Properties

Label 425.2.m.c.376.5
Level $425$
Weight $2$
Character 425.376
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 376.5
Character \(\chi\) \(=\) 425.376
Dual form 425.2.m.c.26.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.813283 + 0.813283i) q^{2} +(1.89910 - 0.786634i) q^{3} -0.677141i q^{4} +(2.18426 + 0.904752i) q^{6} +(0.143683 - 0.346882i) q^{7} +(2.17727 - 2.17727i) q^{8} +(0.866476 - 0.866476i) q^{9} +O(q^{10})\) \(q+(0.813283 + 0.813283i) q^{2} +(1.89910 - 0.786634i) q^{3} -0.677141i q^{4} +(2.18426 + 0.904752i) q^{6} +(0.143683 - 0.346882i) q^{7} +(2.17727 - 2.17727i) q^{8} +(0.866476 - 0.866476i) q^{9} +(0.0511675 + 0.0211943i) q^{11} +(-0.532662 - 1.28596i) q^{12} +0.388558i q^{13} +(0.398969 - 0.165258i) q^{14} +2.18720 q^{16} +(-4.08007 - 0.594174i) q^{17} +1.40938 q^{18} +(1.25108 + 1.25108i) q^{19} -0.771791i q^{21} +(0.0243767 + 0.0588507i) q^{22} +(0.948471 + 0.392870i) q^{23} +(2.42215 - 5.84758i) q^{24} +(-0.316007 + 0.316007i) q^{26} +(-1.39597 + 3.37018i) q^{27} +(-0.234888 - 0.0972938i) q^{28} +(3.23410 + 7.80781i) q^{29} +(5.59808 - 2.31880i) q^{31} +(-2.57573 - 2.57573i) q^{32} +0.113845 q^{33} +(-2.83502 - 3.80148i) q^{34} +(-0.586726 - 0.586726i) q^{36} +(-8.77594 + 3.63511i) q^{37} +2.03496i q^{38} +(0.305652 + 0.737910i) q^{39} +(2.93662 - 7.08964i) q^{41} +(0.627685 - 0.627685i) q^{42} +(-4.77818 + 4.77818i) q^{43} +(0.0143515 - 0.0346476i) q^{44} +(0.451862 + 1.09089i) q^{46} -1.84378i q^{47} +(4.15372 - 1.72053i) q^{48} +(4.85007 + 4.85007i) q^{49} +(-8.21586 + 2.08112i) q^{51} +0.263108 q^{52} +(-6.43330 - 6.43330i) q^{53} +(-3.87624 + 1.60559i) q^{54} +(-0.442420 - 1.06810i) q^{56} +(3.36006 + 1.39178i) q^{57} +(-3.71972 + 8.98020i) q^{58} +(-9.61131 + 9.61131i) q^{59} +(-2.22364 + 5.36835i) q^{61} +(6.43867 + 2.66698i) q^{62} +(-0.176067 - 0.425063i) q^{63} -8.56400i q^{64} +(0.0925878 + 0.0925878i) q^{66} +14.4112 q^{67} +(-0.402339 + 2.76278i) q^{68} +2.11029 q^{69} +(-1.04049 + 0.430984i) q^{71} -3.77311i q^{72} +(0.838594 + 2.02455i) q^{73} +(-10.0937 - 4.18095i) q^{74} +(0.847155 - 0.847155i) q^{76} +(0.0147038 - 0.0147038i) q^{77} +(-0.351548 + 0.848712i) q^{78} +(-3.64157 - 1.50839i) q^{79} +11.1746i q^{81} +(8.15419 - 3.37758i) q^{82} +(-6.67554 - 6.67554i) q^{83} -0.522611 q^{84} -7.77202 q^{86} +(12.2838 + 12.2838i) q^{87} +(0.157551 - 0.0652600i) q^{88} +2.61320i q^{89} +(0.134784 + 0.0558293i) q^{91} +(0.266028 - 0.642248i) q^{92} +(8.80728 - 8.80728i) q^{93} +(1.49951 - 1.49951i) q^{94} +(-6.91774 - 2.86542i) q^{96} +(-2.01122 - 4.85551i) q^{97} +7.88895i q^{98} +(0.0626997 - 0.0259711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 8 q^{6} + 12 q^{9} + 4 q^{11} - 12 q^{12} - 24 q^{14} - 24 q^{16} + 4 q^{17} - 40 q^{18} - 20 q^{19} + 16 q^{22} + 8 q^{23} + 16 q^{24} + 16 q^{26} - 12 q^{27} + 48 q^{28} + 4 q^{29} + 24 q^{31} - 60 q^{32} + 48 q^{33} + 16 q^{34} + 60 q^{36} - 12 q^{37} + 8 q^{39} - 20 q^{41} + 12 q^{42} + 32 q^{43} + 64 q^{44} - 40 q^{46} - 40 q^{48} + 24 q^{49} + 16 q^{51} - 48 q^{52} - 12 q^{53} - 20 q^{54} - 32 q^{56} + 68 q^{57} - 16 q^{58} - 16 q^{59} - 64 q^{61} + 100 q^{62} - 44 q^{63} - 72 q^{66} + 40 q^{67} + 20 q^{68} - 48 q^{69} - 24 q^{71} + 32 q^{74} + 52 q^{76} + 24 q^{77} - 16 q^{78} - 48 q^{79} + 100 q^{82} + 12 q^{83} - 40 q^{84} - 16 q^{86} + 24 q^{87} + 4 q^{88} + 24 q^{91} - 88 q^{92} - 32 q^{93} - 40 q^{94} + 132 q^{96} - 88 q^{97} - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.813283 + 0.813283i 0.575078 + 0.575078i 0.933543 0.358465i \(-0.116700\pi\)
−0.358465 + 0.933543i \(0.616700\pi\)
\(3\) 1.89910 0.786634i 1.09645 0.454163i 0.240197 0.970724i \(-0.422788\pi\)
0.856250 + 0.516561i \(0.172788\pi\)
\(4\) 0.677141i 0.338570i
\(5\) 0 0
\(6\) 2.18426 + 0.904752i 0.891722 + 0.369363i
\(7\) 0.143683 0.346882i 0.0543072 0.131109i −0.894397 0.447273i \(-0.852395\pi\)
0.948704 + 0.316164i \(0.102395\pi\)
\(8\) 2.17727 2.17727i 0.769782 0.769782i
\(9\) 0.866476 0.866476i 0.288825 0.288825i
\(10\) 0 0
\(11\) 0.0511675 + 0.0211943i 0.0154276 + 0.00639032i 0.390384 0.920652i \(-0.372342\pi\)
−0.374956 + 0.927042i \(0.622342\pi\)
\(12\) −0.532662 1.28596i −0.153766 0.371224i
\(13\) 0.388558i 0.107766i 0.998547 + 0.0538832i \(0.0171599\pi\)
−0.998547 + 0.0538832i \(0.982840\pi\)
\(14\) 0.398969 0.165258i 0.106629 0.0441671i
\(15\) 0 0
\(16\) 2.18720 0.546800
\(17\) −4.08007 0.594174i −0.989562 0.144108i
\(18\) 1.40938 0.332194
\(19\) 1.25108 + 1.25108i 0.287017 + 0.287017i 0.835899 0.548883i \(-0.184947\pi\)
−0.548883 + 0.835899i \(0.684947\pi\)
\(20\) 0 0
\(21\) 0.771791i 0.168419i
\(22\) 0.0243767 + 0.0588507i 0.00519714 + 0.0125470i
\(23\) 0.948471 + 0.392870i 0.197770 + 0.0819190i 0.479370 0.877613i \(-0.340865\pi\)
−0.281600 + 0.959532i \(0.590865\pi\)
\(24\) 2.42215 5.84758i 0.494419 1.19363i
\(25\) 0 0
\(26\) −0.316007 + 0.316007i −0.0619741 + 0.0619741i
\(27\) −1.39597 + 3.37018i −0.268656 + 0.648592i
\(28\) −0.234888 0.0972938i −0.0443897 0.0183868i
\(29\) 3.23410 + 7.80781i 0.600557 + 1.44987i 0.873009 + 0.487704i \(0.162165\pi\)
−0.272452 + 0.962169i \(0.587835\pi\)
\(30\) 0 0
\(31\) 5.59808 2.31880i 1.00545 0.416469i 0.181654 0.983362i \(-0.441855\pi\)
0.823791 + 0.566893i \(0.191855\pi\)
\(32\) −2.57573 2.57573i −0.455330 0.455330i
\(33\) 0.113845 0.0198178
\(34\) −2.83502 3.80148i −0.486202 0.651949i
\(35\) 0 0
\(36\) −0.586726 0.586726i −0.0977876 0.0977876i
\(37\) −8.77594 + 3.63511i −1.44276 + 0.597609i −0.960465 0.278402i \(-0.910195\pi\)
−0.482291 + 0.876011i \(0.660195\pi\)
\(38\) 2.03496i 0.330114i
\(39\) 0.305652 + 0.737910i 0.0489436 + 0.118160i
\(40\) 0 0
\(41\) 2.93662 7.08964i 0.458624 1.10722i −0.510331 0.859978i \(-0.670477\pi\)
0.968955 0.247238i \(-0.0795228\pi\)
\(42\) 0.627685 0.627685i 0.0968539 0.0968539i
\(43\) −4.77818 + 4.77818i −0.728665 + 0.728665i −0.970354 0.241689i \(-0.922299\pi\)
0.241689 + 0.970354i \(0.422299\pi\)
\(44\) 0.0143515 0.0346476i 0.00216357 0.00522332i
\(45\) 0 0
\(46\) 0.451862 + 1.09089i 0.0666233 + 0.160843i
\(47\) 1.84378i 0.268942i −0.990918 0.134471i \(-0.957066\pi\)
0.990918 0.134471i \(-0.0429335\pi\)
\(48\) 4.15372 1.72053i 0.599537 0.248336i
\(49\) 4.85007 + 4.85007i 0.692866 + 0.692866i
\(50\) 0 0
\(51\) −8.21586 + 2.08112i −1.15045 + 0.291415i
\(52\) 0.263108 0.0364865
\(53\) −6.43330 6.43330i −0.883682 0.883682i 0.110224 0.993907i \(-0.464843\pi\)
−0.993907 + 0.110224i \(0.964843\pi\)
\(54\) −3.87624 + 1.60559i −0.527489 + 0.218493i
\(55\) 0 0
\(56\) −0.442420 1.06810i −0.0591208 0.142730i
\(57\) 3.36006 + 1.39178i 0.445051 + 0.184346i
\(58\) −3.71972 + 8.98020i −0.488423 + 1.17916i
\(59\) −9.61131 + 9.61131i −1.25129 + 1.25129i −0.296143 + 0.955144i \(0.595700\pi\)
