.23017i 0.0927278 + 0.0927278i
\(177\) 8.55572 8.55572i 0.643088 0.643088i
\(178\) −2.06276 −0.154611
\(179\) 19.2951i 1.44218i −0.692841 0.721091i \(-0.743641\pi\)
0.692841 0.721091i \(-0.256359\pi\)
\(180\) 0 0
\(181\) −3.47399 3.47399i −0.258220 0.258220i 0.566110 0.824330i \(-0.308448\pi\)
−0.824330 + 0.566110i \(0.808448\pi\)
\(182\) −10.9310 10.9310i −0.810258 0.810258i
\(183\) 28.6656i 2.11902i
\(184\) 0.902294 0.902294i 0.0665180 0.0665180i
\(185\) 0 0
\(186\) −31.3379 −2.29780
\(187\) −0.392727 2.20877i −0.0287191 0.161521i
\(188\) 21.2543i 1.55013i
\(189\) 6.53105i 0.475064i
\(190\) 0 0
\(191\) 5.60780 0.405766 0.202883 0.979203i \(-0.434969\pi\)
0.202883 + 0.979203i \(0.434969\pi\)
\(192\) 13.7166 + 13.7166i 0.989913 + 0.989913i
\(193\) −5.90046 + 5.90046i −0.424724 + 0.424724i −0.886827 0.462102i \(-0.847095\pi\)
0.462102 + 0.886827i \(0.347095\pi\)
\(194\) 16.7842 + 16.7842i 1.20504 + 1.20504i
\(195\) 0 0
\(196\) 11.9760i 0.855431i
\(197\) 4.29543 4.29543i 0.306037 0.306037i −0.537333 0.843370i \(-0.680568\pi\)
0.843370 + 0.537333i \(0.180568\pi\)
\(198\) −0.349056 + 0.349056i −0.0248063 + 0.0248063i
\(199\) −6.71471 + 6.71471i −0.475993 + 0.475993i −0.903848 0.427855i \(-0.859270\pi\)
0.427855 + 0.903848i \(0.359270\pi\)
\(200\) 0 0
\(201\) −7.45345 + 7.45345i −0.525726 + 0.525726i
\(202\) −12.5506 −0.883058
\(203\) 2.52003i 0.176872i
\(204\) −3.13396 17.6259i −0.219421 1.23406i
\(205\) 0 0
\(206\) 37.8829i 2.63943i
\(207\) −0.550205 0.550205i −0.0382419 0.0382419i
\(208\) 17.2633i 1.19700i
\(209\) −1.87056 + 1.87056i −0.129389 + 0.129389i
\(210\) 0 0
\(211\) 14.5004 + 14.5004i 0.998251 + 0.998251i 0.999998 0.00174728i \(-0.000556176\pi\)
−0.00174728 + 0.999998i \(0.500556\pi\)
\(212\) −24.7077 −1.69693
\(213\) −1.96459 −0.134612
\(214\) −14.1254 14.1254i −0.965591 0.965591i
\(215\) 0 0
\(216\) 2.39978 2.39978i 0.163284 0.163284i
\(217\) 11.1475i 0.756744i
\(218\) −5.86303 5.86303i −0.397094 0.397094i
\(219\) 27.2137i 1.83893i
\(220\) 0 0
\(221\) 12.7425 18.2537i 0.857152 1.22788i
\(222\) 23.0616i 1.54779i
\(223\) −6.64902 −0.445252 −0.222626 0.974904i \(-0.571463\pi\)
−0.222626 + 0.974904i \(0.571463\pi\)
\(224\) −7.86061 + 7.86061i −0.525209 + 0.525209i
\(225\) 0 0
\(226\) −5.24508 + 5.24508i −0.348897 + 0.348897i
\(227\) −7.43313 + 7.43313i −0.493354 + 0.493354i −0.909361 0.416007i \(-0.863429\pi\)
0.416007 + 0.909361i \(0.363429\pi\)
\(228\) −14.9270 + 14.9270i −0.988567 + 0.988567i
\(229\) 15.3731i 1.01589i −0.861391 0.507943i \(-0.830406\pi\)
0.861391 0.507943i \(-0.169594\pi\)
\(230\) 0 0
\(231\) −0.979775 0.979775i −0.0644644 0.0644644i
\(232\) 0.925963 0.925963i 0.0607925 0.0607925i
\(233\) 14.8719 + 14.8719i 0.974290 + 0.974290i 0.999678 0.0253878i \(-0.00808207\pi\)
−0.0253878 + 0.999678i \(0.508082\pi\)
\(234\) −4.89839 −0.320218
\(235\) 0 0
\(236\) 15.2927i 0.995472i
\(237\) 2.30288i 0.149588i
\(238\) 11.6228 2.06659i 0.753396 0.133957i
\(239\) 9.10195 0.588756 0.294378 0.955689i \(-0.404887\pi\)
0.294378 + 0.955689i \(0.404887\pi\)
\(240\) 0 0
\(241\) −9.00000 + 9.00000i −0.579741 + 0.579741i −0.934832 0.355091i \(-0.884450\pi\)
0.355091 + 0.934832i \(0.384450\pi\)
\(242\) 22.3059i 1.43388i
\(243\) −3.17511 3.17511i −0.203683 0.203683i
\(244\) −25.6188 25.6188i −1.64008 1.64008i
\(245\) 0 0
\(246\) 14.7629i 0.941249i
\(247\) −26.2501 −1.67025
\(248\) 4.09606 4.09606i 0.260100 0.260100i
\(249\) 17.6982 + 17.6982i 1.12158 + 1.12158i
\(250\) 0 0
\(251\) −10.1470 −0.640475 −0.320238 0.947337i \(-0.603763\pi\)
−0.320238 + 0.947337i \(0.603763\pi\)
\(252\) −0.990845 0.990845i −0.0624174 0.0624174i
\(253\) 0.972465 0.0611383
\(254\) 16.1903 1.01587
\(255\) 0 0
\(256\) 9.20390 0.575244
\(257\) 19.0187 1.18635 0.593176 0.805073i \(-0.297874\pi\)
0.593176 + 0.805073i \(0.297874\pi\)
\(258\) −10.0132 10.0132i −0.623394 0.623394i
\(259\) 8.20348 0.509739
\(260\) 0 0
\(261\) −0.564638 0.564638i −0.0349502 0.0349502i
\(262\) 29.7581 29.7581i 1.83846 1.83846i
\(263\) −12.6346 −0.779086 −0.389543 0.921008i \(-0.627367\pi\)
−0.389543 + 0.921008i \(0.627367\pi\)
\(264\) 0.720019i 0.0443141i
\(265\) 0 0
\(266\) −9.84315 9.84315i −0.603522 0.603522i
\(267\) −1.29731 1.29731i −0.0793943 0.0793943i
\(268\) 13.3225i 0.813802i
\(269\) 19.7441 19.7441i 1.20382 1.20382i 0.230824 0.972996i \(-0.425858\pi\)
0.972996 0.230824i \(-0.0741422\pi\)
\(270\) 0 0
\(271\) −7.78171 −0.472705 −0.236353 0.971667i \(-0.575952\pi\)
−0.236353 + 0.971667i \(0.575952\pi\)
\(272\) −10.8099 7.54612i −0.655446 0.457550i
\(273\) 13.7494i 0.832153i
\(274\) 34.7784i 2.10104i
\(275\) 0 0
\(276\) 7.76025 0.467112
\(277\) 21.9022 + 21.9022i 1.31598 + 1.31598i 0.916930 + 0.399049i \(0.130660\pi\)
