Properties

Label 425.2.n.e.349.2
Level $425$
Weight $2$
Character 425.349
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 349.2
Character \(\chi\) \(=\) 425.349
Dual form 425.2.n.e.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.813283 - 0.813283i) q^{2} +(-0.786634 + 1.89910i) q^{3} -0.677141i q^{4} +(2.18426 - 0.904752i) q^{6} +(0.346882 - 0.143683i) q^{7} +(-2.17727 + 2.17727i) q^{8} +(-0.866476 - 0.866476i) q^{9} +O(q^{10})\) \(q+(-0.813283 - 0.813283i) q^{2} +(-0.786634 + 1.89910i) q^{3} -0.677141i q^{4} +(2.18426 - 0.904752i) q^{6} +(0.346882 - 0.143683i) q^{7} +(-2.17727 + 2.17727i) q^{8} +(-0.866476 - 0.866476i) q^{9} +(0.0511675 - 0.0211943i) q^{11} +(1.28596 + 0.532662i) q^{12} +0.388558 q^{13} +(-0.398969 - 0.165258i) q^{14} +2.18720 q^{16} +(0.594174 + 4.08007i) q^{17} +1.40938i q^{18} +(-1.25108 + 1.25108i) q^{19} +0.771791i q^{21} +(-0.0588507 - 0.0243767i) q^{22} +(0.392870 + 0.948471i) q^{23} +(-2.42215 - 5.84758i) q^{24} +(-0.316007 - 0.316007i) q^{26} +(-3.37018 + 1.39597i) q^{27} +(-0.0972938 - 0.234888i) q^{28} +(-3.23410 + 7.80781i) q^{29} +(5.59808 + 2.31880i) q^{31} +(2.57573 + 2.57573i) q^{32} +0.113845i q^{33} +(2.83502 - 3.80148i) q^{34} +(-0.586726 + 0.586726i) q^{36} +(-3.63511 + 8.77594i) q^{37} +2.03496 q^{38} +(-0.305652 + 0.737910i) q^{39} +(2.93662 + 7.08964i) q^{41} +(0.627685 - 0.627685i) q^{42} +(4.77818 - 4.77818i) q^{43} +(-0.0143515 - 0.0346476i) q^{44} +(0.451862 - 1.09089i) q^{46} +1.84378 q^{47} +(-1.72053 + 4.15372i) q^{48} +(-4.85007 + 4.85007i) q^{49} +(-8.21586 - 2.08112i) q^{51} -0.263108i q^{52} +(-6.43330 - 6.43330i) q^{53} +(3.87624 + 1.60559i) q^{54} +(-0.442420 + 1.06810i) q^{56} +(-1.39178 - 3.36006i) q^{57} +(8.98020 - 3.71972i) q^{58} +(9.61131 + 9.61131i) q^{59} +(-2.22364 - 5.36835i) q^{61} +(-2.66698 - 6.43867i) q^{62} +(-0.425063 - 0.176067i) q^{63} -8.56400i q^{64} +(0.0925878 - 0.0925878i) q^{66} -14.4112i q^{67} +(2.76278 - 0.402339i) q^{68} -2.11029 q^{69} +(-1.04049 - 0.430984i) q^{71} +3.77311 q^{72} +(2.02455 + 0.838594i) q^{73} +(10.0937 - 4.18095i) q^{74} +(0.847155 + 0.847155i) q^{76} +(0.0147038 - 0.0147038i) q^{77} +(0.848712 - 0.351548i) q^{78} +(3.64157 - 1.50839i) q^{79} -11.1746i q^{81} +(3.37758 - 8.15419i) q^{82} +(-6.67554 - 6.67554i) q^{83} +0.522611 q^{84} -7.77202 q^{86} +(-12.2838 - 12.2838i) q^{87} +(-0.0652600 + 0.157551i) q^{88} +2.61320i q^{89} +(0.134784 - 0.0558293i) q^{91} +(0.642248 - 0.266028i) q^{92} +(-8.80728 + 8.80728i) q^{93} +(-1.49951 - 1.49951i) q^{94} +(-6.91774 + 2.86542i) q^{96} +(4.85551 + 2.01122i) q^{97} +7.88895 q^{98} +(-0.0626997 - 0.0259711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} - 8 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{3} - 8 q^{6} - 12 q^{9} + 4 q^{11} - 20 q^{12} + 16 q^{13} + 24 q^{14} - 24 q^{16} + 20 q^{19} + 12 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{26} + 16 q^{27} + 20 q^{28} - 4 q^{29} + 24 q^{31} + 60 q^{32} - 16 q^{34} + 60 q^{36} - 16 q^{37} - 48 q^{38} - 8 q^{39} - 20 q^{41} + 12 q^{42} - 32 q^{43} - 64 q^{44} - 40 q^{46} - 88 q^{47} + 4 q^{48} - 24 q^{49} + 16 q^{51} - 12 q^{53} + 20 q^{54} - 32 q^{56} - 56 q^{57} - 28 q^{58} + 16 q^{59} - 64 q^{61} + 16 q^{62} - 40 q^{63} - 72 q^{66} + 48 q^{68} + 48 q^{69} - 24 q^{71} + 120 q^{72} + 20 q^{73} - 32 q^{74} + 52 q^{76} + 24 q^{77} - 100 q^{78} + 48 q^{79} + 8 q^{82} + 12 q^{83} + 40 q^{84} - 16 q^{86} - 24 q^{87} + 80 q^{88} + 24 q^{91} - 56 q^{92} + 32 q^{93} + 40 q^{94} + 132 q^{96} - 24 q^{97} + 48 q^{98} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.813283 0.813283i −0.575078 0.575078i 0.358465 0.933543i \(-0.383300\pi\)
−0.933543 + 0.358465i \(0.883300\pi\)
\(3\) −0.786634 + 1.89910i −0.454163 + 1.09645i 0.516561 + 0.856250i \(0.327212\pi\)
−0.970724 + 0.240197i \(0.922788\pi\)
\(4\) 0.677141i 0.338570i
\(5\) 0 0
\(6\) 2.18426 0.904752i 0.891722 0.369363i