−0.955144 + 0.296143i \(0.904300\pi\)
\(60\) 0 0
\(61\) −2.22364 + 5.36835i −0.284708 + 0.687347i −0.999933 0.0115474i \(-0.996324\pi\)
0.715225 + 0.698894i \(0.246324\pi\)
\(62\) 6.43867 + 2.66698i 0.817712 + 0.338707i
\(63\) −0.176067 0.425063i −0.0221823 0.0535529i
\(64\) 8.56400i 1.07050i
\(65\) 0 0
\(66\) 0.0925878 + 0.0925878i 0.0113968 + 0.0113968i
\(67\) 14.4112 1.76061 0.880303 0.474412i \(-0.157339\pi\)
0.880303 + 0.474412i \(0.157339\pi\)
\(68\) −0.402339 + 2.76278i −0.0487908 + 0.335036i
\(69\) 2.11029 0.254049
\(70\) 0 0
\(71\) −1.04049 + 0.430984i −0.123483 + 0.0511484i −0.443570 0.896240i \(-0.646288\pi\)
0.320086 + 0.947388i \(0.396288\pi\)
\(72\) 3.77311i 0.444665i
\(73\) 0.838594 + 2.02455i 0.0981500 + 0.236955i 0.965326 0.261046i \(-0.0840675\pi\)
−0.867176 + 0.498001i \(0.834067\pi\)
\(74\) −10.0937 4.18095i −1.17337 0.486025i
\(75\) 0 0
\(76\) 0.847155 0.847155i 0.0971753 0.0971753i
\(77\) 0.0147038 0.0147038i 0.00167566 0.00167566i
\(78\) −0.351548 + 0.848712i −0.0398050 + 0.0960977i
\(79\) −3.64157 1.50839i −0.409709 0.169707i 0.168303 0.985735i \(-0.446171\pi\)
−0.578012 + 0.816028i \(0.696171\pi\)
\(80\) 0 0
\(81\) 11.1746i 1.24162i
\(82\) 8.15419 3.37758i 0.900480 0.372991i
\(83\) −6.67554 6.67554i −0.732735 0.732735i 0.238425 0.971161i \(-0.423369\pi\)
−0.971161 + 0.238425i \(0.923369\pi\)
\(84\) −0.522611 −0.0570215
\(85\) 0 0
\(86\) −7.77202 −0.838079
\(87\) 12.2838 + 12.2838i 1.31696 + 1.31696i
\(88\) 0.157551 0.0652600i 0.0167950 0.00695674i
\(89\) 2.61320i 0.276998i 0.990363 + 0.138499i \(0.0442278\pi\)
−0.990363 + 0.138499i \(0.955772\pi\)
\(90\) 0 0
\(91\) 0.134784 + 0.0558293i 0.0141292 + 0.00585250i
\(92\) 0.266028 0.642248i 0.0277353 0.0669590i
\(93\) 8.80728 8.80728i 0.913273 0.913273i
\(94\) 1.49951 1.49951i 0.154663 0.154663i
\(95\) 0 0
\(96\) −6.91774 2.86542i −0.706039 0.292451i
\(97\) −2.01122 4.85551i −0.204208 0.493002i 0.788284 0.615312i \(-0.210970\pi\)
−0.992492 + 0.122310i \(0.960970\pi\)
\(98\) 7.88895i 0.796905i
\(99\) 0.0626997 0.0259711i 0.00630156 0.00261019i
\(100\) 0 0
\(101\) −4.03337 −0.401335 −0.200668 0.979659i \(-0.564311\pi\)
−0.200668 + 0.979659i \(0.564311\pi\)
\(102\) −8.37437 4.98928i −0.829186 0.494013i
\(103\) 3.21586 0.316868 0.158434 0.987370i \(-0.449355\pi\)
0.158434 + 0.987370i \(0.449355\pi\)
\(104\) 0.845996 + 0.845996i 0.0829567 + 0.0829567i
\(105\) 0 0
\(106\) 10.4642i 1.01637i
\(107\) −4.54399 10.9702i −0.439284 1.06052i −0.976197 0.216887i \(-0.930410\pi\)
0.536913 0.843638i \(-0.319590\pi\)
\(108\) 2.28209 + 0.945271i 0.219594 + 0.0909588i
\(109\) 7.92218 19.1258i 0.758807 1.83192i 0.258701 0.965957i \(-0.416706\pi\)
0.500106 0.865964i \(-0.333294\pi\)
\(110\) 0 0
\(111\) −13.8069 + 13.8069i −1.31049 + 1.31049i
\(112\) 0.314264 0.758701i 0.0296952 0.0716905i
\(113\) −4.23196 1.75294i −0.398109 0.164902i 0.174641 0.984632i \(-0.444124\pi\)
−0.572750 + 0.819730i \(0.694124\pi\)
\(114\) 1.60077 + 3.86460i 0.149926 + 0.361953i
\(115\) 0 0
\(116\) 5.28698 2.18994i 0.490884 0.203331i
\(117\) 0.336676 + 0.336676i 0.0311257 + 0.0311257i
\(118\) −15.6334 −1.43917
\(119\) −0.792346 + 1.32993i −0.0726343 + 0.121915i
\(120\) 0 0
\(121\) −7.77601 7.77601i −0.706910 0.706910i
\(122\) −6.17444 + 2.55754i −0.559008 + 0.231549i
\(123\) 15.7740i 1.42229i
\(124\) −1.57015 3.79069i −0.141004 0.340414i
\(125\) 0 0
\(126\) 0.202505 0.488889i 0.0180405 0.0435537i
\(127\) −0.0614833 + 0.0614833i −0.00545576 + 0.00545576i −0.709829 0.704374i \(-0.751228\pi\)
0.704374 + 0.709829i \(0.251228\pi\)
\(128\) 1.81349 1.81349i 0.160292 0.160292i
\(129\) −5.31557 + 12.8329i −0.468010 + 1.12988i
\(130\) 0 0
\(131\) 3.00793 + 7.26179i 0.262804 + 0.634465i 0.999110 0.0421837i \(-0.0134315\pi\)
−0.736306 + 0.676649i \(0.763431\pi\)
\(132\) 0.0770887i 0.00670971i
\(133\) 0.613736 0.254218i 0.0532176 0.0220435i
\(134\) 11.7204 + 11.7204i 1.01249 + 1.01249i
\(135\) 0 0
\(136\) −10.1771 + 7.58975i −0.872680 + 0.650815i
\(137\) −14.3733 −1.22800 −0.613999 0.789307i \(-0.710440\pi\)
−0.613999 + 0.789307i \(0.710440\pi\)
\(138\) 1.71626 + 1.71626i 0.146098 + 0.146098i
\(139\) 10.2198 4.23320i 0.866836 0.359055i 0.0954589 0.995433i \(-0.469568\pi\)
0.771377 + 0.636378i \(0.219568\pi\)
\(140\) 0 0
\(141\) −1.45038 3.50152i −0.122144 0.294881i
\(142\) −1.19672 0.495699i −0.100427 0.0415981i
\(143\) −0.00823520 + 0.0198815i −0.000688662 + 0.00166258i
\(144\) 1.89516 1.89516i 0.157930 0.157930i
\(145\) 0 0
\(146\) −0.964514 + 2.32854i −0.0798238 + 0.192712i
\(147\) 13.0260 + 5.39554i 1.07437 + 0.445017i
\(148\) 2.46148 + 5.94254i 0.202333 + 0.488474i
\(149\) 5.19432i 0.425535i −0.977103 0.212768i \(-0.931752\pi\)
0.977103 0.212768i \(-0.0682478\pi\)
\(150\) 0 0
\(151\) 4.97988 + 4.97988i 0.405257 + 0.405257i 0.880081 0.474824i \(-0.157488\pi\)
−0.474824 + 0.880081i \(0.657488\pi\)
\(152\) 5.44787 0.441881
\(153\) −4.05012 + 3.02044i −0.327433 + 0.244188i
\(154\) 0.0239168 0.00192727
\(155\) 0 0
\(156\) 0.499669 0.206970i 0.0400055 0.0165708i
\(157\) 15.8006i 1.26103i −0.776178 0.630514i \(-0.782844\pi\)
0.776178 0.630514i \(-0.217156\pi\)
\(158\) −1.73488 4.18838i −0.138020 0.333209i
\(159\) −17.2782 7.15685i −1.37025 0.567575i
\(160\) 0 0
\(161\) 0.272559 0.272559i 0.0214807 0.0214807i
\(162\) −9.08810 + 9.08810i −0.714029 + 0.714029i
\(163\) −3.94819 + 9.53178i −0.309246 + 0.746587i 0.690483 + 0.723348i \(0.257398\pi\)
−0.999730 + 0.0232388i \(0.992602\pi\)
\(164\) −4.80068 1.98851i −0.374870 0.155276i
\(165\) 0 0
\(166\) 10.8582i 0.842760i
\(167\) 7.64004 3.16461i 0.591204 0.244885i −0.0669645 0.997755i \(-0.521331\pi\)
0.658168 + 0.752871i \(0.271331\pi\)
\(168\) −1.68040 1.68040i −0.129646 0.129646i
\(169\) 12.8490 0.988386
\(170\) 0 0
\(171\) 2.16806 0.165795
\(172\) 3.23550 + 3.23550i 0.246704 + 0.246704i
\(173\) 13.4048 5.55244i 1.01915 0.422144i 0.190362 0.981714i \(-0.439034\pi\)
0.828783 + 0.559570i \(0.189034\pi\)
\(174\) 19.9804i 1.51471i
\(175\) 0 0
\(176\) 0.111914 + 0.0463561i 0.00843581 + 0.00349423i
\(177\) −10.6923 + 25.8134i −0.803681 + 1.94026i
\(178\) −2.12527 + 2.12527i −0.159296 + 0.159296i
\(179\) −10.9353 + 10.9353i −0.817342 + 0.817342i −0.985722 0.168380i \(-0.946146\pi\)
0.168380 + 0.985722i \(0.446146\pi\)
\(180\) 0 0
\(181\) 22.1058 + 9.15653i 1.64311 + 0.680600i 0.996607 0.0823091i \(-0.0262295\pi\)
0.646506 + 0.762909i \(0.276229\pi\)
\(182\) 0.0642124 + 0.155022i 0.00475974 + 0.0114910i
\(183\) 11.9442i 0.882944i
\(184\) 2.92047 1.20970i 0.215300 0.0891800i
\(185\) 0 0
\(186\) 14.3256 1.05041
\(187\) −0.196174 0.116877i −0.0143457 0.00854686i
\(188\) −1.24849 −0.0910558
\(189\) 0.968478 + 0.968478i 0.0704464 + 0.0704464i
\(190\) 0 0
\(191\) 22.0393i 1.59471i −0.603511 0.797355i \(-0.706232\pi\)