0.399049 + 0.916930i \(0.369340\pi\)
\(278\) 9.13312 9.13312i 0.547768 0.547768i
\(279\) −2.49772 2.49772i −0.149534 0.149534i
\(280\) 0 0
\(281\) 2.25506i 0.134525i 0.997735 + 0.0672627i \(0.0214266\pi\)
−0.997735 + 0.0672627i \(0.978573\pi\)
\(282\) −24.7795 + 24.7795i −1.47560 + 1.47560i
\(283\) 18.5973 18.5973i 1.10550 1.10550i 0.111761 0.993735i \(-0.464351\pi\)
0.993735 0.111761i \(-0.0356492\pi\)
\(284\) 1.75578 1.75578i 0.104187 0.104187i
\(285\) 0 0
\(286\) 4.32884 4.32884i 0.255970 0.255970i
\(287\) 5.25148 0.309985
\(288\) 3.52249i 0.207565i
\(289\) 5.86007 + 15.9581i 0.344710 + 0.938709i
\(290\) 0 0
\(291\) 21.1119i 1.23760i
\(292\) 24.3212 + 24.3212i 1.42329 + 1.42329i
\(293\) 8.22869i 0.480725i −0.970683 0.240363i \(-0.922734\pi\)
0.970683 0.240363i \(-0.0772664\pi\)
\(294\) −13.9624 + 13.9624i −0.814303 + 0.814303i
\(295\) 0 0
\(296\) 3.01429 + 3.01429i 0.175202 + 0.175202i
\(297\) 2.58640 0.150078
\(298\) −9.35592 −0.541974
\(299\) 6.82342 + 6.82342i 0.394609 + 0.394609i
\(300\) 0 0
\(301\) 3.56190 3.56190i 0.205305 0.205305i
\(302\) 13.2368i 0.761695i
\(303\) −7.89334 7.89334i −0.453460 0.453460i
\(304\) 15.5453i 0.891586i
\(305\) 0 0
\(306\) 2.14117 3.06725i 0.122403 0.175343i
\(307\) 0.620204i 0.0353969i −0.999843 0.0176985i \(-0.994366\pi\)
0.999843 0.0176985i \(-0.00563389\pi\)
\(308\) 1.75128 0.0997882
\(309\) −23.8254 + 23.8254i −1.35538 + 1.35538i
\(310\) 0 0
\(311\) 16.3224 16.3224i 0.925559 0.925559i −0.0718561 0.997415i \(-0.522892\pi\)
0.997415 + 0.0718561i \(0.0228922\pi\)
\(312\) 5.05210 5.05210i 0.286019 0.286019i
\(313\) −5.19586 + 5.19586i −0.293688 + 0.293688i −0.838535 0.544848i \(-0.816588\pi\)
0.544848 + 0.838535i \(0.316588\pi\)
\(314\) 13.2807i 0.749474i
\(315\) 0 0
\(316\) 2.05812 + 2.05812i 0.115778 + 0.115778i
\(317\) −18.4299 + 18.4299i −1.03513 + 1.03513i −0.0357671 + 0.999360i \(0.511387\pi\)
−0.999360 + 0.0357671i \(0.988613\pi\)
\(318\) −28.8057 28.8057i −1.61534 1.61534i
\(319\) 0.997974 0.0558758
\(320\) 0 0
\(321\) 17.7675i 0.991685i
\(322\) 5.11724i 0.285173i
\(323\) 11.4744 16.4371i 0.638451 0.914587i
\(324\) 23.6991 1.31662
\(325\) 0 0
\(326\) −6.17233 + 6.17233i −0.341853 + 0.341853i
\(327\) 7.37476i 0.407825i
\(328\) 1.92961 + 1.92961i 0.106545 + 0.106545i
\(329\) −8.81459 8.81459i −0.485964 0.485964i
\(330\) 0 0
\(331\) 0.0195086i 0.00107229i 1.00000 0.000536145i \(0.000170660\pi\)
−1.00000 0.000536145i \(0.999829\pi\)
\(332\) −31.6342 −1.73615
\(333\) 1.83807 1.83807i 0.100726 0.100726i
\(334\) 19.5047 + 19.5047i 1.06725 + 1.06725i
\(335\) 0 0
\(336\) −8.14244 −0.444206
\(337\) 18.6470 + 18.6470i 1.01577 + 1.01577i 0.999874 + 0.0158922i \(0.00505886\pi\)
0.0158922 + 0.999874i \(0.494941\pi\)
\(338\) 33.6572 1.83071
\(339\) −6.59748 −0.358326
\(340\) 0 0
\(341\) 4.41461 0.239064
\(342\) −4.41091 −0.238515
\(343\) −11.7674 11.7674i −0.635381 0.635381i
\(344\) 2.61758 0.141130
\(345\) 0 0
\(346\) 13.0228 + 13.0228i 0.700110 + 0.700110i
\(347\) −6.67838 + 6.67838i −0.358514 + 0.358514i −0.863265 0.504751i \(-0.831584\pi\)
0.504751 + 0.863265i \(0.331584\pi\)
\(348\) 7.96382 0.426905
\(349\) 13.9171i 0.744964i −0.928039 0.372482i \(-0.878507\pi\)
0.928039 0.372482i \(-0.121493\pi\)
\(350\) 0 0
\(351\) 18.1478 + 18.1478i 0.968660 + 0.968660i
\(352\) −3.11293 3.11293i −0.165920 0.165920i
\(353\) 13.3125i 0.708554i 0.935140 + 0.354277i \(0.115273\pi\)
−0.935140 + 0.354277i \(0.884727\pi\)
\(354\) −17.8292 + 17.8292i −0.947612 + 0.947612i
\(355\) 0 0
\(356\) 2.31886 0.122899
\(357\) 8.60956 + 6.01012i 0.455666 + 0.318089i
\(358\) 40.2088i 2.12510i
\(359\) 34.6894i 1.83084i −0.402502 0.915419i \(-0.631859\pi\)
0.402502 0.915419i \(-0.368141\pi\)
\(360\) 0 0
\(361\) −4.63771 −0.244090
\(362\) 7.23942 + 7.23942i 0.380496 + 0.380496i
\(363\) −14.0286 + 14.0286i −0.736312 + 0.736312i
\(364\) 12.2881 + 12.2881i 0.644069 + 0.644069i
\(365\) 0 0
\(366\) 59.7360i 3.12245i
\(367\) 1.15604 1.15604i 0.0603449 0.0603449i −0.676290 0.736635i \(-0.736413\pi\)
0.736635 + 0.676290i \(0.236413\pi\)
\(368\) 4.04084 4.04084i 0.210644 0.210644i
\(369\) 1.17665 1.17665i 0.0612537 0.0612537i
\(370\) 0 0
\(371\) 10.2468 10.2468i 0.531987 0.531987i
\(372\) 35.2285 1.82651
\(373\) 26.2859i 1.36103i −0.732734 0.680515i \(-0.761756\pi\)
0.732734 0.680515i \(-0.238244\pi\)
\(374\) 0.818402 + 4.60283i 0.0423186 + 0.238007i
\(375\) 0 0
\(376\) 6.47769i 0.334061i
\(377\) 7.00241 + 7.00241i 0.360643 + 0.360643i
\(378\) 13.6100i 0.700024i
\(379\) 20.6456 20.6456i 1.06049 1.06049i 0.0624440 0.998048i \(-0.480111\pi\)
0.998048 0.0624440i \(-0.0198895\pi\)
\(380\) 0 0
\(381\) 10.1824 + 10.1824i 0.521660 + 0.521660i