\(7\) 0.346882 0.143683i 0.131109 0.0543072i −0.316164 0.948704i \(-0.602395\pi\)
0.447273 + 0.894397i \(0.352395\pi\)
\(8\) −2.17727 + 2.17727i −0.769782 + 0.769782i
\(9\) −0.866476 0.866476i −0.288825 0.288825i
\(10\) 0 0
\(11\) 0.0511675 0.0211943i 0.0154276 0.00639032i −0.374956 0.927042i \(-0.622342\pi\)
0.390384 + 0.920652i \(0.372342\pi\)
\(12\) 1.28596 + 0.532662i 0.371224 + 0.153766i
\(13\) 0.388558 0.107766 0.0538832 0.998547i \(-0.482840\pi\)
0.0538832 + 0.998547i \(0.482840\pi\)
\(14\) −0.398969 0.165258i −0.106629 0.0441671i
\(15\) 0 0
\(16\) 2.18720 0.546800
\(17\) 0.594174 + 4.08007i 0.144108 + 0.989562i
\(18\) 1.40938i 0.332194i
\(19\) −1.25108 + 1.25108i −0.287017 + 0.287017i −0.835899 0.548883i \(-0.815053\pi\)
0.548883 + 0.835899i \(0.315053\pi\)
\(20\) 0 0
\(21\) 0.771791i 0.168419i
\(22\) −0.0588507 0.0243767i −0.0125470 0.00519714i
\(23\) 0.392870 + 0.948471i 0.0819190 + 0.197770i 0.959532 0.281600i \(-0.0908652\pi\)
−0.877613 + 0.479370i \(0.840865\pi\)
\(24\) −2.42215 5.84758i −0.494419 1.19363i
\(25\) 0 0
\(26\) −0.316007 0.316007i −0.0619741 0.0619741i
\(27\) −3.37018 + 1.39597i −0.648592 + 0.268656i
\(28\) −0.0972938 0.234888i −0.0183868 0.0443897i
\(29\) −3.23410 + 7.80781i −0.600557 + 1.44987i 0.272452 + 0.962169i \(0.412165\pi\)
−0.873009 + 0.487704i \(0.837835\pi\)
\(30\) 0 0
\(31\) 5.59808 + 2.31880i 1.00545 + 0.416469i 0.823791 0.566893i \(-0.191855\pi\)
0.181654 + 0.983362i \(0.441855\pi\)
\(32\) 2.57573 + 2.57573i 0.455330 + 0.455330i
\(33\) 0.113845i 0.0198178i
\(34\) 2.83502 3.80148i 0.486202 0.651949i
\(35\) 0 0
\(36\) −0.586726 + 0.586726i −0.0977876 + 0.0977876i
\(37\) −3.63511 + 8.77594i −0.597609 + 1.44276i 0.278402 + 0.960465i \(0.410195\pi\)
−0.876011 + 0.482291i \(0.839805\pi\)
\(38\) 2.03496 0.330114
\(39\) −0.305652 + 0.737910i −0.0489436 + 0.118160i
\(40\) 0 0
\(41\) 2.93662 + 7.08964i 0.458624 + 1.10722i 0.968955 + 0.247238i \(0.0795228\pi\)
−0.510331 + 0.859978i \(0.670477\pi\)
\(42\) 0.627685 0.627685i 0.0968539 0.0968539i
\(43\) 4.77818 4.77818i 0.728665 0.728665i −0.241689 0.970354i \(-0.577701\pi\)
0.970354 + 0.241689i \(0.0777013\pi\)
\(44\) −0.0143515 0.0346476i −0.00216357 0.00522332i
\(45\) 0 0
\(46\) 0.451862 1.09089i 0.0666233 0.160843i
\(47\) 1.84378 0.268942 0.134471 0.990918i \(-0.457066\pi\)
0.134471 + 0.990918i \(0.457066\pi\)
\(48\) −1.72053 + 4.15372i −0.248336 + 0.599537i
\(49\) −4.85007 + 4.85007i −0.692866 + 0.692866i
\(50\) 0 0
\(51\) −8.21586 2.08112i −1.15045 0.291415i
\(52\) 0.263108i 0.0364865i
\(53\) −6.43330 6.43330i −0.883682 0.883682i 0.110224 0.993907i \(-0.464843\pi\)
−0.993907 + 0.110224i \(0.964843\pi\)
\(54\) 3.87624 + 1.60559i 0.527489 + 0.218493i
\(55\) 0 0
\(56\) −0.442420 + 1.06810i −0.0591208 + 0.142730i
\(57\) −1.39178 3.36006i −0.184346 0.445051i
\(58\) 8.98020 3.71972i 1.17916 0.488423i
\(59\) 9.61131 + 9.61131i 1.25129 + 1.25129i 0.955144 + 0.296143i \(0.0957004\pi\)
0.296143 + 0.955144i \(0.404300\pi\)
\(60\) 0 0
\(61\) −2.22364 5.36835i −0.284708 0.687347i 0.715225 0.698894i \(-0.246324\pi\)
−0.999933 + 0.0115474i \(0.996324\pi\)
\(62\) −2.66698 6.43867i −0.338707 0.817712i
\(63\) −0.425063 0.176067i −0.0535529 0.0221823i
\(64\) 8.56400i 1.07050i
\(65\) 0 0
\(66\) 0.0925878 0.0925878i 0.0113968 0.0113968i
\(67\) 14.4112i 1.76061i −0.474412 0.880303i \(-0.657339\pi\)
0.474412 0.880303i \(-0.342661\pi\)
\(68\) 2.76278 0.402339i 0.335036 0.0487908i
\(69\) −2.11029 −0.254049
\(70\) 0 0
\(71\) −1.04049 0.430984i −0.123483 0.0511484i 0.320086 0.947388i \(-0.396288\pi\)
−0.443570 + 0.896240i \(0.646288\pi\)
\(72\) 3.77311 0.444665
\(73\) 2.02455 + 0.838594i 0.236955 + 0.0981500i 0.498001 0.867176i \(-0.334067\pi\)
−0.261046 + 0.965326i \(0.584067\pi\)
\(74\) 10.0937 4.18095i 1.17337 0.486025i
\(75\) 0 0
\(76\) 0.847155 + 0.847155i 0.0971753 + 0.0971753i
\(77\) 0.0147038 0.0147038i 0.00167566 0.00167566i
\(78\) 0.848712 0.351548i 0.0960977 0.0398050i