0.603511 0.797355i \(-0.293768\pi\)
\(192\) −6.73673 16.2639i −0.486182 1.17375i
\(193\) 13.5616 + 5.61741i 0.976187 + 0.404350i 0.813012 0.582247i \(-0.197826\pi\)
0.163175 + 0.986597i \(0.447826\pi\)
\(194\) 2.31321 5.58459i 0.166079 0.400950i
\(195\) 0 0
\(196\) 3.28418 3.28418i 0.234584 0.234584i
\(197\) −3.74992 + 9.05311i −0.267171 + 0.645007i −0.999348 0.0361070i \(-0.988504\pi\)
0.732177 + 0.681114i \(0.238504\pi\)
\(198\) 0.0721145 + 0.0298708i 0.00512495 + 0.00212283i
\(199\) −5.41887 13.0823i −0.384134 0.927381i −0.991157 0.132697i \(-0.957636\pi\)
0.607023 0.794684i \(-0.292364\pi\)
\(200\) 0 0
\(201\) 27.3683 11.3363i 1.93041 0.799603i
\(202\) −3.28027 3.28027i −0.230799 0.230799i
\(203\) 3.17308 0.222706
\(204\) 1.40921 + 5.56329i 0.0986646 + 0.389508i
\(205\) 0 0
\(206\) 2.61541 + 2.61541i 0.182224 + 0.182224i
\(207\) 1.16224 0.481415i 0.0807812 0.0334607i
\(208\) 0.849853i 0.0589267i
\(209\) 0.0374988 + 0.0905302i 0.00259385 + 0.00626211i
\(210\) 0 0
\(211\) 2.00706 4.84546i 0.138172 0.333576i −0.839614 0.543184i \(-0.817219\pi\)
0.977786 + 0.209608i \(0.0672188\pi\)
\(212\) −4.35625 + 4.35625i −0.299189 + 0.299189i
\(213\) −1.63697 + 1.63697i −0.112163 + 0.112163i
\(214\) 5.22629 12.6174i 0.357262 0.862507i
\(215\) 0 0
\(216\) 4.29839 + 10.3772i 0.292468 + 0.706081i
\(217\) 2.27505i 0.154440i
\(218\) 21.9977 9.11174i 1.48987 0.617125i
\(219\) 3.18515 + 3.18515i 0.215233 + 0.215233i
\(220\) 0 0
\(221\) 0.230871 1.58534i 0.0155300 0.106642i
\(222\) −22.4578 −1.50727
\(223\) −9.59168 9.59168i −0.642306 0.642306i 0.308816 0.951122i \(-0.400067\pi\)
−0.951122 + 0.308816i \(0.900067\pi\)
\(224\) −1.26357 + 0.523387i −0.0844256 + 0.0349702i
\(225\) 0 0
\(226\) −2.01615 4.86742i −0.134112 0.323776i
\(227\) 12.4165 + 5.14308i 0.824112 + 0.341358i 0.754569 0.656221i \(-0.227846\pi\)
0.0695428 + 0.997579i \(0.477846\pi\)
\(228\) 0.942433 2.27523i 0.0624142 0.150681i
\(229\) −7.22635 + 7.22635i −0.477530 + 0.477530i −0.904341 0.426811i \(-0.859637\pi\)
0.426811 + 0.904341i \(0.359637\pi\)
\(230\) 0 0
\(231\) 0.0163576 0.0394906i 0.00107625 0.00259829i
\(232\) 24.0413 + 9.95821i 1.57839 + 0.653789i
\(233\) 7.23347 + 17.4631i 0.473880 + 1.14405i 0.962434 + 0.271514i \(0.0875244\pi\)
−0.488554 + 0.872534i \(0.662476\pi\)
\(234\) 0.547625i 0.0357994i
\(235\) 0 0
\(236\) 6.50821 + 6.50821i 0.423648 + 0.423648i
\(237\) −8.10226 −0.526299
\(238\) −1.72601 + 0.437208i −0.111881 + 0.0283400i
\(239\) 17.0192 1.10088 0.550440 0.834874i \(-0.314460\pi\)
0.550440 + 0.834874i \(0.314460\pi\)
\(240\) 0 0
\(241\) 22.9284 9.49726i 1.47695 0.611772i 0.508517 0.861052i \(-0.330194\pi\)
0.968432 + 0.249279i \(0.0801937\pi\)
\(242\) 12.6482i 0.813057i
\(243\) 4.60238 + 11.1111i 0.295243 + 0.712779i
\(244\) 3.63513 + 1.50572i 0.232715 + 0.0963938i
\(245\) 0 0
\(246\) 12.8287 12.8287i 0.817930 0.817930i
\(247\) −0.486115 + 0.486115i −0.0309308 + 0.0309308i
\(248\) 7.13989 17.2372i 0.453384 1.09457i
\(249\) −17.9287 7.42632i −1.13619 0.470624i
\(250\) 0 0
\(251\) 18.0171i 1.13723i 0.822604 + 0.568614i \(0.192520\pi\)
−0.822604 + 0.568614i \(0.807480\pi\)
\(252\) −0.287828 + 0.119222i −0.0181314 + 0.00751028i
\(253\) 0.0402043 + 0.0402043i 0.00252763 + 0.00252763i
\(254\) −0.100007 −0.00627497
\(255\) 0 0
\(256\) −14.1782 −0.886140
\(257\) 4.67554 + 4.67554i 0.291652 + 0.291652i 0.837733 0.546080i \(-0.183881\pi\)
−0.546080 + 0.837733i \(0.683881\pi\)
\(258\) −14.7599 + 6.11374i −0.918909 + 0.380625i
\(259\) 3.56652i 0.221613i
\(260\) 0 0
\(261\) 9.56754 + 3.96301i 0.592216 + 0.245304i
\(262\) −3.45959 + 8.35219i −0.213734 + 0.516000i
\(263\) −7.47288 + 7.47288i −0.460798 + 0.460798i −0.898917 0.438119i \(-0.855645\pi\)
0.438119 + 0.898917i \(0.355645\pi\)
\(264\) 0.247871 0.247871i 0.0152554 0.0152554i
\(265\) 0 0
\(266\) 0.705892 + 0.292390i 0.0432810 + 0.0179276i
\(267\) 2.05563 + 4.96273i 0.125802 + 0.303714i
\(268\) 9.75840i 0.596089i
\(269\) 3.50830 1.45319i 0.213905 0.0886024i −0.273158 0.961969i \(-0.588068\pi\)
0.487063 + 0.873367i \(0.338068\pi\)
\(270\) 0 0
\(271\) −24.1996 −1.47002 −0.735010 0.678056i \(-0.762822\pi\)
−0.735010 + 0.678056i \(0.762822\pi\)
\(272\) −8.92392 1.29958i −0.541092 0.0787984i
\(273\) 0.299885 0.0181499
\(274\) −11.6896 11.6896i −0.706194 0.706194i
\(275\) 0 0
\(276\) 1.42896i 0.0860134i
\(277\) −8.69785 20.9985i −0.522603 1.26168i −0.936281 0.351252i \(-0.885756\pi\)
0.413678 0.910423i \(-0.364244\pi\)
\(278\) 11.7544 + 4.86884i 0.704983 + 0.292014i
\(279\) 2.84142 6.85979i 0.170111 0.410685i
\(280\) 0 0
\(281\) −7.92609 + 7.92609i −0.472831 + 0.472831i −0.902830 0.429998i \(-0.858514\pi\)
0.429998 + 0.902830i \(0.358514\pi\)
\(282\) 1.66816 4.02729i 0.0993374 0.239822i
\(283\) 12.9735 + 5.37381i 0.771196 + 0.319440i 0.733357 0.679844i \(-0.237952\pi\)
0.0378394 + 0.999284i \(0.487952\pi\)
\(284\) 0.291837 + 0.704556i 0.0173173 + 0.0418077i
\(285\) 0 0
\(286\) −0.0228669 + 0.00947177i −0.00135215 + 0.000560077i
\(287\) −2.03733 2.03733i −0.120260 0.120260i
\(288\) −4.46362 −0.263021
\(289\) 16.2939 + 4.84854i 0.958466 + 0.285208i
\(290\) 0 0
\(291\) −7.63901 7.63901i −0.447807 0.447807i
\(292\) 1.37090 0.567846i 0.0802259 0.0332307i
\(293\) 27.9654i 1.63376i −0.576811 0.816878i \(-0.695703\pi\)
0.576811 0.816878i \(-0.304297\pi\)
\(294\) 6.20572 + 14.9819i 0.361925 + 0.873764i
\(295\) 0 0
\(296\) −11.1930 + 27.0223i −0.650579 + 1.57064i
\(297\) −0.142857 + 0.142857i −0.00828941 + 0.00828941i
\(298\) 4.22446 4.22446i 0.244716 0.244716i
\(299\) −0.152652 + 0.368536i −0.00882812 + 0.0213130i
\(300\) 0 0
\(301\) 0.970921 + 2.34401i 0.0559629 + 0.135106i
\(302\) 8.10011i 0.466109i
\(303\) −7.65978 + 3.17278i −0.440043 + 0.182272i
\(304\) 2.73636 + 2.73636i 0.156941 + 0.156941i
\(305\) 0 0
\(306\) −5.75037 0.837417i −0.328727 0.0478719i
\(307\) −20.4310 −1.16606 −0.583029 0.812451i \(-0.698133\pi\)
−0.583029 + 0.812451i \(0.698133\pi\)
\(308\) −0.00995657 0.00995657i −0.000567328 0.000567328i
\(309\) 6.10725 2.52971i 0.347429 0.143910i
\(310\) 0 0
\(311\) −4.76779 11.5105i −0.270356 0.652698i 0.729142 0.684362i \(-0.239919\pi\)
−0.999499 + 0.0316642i \(0.989919\pi\)
\(312\) 2.27212 + 0.941144i 0.128634 + 0.0532818i
\(313\) −3.52347 + 8.50641i −0.199158 + 0.480811i −0.991632 0.129095i \(-0.958793\pi\)
0.792474 + 0.609906i \(0.208793\pi\)
\(314\) 12.8504 12.8504i 0.725189 0.725189i
\(315\) 0 0
\(316\) −1.02139 + 2.46586i −0.0574577 + 0.138715i
\(317\) 1.67569 + 0.694093i 0.0941160 + 0.0389841i 0.429245 0.903188i \(-0.358780\pi\)
−0.335129 + 0.942172i \(0.608780\pi\)
\(318\) −8.23149 19.8726i −0.461599 1.11440i
\(319\) 0.468051i 0.0262058i
\(320\) 0 0
\(321\) −17.2590 17.2590i −0.963303 0.963303i
\(322\) 0.443336 0.0247061
\(323\) −4.36112 5.84784i −0.242659 0.325382i