\(382\) −11.6860 −0.597910
\(383\) −7.23455 −0.369668 −0.184834 0.982770i \(-0.559175\pi\)
−0.184834 + 0.982770i \(0.559175\pi\)
\(384\) −7.37591 7.37591i −0.376400 0.376400i
\(385\) 0 0
\(386\) 12.2959 12.2959i 0.625846 0.625846i
\(387\) 1.59616i 0.0811373i
\(388\) −18.8680 18.8680i −0.957878 0.957878i
\(389\) 16.1985i 0.821295i 0.911794 + 0.410648i \(0.134697\pi\)
−0.911794 + 0.410648i \(0.865303\pi\)
\(390\) 0 0
\(391\) −7.25530 + 1.29002i −0.366916 + 0.0652392i
\(392\) 3.64995i 0.184350i
\(393\) 37.4310 1.88814
\(394\) −8.95122 + 8.95122i −0.450956 + 0.450956i
\(395\) 0 0
\(396\) 0.392391 0.392391i 0.0197184 0.0197184i
\(397\) 20.6884 20.6884i 1.03832 1.03832i 0.0390863 0.999236i \(-0.487555\pi\)
0.999236 0.0390863i \(-0.0124447\pi\)
\(398\) 13.9927 13.9927i 0.701392 0.701392i
\(399\) 12.3811i 0.619831i
\(400\) 0 0
\(401\) −14.8573 14.8573i −0.741936 0.741936i 0.231014 0.972950i \(-0.425796\pi\)
−0.972950 + 0.231014i \(0.925796\pi\)
\(402\) 15.5322 15.5322i 0.774675 0.774675i
\(403\) 30.9756 + 30.9756i 1.54301 + 1.54301i
\(404\) 14.1088 0.701938
\(405\) 0 0
\(406\) 5.25148i 0.260626i
\(407\) 3.24871i 0.161033i
\(408\) 0.955140 + 5.37187i 0.0472865 + 0.265947i
\(409\) −17.5170 −0.866161 −0.433080 0.901355i \(-0.642573\pi\)
−0.433080 + 0.901355i \(0.642573\pi\)
\(410\) 0 0
\(411\) −21.8729 + 21.8729i −1.07891 + 1.07891i
\(412\) 42.5861i 2.09807i
\(413\) −6.34222 6.34222i −0.312080 0.312080i
\(414\) 1.14657 + 1.14657i 0.0563508 + 0.0563508i
\(415\) 0 0
\(416\) 43.6845i 2.14181i
\(417\) 11.4880 0.562571
\(418\) 3.89805 3.89805i 0.190660 0.190660i
\(419\) −20.3872 20.3872i −0.995980 0.995980i 0.00401203 0.999992i \(-0.498723\pi\)
−0.999992 + 0.00401203i \(0.998723\pi\)
\(420\) 0 0
\(421\) −25.5578 −1.24561 −0.622806 0.782376i \(-0.714008\pi\)
−0.622806 + 0.782376i \(0.714008\pi\)
\(422\) −30.2174 30.2174i −1.47096 1.47096i
\(423\) −3.94999 −0.192055
\(424\) 7.53019 0.365698
\(425\) 0 0
\(426\) 4.09400 0.198355
\(427\) 21.2493 1.02833
\(428\) 15.8791 + 15.8791i 0.767543 + 0.767543i
\(429\) 5.44500 0.262887
\(430\) 0 0
\(431\) −16.1083 16.1083i −0.775910 0.775910i 0.203222 0.979133i \(-0.434859\pi\)
−0.979133 + 0.203222i \(0.934859\pi\)
\(432\) 10.7472 10.7472i 0.517074 0.517074i
\(433\) 33.5441 1.61203 0.806014 0.591896i \(-0.201621\pi\)
0.806014 + 0.591896i \(0.201621\pi\)
\(434\) 23.2303i 1.11509i
\(435\) 0 0
\(436\) 6.59093 + 6.59093i 0.315648 + 0.315648i
\(437\) 6.14437 + 6.14437i 0.293925 + 0.293925i
\(438\) 56.7103i 2.70973i
\(439\) 2.75867 2.75867i 0.131664 0.131664i −0.638204 0.769868i \(-0.720322\pi\)
0.769868 + 0.638204i \(0.220322\pi\)
\(440\) 0 0
\(441\) −2.22568 −0.105985
\(442\) −26.5539 + 38.0388i −1.26304 + 1.80932i
\(443\) 21.1747i 1.00604i 0.864275 + 0.503020i \(0.167778\pi\)
−0.864275 + 0.503020i \(0.832222\pi\)
\(444\) 25.9247i 1.23033i
\(445\) 0 0
\(446\) 13.8559 0.656094
\(447\) −5.88413 5.88413i −0.278310 0.278310i
\(448\) 10.1679 10.1679i 0.480389 0.480389i
\(449\) −27.3305 27.3305i −1.28980 1.28980i −0.934904 0.354900i \(-0.884515\pi\)
−0.354900 0.934904i \(-0.615485\pi\)
\(450\) 0 0
\(451\) 2.07967i 0.0979279i
\(452\) 5.89626 5.89626i 0.277337 0.277337i
\(453\) 8.32492 8.32492i 0.391139 0.391139i
\(454\) 15.4898 15.4898i 0.726974 0.726974i
\(455\) 0 0
\(456\) 4.54933 4.54933i 0.213042 0.213042i
\(457\) −17.9273 −0.838605 −0.419303 0.907847i \(-0.637725\pi\)
−0.419303 + 0.907847i \(0.637725\pi\)
\(458\) 32.0360i 1.49694i
\(459\) −19.2965 + 3.43099i −0.900683 + 0.160145i
\(460\) 0 0
\(461\) 33.2184i 1.54713i −0.633715 0.773567i \(-0.718471\pi\)
0.633715 0.773567i \(-0.281529\pi\)
\(462\) 2.04175 + 2.04175i 0.0949906 + 0.0949906i
\(463\) 25.4598i 1.18322i −0.806225 0.591609i \(-0.798493\pi\)
0.806225 0.591609i \(-0.201507\pi\)
\(464\) 4.14684 4.14684i 0.192512 0.192512i
\(465\) 0 0
\(466\) −30.9914 30.9914i −1.43565 1.43565i
\(467\) −6.31549 −0.292246 −0.146123 0.989266i \(-0.546680\pi\)
−0.146123 + 0.989266i \(0.546680\pi\)
\(468\) 5.50652 0.254539
\(469\) 5.52513 + 5.52513i 0.255127 + 0.255127i
\(470\) 0 0
\(471\) 8.35252 8.35252i 0.384864 0.384864i
\(472\) 4.66078i 0.214530i
\(473\) 1.41057 + 1.41057i 0.0648581 + 0.0648581i
\(474\) 4.79896i 0.220424i
\(475\) 0 0
\(476\) −13.0658 + 2.32315i −0.598871 + 0.106482i
\(477\) 4.59179i 0.210244i
\(478\) −18.9675 −0.867553
\(479\) −20.2237 + 20.2237i −0.924046 + 0.924046i −0.997312 0.0732661i \(-0.976658\pi\)
0.0732661 + 0.997312i \(0.476658\pi\)
\(480\) 0 0
\(481\) −22.7950 + 22.7950i −1.03936 + 1.03936i
\(482\) 18.7550 18.7550i 0.854268 0.854268i
\(483\) −3.21834 + 3.21834i −0.146440 + 0.146440i
\(484\) 25.0752i 1.13978i
\(485\) 0 0
\(486\) 6.61658 + 6.61658i 0.300134 + 0.300134i