\(79\) 3.64157 1.50839i 0.409709 0.169707i −0.168303 0.985735i \(-0.553829\pi\)
0.578012 + 0.816028i \(0.303829\pi\)
\(80\) 0 0
\(81\) 11.1746i 1.24162i
\(82\) 3.37758 8.15419i 0.372991 0.900480i
\(83\) −6.67554 6.67554i −0.732735 0.732735i 0.238425 0.971161i \(-0.423369\pi\)
−0.971161 + 0.238425i \(0.923369\pi\)
\(84\) 0.522611 0.0570215
\(85\) 0 0
\(86\) −7.77202 −0.838079
\(87\) −12.2838 12.2838i −1.31696 1.31696i
\(88\) −0.0652600 + 0.157551i −0.00695674 + 0.0167950i
\(89\) 2.61320i 0.276998i 0.990363 + 0.138499i \(0.0442278\pi\)
−0.990363 + 0.138499i \(0.955772\pi\)
\(90\) 0 0
\(91\) 0.134784 0.0558293i 0.0141292 0.00585250i
\(92\) 0.642248 0.266028i 0.0669590 0.0277353i
\(93\) −8.80728 + 8.80728i −0.913273 + 0.913273i
\(94\) −1.49951 1.49951i −0.154663 0.154663i
\(95\) 0 0
\(96\) −6.91774 + 2.86542i −0.706039 + 0.292451i
\(97\) 4.85551 + 2.01122i 0.493002 + 0.204208i 0.615312 0.788284i \(-0.289030\pi\)
−0.122310 + 0.992492i \(0.539030\pi\)
\(98\) 7.88895 0.796905
\(99\) −0.0626997 0.0259711i −0.00630156 0.00261019i
\(100\) 0 0
\(101\) −4.03337 −0.401335 −0.200668 0.979659i \(-0.564311\pi\)
−0.200668 + 0.979659i \(0.564311\pi\)
\(102\) 4.98928 + 8.37437i 0.494013 + 0.829186i
\(103\) 3.21586i 0.316868i 0.987370 + 0.158434i \(0.0506446\pi\)
−0.987370 + 0.158434i \(0.949355\pi\)
\(104\) −0.845996 + 0.845996i −0.0829567 + 0.0829567i
\(105\) 0 0
\(106\) 10.4642i 1.01637i
\(107\) 10.9702 + 4.54399i 1.06052 + 0.439284i 0.843638 0.536913i \(-0.180410\pi\)
0.216887 + 0.976197i \(0.430410\pi\)
\(108\) 0.945271 + 2.28209i 0.0909588 + 0.219594i
\(109\) −7.92218 19.1258i −0.758807 1.83192i −0.500106 0.865964i \(-0.666706\pi\)
−0.258701 0.965957i \(-0.583294\pi\)
\(110\) 0 0
\(111\) −13.8069 13.8069i −1.31049 1.31049i
\(112\) 0.758701 0.314264i 0.0716905 0.0296952i
\(113\) −1.75294 4.23196i −0.164902 0.398109i 0.819730 0.572750i \(-0.194124\pi\)
−0.984632 + 0.174641i \(0.944124\pi\)
\(114\) −1.60077 + 3.86460i −0.149926 + 0.361953i
\(115\) 0 0
\(116\) 5.28698 + 2.18994i 0.490884 + 0.203331i
\(117\) −0.336676 0.336676i −0.0311257 0.0311257i
\(118\) 15.6334i 1.43917i
\(119\) 0.792346 + 1.32993i 0.0726343 + 0.121915i
\(120\) 0 0
\(121\) −7.77601 + 7.77601i −0.706910 + 0.706910i
\(122\) −2.55754 + 6.17444i −0.231549 + 0.559008i
\(123\) −15.7740 −1.42229
\(124\) 1.57015 3.79069i 0.141004 0.340414i
\(125\) 0 0
\(126\) 0.202505 + 0.488889i 0.0180405 + 0.0435537i
\(127\) −0.0614833 + 0.0614833i −0.00545576 + 0.00545576i −0.709829 0.704374i \(-0.751228\pi\)
0.704374 + 0.709829i \(0.251228\pi\)
\(128\) −1.81349 + 1.81349i −0.160292 + 0.160292i
\(129\) 5.31557 + 12.8329i 0.468010 + 1.12988i
\(130\) 0 0
\(131\) 3.00793 7.26179i 0.262804 0.634465i −0.736306 0.676649i \(-0.763431\pi\)
0.999110 + 0.0421837i \(0.0134315\pi\)
\(132\) 0.0770887 0.00670971
\(133\) −0.254218 + 0.613736i −0.0220435 + 0.0532176i
\(134\) −11.7204 + 11.7204i −1.01249 + 1.01249i
\(135\) 0 0
\(136\) −10.1771 7.58975i −0.872680 0.650815i
\(137\) 14.3733i 1.22800i 0.789307 + 0.613999i \(0.210440\pi\)
−0.789307 + 0.613999i \(0.789560\pi\)
\(138\) 1.71626 + 1.71626i 0.146098 + 0.146098i
\(139\) −10.2198 4.23320i −0.866836 0.359055i −0.0954589 0.995433i \(-0.530432\pi\)
−0.771377 + 0.636378i \(0.780432\pi\)
\(140\) 0 0
\(141\) −1.45038 + 3.50152i −0.122144 + 0.294881i
\(142\) 0.495699 + 1.19672i 0.0415981 + 0.100427i
\(143\) 0.0198815 0.00823520i 0.00166258 0.000688662i
\(144\) −1.89516 1.89516i −0.157930 0.157930i
\(145\) 0 0
\(146\) −0.964514 2.32854i −0.0798238 0.192712i
\(147\) −5.39554 13.0260i −0.445017 1.07437i
\(148\) 5.94254 + 2.46148i 0.488474 + 0.202333i
\(149\) 5.19432i 0.425535i −0.977103 0.212768i \(-0.931752\pi\)
0.977103 0.212768i \(-0.0682478\pi\)
\(150\) 0 0
\(151\) 4.97988 4.97988i 0.405257 0.405257i −0.474824 0.880081i \(-0.657488\pi\)
0.880081 + 0.474824i \(0.157488\pi\)
\(152\) 5.44787i 0.441881i
\(153\) 3.02044 4.05012i 0.244188 0.327433i