\(324\) 7.56676 0.420376
\(325\) 0 0
\(326\) −10.9630 + 4.54104i −0.607187 + 0.251505i
\(327\) 42.5537i 2.35323i
\(328\) −9.04225 21.8299i −0.499275 1.20536i
\(329\) −0.639573 0.264920i −0.0352608 0.0146055i
\(330\) 0 0
\(331\) −12.9804 + 12.9804i −0.713470 + 0.713470i −0.967259 0.253790i \(-0.918323\pi\)
0.253790 + 0.967259i \(0.418323\pi\)
\(332\) −4.52028 + 4.52028i −0.248082 + 0.248082i
\(333\) −4.45440 + 10.7539i −0.244100 + 0.589309i
\(334\) 8.78724 + 3.63979i 0.480816 + 0.199161i
\(335\) 0 0
\(336\) 1.68806i 0.0920913i
\(337\) 9.82922 4.07140i 0.535432 0.221783i −0.0985486 0.995132i \(-0.531420\pi\)
0.633980 + 0.773349i \(0.281420\pi\)
\(338\) 10.4499 + 10.4499i 0.568399 + 0.568399i
\(339\) −9.41585 −0.511399
\(340\) 0 0
\(341\) 0.335585 0.0181730
\(342\) 1.76324 + 1.76324i 0.0953453 + 0.0953453i
\(343\) 4.80745 1.99131i 0.259578 0.107521i
\(344\) 20.8068i 1.12183i
\(345\) 0 0
\(346\) 15.4176 + 6.38617i 0.828854 + 0.343323i
\(347\) −9.14186 + 22.0704i −0.490761 + 1.18480i 0.463573 + 0.886059i \(0.346567\pi\)
−0.954334 + 0.298743i \(0.903433\pi\)
\(348\) 8.31784 8.31784i 0.445883 0.445883i
\(349\) 18.5777 18.5777i 0.994441 0.994441i −0.00554356 0.999985i \(-0.501765\pi\)
0.999985 + 0.00554356i \(0.00176458\pi\)
\(350\) 0 0
\(351\) −1.30951 0.542417i −0.0698964 0.0289521i
\(352\) −0.0772031 0.186385i −0.00411494 0.00993434i
\(353\) 4.10448i 0.218460i 0.994017 + 0.109230i \(0.0348384\pi\)
−0.994017 + 0.109230i \(0.965162\pi\)
\(354\) −29.6895 + 12.2978i −1.57798 + 0.653620i
\(355\) 0 0
\(356\) 1.76950 0.0937834
\(357\) −0.458578 + 3.14896i −0.0242705 + 0.166661i
\(358\) −17.7870 −0.940071
\(359\) −11.2487 11.2487i −0.593683 0.593683i 0.344941 0.938624i \(-0.387899\pi\)
−0.938624 + 0.344941i \(0.887899\pi\)
\(360\) 0 0
\(361\) 15.8696i 0.835243i
\(362\) 10.5314 + 25.4252i 0.553520 + 1.33632i
\(363\) −20.8843 8.65056i −1.09614 0.454037i
\(364\) 0.0378042 0.0912675i 0.00198148 0.00478372i
\(365\) 0 0
\(366\) −9.71405 + 9.71405i −0.507762 + 0.507762i
\(367\) 6.66981 16.1023i 0.348161 0.840535i −0.648676 0.761064i \(-0.724677\pi\)
0.996837 0.0794705i \(-0.0253229\pi\)
\(368\) 2.07450 + 0.859284i 0.108141 + 0.0447933i
\(369\) −3.59848 8.68751i −0.187330 0.452254i
\(370\) 0 0
\(371\) −3.15596 + 1.30724i −0.163849 + 0.0678686i
\(372\) −5.96377 5.96377i −0.309207 0.309207i
\(373\) 26.1546 1.35423 0.677117 0.735875i \(-0.263229\pi\)
0.677117 + 0.735875i \(0.263229\pi\)
\(374\) −0.0644912 0.254599i −0.00333476 0.0131650i
\(375\) 0 0
\(376\) −4.01440 4.01440i −0.207027 0.207027i
\(377\) −3.03378 + 1.25663i −0.156248 + 0.0647199i
\(378\) 1.57529i 0.0810244i
\(379\) 6.79575 + 16.4064i 0.349074 + 0.842740i 0.996730 + 0.0808066i \(0.0257496\pi\)
−0.647656 + 0.761933i \(0.724250\pi\)
\(380\) 0 0
\(381\) −0.0683982 + 0.165128i −0.00350414 + 0.00845975i
\(382\) 17.9242 17.9242i 0.917083 0.917083i
\(383\) −20.3547 + 20.3547i −1.04008 + 1.04008i −0.0409141 + 0.999163i \(0.513027\pi\)
−0.999163 + 0.0409141i \(0.986973\pi\)
\(384\) 2.01745 4.87056i 0.102953 0.248550i
\(385\) 0 0
\(386\) 6.46090 + 15.5980i 0.328851 + 0.793916i
\(387\) 8.28035i 0.420914i
\(388\) −3.28786 + 1.36188i −0.166916 + 0.0691388i
\(389\) −18.9994 18.9994i −0.963308 0.963308i 0.0360421 0.999350i \(-0.488525\pi\)
−0.999350 + 0.0360421i \(0.988525\pi\)
\(390\) 0 0
\(391\) −3.63639 2.16649i −0.183900 0.109564i
\(392\) 21.1198 1.06671
\(393\) 11.4247 + 11.4247i 0.576302 + 0.576302i
\(394\) −10.4125 + 4.31299i −0.524574 + 0.217285i
\(395\) 0 0
\(396\) −0.0175861 0.0424565i −0.000883733 0.00213352i
\(397\) 24.6038 + 10.1912i 1.23483 + 0.511484i 0.902096 0.431536i \(-0.142028\pi\)
0.332736 + 0.943020i \(0.392028\pi\)
\(398\) 6.23255 15.0467i 0.312410 0.754223i
\(399\) 0.965570 0.965570i 0.0483390 0.0483390i
\(400\) 0 0
\(401\) 1.03533 2.49950i 0.0517018 0.124819i −0.895918 0.444219i \(-0.853481\pi\)
0.947620 + 0.319400i \(0.103481\pi\)
\(402\) 31.4778 + 13.0385i 1.56997 + 0.650303i
\(403\) 0.900988 + 2.17518i 0.0448814 + 0.108353i
\(404\) 2.73116i 0.135880i
\(405\) 0 0
\(406\) 2.58061 + 2.58061i 0.128074 + 0.128074i
\(407\) −0.526087 −0.0260771
\(408\) −13.3570 + 22.4194i −0.661271 + 1.10992i
\(409\) −0.665597 −0.0329117 −0.0164558 0.999865i \(-0.505238\pi\)
−0.0164558 + 0.999865i \(0.505238\pi\)
\(410\) 0 0
\(411\) −27.2964 + 11.3066i −1.34643 + 0.557711i
\(412\) 2.17759i 0.107282i
\(413\) 1.95301 + 4.71498i 0.0961013 + 0.232009i
\(414\) 1.33676 + 0.553703i 0.0656980 + 0.0272130i
\(415\) 0 0
\(416\) 1.00082 1.00082i 0.0490693 0.0490693i
\(417\) 16.0786 16.0786i 0.787370 0.787370i
\(418\) −0.0431295 + 0.104124i −0.00210953 + 0.00509287i
\(419\) −30.4600 12.6170i −1.48807 0.616379i −0.517175 0.855880i \(-0.673016\pi\)
−0.970896 + 0.239501i \(0.923016\pi\)
\(420\) 0 0
\(421\) 5.35373i 0.260925i 0.991453 + 0.130462i \(0.0416462\pi\)
−0.991453 + 0.130462i \(0.958354\pi\)
\(422\) 5.57304 2.30843i 0.271291 0.112373i
\(423\) −1.59759 1.59759i −0.0776773 0.0776773i
\(424\) −28.0141 −1.36049
\(425\) 0 0
\(426\) −2.66263 −0.129005
\(427\) 1.54269 + 1.54269i 0.0746558 + 0.0746558i
\(428\) −7.42833 + 3.07692i −0.359062 + 0.148728i
\(429\) 0.0442351i 0.00213569i
\(430\) 0 0
\(431\) −10.2043 4.22676i −0.491524 0.203596i 0.123134 0.992390i \(-0.460706\pi\)
−0.614657 + 0.788794i \(0.710706\pi\)
\(432\) −3.05328 + 7.37126i −0.146901 + 0.354650i
\(433\) −9.87103 + 9.87103i −0.474372 + 0.474372i −0.903326 0.428954i \(-0.858882\pi\)
0.428954 + 0.903326i \(0.358882\pi\)
\(434\) 1.85026 1.85026i 0.0888153 0.0888153i
\(435\) 0 0
\(436\) −12.9509 5.36443i −0.620234 0.256909i
\(437\) 0.695100 + 1.67812i 0.0332512 + 0.0802754i
\(438\) 5.18086i 0.247551i
\(439\) −29.3045 + 12.1383i −1.39863 + 0.579330i −0.949395 0.314086i \(-0.898302\pi\)
−0.449231 + 0.893416i \(0.648302\pi\)
\(440\) 0 0
\(441\) 8.40493 0.400235
\(442\) 1.47709 1.10157i 0.0702582 0.0523963i
\(443\) −37.4994 −1.78165 −0.890826 0.454345i \(-0.849873\pi\)
−0.890826 + 0.454345i \(0.849873\pi\)
\(444\) 9.34921 + 9.34921i 0.443694 + 0.443694i
\(445\) 0 0
\(446\) 15.6015i 0.738753i
\(447\) −4.08603 9.86455i −0.193263 0.466577i
\(448\) −2.97070 1.23050i −0.140352 0.0581359i
\(449\) −4.39688 + 10.6150i −0.207502 + 0.500953i −0.993029 0.117874i \(-0.962392\pi\)
0.785527 + 0.618827i \(0.212392\pi\)
\(450\) 0 0
\(451\) 0.300520 0.300520i 0.0141509 0.0141509i
\(452\) −1.18698 + 2.86563i −0.0558310 + 0.134788i
\(453\) 13.3746 + 5.53996i 0.628395 + 0.260290i
\(454\) 5.91535 + 14.2809i 0.277621 + 0.670236i
\(455\) 0 0
\(456\) 10.3461 4.28548i 0.484499 0.200686i
\(457\) −17.1448 17.1448i −0.802002 0.802002i 0.181407 0.983408i \(-0.441935\pi\)
−0.983408 + 0.181407i \(0.941935\pi\)
\(458\) −11.7541 −0.549235
\(459\) 7.69815 12.9211i 0.359319 0.603106i
\(460\) 0 0