\(487\) 3.62691 3.62691i 0.164351 0.164351i −0.620140 0.784491i \(-0.712924\pi\)
0.784491 + 0.620140i \(0.212924\pi\)
\(488\) 7.80788 + 7.80788i 0.353446 + 0.353446i
\(489\) −7.76381 −0.351091
\(490\) 0 0
\(491\) 29.5051i 1.33155i 0.746155 + 0.665773i \(0.231898\pi\)
−0.746155 + 0.665773i \(0.768102\pi\)
\(492\) 16.5957i 0.748194i
\(493\) −7.44562 + 1.32386i −0.335334 + 0.0596237i
\(494\) 54.7023 2.46117
\(495\) 0 0
\(496\) 18.3438 18.3438i 0.823662 0.823662i
\(497\) 1.45632i 0.0653249i
\(498\) −36.8811 36.8811i −1.65268 1.65268i
\(499\) 2.71072 + 2.71072i 0.121349 + 0.121349i 0.765173 0.643825i \(-0.222653\pi\)
−0.643825 + 0.765173i \(0.722653\pi\)
\(500\) 0 0
\(501\) 24.5338i 1.09609i
\(502\) 21.1453 0.943762
\(503\) −20.2499 + 20.2499i −0.902897 + 0.902897i −0.995686 0.0927885i \(-0.970422\pi\)
0.0927885 + 0.995686i \(0.470422\pi\)
\(504\) 0.301981 + 0.301981i 0.0134513 + 0.0134513i
\(505\) 0 0
\(506\) −2.02651 −0.0900894
\(507\) 21.1677 + 21.1677i 0.940090 + 0.940090i
\(508\) −18.2003 −0.807508
\(509\) −23.6043 −1.04624 −0.523122 0.852258i \(-0.675233\pi\)
−0.523122 + 0.852258i \(0.675233\pi\)
\(510\) 0 0
\(511\) −20.1731 −0.892403
\(512\) −30.4357 −1.34508
\(513\) 16.3418 + 16.3418i 0.721508 + 0.721508i
\(514\) −39.6329 −1.74813
\(515\) 0 0
\(516\) 11.2563 + 11.2563i 0.495532 + 0.495532i
\(517\) 3.49072 3.49072i 0.153522 0.153522i
\(518\) −17.0952 −0.751118
\(519\) 16.3806i 0.719029i
\(520\) 0 0
\(521\) 12.3497 + 12.3497i 0.541051 + 0.541051i 0.923837 0.382786i \(-0.125035\pi\)
−0.382786 + 0.923837i \(0.625035\pi\)
\(522\) 1.17665 + 1.17665i 0.0515004 + 0.0515004i
\(523\) 16.1755i 0.707304i −0.935377 0.353652i \(-0.884940\pi\)
0.935377 0.353652i \(-0.115060\pi\)
\(524\) −33.4526 + 33.4526i −1.46138 + 1.46138i
\(525\) 0 0
\(526\) 26.3293 1.14801
\(527\) −32.9362 + 5.85619i −1.43472 + 0.255099i
\(528\) 3.22454i 0.140330i
\(529\) 19.8057i 0.861116i
\(530\) 0 0
\(531\) −2.84208 −0.123336
\(532\) 11.0652 + 11.0652i 0.479736 + 0.479736i
\(533\) −14.5923 + 14.5923i −0.632062 + 0.632062i
\(534\) 2.70346 + 2.70346i 0.116990 + 0.116990i
\(535\) 0 0
\(536\) 4.06032i 0.175379i
\(537\) −25.2882 + 25.2882i −1.09127 + 1.09127i
\(538\) −41.1446 + 41.1446i −1.77387 + 1.77387i
\(539\) 1.96690 1.96690i 0.0847204 0.0847204i
\(540\) 0 0
\(541\) 6.34556 6.34556i 0.272817 0.272817i −0.557416 0.830233i \(-0.688207\pi\)
0.830233 + 0.557416i \(0.188207\pi\)
\(542\) 16.2163 0.696548
\(543\) 9.10605i 0.390778i
\(544\) 27.3542 + 19.0953i 1.17280 + 0.818704i
\(545\) 0 0
\(546\) 28.6523i 1.22621i
\(547\) −31.1141 31.1141i −1.33034 1.33034i −0.905061 0.425281i \(-0.860175\pi\)
−0.425281 0.905061i \(-0.639825\pi\)
\(548\) 39.0962i 1.67011i
\(549\) 4.76112 4.76112i 0.203200 0.203200i
\(550\) 0 0
\(551\) 6.30555 + 6.30555i 0.268625 + 0.268625i
\(552\) −2.36510 −0.100665
\(553\) −1.70709 −0.0725929
\(554\) −45.6419 45.6419i −1.93914 1.93914i
\(555\) 0 0
\(556\) −10.2670 + 10.2670i −0.435418 + 0.435418i
\(557\) 37.7611i 1.59999i 0.600007 + 0.799995i \(0.295165\pi\)
−0.600007 + 0.799995i \(0.704835\pi\)
\(558\) 5.20497 + 5.20497i 0.220344 + 0.220344i
\(559\) 19.7949i 0.837236i
\(560\) 0 0
\(561\) −2.38011 + 3.40953i −0.100488 + 0.143950i
\(562\) 4.69929i 0.198228i
\(563\) 32.4625 1.36813 0.684065 0.729421i \(-0.260211\pi\)
0.684065 + 0.729421i \(0.260211\pi\)
\(564\) 27.8559 27.8559i 1.17295 1.17295i
\(565\) 0 0
\(566\) −38.7548 + 38.7548i −1.62899 + 1.62899i
\(567\) −9.82852 + 9.82852i −0.412759 + 0.412759i
\(568\) −0.535112 + 0.535112i −0.0224528 + 0.0224528i
\(569\) 11.3302i 0.474986i −0.971389 0.237493i \(-0.923674\pi\)
0.971389 0.237493i \(-0.0763257\pi\)
\(570\) 0 0
\(571\) −8.12281 8.12281i −0.339929 0.339929i 0.516412 0.856340i \(-0.327267\pi\)
−0.856340 + 0.516412i \(0.827267\pi\)
\(572\) −4.86627 + 4.86627i −0.203469 + 0.203469i
\(573\) −7.34960 7.34960i −0.307034 0.307034i
\(574\) −10.9435 −0.456773
\(575\) 0 0
\(576\) 4.55645i 0.189852i
\(577\) 0.378762i 0.0157681i 0.999969 + 0.00788404i \(0.00250959\pi\)
−0.999969 + 0.00788404i \(0.997490\pi\)
\(578\) −12.2118 33.2549i −0.507942 1.38322i
\(579\) 15.4663 0.642759
\(580\) 0 0
\(581\) 13.1194 13.1194i 0.544283 0.544283i
\(582\) 43.9950i 1.82365i
\(583\) 4.05790 + 4.05790i 0.168061 + 0.168061i
\(584\) −7.41241 7.41241i −0.306728 0.306728i
\(585\) 0 0
\(586\) 17.1477i 0.708366i
\(587\) 11.6262 0.479863 0.239931 0.970790i \(-0.422875\pi\)
0.239931 + 0.970790i \(0.422875\pi\)
\(588\) 15.6958 15.6958i 0.647285 0.647285i
\(589\) 27.8930 + 27.8930i 1.14931 + 1.14931i
\(590\) 0 0
\(591\) −11.2592 −0.463142
\(592\) 13.4992 + 13.4992i 0.554815 + 0.554815i
\(593\) −24.0394 −0.987181 −0.493590 0.869695i \(-0.664316\pi\)