\(154\) −0.0239168 −0.00192727
\(155\) 0 0
\(156\) 0.499669 + 0.206970i 0.0400055 + 0.0165708i
\(157\) 15.8006 1.26103 0.630514 0.776178i \(-0.282844\pi\)
0.630514 + 0.776178i \(0.282844\pi\)
\(158\) −4.18838 1.73488i −0.333209 0.138020i
\(159\) 17.2782 7.15685i 1.37025 0.567575i
\(160\) 0 0
\(161\) 0.272559 + 0.272559i 0.0214807 + 0.0214807i
\(162\) −9.08810 + 9.08810i −0.714029 + 0.714029i
\(163\) 9.53178 3.94819i 0.746587 0.309246i 0.0232388 0.999730i \(-0.492602\pi\)
0.723348 + 0.690483i \(0.242602\pi\)
\(164\) 4.80068 1.98851i 0.374870 0.155276i
\(165\) 0 0
\(166\) 10.8582i 0.842760i
\(167\) 3.16461 7.64004i 0.244885 0.591204i −0.752871 0.658168i \(-0.771331\pi\)
0.997755 + 0.0669645i \(0.0213314\pi\)
\(168\) −1.68040 1.68040i −0.129646 0.129646i
\(169\) −12.8490 −0.988386
\(170\) 0 0
\(171\) 2.16806 0.165795
\(172\) −3.23550 3.23550i −0.246704 0.246704i
\(173\) −5.55244 + 13.4048i −0.422144 + 1.01915i 0.559570 + 0.828783i \(0.310966\pi\)
−0.981714 + 0.190362i \(0.939034\pi\)
\(174\) 19.9804i 1.51471i
\(175\) 0 0
\(176\) 0.111914 0.0463561i 0.00843581 0.00349423i
\(177\) −25.8134 + 10.6923i −1.94026 + 0.803681i
\(178\) 2.12527 2.12527i 0.159296 0.159296i
\(179\) 10.9353 + 10.9353i 0.817342 + 0.817342i 0.985722 0.168380i \(-0.0538535\pi\)
−0.168380 + 0.985722i \(0.553854\pi\)
\(180\) 0 0
\(181\) 22.1058 9.15653i 1.64311 0.680600i 0.646506 0.762909i \(-0.276229\pi\)
0.996607 + 0.0823091i \(0.0262295\pi\)
\(182\) −0.155022 0.0642124i −0.0114910 0.00475974i
\(183\) 11.9442 0.882944
\(184\) −2.92047 1.20970i −0.215300 0.0891800i
\(185\) 0 0
\(186\) 14.3256 1.05041
\(187\) 0.116877 + 0.196174i 0.00854686 + 0.0143457i
\(188\) 1.24849i 0.0910558i
\(189\) −0.968478 + 0.968478i −0.0704464 + 0.0704464i
\(190\) 0 0
\(191\) 22.0393i 1.59471i 0.603511 + 0.797355i \(0.293768\pi\)
−0.603511 + 0.797355i \(0.706232\pi\)
\(192\) 16.2639 + 6.73673i 1.17375 + 0.486182i
\(193\) 5.61741 + 13.5616i 0.404350 + 0.976187i 0.986597 + 0.163175i \(0.0521735\pi\)
−0.582247 + 0.813012i \(0.697826\pi\)
\(194\) −2.31321 5.58459i −0.166079 0.400950i
\(195\) 0 0
\(196\) 3.28418 + 3.28418i 0.234584 + 0.234584i
\(197\) −9.05311 + 3.74992i −0.645007 + 0.267171i −0.681114 0.732177i \(-0.738504\pi\)
0.0361070 + 0.999348i \(0.488504\pi\)
\(198\) 0.0298708 + 0.0721145i 0.00212283 + 0.00512495i
\(199\) 5.41887 13.0823i 0.384134 0.927381i −0.607023 0.794684i \(-0.707636\pi\)
0.991157 0.132697i \(-0.0423636\pi\)
\(200\) 0 0
\(201\) 27.3683 + 11.3363i 1.93041 + 0.799603i
\(202\) 3.28027 + 3.28027i 0.230799 + 0.230799i
\(203\) 3.17308i 0.222706i
\(204\) −1.40921 + 5.56329i −0.0986646 + 0.389508i
\(205\) 0 0
\(206\) 2.61541 2.61541i 0.182224 0.182224i
\(207\) 0.481415 1.16224i 0.0334607 0.0807812i
\(208\) 0.849853 0.0589267
\(209\) −0.0374988 + 0.0905302i −0.00259385 + 0.00626211i
\(210\) 0 0
\(211\) 2.00706 + 4.84546i 0.138172 + 0.333576i 0.977786 0.209608i \(-0.0672188\pi\)
−0.839614 + 0.543184i \(0.817219\pi\)
\(212\) −4.35625 + 4.35625i −0.299189 + 0.299189i
\(213\) 1.63697 1.63697i 0.112163 0.112163i
\(214\) −5.22629 12.6174i −0.357262 0.862507i
\(215\) 0 0
\(216\) 4.29839 10.3772i 0.292468 0.706081i
\(217\) 2.27505 0.154440
\(218\) −9.11174 + 21.9977i −0.617125 + 1.48987i
\(219\) −3.18515 + 3.18515i −0.215233 + 0.215233i
\(220\) 0 0
\(221\) 0.230871 + 1.58534i 0.0155300 + 0.106642i
\(222\) 22.4578i 1.50727i
\(223\) −9.59168 9.59168i −0.642306 0.642306i 0.308816 0.951122i \(-0.400067\pi\)
−0.951122 + 0.308816i \(0.900067\pi\)
\(224\) 1.26357 + 0.523387i 0.0844256 + 0.0349702i
\(225\) 0 0
\(226\) −2.01615 + 4.86742i −0.134112 + 0.323776i
\(227\) −5.14308 12.4165i −0.341358 0.824112i −0.997579 0.0695428i \(-0.977846\pi\)
0.656221 0.754569i \(-0.272154\pi\)
\(228\) −2.27523 + 0.942433i −0.150681 + 0.0624142i
\(229\) 7.22635 + 7.22635i 0.477530 + 0.477530i 0.904341 0.426811i \(-0.140363\pi\)
−0.426811 + 0.904341i \(0.640363\pi\)
\(230\) 0 0