\(461\) 18.7157 + 18.7157i 0.871675 + 0.871675i 0.992655 0.120980i \(-0.0386037\pi\)
−0.120980 + 0.992655i \(0.538604\pi\)
\(462\) 0.0454204 0.0188138i 0.00211315 0.000875295i
\(463\) 16.0633i 0.746523i 0.927726 + 0.373261i \(0.121761\pi\)
−0.927726 + 0.373261i \(0.878239\pi\)
\(464\) 7.07362 + 17.0772i 0.328385 + 0.792791i
\(465\) 0 0
\(466\) −8.31962 + 20.0853i −0.385399 + 0.930435i
\(467\) 13.7863 13.7863i 0.637955 0.637955i −0.312096 0.950051i \(-0.601031\pi\)
0.950051 + 0.312096i \(0.101031\pi\)
\(468\) 0.227977 0.227977i 0.0105382 0.0105382i
\(469\) 2.07065 4.99898i 0.0956136 0.230832i
\(470\) 0 0
\(471\) −12.4293 30.0070i −0.572712 1.38265i
\(472\) 41.8529i 1.92644i
\(473\) −0.345758 + 0.143217i −0.0158980 + 0.00658515i
\(474\) −6.58944 6.58944i −0.302663 0.302663i
\(475\) 0 0
\(476\) 0.900550 + 0.536530i 0.0412766 + 0.0245918i
\(477\) −11.1486 −0.510459
\(478\) 13.8414 + 13.8414i 0.633093 + 0.633093i
\(479\) 22.3277 9.24842i 1.02018 0.422571i 0.191020 0.981586i \(-0.438821\pi\)
0.829158 + 0.559015i \(0.188821\pi\)
\(480\) 0 0
\(481\) −1.41245 3.40996i −0.0644022 0.155481i
\(482\) 26.3713 + 10.9233i 1.20118 + 0.497544i
\(483\) 0.303213 0.732022i 0.0137967 0.0333081i
\(484\) −5.26545 + 5.26545i −0.239339 + 0.239339i
\(485\) 0 0
\(486\) −5.29346 + 12.7795i −0.240116 + 0.579692i
\(487\) −33.6285 13.9294i −1.52385 0.631200i −0.545493 0.838115i \(-0.683658\pi\)
−0.978359 + 0.206915i \(0.933658\pi\)
\(488\) 6.84689 + 16.5299i 0.309944 + 0.748271i
\(489\) 21.2076i 0.959041i
\(490\) 0 0
\(491\) −27.2688 27.2688i −1.23063 1.23063i −0.963724 0.266902i \(-0.914000\pi\)
−0.266902 0.963724i \(-0.586000\pi\)
\(492\) −10.6812 −0.481546
\(493\) −8.55615 33.7780i −0.385350 1.52128i
\(494\) −0.790699 −0.0355752
\(495\) 0 0
\(496\) 12.2441 5.07168i 0.549778 0.227725i
\(497\) 0.422852i 0.0189675i
\(498\) −8.54143 20.6208i −0.382751 0.924042i
\(499\) 33.5365 + 13.8913i 1.50130 + 0.621859i 0.973741 0.227659i \(-0.0731072\pi\)
0.527559 + 0.849518i \(0.323107\pi\)
\(500\) 0 0
\(501\) 12.0198 12.0198i 0.537006 0.537006i
\(502\) −14.6530 + 14.6530i −0.653995 + 0.653995i
\(503\) −3.85574 + 9.30858i −0.171919 + 0.415049i −0.986230 0.165380i \(-0.947115\pi\)
0.814311 + 0.580429i \(0.197115\pi\)
\(504\) −1.30882 0.542133i −0.0582997 0.0241485i
\(505\) 0 0
\(506\) 0.0653950i 0.00290716i
\(507\) 24.4016 10.1075i 1.08371 0.448889i
\(508\) 0.0416328 + 0.0416328i 0.00184716 + 0.00184716i
\(509\) −17.8399 −0.790740 −0.395370 0.918522i \(-0.629384\pi\)
−0.395370 + 0.918522i \(0.629384\pi\)
\(510\) 0 0
\(511\) 0.822771 0.0363972
\(512\) −15.1579 15.1579i −0.669891 0.669891i
\(513\) −5.96283 + 2.46988i −0.263265 + 0.109048i
\(514\) 7.60508i 0.335446i
\(515\) 0 0
\(516\) 8.68969 + 3.59939i 0.382542 + 0.158454i
\(517\) 0.0390775 0.0943414i 0.00171863 0.00414913i
\(518\) −2.90059 + 2.90059i −0.127445 + 0.127445i
\(519\) 21.0893 21.0893i 0.925717 0.925717i
\(520\) 0 0
\(521\) 33.1134 + 13.7160i 1.45073 + 0.600910i 0.962372 0.271736i \(-0.0875976\pi\)
0.488354 + 0.872646i \(0.337598\pi\)
\(522\) 4.55808 + 11.0042i 0.199502 + 0.481639i
\(523\) 16.7275i 0.731444i −0.930724 0.365722i \(-0.880822\pi\)
0.930724 0.365722i \(-0.119178\pi\)
\(524\) 4.91725 2.03679i 0.214811 0.0889777i
\(525\) 0 0
\(526\) −12.1551 −0.529989
\(527\) −24.2183 + 6.13464i −1.05497 + 0.267229i
\(528\) 0.249001 0.0108364
\(529\) −15.5182 15.5182i −0.674705 0.674705i
\(530\) 0 0
\(531\) 16.6559i 0.722806i
\(532\) −0.172141 0.415585i −0.00746326 0.0180179i
\(533\) 2.75473 + 1.14105i 0.119321 + 0.0494242i
\(534\) −2.36430 + 5.70791i −0.102313 + 0.247006i
\(535\) 0 0
\(536\) 31.3771 31.3771i 1.35528 1.35528i
\(537\) −12.1652 + 29.3693i −0.524966 + 1.26738i
\(538\) 4.03510 + 1.67139i 0.173965 + 0.0720588i
\(539\) 0.145372 + 0.350960i 0.00626162 + 0.0151169i
\(540\) 0 0
\(541\) −12.1694 + 5.04072i −0.523203 + 0.216718i −0.628623 0.777710i \(-0.716381\pi\)
0.105420 + 0.994428i \(0.466381\pi\)
\(542\) −19.6811 19.6811i −0.845376 0.845376i
\(543\) 49.1841 2.11069
\(544\) 8.97874 + 12.0396i 0.384960 + 0.516194i
\(545\) 0 0
\(546\) 0.243892 + 0.243892i 0.0104376 + 0.0104376i
\(547\) −12.1445 + 5.03041i −0.519260 + 0.215085i −0.626892 0.779106i \(-0.715673\pi\)
0.107632 + 0.994191i \(0.465673\pi\)
\(548\) 9.73277i 0.415763i
\(549\) 2.72481 + 6.57828i 0.116292 + 0.280754i
\(550\) 0 0
\(551\) −5.72206 + 13.8143i −0.243768 + 0.588508i
\(552\) 4.59468 4.59468i 0.195562 0.195562i
\(553\) −1.04647 + 1.04647i −0.0445003 + 0.0445003i
\(554\) 10.0039 24.1515i 0.425024 1.02610i
\(555\) 0 0
\(556\) −2.86647 6.92027i −0.121565 0.293485i
\(557\) 1.81038i 0.0767084i −0.999264 0.0383542i \(-0.987788\pi\)
0.999264 0.0383542i \(-0.0122115\pi\)
\(558\) 7.88983 3.26807i 0.334003 0.138349i
\(559\) −1.85660 1.85660i −0.0785257 0.0785257i
\(560\) 0 0
\(561\) −0.464493 0.0676434i −0.0196109 0.00285591i
\(562\) −12.8923 −0.543830
\(563\) −15.2557 15.2557i −0.642950 0.642950i 0.308330 0.951280i \(-0.400230\pi\)
−0.951280 + 0.308330i \(0.900230\pi\)
\(564\) −2.37102 + 0.982108i −0.0998379 + 0.0413542i
\(565\) 0 0
\(566\) 6.18072 + 14.9216i 0.259795 + 0.627201i
\(567\) 3.87627 + 1.60560i 0.162788 + 0.0674289i
\(568\) −1.32706 + 3.20380i −0.0556820 + 0.134428i
\(569\) −1.85776 + 1.85776i −0.0778815 + 0.0778815i −0.744974 0.667093i \(-0.767538\pi\)
0.667093 + 0.744974i \(0.267538\pi\)
\(570\) 0 0
\(571\) 2.24262 5.41417i 0.0938509 0.226576i −0.869982 0.493084i \(-0.835870\pi\)
0.963833 + 0.266507i \(0.0858697\pi\)
\(572\) 0.0134626 + 0.00557639i 0.000562899 + 0.000233160i
\(573\) −17.3369 41.8549i −0.724259 1.74851i
\(574\) 3.31385i 0.138317i
\(575\) 0 0
\(576\) −7.42050 7.42050i −0.309187 0.309187i
\(577\) 20.9381 0.871663 0.435832 0.900028i \(-0.356454\pi\)
0.435832 + 0.900028i \(0.356454\pi\)
\(578\) 9.30833 + 17.1948i 0.387176 + 0.715210i
\(579\) 30.1737 1.25398
\(580\) 0 0
\(581\) −3.27479 + 1.35646i −0.135861 + 0.0562755i
\(582\) 12.4254i 0.515048i
\(583\) −0.192827 0.465526i −0.00798608 0.0192801i
\(584\) 6.23384 + 2.58214i 0.257958 + 0.106850i
\(585\) 0 0
\(586\) 22.7438 22.7438i 0.939537 0.939537i
\(587\) −13.7302 + 13.7302i −0.566706 + 0.566706i −0.931204 0.364498i \(-0.881240\pi\)
0.364498 + 0.931204i \(0.381240\pi\)
\(588\) 3.65354 8.82043i 0.150669 0.363748i
\(589\) 9.90463 + 4.10263i 0.408113 + 0.169046i
\(590\) 0 0
\(591\) 20.1426i 0.828555i
\(592\) −19.1947 + 7.95072i −0.788898 + 0.326772i
\(593\) 14.9131 + 14.9131i 0.612407 + 0.612407i 0.943573 0.331166i \(-0.107442\pi\)
−0.331166 + 0.943573i \(0.607442\pi\)
\(594\) −0.232367 −0.00953412
\(595\) 0 0
\(596\) −3.51729 −0.144074
\(597\) −20.5820 20.5820i −0.842365 0.842365i
\(598\) −0.423874 + 0.175574i −0.0173335 + 0.00717976i
\(599\) 23.7029i 0.968476i −0.874936 0.484238i \(-0.839097\pi\)
0.874936 0.484238i \(-0.160903\pi\)