−0.493590 + 0.869695i \(0.664316\pi\)
\(594\) −5.38979 −0.221146
\(595\) 0 0
\(596\) 10.5175 0.430812
\(597\) 17.6006 0.720346
\(598\) −14.2193 14.2193i −0.581470 0.581470i
\(599\) 41.0811 1.67853 0.839263 0.543725i \(-0.182987\pi\)
0.839263 + 0.543725i \(0.182987\pi\)
\(600\) 0 0
\(601\) −17.3030 17.3030i −0.705804 0.705804i 0.259846 0.965650i \(-0.416328\pi\)
−0.965650 + 0.259846i \(0.916328\pi\)
\(602\) −7.42262 + 7.42262i −0.302523 + 0.302523i
\(603\) 2.47592 0.100827
\(604\) 14.8802i 0.605467i
\(605\) 0 0
\(606\) 16.4489 + 16.4489i 0.668190 + 0.668190i
\(607\) −0.971227 0.971227i −0.0394209 0.0394209i 0.687122 0.726542i \(-0.258874\pi\)
−0.726542 + 0.687122i \(0.758874\pi\)
\(608\) 39.3371i 1.59533i
\(609\) −3.30276 + 3.30276i −0.133835 + 0.133835i
\(610\) 0 0
\(611\) 48.9862 1.98177
\(612\) −2.40700 + 3.44805i −0.0972972 + 0.139379i
\(613\) 1.94295i 0.0784750i 0.999230 + 0.0392375i \(0.0124929\pi\)
−0.999230 + 0.0392375i \(0.987507\pi\)
\(614\) 1.29244i 0.0521586i
\(615\) 0 0
\(616\) −0.533739 −0.0215049
\(617\) −1.63022 1.63022i −0.0656302 0.0656302i 0.673530 0.739160i \(-0.264777\pi\)
−0.739160 + 0.673530i \(0.764777\pi\)
\(618\) 49.6495 49.6495i 1.99720 1.99720i
\(619\) −19.5217 19.5217i −0.784643 0.784643i 0.195967 0.980610i \(-0.437215\pi\)
−0.980610 + 0.195967i \(0.937215\pi\)
\(620\) 0 0
\(621\) 8.49576i 0.340923i
\(622\) −34.0141 + 34.0141i −1.36384 + 1.36384i
\(623\) −0.961678 + 0.961678i −0.0385288 + 0.0385288i
\(624\) 22.6254 22.6254i 0.905740 0.905740i
\(625\) 0 0
\(626\) 10.8276 10.8276i 0.432759 0.432759i
\(627\) 4.90313 0.195812
\(628\) 14.9295i 0.595753i
\(629\) −4.30957 24.2378i −0.171834 0.966424i
\(630\) 0 0
\(631\) 10.0851i 0.401480i −0.979645 0.200740i \(-0.935665\pi\)
0.979645 0.200740i \(-0.0643346\pi\)
\(632\) −0.627255 0.627255i −0.0249509 0.0249509i
\(633\) 38.0086i 1.51071i
\(634\) 38.4060 38.4060i 1.52530 1.52530i
\(635\) 0 0
\(636\) 32.3820 + 32.3820i 1.28403 + 1.28403i
\(637\) 27.6020 1.09363
\(638\) −2.07967 −0.0823350
\(639\) 0.326303 + 0.326303i 0.0129084 + 0.0129084i
\(640\) 0 0
\(641\) 2.60863 2.60863i 0.103035 0.103035i −0.653710 0.756745i \(-0.726788\pi\)
0.756745 + 0.653710i \(0.226788\pi\)
\(642\) 37.0255i 1.46128i
\(643\) −7.17437 7.17437i −0.282930 0.282930i 0.551347 0.834276i \(-0.314114\pi\)
−0.834276 + 0.551347i \(0.814114\pi\)
\(644\) 5.75255i 0.226682i
\(645\) 0 0
\(646\) −23.9114 + 34.2533i −0.940780 + 1.34768i
\(647\) 40.6109i 1.59658i −0.602273 0.798290i \(-0.705738\pi\)
0.602273 0.798290i \(-0.294262\pi\)
\(648\) −7.22280 −0.283739
\(649\) 2.51162 2.51162i 0.0985899 0.0985899i
\(650\) 0 0
\(651\) −14.6100 + 14.6100i −0.572611 + 0.572611i
\(652\) 6.93862 6.93862i 0.271737 0.271737i
\(653\) 4.27439 4.27439i 0.167270 0.167270i −0.618508 0.785778i \(-0.712263\pi\)
0.785778 + 0.618508i \(0.212263\pi\)
\(654\) 15.3682i 0.600944i
\(655\) 0 0
\(656\) 8.64157 + 8.64157i 0.337397 + 0.337397i
\(657\) −4.51997 + 4.51997i −0.176341 + 0.176341i
\(658\) 18.3687 + 18.3687i 0.716085 + 0.716085i
\(659\) 32.7193 1.27456 0.637281 0.770631i \(-0.280059\pi\)
0.637281 + 0.770631i \(0.280059\pi\)
\(660\) 0 0
\(661\) 0.0904199i 0.00351693i 0.999998 + 0.00175846i \(0.000559736\pi\)
−0.999998 + 0.00175846i \(0.999440\pi\)
\(662\) 0.0406539i 0.00158006i
\(663\) −40.6237 + 7.22305i −1.57769 + 0.280520i
\(664\) 9.64118 0.374151
\(665\) 0 0
\(666\) −3.83034 + 3.83034i −0.148423 + 0.148423i
\(667\) 3.27812i 0.126929i
\(668\) −21.9262 21.9262i −0.848350 0.848350i
\(669\) 8.71423 + 8.71423i 0.336912 + 0.336912i
\(670\) 0 0
\(671\) 8.41508i 0.324861i
\(672\) 20.6043 0.794827
\(673\) 8.17887 8.17887i 0.315272 0.315272i −0.531676 0.846948i \(-0.678437\pi\)
0.846948 + 0.531676i \(0.178437\pi\)
\(674\) −38.8583 38.8583i −1.49677 1.49677i
\(675\) 0 0
\(676\) −37.8357 −1.45522
\(677\) −19.4874 19.4874i −0.748960 0.748960i 0.225324 0.974284i \(-0.427656\pi\)
−0.974284 + 0.225324i \(0.927656\pi\)
\(678\) 13.7484 0.528005
\(679\) 15.6499 0.600589
\(680\) 0 0
\(681\) 19.4838 0.746619
\(682\) −9.19956 −0.352269
\(683\) 0.144053 + 0.144053i 0.00551205 + 0.00551205i 0.709857 0.704345i \(-0.248759\pi\)
−0.704345 + 0.709857i \(0.748759\pi\)
\(684\) 4.95853 0.189594
\(685\) 0 0
\(686\) 24.5220 + 24.5220i 0.936256 + 0.936256i
\(687\) −20.1481 + 20.1481i −0.768697 + 0.768697i
\(688\) 11.7226 0.446919
\(689\) 56.9455i 2.16945i
\(690\) 0 0
\(691\) 18.2369 + 18.2369i 0.693764 + 0.693764i 0.963058 0.269294i \(-0.0867903\pi\)
−0.269294 + 0.963058i \(0.586790\pi\)
\(692\) −14.6396 14.6396i −0.556513 0.556513i
\(693\) 0.325466i 0.0123634i
\(694\) 13.9170 13.9170i 0.528283 0.528283i
\(695\) 0 0
\(696\) −2.42714 −0.0920005
\(697\) −2.75878 15.5159i −0.104496 0.587706i