\(231\) 0.0163576 + 0.0394906i 0.00107625 + 0.00259829i
\(232\) −9.95821 24.0413i −0.653789 1.57839i
\(233\) 17.4631 + 7.23347i 1.14405 + 0.473880i 0.872534 0.488554i \(-0.162476\pi\)
0.271514 + 0.962434i \(0.412476\pi\)
\(234\) 0.547625i 0.0357994i
\(235\) 0 0
\(236\) 6.50821 6.50821i 0.423648 0.423648i
\(237\) 8.10226i 0.526299i
\(238\) 0.437208 1.72601i 0.0283400 0.111881i
\(239\) −17.0192 −1.10088 −0.550440 0.834874i \(-0.685540\pi\)
−0.550440 + 0.834874i \(0.685540\pi\)
\(240\) 0 0
\(241\) 22.9284 + 9.49726i 1.47695 + 0.611772i 0.968432 0.249279i \(-0.0801937\pi\)
0.508517 + 0.861052i \(0.330194\pi\)
\(242\) 12.6482 0.813057
\(243\) 11.1111 + 4.60238i 0.712779 + 0.295243i
\(244\) −3.63513 + 1.50572i −0.232715 + 0.0963938i
\(245\) 0 0
\(246\) 12.8287 + 12.8287i 0.817930 + 0.817930i
\(247\) −0.486115 + 0.486115i −0.0309308 + 0.0309308i
\(248\) −17.2372 + 7.13989i −1.09457 + 0.453384i
\(249\) 17.9287 7.42632i 1.13619 0.470624i
\(250\) 0 0
\(251\) 18.0171i 1.13723i −0.822604 0.568614i \(-0.807480\pi\)
0.822604 0.568614i \(-0.192520\pi\)
\(252\) −0.119222 + 0.287828i −0.00751028 + 0.0181314i
\(253\) 0.0402043 + 0.0402043i 0.00252763 + 0.00252763i
\(254\) 0.100007 0.00627497
\(255\) 0 0
\(256\) −14.1782 −0.886140
\(257\) −4.67554 4.67554i −0.291652 0.291652i 0.546080 0.837733i \(-0.316119\pi\)
−0.837733 + 0.546080i \(0.816119\pi\)
\(258\) 6.11374 14.7599i 0.380625 0.918909i
\(259\) 3.56652i 0.221613i
\(260\) 0 0
\(261\) 9.56754 3.96301i 0.592216 0.245304i
\(262\) −8.35219 + 3.45959i −0.516000 + 0.213734i
\(263\) 7.47288 7.47288i 0.460798 0.460798i −0.438119 0.898917i \(-0.644355\pi\)
0.898917 + 0.438119i \(0.144355\pi\)
\(264\) −0.247871 0.247871i −0.0152554 0.0152554i
\(265\) 0 0
\(266\) 0.705892 0.292390i 0.0432810 0.0179276i
\(267\) −4.96273 2.05563i −0.303714 0.125802i
\(268\) −9.75840 −0.596089
\(269\) −3.50830 1.45319i −0.213905 0.0886024i 0.273158 0.961969i \(-0.411932\pi\)
−0.487063 + 0.873367i \(0.661932\pi\)
\(270\) 0 0
\(271\) −24.1996 −1.47002 −0.735010 0.678056i \(-0.762822\pi\)
−0.735010 + 0.678056i \(0.762822\pi\)
\(272\) 1.29958 + 8.92392i 0.0787984 + 0.541092i
\(273\) 0.299885i 0.0181499i
\(274\) 11.6896 11.6896i 0.706194 0.706194i
\(275\) 0 0
\(276\) 1.42896i 0.0860134i
\(277\) 20.9985 + 8.69785i 1.26168 + 0.522603i 0.910423 0.413678i \(-0.135756\pi\)
0.351252 + 0.936281i \(0.385756\pi\)
\(278\) 4.86884 + 11.7544i 0.292014 + 0.704983i
\(279\) −2.84142 6.85979i −0.170111 0.410685i
\(280\) 0 0
\(281\) −7.92609 7.92609i −0.472831 0.472831i 0.429998 0.902830i \(-0.358514\pi\)
−0.902830 + 0.429998i \(0.858514\pi\)
\(282\) 4.02729 1.66816i 0.239822 0.0993374i
\(283\) 5.37381 + 12.9735i 0.319440 + 0.771196i 0.999284 + 0.0378394i \(0.0120475\pi\)
−0.679844 + 0.733357i \(0.737952\pi\)
\(284\) −0.291837 + 0.704556i −0.0173173 + 0.0418077i
\(285\) 0 0
\(286\) −0.0228669 0.00947177i −0.00135215 0.000560077i
\(287\) 2.03733 + 2.03733i 0.120260 + 0.120260i
\(288\) 4.46362i 0.263021i
\(289\) −16.2939 + 4.84854i −0.958466 + 0.285208i
\(290\) 0 0
\(291\) −7.63901 + 7.63901i −0.447807 + 0.447807i
\(292\) 0.567846 1.37090i 0.0332307 0.0802259i
\(293\) −27.9654 −1.63376 −0.816878 0.576811i \(-0.804297\pi\)
−0.816878 + 0.576811i \(0.804297\pi\)
\(294\) −6.20572 + 14.9819i −0.361925 + 0.873764i
\(295\) 0 0
\(296\) −11.1930 27.0223i −0.650579 1.57064i
\(297\) −0.142857 + 0.142857i −0.00828941 + 0.00828941i
\(298\) −4.22446 + 4.22446i −0.244716 + 0.244716i
\(299\) 0.152652 + 0.368536i 0.00882812 + 0.0213130i
\(300\) 0 0
\(301\) 0.970921 2.34401i 0.0559629 0.135106i
\(302\) −8.10011 −0.466109
\(303\) 3.17278 7.65978i 0.182272 0.440043i
\(304\) −2.73636 + 2.73636i −0.156941 + 0.156941i
\(305\) 0 0
\(306\) −5.75037 + 0.837417i −0.328727 + 0.0478719i
\(307\) 20.4310i 1.16606i 0.812451 + 0.583029i \(0.198133\pi\)
−0.812451 + 0.583029i \(0.801867\pi\)
\(308\) −0.00995657 0.00995657i −0.000567328 0.000567328i
\(309\) −6.10725 2.52971i −0.347429 0.143910i