\(600\) 0 0
\(601\) 19.7112 + 8.16463i 0.804035 + 0.333042i 0.746571 0.665305i \(-0.231699\pi\)
0.0574636 + 0.998348i \(0.481699\pi\)
\(602\) −1.11671 + 2.69598i −0.0455137 + 0.109880i
\(603\) 12.4869 12.4869i 0.508507 0.508507i
\(604\) 3.37208 3.37208i 0.137208 0.137208i
\(605\) 0 0
\(606\) −8.80994 3.64920i −0.357880 0.148239i
\(607\) −11.1029 26.8048i −0.450653 1.08797i −0.972074 0.234673i \(-0.924598\pi\)
0.521421 0.853299i \(-0.325402\pi\)
\(608\) 6.44488i 0.261375i
\(609\) 6.02600 2.49605i 0.244186 0.101145i
\(610\) 0 0
\(611\) 0.716413 0.0289830
\(612\) 2.04526 + 2.74250i 0.0826749 + 0.110859i
\(613\) 26.9206 1.08731 0.543657 0.839308i \(-0.317039\pi\)
0.543657 + 0.839308i \(0.317039\pi\)
\(614\) −16.6162 16.6162i −0.670574 0.670574i
\(615\) 0 0
\(616\) 0.0640286i 0.00257979i
\(617\) 5.70499 + 13.7731i 0.229674 + 0.554483i 0.996138 0.0878053i \(-0.0279853\pi\)
−0.766463 + 0.642288i \(0.777985\pi\)
\(618\) 7.02429 + 2.90956i 0.282558 + 0.117040i
\(619\) −13.1072 + 31.6435i −0.526822 + 1.27186i 0.406772 + 0.913530i \(0.366654\pi\)
−0.933594 + 0.358332i \(0.883346\pi\)
\(620\) 0 0
\(621\) −2.64808 + 2.64808i −0.106264 + 0.106264i
\(622\) 5.48370 13.2388i 0.219876 0.530828i
\(623\) 0.906472 + 0.375473i 0.0363170 + 0.0150430i
\(624\) 0.668523 + 1.61396i 0.0267623 + 0.0646100i
\(625\) 0 0
\(626\) −9.78370 + 4.05254i −0.391035 + 0.161972i
\(627\) 0.142428 + 0.142428i 0.00568804 + 0.00568804i
\(628\) −10.6992 −0.426946
\(629\) 37.9663 9.61707i 1.51382 0.383458i
\(630\) 0 0
\(631\) 22.2493 + 22.2493i 0.885730 + 0.885730i 0.994110 0.108380i \(-0.0345662\pi\)
−0.108380 + 0.994110i \(0.534566\pi\)
\(632\) −11.2129 + 4.64452i −0.446024 + 0.184749i
\(633\) 10.7809i 0.428500i
\(634\) 0.798315 + 1.92730i 0.0317051 + 0.0765430i
\(635\) 0 0
\(636\) −4.84619 + 11.6997i −0.192164 + 0.463925i
\(637\) −1.88453 + 1.88453i −0.0746678 + 0.0746678i
\(638\) −0.380658 + 0.380658i −0.0150704 + 0.0150704i
\(639\) −0.528120 + 1.27499i −0.0208921 + 0.0504380i
\(640\) 0 0
\(641\) −7.38863 17.8377i −0.291833 0.704548i 0.708166 0.706046i \(-0.249523\pi\)
−0.999999 + 0.00149842i \(0.999523\pi\)
\(642\) 28.0729i 1.10795i
\(643\) 16.0593 6.65200i 0.633319 0.262329i −0.0428438 0.999082i \(-0.513642\pi\)
0.676162 + 0.736753i \(0.263642\pi\)
\(644\) −0.184561 0.184561i −0.00727271 0.00727271i
\(645\) 0 0
\(646\) 1.20912 8.30278i 0.0475722 0.326668i
\(647\) 39.9032 1.56876 0.784378 0.620283i \(-0.212982\pi\)
0.784378 + 0.620283i \(0.212982\pi\)
\(648\) 24.3301 + 24.3301i 0.955778 + 0.955778i
\(649\) −0.695492 + 0.288082i −0.0273005 + 0.0113082i
\(650\) 0 0
\(651\) −1.78963 4.32055i −0.0701412 0.169336i
\(652\) 6.45436 + 2.67348i 0.252772 + 0.104702i
\(653\) 4.79886 11.5855i 0.187794 0.453374i −0.801740 0.597672i \(-0.796092\pi\)
0.989534 + 0.144298i \(0.0460924\pi\)
\(654\) 34.6083 34.6083i 1.35329 1.35329i
\(655\) 0 0
\(656\) 6.42298 15.5065i 0.250775 0.605425i
\(657\) 2.48084 + 1.02760i 0.0967868 + 0.0400904i
\(658\) −0.304699 0.735609i −0.0118784 0.0286770i
\(659\) 10.7616i 0.419214i 0.977786 + 0.209607i \(0.0672184\pi\)
−0.977786 + 0.209607i \(0.932782\pi\)
\(660\) 0 0
\(661\) 4.37383 + 4.37383i 0.170122 + 0.170122i 0.787033 0.616911i \(-0.211616\pi\)
−0.616911 + 0.787033i \(0.711616\pi\)
\(662\) −21.1136 −0.820602
\(663\) −0.808636 3.19234i −0.0314048 0.123980i
\(664\) −29.0689 −1.12809
\(665\) 0 0
\(666\) −12.3686 + 5.12326i −0.479275 + 0.198522i
\(667\) 8.67606i 0.335938i
\(668\) −2.14288 5.17338i −0.0829107 0.200164i
\(669\) −25.7607 10.6704i −0.995967 0.412543i
\(670\) 0 0
\(671\) −0.227557 + 0.227557i −0.00878473 + 0.00878473i
\(672\) −1.98793 + 1.98793i −0.0766860 + 0.0766860i
\(673\) 1.84710 4.45929i 0.0712004 0.171893i −0.884273 0.466970i \(-0.845345\pi\)
0.955473 + 0.295077i \(0.0953454\pi\)
\(674\) 11.3051 + 4.68274i 0.435458 + 0.180373i
\(675\) 0 0
\(676\) 8.70059i 0.334638i
\(677\) 25.8295 10.6989i 0.992709 0.411193i 0.173590 0.984818i \(-0.444463\pi\)
0.819118 + 0.573625i \(0.194463\pi\)
\(678\) −7.65775 7.65775i −0.294094 0.294094i
\(679\) −1.97327 −0.0757271
\(680\) 0 0
\(681\) 27.6259 1.05863
\(682\) 0.272926 + 0.272926i 0.0104509 + 0.0104509i
\(683\) −10.7779 + 4.46436i −0.412405 + 0.170824i −0.579233 0.815162i \(-0.696648\pi\)
0.166827 + 0.985986i \(0.446648\pi\)
\(684\) 1.46808i 0.0561334i
\(685\) 0 0
\(686\) 5.52932 + 2.29032i 0.211110 + 0.0874448i
\(687\) −8.03908 + 19.4081i −0.306710 + 0.740464i
\(688\) −10.4508 + 10.4508i −0.398434 + 0.398434i
\(689\) 2.49971 2.49971i 0.0952313 0.0952313i
\(690\) 0 0
\(691\) 35.3606 + 14.6468i 1.34518 + 0.557192i 0.934946 0.354789i \(-0.115447\pi\)
0.410233 + 0.911981i \(0.365447\pi\)
\(692\) −3.75978 9.07691i −0.142925 0.345052i
\(693\) 0.0254810i 0.000967945i
\(694\) −25.3844 + 10.5146i −0.963580 + 0.399128i
\(695\) 0 0
\(696\) 53.4903 2.02754
\(697\) −16.1941 + 27.1813i −0.613395 + 1.02957i
\(698\) 30.2179 1.14376
\(699\) 27.4742 + 27.4742i 1.03917 + 1.03917i
\(700\) 0 0
\(701\) 13.5092i 0.510234i 0.966910 + 0.255117i \(0.0821141\pi\)
−0.966910 + 0.255117i \(0.917886\pi\)
\(702\) −0.623864 1.50614i −0.0235462 0.0568456i
\(703\) −15.5272 6.43157i −0.585619 0.242571i
\(704\) 0.181508 0.438199i 0.00684084 0.0165152i
\(705\) 0 0
\(706\) −3.33811 + 3.33811i −0.125631 + 0.125631i
\(707\) −0.579528 + 1.39910i −0.0217954 + 0.0526187i
\(708\) 17.4793 + 7.24018i 0.656914 + 0.272102i
\(709\) −9.05657 21.8645i −0.340127 0.821138i −0.997702 0.0677499i \(-0.978418\pi\)
0.657576 0.753388i \(-0.271582\pi\)
\(710\) 0 0
\(711\) −4.46231 + 1.84835i −0.167350 + 0.0693186i
\(712\) 5.68965 + 5.68965i 0.213229 + 0.213229i
\(713\) 6.22061 0.232964
\(714\) −2.93395 + 2.18804i −0.109800 + 0.0818855i
\(715\) 0 0
\(716\) 7.40473 + 7.40473i 0.276728 + 0.276728i
\(717\) 32.3212 13.3879i 1.20706 0.499980i
\(718\) 18.2968i 0.682829i
\(719\) −6.74163 16.2757i −0.251420 0.606982i 0.746899 0.664938i \(-0.231542\pi\)
−0.998319 + 0.0579555i \(0.981542\pi\)
\(720\) 0 0
\(721\) 0.462066 1.11553i 0.0172082 0.0415443i
\(722\) 12.9065 12.9065i 0.480330 0.480330i
\(723\) 36.0725 36.0725i 1.34155 1.34155i
\(724\) 6.20026 14.9687i 0.230431 0.556309i
\(725\) 0 0
\(726\) −9.94950 24.0202i −0.369260 0.891473i
\(727\) 38.2375i 1.41815i 0.705132 + 0.709076i \(0.250888\pi\)
−0.705132 + 0.709076i \(0.749112\pi\)
\(728\) 0.415017 0.171906i 0.0153815 0.00637124i
\(729\) −6.22409 6.22409i −0.230522 0.230522i
\(730\) 0 0
\(731\) 22.3344 16.6562i 0.826066 0.616053i
\(732\) 8.08793 0.298939
\(733\) 25.7052 + 25.7052i 0.949443 + 0.949443i 0.998782 0.0493393i \(-0.0157116\pi\)
−0.0493393 + 0.998782i \(0.515712\pi\)
\(734\) 18.5202 7.67132i 0.683593 0.283154i
\(735\) 0 0
\(736\) −1.43108 3.45494i −0.0527504 0.127351i
\(737\) 0.737385 + 0.305435i 0.0271619 + 0.0112508i