\(698\) 29.0017i 1.09773i
\(699\) 38.9823i 1.47445i
\(700\) 0 0
\(701\) −18.4768 −0.697859 −0.348930 0.937149i \(-0.613455\pi\)
−0.348930 + 0.937149i \(0.613455\pi\)
\(702\) −37.8181 37.8181i −1.42735 1.42735i
\(703\) −20.5265 + 20.5265i −0.774171 + 0.774171i
\(704\) 4.02666 + 4.02666i 0.151761 + 0.151761i
\(705\) 0 0
\(706\) 27.7419i 1.04408i
\(707\) −5.85121 + 5.85121i −0.220057 + 0.220057i
\(708\) 20.0427 20.0427i 0.753251 0.753251i
\(709\) 0.483936 0.483936i 0.0181746 0.0181746i −0.697961 0.716136i \(-0.745909\pi\)
0.716136 + 0.697961i \(0.245909\pi\)
\(710\) 0 0
\(711\) −0.382491 + 0.382491i −0.0143445 + 0.0143445i
\(712\) −0.706720 −0.0264855
\(713\) 14.5010i 0.543066i
\(714\) −17.9414 12.5245i −0.671440 0.468716i
\(715\) 0 0
\(716\) 45.2008i 1.68923i
\(717\) −11.9290 11.9290i −0.445498 0.445498i
\(718\) 72.2890i 2.69780i
\(719\) −25.6304 + 25.6304i −0.955854 + 0.955854i −0.999066 0.0432116i \(-0.986241\pi\)
0.0432116 + 0.999066i \(0.486241\pi\)
\(720\) 0 0
\(721\) 17.6614 + 17.6614i 0.657744 + 0.657744i
\(722\) 9.66449 0.359675
\(723\) 23.5909 0.877353
\(724\) −8.13820 8.13820i −0.302454 0.302454i
\(725\) 0 0
\(726\) 29.2342 29.2342i 1.08498 1.08498i
\(727\) 22.3302i 0.828182i −0.910235 0.414091i \(-0.864100\pi\)
0.910235 0.414091i \(-0.135900\pi\)
\(728\) −3.74504 3.74504i −0.138801 0.138801i
\(729\) 22.0270i 0.815816i
\(730\) 0 0
\(731\) −12.3951 8.65271i −0.458449 0.320032i
\(732\) 67.1522i 2.48202i
\(733\) −17.9985 −0.664790 −0.332395 0.943140i \(-0.607857\pi\)
−0.332395 + 0.943140i \(0.607857\pi\)
\(734\) −2.40907 + 2.40907i −0.0889203 + 0.0889203i
\(735\) 0 0
\(736\) −10.2253 + 10.2253i −0.376909 + 0.376909i
\(737\) −2.18804 + 2.18804i −0.0805975 + 0.0805975i
\(738\) −2.45200 + 2.45200i −0.0902595 + 0.0902595i
\(739\) 8.18227i 0.300990i −0.988611 0.150495i \(-0.951913\pi\)
0.988611 0.150495i \(-0.0480867\pi\)
\(740\) 0 0
\(741\) 34.4034 + 34.4034i 1.26384 + 1.26384i
\(742\) −21.3532 + 21.3532i −0.783902 + 0.783902i
\(743\) 8.40986 + 8.40986i 0.308528 + 0.308528i 0.844338 0.535810i \(-0.179994\pi\)
−0.535810 + 0.844338i \(0.679994\pi\)
\(744\) −10.7366 −0.393624
\(745\) 0 0
\(746\) 54.7769i 2.00553i
\(747\) 5.87905i 0.215103i
\(748\) −0.920007 5.17428i −0.0336388 0.189190i
\(749\) −13.1708 −0.481249
\(750\) 0 0
\(751\) 29.4124 29.4124i 1.07327 1.07327i 0.0761797 0.997094i \(-0.475728\pi\)
0.997094 0.0761797i \(-0.0242723\pi\)
\(752\) 29.0097i 1.05788i
\(753\) 13.2987 + 13.2987i 0.484633 + 0.484633i
\(754\) −14.5923 14.5923i −0.531419 0.531419i
\(755\) 0 0
\(756\) 15.2997i 0.556445i
\(757\) −4.10700 −0.149272 −0.0746358 0.997211i \(-0.523779\pi\)
−0.0746358 + 0.997211i \(0.523779\pi\)
\(758\) −43.0232 + 43.0232i −1.56267 + 1.56267i
\(759\) −1.27452 1.27452i −0.0462620 0.0462620i
\(760\) 0 0
\(761\) −11.1702 −0.404920 −0.202460 0.979291i \(-0.564894\pi\)
−0.202460 + 0.979291i \(0.564894\pi\)
\(762\) −21.2190 21.2190i −0.768684 0.768684i
\(763\) −5.46679 −0.197911
\(764\) 13.1369 0.475275
\(765\) 0 0
\(766\) 15.0760 0.544719
\(767\) 35.2463 1.27267
\(768\) −12.0627 12.0627i −0.435274 0.435274i
\(769\) 43.1786 1.55706 0.778530 0.627607i \(-0.215966\pi\)
0.778530 + 0.627607i \(0.215966\pi\)
\(770\) 0 0
\(771\) −24.9259 24.9259i −0.897685 0.897685i
\(772\) −13.8225 + 13.8225i −0.497482 + 0.497482i
\(773\) −22.0379 −0.792648 −0.396324 0.918111i \(-0.629714\pi\)
−0.396324 + 0.918111i \(0.629714\pi\)
\(774\) 3.32622i 0.119559i
\(775\) 0 0
\(776\) 5.75043 + 5.75043i 0.206428 + 0.206428i
\(777\) −10.7515 10.7515i −0.385708 0.385708i
\(778\) 33.7559i 1.21021i
\(779\) −13.1401 + 13.1401i −0.470792 + 0.470792i
\(780\) 0 0
\(781\) −0.576727 −0.0206369
\(782\) 15.1193 2.68827i 0.540664 0.0961322i
\(783\) 8.71862i 0.311578i
\(784\) 16.3460i 0.583784i
\(785\) 0 0
\(786\) −78.0021 −2.78224
\(787\) −14.9211 14.9211i −0.531879 0.531879i 0.389252 0.921131i \(-0.372733\pi\)
−0.921131 + 0.389252i \(0.872733\pi\)
\(788\) 10.0625 10.0625i 0.358462 0.358462i
\(789\) 16.5590 + 16.5590i 0.589516 + 0.589516i
\(790\) 0 0
\(791\) 4.89060i 0.173890i
\(792\) −0.119589 + 0.119589i −0.00424943 + 0.00424943i
\(793\) −59.0455 + 59.0455i −2.09677 + 2.09677i
\(794\) −43.1125 + 43.1125i −1.53000 + 1.53000i
\(795\) 0 0
\(796\) −15.7299 + 15.7299i −0.557533 + 0.557533i
\(797\) 36.8066 1.30376 0.651878 0.758324i \(-0.273981\pi\)
0.651878 + 0.758324i \(0.273981\pi\)
\(798\) 25.8009i 0.913343i
\(799\) −21.4127 + 30.6740i −0.757529 + 1.08517i
\(800\) 0 0
\(801\) 0.430947i 0.0152268i
\(802\) 30.9609 + 30.9609i 1.09327 + 1.09327i
\(803\) 7.98886i 0.281921i
\(804\) −17.4605 + 17.4605i −0.615785 + 0.615785i
\(805\) 0 0
\(806\) −64.5499 64.5499i −2.27367 2.27367i