\(310\) 0 0
\(311\) −4.76779 + 11.5105i −0.270356 + 0.652698i −0.999499 0.0316642i \(-0.989919\pi\)
0.729142 + 0.684362i \(0.239919\pi\)
\(312\) −0.941144 2.27212i −0.0532818 0.128634i
\(313\) 8.50641 3.52347i 0.480811 0.199158i −0.129095 0.991632i \(-0.541207\pi\)
0.609906 + 0.792474i \(0.291207\pi\)
\(314\) −12.8504 12.8504i −0.725189 0.725189i
\(315\) 0 0
\(316\) −1.02139 2.46586i −0.0574577 0.138715i
\(317\) −0.694093 1.67569i −0.0389841 0.0941160i 0.903188 0.429245i \(-0.141220\pi\)
−0.942172 + 0.335129i \(0.891220\pi\)
\(318\) −19.8726 8.23149i −1.11440 0.461599i
\(319\) 0.468051i 0.0262058i
\(320\) 0 0
\(321\) −17.2590 + 17.2590i −0.963303 + 0.963303i
\(322\) 0.443336i 0.0247061i
\(323\) −5.84784 4.36112i −0.325382 0.242659i
\(324\) −7.56676 −0.420376
\(325\) 0 0
\(326\) −10.9630 4.54104i −0.607187 0.251505i
\(327\) 42.5537 2.35323
\(328\) −21.8299 9.04225i −1.20536 0.499275i
\(329\) 0.639573 0.264920i 0.0352608 0.0146055i
\(330\) 0 0
\(331\) −12.9804 12.9804i −0.713470 0.713470i 0.253790 0.967259i \(-0.418323\pi\)
−0.967259 + 0.253790i \(0.918323\pi\)
\(332\) −4.52028 + 4.52028i −0.248082 + 0.248082i
\(333\) 10.7539 4.45440i 0.589309 0.244100i
\(334\) −8.78724 + 3.63979i −0.480816 + 0.199161i
\(335\) 0 0
\(336\) 1.68806i 0.0920913i
\(337\) 4.07140 9.82922i 0.221783 0.535432i −0.773349 0.633980i \(-0.781420\pi\)
0.995132 + 0.0985486i \(0.0314200\pi\)
\(338\) 10.4499 + 10.4499i 0.568399 + 0.568399i
\(339\) 9.41585 0.511399
\(340\) 0 0
\(341\) 0.335585 0.0181730
\(342\) −1.76324 1.76324i −0.0953453 0.0953453i
\(343\) −1.99131 + 4.80745i −0.107521 + 0.259578i
\(344\) 20.8068i 1.12183i
\(345\) 0 0
\(346\) 15.4176 6.38617i 0.828854 0.343323i
\(347\) −22.0704 + 9.14186i −1.18480 + 0.490761i −0.886059 0.463573i \(-0.846567\pi\)
−0.298743 + 0.954334i \(0.596567\pi\)
\(348\) −8.31784 + 8.31784i −0.445883 + 0.445883i
\(349\) −18.5777 18.5777i −0.994441 0.994441i 0.00554356 0.999985i \(-0.498235\pi\)
−0.999985 + 0.00554356i \(0.998235\pi\)
\(350\) 0 0
\(351\) −1.30951 + 0.542417i −0.0698964 + 0.0289521i
\(352\) 0.186385 + 0.0772031i 0.00993434 + 0.00411494i
\(353\) 4.10448 0.218460 0.109230 0.994017i \(-0.465162\pi\)
0.109230 + 0.994017i \(0.465162\pi\)
\(354\) 29.6895 + 12.2978i 1.57798 + 0.653620i
\(355\) 0 0
\(356\) 1.76950 0.0937834
\(357\) −3.14896 + 0.458578i −0.166661 + 0.0242705i
\(358\) 17.7870i 0.940071i
\(359\) 11.2487 11.2487i 0.593683 0.593683i −0.344941 0.938624i \(-0.612101\pi\)
0.938624 + 0.344941i \(0.112101\pi\)
\(360\) 0 0
\(361\) 15.8696i 0.835243i
\(362\) −25.4252 10.5314i −1.33632 0.553520i
\(363\) −8.65056 20.8843i −0.454037 1.09614i
\(364\) −0.0378042 0.0912675i −0.00198148 0.00478372i
\(365\) 0 0
\(366\) −9.71405 9.71405i −0.507762 0.507762i
\(367\) 16.1023 6.66981i 0.840535 0.348161i 0.0794705 0.996837i \(-0.474677\pi\)
0.761064 + 0.648676i \(0.224677\pi\)
\(368\) 0.859284 + 2.07450i 0.0447933 + 0.108141i
\(369\) 3.59848 8.68751i 0.187330 0.452254i
\(370\) 0 0
\(371\) −3.15596 1.30724i −0.163849 0.0678686i
\(372\) 5.96377 + 5.96377i 0.309207 + 0.309207i
\(373\) 26.1546i 1.35423i 0.735875 + 0.677117i \(0.236771\pi\)
−0.735875 + 0.677117i \(0.763229\pi\)
\(374\) 0.0644912 0.254599i 0.00333476 0.0131650i
\(375\) 0 0
\(376\) −4.01440 + 4.01440i −0.207027 + 0.207027i
\(377\) −1.25663 + 3.03378i −0.0647199 + 0.156248i
\(378\) 1.57529 0.0810244
\(379\) −6.79575 + 16.4064i −0.349074 + 0.842740i 0.647656 + 0.761933i \(0.275750\pi\)
−0.996730 + 0.0808066i \(0.974250\pi\)
\(380\) 0 0
\(381\) −0.0683982 0.165128i −0.00350414 0.00845975i
\(382\) 17.9242 17.9242i 0.917083 0.917083i
\(383\) 20.3547 20.3547i 1.04008 1.04008i 0.0409141 0.999163i \(-0.486973\pi\)
0.999163 0.0409141i \(-0.0130270\pi\)
\(384\) −2.01745 4.87056i −0.102953 0.248550i
\(385\) 0 0
\(386\) 6.46090 15.5980i 0.328851 0.793916i
\(387\) −8.28035 −0.420914
\(388\) 1.36188 3.28786i 0.0691388 0.166916i