\(738\) 4.13882 9.99200i 0.152352 0.367810i
\(739\) −31.5666 + 31.5666i −1.16120 + 1.16120i −0.176982 + 0.984214i \(0.556634\pi\)
−0.984214 + 0.176982i \(0.943366\pi\)
\(740\) 0 0
\(741\) −0.540788 + 1.30558i −0.0198663 + 0.0479616i
\(742\) −3.62985 1.50353i −0.133256 0.0551964i
\(743\) 1.24279 + 3.00035i 0.0455935 + 0.110072i 0.945036 0.326968i \(-0.106027\pi\)
−0.899442 + 0.437040i \(0.856027\pi\)
\(744\) 38.3517i 1.40604i
\(745\) 0 0
\(746\) 21.2711 + 21.2711i 0.778790 + 0.778790i
\(747\) −11.5684 −0.423265
\(748\) −0.0791418 + 0.132837i −0.00289371 + 0.00485701i
\(749\) −4.45825 −0.162901
\(750\) 0 0
\(751\) 1.51618 0.628022i 0.0553262 0.0229169i −0.354849 0.934924i \(-0.615468\pi\)
0.410175 + 0.912007i \(0.365468\pi\)
\(752\) 4.03270i 0.147058i
\(753\) 14.1729 + 34.2163i 0.516487 + 1.24691i
\(754\) −3.48932 1.44533i −0.127074 0.0526356i
\(755\) 0 0
\(756\) 0.655796 0.655796i 0.0238511 0.0238511i
\(757\) −6.36808 + 6.36808i −0.231452 + 0.231452i −0.813298 0.581847i \(-0.802330\pi\)
0.581847 + 0.813298i \(0.302330\pi\)
\(758\) −7.81618 + 18.8699i −0.283896 + 0.685386i
\(759\) 0.107978 + 0.0447261i 0.00391936 + 0.00162345i
\(760\) 0 0
\(761\) 40.8543i 1.48097i −0.672075 0.740484i \(-0.734597\pi\)
0.672075 0.740484i \(-0.265403\pi\)
\(762\) −0.189923 + 0.0786686i −0.00688018 + 0.00284986i
\(763\) −5.49613 5.49613i −0.198973 0.198973i
\(764\) −14.9237 −0.539921
\(765\) 0 0
\(766\) −33.1083 −1.19625
\(767\) −3.73455 3.73455i −0.134847 0.134847i
\(768\) −26.9259 + 11.1531i −0.971606 + 0.402452i
\(769\) 15.1859i 0.547617i 0.961784 + 0.273809i \(0.0882835\pi\)
−0.961784 + 0.273809i \(0.911716\pi\)
\(770\) 0 0
\(771\) 12.5573 + 5.20139i 0.452239 + 0.187324i
\(772\) 3.80377 9.18312i 0.136901 0.330508i
\(773\) −16.3437 + 16.3437i −0.587842 + 0.587842i −0.937047 0.349204i \(-0.886452\pi\)
0.349204 + 0.937047i \(0.386452\pi\)
\(774\) −6.73427 + 6.73427i −0.242058 + 0.242058i
\(775\) 0 0
\(776\) −14.9507 6.19280i −0.536700 0.222308i
\(777\) 2.80555 + 6.77319i 0.100648 + 0.242987i
\(778\) 30.9038i 1.10795i
\(779\) 12.5436 5.19574i 0.449422 0.186157i
\(780\) 0 0
\(781\) −0.0623736 −0.00223190
\(782\) −1.19545 4.71939i −0.0427491 0.168765i
\(783\) −30.8285 −1.10172
\(784\) 10.6081 + 10.6081i 0.378859 + 0.378859i
\(785\) 0 0
\(786\) 18.5831i 0.662837i
\(787\) 13.1280 + 31.6938i 0.467962 + 1.12976i 0.965051 + 0.262061i \(0.0844023\pi\)
−0.497089 + 0.867700i \(0.665598\pi\)
\(788\) 6.13023 + 2.53922i 0.218380 + 0.0904561i
\(789\) −8.31335 + 20.0702i −0.295963 + 0.714518i
\(790\) 0 0
\(791\) −1.21612 + 1.21612i −0.0432404 + 0.0432404i
\(792\) 0.0799683 0.193061i 0.00284155 0.00686011i
\(793\) −2.08591 0.864014i −0.0740730 0.0306820i
\(794\) 11.7215 + 28.2983i 0.415981 + 1.00427i
\(795\) 0 0
\(796\) −8.85857 + 3.66934i −0.313984 + 0.130056i
\(797\) 7.47651 + 7.47651i 0.264832 + 0.264832i 0.827014 0.562182i \(-0.190038\pi\)
−0.562182 + 0.827014i \(0.690038\pi\)
\(798\) 1.57056 0.0555974
\(799\) −1.09552 + 7.52273i −0.0387568 + 0.266135i
\(800\) 0 0
\(801\) 2.26427 + 2.26427i 0.0800041 + 0.0800041i
\(802\) 2.87482 1.19079i 0.101513 0.0420482i
\(803\) 0.121364i 0.00428286i
\(804\) −7.67628 18.5322i −0.270722 0.653580i
\(805\) 0 0
\(806\) −1.03628 + 2.50179i −0.0365013 + 0.0881219i
\(807\) 5.51950 5.51950i 0.194296 0.194296i
\(808\) −8.78175 + 8.78175i −0.308941 + 0.308941i
\(809\) −15.7502 + 38.0243i −0.553747 + 1.33686i 0.360897 + 0.932606i \(0.382471\pi\)
−0.914645 + 0.404259i \(0.867529\pi\)
\(810\) 0 0
\(811\) 1.73158 + 4.18040i 0.0608039 + 0.146794i 0.951361 0.308077i \(-0.0996855\pi\)
−0.890558 + 0.454871i \(0.849685\pi\)
\(812\) 2.14862i 0.0754017i
\(813\) −45.9575 + 19.0362i −1.61180 + 0.667629i
\(814\) −0.427857 0.427857i −0.0149964 0.0149964i
\(815\) 0 0
\(816\) −17.9697 + 4.55183i −0.629067 + 0.159346i
\(817\) −11.9557 −0.418278
\(818\) −0.541319 0.541319i −0.0189268 0.0189268i
\(819\) 0.165162 0.0684121i 0.00577121 0.00239051i
\(820\) 0 0
\(821\) −7.96209 19.2222i −0.277879 0.670859i 0.721898 0.692000i \(-0.243270\pi\)
−0.999777 + 0.0211408i \(0.993270\pi\)
\(822\) −31.3952 13.0043i −1.09503 0.453577i
\(823\) −17.5594 + 42.3922i −0.612083 + 1.47770i 0.248626 + 0.968600i \(0.420021\pi\)
−0.860708 + 0.509099i \(0.829979\pi\)
\(824\) 7.00181 7.00181i 0.243920 0.243920i
\(825\) 0 0
\(826\) −2.24627 + 5.42296i −0.0781576 + 0.188689i
\(827\) −35.1805 14.5723i −1.22335 0.506727i −0.324875 0.945757i \(-0.605322\pi\)
−0.898472 + 0.439030i \(0.855322\pi\)
\(828\) −0.325986 0.786999i −0.0113288 0.0273501i
\(829\) 36.1886i 1.25688i 0.777857 + 0.628441i \(0.216307\pi\)
−0.777857 + 0.628441i \(0.783693\pi\)
\(830\) 0 0
\(831\) −33.0362 33.0362i −1.14601 1.14601i
\(832\) 3.32761 0.115364
\(833\) −16.9068 22.6704i −0.585786 0.785482i
\(834\) 26.1528 0.905599
\(835\) 0 0
\(836\) 0.0613017 0.0253920i 0.00212016 0.000878200i
\(837\) 22.1035i 0.764010i
\(838\) −14.5115 35.0338i −0.501291 1.21022i
\(839\) −12.7679 5.28865i −0.440798 0.182585i 0.151236 0.988498i \(-0.451675\pi\)
−0.592034 + 0.805913i \(0.701675\pi\)
\(840\) 0 0
\(841\) −29.9964 + 29.9964i −1.03436 + 1.03436i
\(842\) −4.35410 + 4.35410i −0.150052 + 0.150052i
\(843\) −8.81753 + 21.2874i −0.303692 + 0.733177i
\(844\) −3.28106 1.35906i −0.112939 0.0467808i
\(845\) 0 0
\(846\) 2.59858i 0.0893410i
\(847\) −3.81464 + 1.58008i −0.131073 + 0.0542921i
\(848\) −14.0709 14.0709i −0.483197 0.483197i
\(849\) 28.8653 0.990654
\(850\) 0 0
\(851\) −9.75185 −0.334289
\(852\) 1.10846 + 1.10846i 0.0379751 + 0.0379751i
\(853\) 3.03652 1.25777i 0.103968 0.0430651i −0.330093 0.943948i \(-0.607080\pi\)
0.434061 + 0.900883i \(0.357080\pi\)
\(854\) 2.50928i 0.0858658i
\(855\) 0 0
\(856\) −33.7785 13.9915i −1.15453 0.478220i
\(857\) 12.2568 29.5906i 0.418686 1.01080i −0.564043 0.825745i \(-0.690755\pi\)
0.982729 0.185051i \(-0.0592452\pi\)
\(858\) −0.0359757 + 0.0359757i −0.00122819 + 0.00122819i
\(859\) −22.5032 + 22.5032i −0.767801 + 0.767801i −0.977719 0.209918i \(-0.932680\pi\)
0.209918 + 0.977719i \(0.432680\pi\)
\(860\) 0 0
\(861\) −5.47172 2.26646i −0.186476 0.0772408i
\(862\) −4.86143 11.7365i −0.165581 0.399748i
\(863\) 35.8941i 1.22185i 0.791688 + 0.610925i \(0.209202\pi\)
−0.791688 + 0.610925i \(0.790798\pi\)
\(864\) 12.2764 5.08503i 0.417650 0.172996i
\(865\) 0 0
\(866\) −16.0559 −0.545602
\(867\) 34.7578 3.60947i 1.18044 0.122584i
\(868\) −1.54053 −0.0522889
\(869\) −0.154361 0.154361i −0.00523634 0.00523634i
\(870\) 0 0
\(871\) 5.59957i 0.189734i
\(872\) −24.3934 58.8909i −0.826065 1.99430i
\(873\) −5.94985 2.46451i −0.201372 0.0834109i
\(874\) −0.799474 + 1.93010i −0.0270426 + 0.0652867i
\(875\) 0 0
\(876\) 2.15680 2.15680i 0.0728714 0.0728714i
\(877\) −12.4156 + 29.9738i −0.419243 + 1.01214i 0.563324 + 0.826236i \(0.309522\pi\)