\(807\) −51.7534 −1.82181
\(808\) −4.29995 −0.151272
\(809\) 15.3165 + 15.3165i 0.538500 + 0.538500i 0.923088 0.384588i \(-0.125656\pi\)
−0.384588 + 0.923088i \(0.625656\pi\)
\(810\) 0 0
\(811\) 22.6906 22.6906i 0.796774 0.796774i −0.185811 0.982585i \(-0.559491\pi\)
0.982585 + 0.185811i \(0.0594913\pi\)
\(812\) 5.90345i 0.207170i
\(813\) 10.1987 + 10.1987i 0.357685 + 0.357685i
\(814\) 6.76997i 0.237287i
\(815\) 0 0
\(816\) 4.27751 + 24.0574i 0.149743 + 0.842179i
\(817\) 17.8250i 0.623617i
\(818\) 36.5036 1.27632
\(819\) −2.28367 + 2.28367i −0.0797979 + 0.0797979i
\(820\) 0 0
\(821\) −3.60354 + 3.60354i −0.125765 + 0.125765i −0.767187 0.641423i \(-0.778344\pi\)
0.641423 + 0.767187i \(0.278344\pi\)
\(822\) 45.5807 45.5807i 1.58981 1.58981i
\(823\) 23.7004 23.7004i 0.826143 0.826143i −0.160838 0.986981i \(-0.551420\pi\)
0.986981 + 0.160838i \(0.0514197\pi\)
\(824\) 12.9790i 0.452146i
\(825\) 0 0
\(826\) 13.2165 + 13.2165i 0.459861 + 0.459861i
\(827\) 2.95504 2.95504i 0.102757 0.102757i −0.653859 0.756616i \(-0.726851\pi\)
0.756616 + 0.653859i \(0.226851\pi\)
\(828\) −1.28892 1.28892i −0.0447929 0.0447929i
\(829\) 0.834781 0.0289931 0.0144966 0.999895i \(-0.495385\pi\)
0.0144966 + 0.999895i \(0.495385\pi\)
\(830\) 0 0
\(831\) 57.4103i 1.99154i
\(832\) 56.5072i 1.95903i
\(833\) −12.0653 + 17.2837i −0.418039 + 0.598845i
\(834\) −23.9398 −0.828967
\(835\) 0 0
\(836\) −4.38199 + 4.38199i −0.151554 + 0.151554i
\(837\) 38.5674i 1.33308i
\(838\) 42.4847 + 42.4847i 1.46761 + 1.46761i
\(839\) 13.5307 + 13.5307i 0.467130 + 0.467130i 0.900984 0.433853i \(-0.142846\pi\)
−0.433853 + 0.900984i \(0.642846\pi\)
\(840\) 0 0
\(841\) 25.6359i 0.883996i
\(842\) 53.2598 1.83545
\(843\) 2.95548 2.95548i 0.101792 0.101792i
\(844\) 33.9688 + 33.9688i 1.16926 + 1.16926i
\(845\) 0 0
\(846\) 8.23136 0.283000
\(847\) 10.3992 + 10.3992i 0.357321 + 0.357321i
\(848\) 33.7233 1.15806
\(849\) −48.7474 −1.67301
\(850\) 0 0
\(851\) 10.6713 0.365807
\(852\) −4.60227 −0.157671
\(853\) 2.05052 + 2.05052i 0.0702084 + 0.0702084i 0.741339 0.671131i \(-0.234191\pi\)
−0.671131 + 0.741339i \(0.734191\pi\)
\(854\) −44.2813 −1.51528
\(855\) 0 0
\(856\) −4.83948 4.83948i −0.165410 0.165410i
\(857\) 19.7142 19.7142i 0.673425 0.673425i −0.285079 0.958504i \(-0.592020\pi\)
0.958504 + 0.285079i \(0.0920200\pi\)
\(858\) −11.3468 −0.387373
\(859\) 2.48841i 0.0849034i −0.999099 0.0424517i \(-0.986483\pi\)
0.999099 0.0424517i \(-0.0135169\pi\)
\(860\) 0 0
\(861\) −6.88260 6.88260i −0.234558 0.234558i
\(862\) 33.5680 + 33.5680i 1.14333 + 1.14333i
\(863\) 26.8323i 0.913381i −0.889626 0.456690i \(-0.849035\pi\)
0.889626 0.456690i \(-0.150965\pi\)
\(864\) −27.1955 + 27.1955i −0.925211 + 0.925211i
\(865\) 0 0
\(866\) −69.9024 −2.37538
\(867\) 13.2345 28.5949i 0.449466 0.971134i
\(868\) 26.1143i 0.886377i
\(869\) 0.676036i 0.0229330i
\(870\) 0 0
\(871\) −30.7053 −1.04041
\(872\) −2.00872 2.00872i −0.0680240 0.0680240i
\(873\) 3.50652 3.50652i 0.118678 0.118678i
\(874\) −12.8042 12.8042i −0.433109 0.433109i
\(875\) 0 0
\(876\) 63.7510i 2.15395i
\(877\) −23.6654 + 23.6654i −0.799125 + 0.799125i −0.982958 0.183833i \(-0.941150\pi\)
0.183833 + 0.982958i \(0.441150\pi\)
\(878\) −5.74877 + 5.74877i −0.194012 + 0.194012i
\(879\) −10.7846 + 10.7846i −0.363754 + 0.363754i
\(880\) 0 0
\(881\) 13.3394 13.3394i 0.449414 0.449414i −0.445746 0.895160i \(-0.647061\pi\)
0.895160 + 0.445746i \(0.147061\pi\)
\(882\) 4.63808 0.156172
\(883\) 2.82469i 0.0950584i −0.998870 0.0475292i \(-0.984865\pi\)
0.998870 0.0475292i \(-0.0151347\pi\)
\(884\) 29.8506 42.7613i 1.00399 1.43822i
\(885\) 0 0
\(886\) 44.1258i 1.48243i
\(887\) 0.637734 + 0.637734i 0.0214130 + 0.0214130i 0.717732 0.696319i \(-0.245180\pi\)
−0.696319 + 0.717732i \(0.745180\pi\)
\(888\) 7.90109i 0.265143i
\(889\) 7.54805 7.54805i 0.253154 0.253154i
\(890\) 0 0
\(891\) −3.89226 3.89226i −0.130395 0.130395i
\(892\) −15.5761 −0.521525
\(893\) 44.1112 1.47613
\(894\) 12.2619 + 12.2619i 0.410099 + 0.410099i
\(895\) 0 0
\(896\) −5.46764 + 5.46764i −0.182661 + 0.182661i
\(897\) 17.8856i 0.597183i
\(898\) 56.9537 + 56.9537i 1.90057 + 1.90057i
\(899\) 14.8814i 0.496322i
\(900\) 0 0
\(901\) −35.6579 24.8919i −1.18794 0.829270i
\(902\) 4.33381i 0.144300i
\(903\) −9.33648 −0.310699
\(904\) −1.79701 + 1.79701i −0.0597676 + 0.0597676i
\(905\) 0 0
\(906\) −17.3482 + 17.3482i −0.576357 + 0.576357i
\(907\) 14.7962 14.7962i 0.491300 0.491300i −0.417416 0.908716i \(-0.637064\pi\)
0.908716 + 0.417416i \(0.137064\pi\)
\(908\) −17.4129 + 17.4129i −0.577868 + 0.577868i
\(909\) 2.62204i 0.0869676i
\(910\) 0 0
\(911\) 40.0741 + 40.0741i 1.32771 + 1.32771i 0.907360 + 0.420355i \(0.138095\pi\)