\(389\) 18.9994 18.9994i 0.963308 0.963308i −0.0360421 0.999350i \(-0.511475\pi\)
0.999350 + 0.0360421i \(0.0114750\pi\)
\(390\) 0 0
\(391\) −3.63639 + 2.16649i −0.183900 + 0.109564i
\(392\) 21.1198i 1.06671i
\(393\) 11.4247 + 11.4247i 0.576302 + 0.576302i
\(394\) 10.4125 + 4.31299i 0.524574 + 0.217285i
\(395\) 0 0
\(396\) −0.0175861 + 0.0424565i −0.000883733 + 0.00213352i
\(397\) −10.1912 24.6038i −0.511484 1.23483i −0.943020 0.332736i \(-0.892028\pi\)
0.431536 0.902096i \(-0.357972\pi\)
\(398\) −15.0467 + 6.23255i −0.754223 + 0.312410i
\(399\) −0.965570 0.965570i −0.0483390 0.0483390i
\(400\) 0 0
\(401\) 1.03533 + 2.49950i 0.0517018 + 0.124819i 0.947620 0.319400i \(-0.103481\pi\)
−0.895918 + 0.444219i \(0.853481\pi\)
\(402\) −13.0385 31.4778i −0.650303 1.56997i
\(403\) 2.17518 + 0.900988i 0.108353 + 0.0448814i
\(404\) 2.73116i 0.135880i
\(405\) 0 0
\(406\) 2.58061 2.58061i 0.128074 0.128074i
\(407\) 0.526087i 0.0260771i
\(408\) 22.4194 13.3570i 1.10992 0.661271i
\(409\) 0.665597 0.0329117 0.0164558 0.999865i \(-0.494762\pi\)
0.0164558 + 0.999865i \(0.494762\pi\)
\(410\) 0 0
\(411\) −27.2964 11.3066i −1.34643 0.557711i
\(412\) 2.17759 0.107282
\(413\) 4.71498 + 1.95301i 0.232009 + 0.0961013i
\(414\) −1.33676 + 0.553703i −0.0656980 + 0.0272130i
\(415\) 0 0
\(416\) 1.00082 + 1.00082i 0.0490693 + 0.0490693i
\(417\) 16.0786 16.0786i 0.787370 0.787370i
\(418\) 0.104124 0.0431295i 0.00509287 0.00210953i
\(419\) 30.4600 12.6170i 1.48807 0.616379i 0.517175 0.855880i \(-0.326984\pi\)
0.970896 + 0.239501i \(0.0769838\pi\)
\(420\) 0 0
\(421\) 5.35373i 0.260925i −0.991453 0.130462i \(-0.958354\pi\)
0.991453 0.130462i \(-0.0416462\pi\)
\(422\) 2.30843 5.57304i 0.112373 0.271291i
\(423\) −1.59759 1.59759i −0.0776773 0.0776773i
\(424\) 28.0141 1.36049
\(425\) 0 0
\(426\) −2.66263 −0.129005
\(427\) −1.54269 1.54269i −0.0746558 0.0746558i
\(428\) 3.07692 7.42833i 0.148728 0.359062i
\(429\) 0.0442351i 0.00213569i
\(430\) 0 0
\(431\) −10.2043 + 4.22676i −0.491524 + 0.203596i −0.614657 0.788794i \(-0.710706\pi\)
0.123134 + 0.992390i \(0.460706\pi\)
\(432\) −7.37126 + 3.05328i −0.354650 + 0.146901i
\(433\) 9.87103 9.87103i 0.474372 0.474372i −0.428954 0.903326i \(-0.641118\pi\)
0.903326 + 0.428954i \(0.141118\pi\)
\(434\) −1.85026 1.85026i −0.0888153 0.0888153i
\(435\) 0 0
\(436\) −12.9509 + 5.36443i −0.620234 + 0.256909i
\(437\) −1.67812 0.695100i −0.0802754 0.0332512i
\(438\) 5.18086 0.247551
\(439\) 29.3045 + 12.1383i 1.39863 + 0.579330i 0.949395 0.314086i \(-0.101698\pi\)
0.449231 + 0.893416i \(0.351698\pi\)
\(440\) 0 0
\(441\) 8.40493 0.400235
\(442\) 1.10157 1.47709i 0.0523963 0.0702582i
\(443\) 37.4994i 1.78165i −0.454345 0.890826i \(-0.650127\pi\)
0.454345 0.890826i \(-0.349873\pi\)
\(444\) −9.34921 + 9.34921i −0.443694 + 0.443694i
\(445\) 0 0
\(446\) 15.6015i 0.738753i
\(447\) 9.86455 + 4.08603i 0.466577 + 0.193263i
\(448\) −1.23050 2.97070i −0.0581359 0.140352i
\(449\) 4.39688 + 10.6150i 0.207502 + 0.500953i 0.993029 0.117874i \(-0.0376080\pi\)
−0.785527 + 0.618827i \(0.787608\pi\)
\(450\) 0 0
\(451\) 0.300520 + 0.300520i 0.0141509 + 0.0141509i
\(452\) −2.86563 + 1.18698i −0.134788 + 0.0558310i
\(453\) 5.53996 + 13.3746i 0.260290 + 0.628395i
\(454\) −5.91535 + 14.2809i −0.277621 + 0.670236i
\(455\) 0 0
\(456\) 10.3461 + 4.28548i 0.484499 + 0.200686i
\(457\) 17.1448 + 17.1448i 0.802002 + 0.802002i 0.983408 0.181407i \(-0.0580650\pi\)
−0.181407 + 0.983408i \(0.558065\pi\)
\(458\) 11.7541i 0.549235i
\(459\) −7.69815 12.9211i −0.359319 0.603106i
\(460\) 0 0
\(461\) 18.7157 18.7157i 0.871675 0.871675i −0.120980 0.992655i \(-0.538604\pi\)
0.992655 + 0.120980i \(0.0386037\pi\)
\(462\) 0.0188138 0.0454204i 0.000875295 0.00211315i
\(463\) 16.0633 0.746523 0.373261 0.927726i \(-0.378239\pi\)
0.373261 + 0.927726i \(0.378239\pi\)
\(464\) −7.07362 + 17.0772i −0.328385 + 0.792791i
\(465\) 0 0
\(466\) −8.31962 20.0853i −0.385399 0.930435i