−0.982567 + 0.185907i \(0.940478\pi\)
\(878\) −33.7047 13.9609i −1.13748 0.471159i
\(879\) −21.9985 53.1091i −0.741992 1.79133i
\(880\) 0 0
\(881\) −37.0581 + 15.3500i −1.24852 + 0.517154i −0.906368 0.422490i \(-0.861156\pi\)
−0.342153 + 0.939644i \(0.611156\pi\)
\(882\) 6.83559 + 6.83559i 0.230166 + 0.230166i
\(883\) −10.0633 −0.338656 −0.169328 0.985560i \(-0.554160\pi\)
−0.169328 + 0.985560i \(0.554160\pi\)
\(884\) −1.07350 0.156332i −0.0361057 0.00525801i
\(885\) 0 0
\(886\) −30.4977 30.4977i −1.02459 1.02459i
\(887\) 24.5160 10.1549i 0.823167 0.340967i 0.0689728 0.997619i \(-0.478028\pi\)
0.754194 + 0.656652i \(0.228028\pi\)
\(888\) 60.1228i 2.01759i
\(889\) 0.0124933 + 0.0301616i 0.000419013 + 0.00101159i
\(890\) 0 0
\(891\) −0.236837 + 0.571776i −0.00793435 + 0.0191552i
\(892\) −6.49491 + 6.49491i −0.217466 + 0.217466i
\(893\) 2.30670 2.30670i 0.0771909 0.0771909i
\(894\) 4.69957 11.3458i 0.157177 0.379459i
\(895\) 0 0
\(896\) −0.368500 0.889637i −0.0123107 0.0297207i
\(897\) 0.819968i 0.0273779i
\(898\) −12.2089 + 5.05710i −0.407417 + 0.168758i
\(899\) 36.2095 + 36.2095i 1.20766 + 1.20766i
\(900\) 0 0
\(901\) 22.4258 + 30.0708i 0.747112 + 1.00180i
\(902\) 0.488815 0.0162758
\(903\) 3.68776 + 3.68776i 0.122721 + 0.122721i
\(904\) −13.0308 + 5.39752i −0.433397 + 0.179519i
\(905\) 0 0
\(906\) 6.37182 + 15.3829i 0.211689 + 0.511064i
\(907\) −7.64833 3.16804i −0.253959 0.105193i 0.252072 0.967708i \(-0.418888\pi\)
−0.506031 + 0.862515i \(0.668888\pi\)
\(908\) 3.48259 8.40771i 0.115574 0.279020i
\(909\) −3.49482 + 3.49482i −0.115916 + 0.115916i
\(910\) 0 0
\(911\) 13.6431 32.9374i 0.452017 1.09126i −0.519538 0.854448i \(-0.673896\pi\)
0.971554 0.236817i \(-0.0761042\pi\)
\(912\) 7.34913 + 3.04411i 0.243354 + 0.100801i
\(913\) −0.200088 0.483054i −0.00662193 0.0159868i
\(914\) 27.8872i 0.922427i
\(915\) 0 0
\(916\) 4.89325 + 4.89325i 0.161678 + 0.161678i
\(917\) 2.95118 0.0974564
\(918\) 16.7693 4.24776i 0.553470 0.140197i
\(919\) −44.5065 −1.46813 −0.734067 0.679077i \(-0.762380\pi\)
−0.734067 + 0.679077i \(0.762380\pi\)
\(920\) 0 0
\(921\) −38.8005 + 16.0717i −1.27852 + 0.529581i
\(922\) 30.4423i 1.00256i
\(923\) −0.167462 0.404289i −0.00551208 0.0133073i
\(924\) −0.0267407 0.0110764i −0.000879705 0.000364386i
\(925\) 0 0
\(926\) −13.0640 + 13.0640i −0.429309 + 0.429309i
\(927\) 2.78647 2.78647i 0.0915195 0.0915195i
\(928\) 11.7807 28.4410i 0.386719 0.933622i
\(929\) 3.92217 + 1.62462i 0.128682 + 0.0533019i 0.446095 0.894985i \(-0.352814\pi\)
−0.317413 + 0.948287i \(0.602814\pi\)
\(930\) 0 0
\(931\) 12.1356i 0.397729i
\(932\) 11.8250 4.89807i 0.387341 0.160442i
\(933\) −18.1090 18.1090i −0.592863 0.592863i
\(934\) 22.4244 0.733748
\(935\) 0 0
\(936\) 1.46607 0.0479200
\(937\) −7.19384 7.19384i −0.235012 0.235012i 0.579769 0.814781i \(-0.303143\pi\)
−0.814781 + 0.579769i \(0.803143\pi\)
\(938\) 5.74961 2.38157i 0.187732 0.0777609i
\(939\) 18.9262i 0.617634i
\(940\) 0 0
\(941\) −28.1724 11.6694i −0.918395 0.380412i −0.127131 0.991886i \(-0.540577\pi\)
−0.791264 + 0.611474i \(0.790577\pi\)
\(942\) 14.2956 34.5127i 0.465777 1.12449i
\(943\) 5.57061 5.57061i 0.181404 0.181404i
\(944\) −21.0219 + 21.0219i −0.684203 + 0.684203i
\(945\) 0 0
\(946\) −0.397675 0.164722i −0.0129295 0.00535559i
\(947\) 16.7053 + 40.3302i 0.542850 + 1.31056i 0.922704 + 0.385509i \(0.125974\pi\)
−0.379854 + 0.925047i \(0.624026\pi\)
\(948\) 5.48637i 0.178189i
\(949\) −0.786652 + 0.325842i −0.0255358 + 0.0105773i
\(950\) 0 0
\(951\) 3.72830 0.120898
\(952\) 1.17047 + 4.62078i 0.0379351 + 0.149760i
\(953\) −6.19010 −0.200517 −0.100258 0.994961i \(-0.531967\pi\)
−0.100258 + 0.994961i \(0.531967\pi\)
\(954\) −9.06697 9.06697i −0.293554 0.293554i
\(955\) 0 0
\(956\) 11.5244i 0.372726i
\(957\) 0.368184 + 0.888876i 0.0119017 + 0.0287333i
\(958\) 25.6803 + 10.6371i 0.829693 + 0.343670i
\(959\) −2.06521 + 4.98586i −0.0666891 + 0.161002i
\(960\) 0 0
\(961\) 4.04139 4.04139i 0.130367 0.130367i
\(962\) 1.62454 3.92198i 0.0523772 0.126450i
\(963\) −13.4426 5.56812i −0.433182 0.179430i
\(964\) −6.43098 15.5258i −0.207128 0.500051i
\(965\) 0 0
\(966\) 0.841939 0.348743i 0.0270890 0.0112206i
\(967\) 31.3914 + 31.3914i 1.00948 + 1.00948i 0.999955 + 0.00952406i \(0.00303165\pi\)
0.00952406 + 0.999955i \(0.496968\pi\)
\(968\) −33.8610 −1.08833
\(969\) −12.8823 7.67503i −0.413840 0.246558i
\(970\) 0 0
\(971\) 34.3536 + 34.3536i 1.10246 + 1.10246i 0.994113 + 0.108345i \(0.0345552\pi\)
0.108345 + 0.994113i \(0.465445\pi\)
\(972\) 7.52380 3.11646i 0.241326 0.0999605i
\(973\) 4.15333i 0.133149i
\(974\) −16.0210 38.6780i −0.513345 1.23932i
\(975\) 0 0
\(976\) −4.86355 + 11.7417i −0.155679 + 0.375841i
\(977\) −5.46940 + 5.46940i −0.174982 + 0.174982i −0.789164 0.614182i \(-0.789486\pi\)
0.614182 + 0.789164i \(0.289486\pi\)
\(978\) −17.2478 + 17.2478i −0.551524 + 0.551524i
\(979\) −0.0553849 + 0.133711i −0.00177011 + 0.00427342i
\(980\) 0 0
\(981\) −9.70769 23.4364i −0.309943 0.748268i
\(982\) 44.3546i 1.41541i
\(983\) 17.5989 7.28969i 0.561317 0.232505i −0.0839398 0.996471i \(-0.526750\pi\)
0.645257 + 0.763966i \(0.276750\pi\)
\(984\) −34.3443 34.3443i −1.09486 1.09486i
\(985\) 0 0
\(986\) 20.5125 34.4297i 0.653251 1.09646i
\(987\) −1.42301 −0.0452949
\(988\) 0.329168 + 0.329168i 0.0104722 + 0.0104722i
\(989\) −6.40917 + 2.65476i −0.203800 + 0.0844166i
\(990\) 0 0
\(991\) 4.66953 + 11.2732i 0.148332 + 0.358106i 0.980529 0.196375i \(-0.0629169\pi\)
−0.832196 + 0.554481i \(0.812917\pi\)
\(992\) −20.3918 8.44656i −0.647440 0.268178i
\(993\) −14.4403 + 34.8621i −0.458250 + 1.10631i
\(994\) −0.343898 + 0.343898i −0.0109078 + 0.0109078i
\(995\) 0 0
\(996\) −5.02866 + 12.1403i −0.159339 + 0.384679i
\(997\) 20.3986 + 8.44938i 0.646031 + 0.267595i 0.681547 0.731774i \(-0.261308\pi\)
−0.0355163 + 0.999369i \(0.511308\pi\)
\(998\) 15.9771 + 38.5722i 0.505747 + 1.22098i
\(999\) 34.6510i 1.09631i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.c.376.5 yes 24
5.2 odd 4 425.2.n.e.274.2 24
5.3 odd 4 425.2.n.d.274.5 24
5.4 even 2 425.2.m.d.376.2 yes 24
17.3 odd 16 7225.2.a.bx.1.18 24
17.9 even 8 inner 425.2.m.c.26.5 24
17.14 odd 16 7225.2.a.bx.1.17 24
85.9 even 8 425.2.m.d.26.2 yes 24
85.14 odd 16 7225.2.a.cb.1.8 24
85.43 odd 8 425.2.n.e.349.2 24
85.54 odd 16 7225.2.a.cb.1.7 24
85.77 odd 8 425.2.n.d.349.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.26.5 24 17.9 even 8 inner
425.2.m.c.376.5 yes 24 1.1 even 1 trivial
425.2.m.d.26.2 yes 24 85.9 even 8
425.2.m.d.376.2 yes 24 5.4 even 2
425.2.n.d.274.5 24 5.3 odd 4
425.2.n.d.349.5 24 85.77 odd 8
425.2.n.e.274.2 24 5.2 odd 4
425.2.n.e.349.2 24 85.43 odd 8
7225.2.a.bx.1.17 24 17.14 odd 16
7225.2.a.bx.1.18 24 17.3 odd 16
7225.2.a.cb.1.7 24 85.54 odd 16
7225.2.a.cb.1.8 24 85.14 odd 16