0.420355 + 0.907360i \(0.361905\pi\)
\(912\) 20.3738 20.3738i 0.674643 0.674643i
\(913\) 5.19548 + 5.19548i 0.171945 + 0.171945i
\(914\) 37.3586 1.23571
\(915\) 0 0
\(916\) 36.0132i 1.18991i
\(917\) 27.7470i 0.916286i
\(918\) 40.2118 7.14982i 1.32719 0.235979i
\(919\) −28.1639 −0.929040 −0.464520 0.885563i \(-0.653773\pi\)
−0.464520 + 0.885563i \(0.653773\pi\)
\(920\) 0 0
\(921\) −0.812841 + 0.812841i −0.0267840 + 0.0267840i
\(922\) 69.2235i 2.27976i
\(923\) −4.04668 4.04668i −0.133198 0.133198i
\(924\) −2.29523 2.29523i −0.0755075 0.0755075i
\(925\) 0 0
\(926\) 53.0555i 1.74351i
\(927\) 7.91441 0.259943
\(928\) −10.4935 + 10.4935i −0.344466 + 0.344466i
\(929\) −18.9732 18.9732i −0.622491 0.622491i 0.323676 0.946168i \(-0.395081\pi\)
−0.946168 + 0.323676i \(0.895081\pi\)
\(930\) 0 0
\(931\) 24.8551 0.814594
\(932\) 34.8390 + 34.8390i 1.14119 + 1.14119i
\(933\) −42.7844 −1.40070
\(934\) 13.1608 0.430635
\(935\) 0 0
\(936\) −1.67823 −0.0548546
\(937\) −19.9363 −0.651291 −0.325645 0.945492i \(-0.605582\pi\)
−0.325645 + 0.945492i \(0.605582\pi\)
\(938\) −11.5138 11.5138i −0.375938 0.375938i
\(939\) 13.6194 0.444453
\(940\) 0 0
\(941\) −1.68894 1.68894i −0.0550580 0.0550580i 0.679042 0.734100i \(-0.262396\pi\)
−0.734100 + 0.679042i \(0.762396\pi\)
\(942\) −17.4058 + 17.4058i −0.567110 + 0.567110i
\(943\) 6.83125 0.222456
\(944\) 20.8729i 0.679355i
\(945\) 0 0
\(946\) −2.93948 2.93948i −0.0955707 0.0955707i
\(947\) 41.0290 + 41.0290i 1.33326 + 1.33326i 0.902434 + 0.430828i \(0.141778\pi\)
0.430828 + 0.902434i \(0.358222\pi\)
\(948\) 5.39475i 0.175213i
\(949\) 56.0549 56.0549i 1.81962 1.81962i
\(950\) 0 0
\(951\) 48.3086 1.56651
\(952\) 3.98208 0.708030i 0.129060 0.0229474i
\(953\) 10.4939i 0.339930i −0.985450 0.169965i \(-0.945635\pi\)
0.985450 0.169965i \(-0.0543654\pi\)
\(954\) 9.56881i 0.309802i
\(955\) 0 0
\(956\) 21.3223 0.689613
\(957\) −1.30795 1.30795i −0.0422800 0.0422800i
\(958\) 42.1441 42.1441i 1.36161 1.36161i
\(959\) 16.2140 + 16.2140i 0.523578 + 0.523578i
\(960\) 0 0
\(961\) 34.8287i 1.12351i
\(962\) 47.5023 47.5023i 1.53154 1.53154i
\(963\) −2.95104 + 2.95104i −0.0950959 + 0.0950959i
\(964\) −21.0835 + 21.0835i −0.679053 + 0.679053i
\(965\) 0 0
\(966\) 6.70667 6.70667i 0.215784 0.215784i
\(967\) −10.5850 −0.340391 −0.170195 0.985410i \(-0.554440\pi\)
−0.170195 + 0.985410i \(0.554440\pi\)
\(968\) 7.64219i 0.245629i
\(969\) −36.5809 + 6.50423i −1.17515 + 0.208946i
\(970\) 0 0
\(971\) 9.38889i 0.301304i 0.988587 + 0.150652i \(0.0481373\pi\)
−0.988587 + 0.150652i \(0.951863\pi\)
\(972\) −7.43803 7.43803i −0.238575 0.238575i
\(973\) 8.51588i 0.273007i
\(974\) −7.55810 + 7.55810i −0.242177 + 0.242177i
\(975\) 0 0
\(976\) 34.9669 + 34.9669i 1.11926 + 1.11926i
\(977\) 20.1085 0.643329 0.321664 0.946854i \(-0.395758\pi\)
0.321664 + 0.946854i \(0.395758\pi\)
\(978\) 16.1789 0.517345
\(979\) −0.380840 0.380840i −0.0121717 0.0121717i
\(980\) 0 0
\(981\) −1.22489 + 1.22489i −0.0391077 + 0.0391077i
\(982\) 61.4854i 1.96208i
\(983\) −10.4090 10.4090i −0.331994 0.331994i 0.521349 0.853343i \(-0.325429\pi\)
−0.853343 + 0.521349i \(0.825429\pi\)
\(984\) 5.05790i 0.161240i
\(985\) 0 0
\(986\) 15.5159 2.75878i 0.494126 0.0878576i
\(987\) 23.1049i 0.735436i
\(988\) −61.4936 −1.95637
\(989\) 4.63341 4.63341i 0.147334 0.147334i
\(990\) 0 0
\(991\) −21.3002 + 21.3002i −0.676623 + 0.676623i −0.959235 0.282611i \(-0.908799\pi\)
0.282611 + 0.959235i \(0.408799\pi\)
\(992\) −46.4187 + 46.4187i −1.47380 + 1.47380i
\(993\) 0.0255681 0.0255681i 0.000811378 0.000811378i
\(994\) 3.03482i 0.0962586i
\(995\) 0 0
\(996\) 41.4599 + 41.4599i 1.31371 + 1.31371i
\(997\) −33.3429 + 33.3429i −1.05598 + 1.05598i −0.0576434 + 0.998337i \(0.518359\pi\)
−0.998337 + 0.0576434i \(0.981641\pi\)
\(998\) −5.64885 5.64885i −0.178811 0.178811i
\(999\) 28.3818 0.897959
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.d.174.1 12
5.2 odd 4 425.2.e.e.276.1 yes 12
5.3 odd 4 425.2.e.c.276.6 yes 12
5.4 even 2 425.2.j.a.174.6 12
17.13 even 4 425.2.j.a.149.6 12
85.8 odd 8 7225.2.a.bm.1.11 12
85.13 odd 4 425.2.e.c.251.1 12
85.42 odd 8 7225.2.a.br.1.2 12
85.43 odd 8 7225.2.a.bm.1.12 12
85.47 odd 4 425.2.e.e.251.6 yes 12
85.64 even 4 inner 425.2.j.d.149.1 12
85.77 odd 8 7225.2.a.br.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.1 12 85.13 odd 4
425.2.e.c.276.6 yes 12 5.3 odd 4
425.2.e.e.251.6 yes 12 85.47 odd 4
425.2.e.e.276.1 yes 12 5.2 odd 4
425.2.j.a.149.6 12 17.13 even 4
425.2.j.a.174.6 12 5.4 even 2
425.2.j.d.149.1 12 85.64 even 4 inner
425.2.j.d.174.1 12 1.1 even 1 trivial
7225.2.a.bm.1.11 12 85.8 odd 8
7225.2.a.bm.1.12 12 85.43 odd 8
7225.2.a.br.1.1 12 85.77 odd 8
7225.2.a.br.1.2 12 85.42 odd 8