\(467\) 13.7863 13.7863i 0.637955 0.637955i −0.312096 0.950051i \(-0.601031\pi\)
0.950051 + 0.312096i \(0.101031\pi\)
\(468\) −0.227977 + 0.227977i −0.0105382 + 0.0105382i
\(469\) −2.07065 4.99898i −0.0956136 0.230832i
\(470\) 0 0
\(471\) −12.4293 + 30.0070i −0.572712 + 1.38265i
\(472\) −41.8529 −1.92644
\(473\) 0.143217 0.345758i 0.00658515 0.0158980i
\(474\) 6.58944 6.58944i 0.302663 0.302663i
\(475\) 0 0
\(476\) 0.900550 0.536530i 0.0412766 0.0245918i
\(477\) 11.1486i 0.510459i
\(478\) 13.8414 + 13.8414i 0.633093 + 0.633093i
\(479\) −22.3277 9.24842i −1.02018 0.422571i −0.191020 0.981586i \(-0.561179\pi\)
−0.829158 + 0.559015i \(0.811179\pi\)
\(480\) 0 0
\(481\) −1.41245 + 3.40996i −0.0644022 + 0.155481i
\(482\) −10.9233 26.3713i −0.497544 1.20118i
\(483\) −0.732022 + 0.303213i −0.0333081 + 0.0137967i
\(484\) 5.26545 + 5.26545i 0.239339 + 0.239339i
\(485\) 0 0
\(486\) −5.29346 12.7795i −0.240116 0.579692i
\(487\) 13.9294 + 33.6285i 0.631200 + 1.52385i 0.838115 + 0.545493i \(0.183658\pi\)
−0.206915 + 0.978359i \(0.566342\pi\)
\(488\) 16.5299 + 6.84689i 0.748271 + 0.309944i
\(489\) 21.2076i 0.959041i
\(490\) 0 0
\(491\) −27.2688 + 27.2688i −1.23063 + 1.23063i −0.266902 + 0.963724i \(0.586000\pi\)
−0.963724 + 0.266902i \(0.914000\pi\)
\(492\) 10.6812i 0.481546i
\(493\) −33.7780 8.55615i −1.52128 0.385350i
\(494\) 0.790699 0.0355752
\(495\) 0 0
\(496\) 12.2441 + 5.07168i 0.549778 + 0.227725i
\(497\) −0.422852 −0.0189675
\(498\) −20.6208 8.54143i −0.924042 0.382751i
\(499\) −33.5365 + 13.8913i −1.50130 + 0.621859i −0.973741 0.227659i \(-0.926893\pi\)
−0.527559 + 0.849518i \(0.676893\pi\)
\(500\) 0 0
\(501\) 12.0198 + 12.0198i 0.537006 + 0.537006i
\(502\) −14.6530 + 14.6530i −0.653995 + 0.653995i
\(503\) 9.30858 3.85574i 0.415049 0.171919i −0.165380 0.986230i \(-0.552885\pi\)
0.580429 + 0.814311i \(0.302885\pi\)
\(504\) 1.30882 0.542133i 0.0582997 0.0241485i
\(505\) 0 0
\(506\) 0.0653950i 0.00290716i
\(507\) 10.1075 24.4016i 0.448889 1.08371i
\(508\) 0.0416328 + 0.0416328i 0.00184716 + 0.00184716i
\(509\) 17.8399 0.790740 0.395370 0.918522i \(-0.370616\pi\)
0.395370 + 0.918522i \(0.370616\pi\)
\(510\) 0 0
\(511\) 0.822771 0.0363972
\(512\) 15.1579 + 15.1579i 0.669891 + 0.669891i
\(513\) 2.46988 5.96283i 0.109048 0.263265i
\(514\) 7.60508i 0.335446i
\(515\) 0 0
\(516\) 8.68969 3.59939i 0.382542 0.158454i
\(517\) 0.0943414 0.0390775i 0.00414913 0.00171863i
\(518\) 2.90059 2.90059i 0.127445 0.127445i
\(519\) −21.0893 21.0893i −0.925717 0.925717i
\(520\) 0 0
\(521\) 33.1134 13.7160i 1.45073 0.600910i 0.488354 0.872646i \(-0.337598\pi\)
0.962372 + 0.271736i \(0.0875976\pi\)
\(522\) −11.0042 4.55808i −0.481639 0.199502i
\(523\) −16.7275 −0.731444 −0.365722 0.930724i \(-0.619178\pi\)
−0.365722 + 0.930724i \(0.619178\pi\)
\(524\) −4.91725 2.03679i −0.214811 0.0889777i
\(525\) 0 0
\(526\) −12.1551 −0.529989
\(527\) −6.13464 + 24.2183i −0.267229 + 1.05497i
\(528\) 0.249001i 0.0108364i
\(529\) 15.5182 15.5182i 0.674705 0.674705i
\(530\) 0 0
\(531\) 16.6559i 0.722806i
\(532\) 0.415585 + 0.172141i 0.0180179 + 0.00746326i
\(533\) 1.14105 + 2.75473i 0.0494242 + 0.119321i
\(534\) 2.36430 + 5.70791i 0.102313 + 0.247006i
\(535\) 0 0
\(536\) 31.3771 + 31.3771i 1.35528 + 1.35528i
\(537\) −29.3693 + 12.1652i −1.26738 + 0.524966i
\(538\) 1.67139 + 4.03510i 0.0720588 + 0.173965i
\(539\) −0.145372 + 0.350960i −0.00626162 + 0.0151169i
\(540\) 0 0
\(541\) −12.1694 5.04072i −0.523203 0.216718i 0.105420 0.994428i \(-0.466381\pi\)
−0.628623 + 0.777710i \(0.716381\pi\)
\(542\) 19.6811 + 19.6811i 0.845376 + 0.845376i
\(543\) 49.1841i 2.11069i
\(544\) −8.97874 + 12.0396i −0.384960 + 0.516194i
\(545\) 0 0
\(546\) 0.243892 0.243892i 0.0104376 0.0104376i
\(547\) −5.03041 + 12.1445i −0.215085 + 0.519260i −0.994191 0.107632i \(-0.965673\pi\)
0.779106 + 0.626892i \(0.215673\pi\)
\(548\) 9.73277 0.415763
\(549\) −2.72481 + 6.57828i −0.116292 + 0.280754i
\(550\) 0 0
\(551\) −5.72206 13.8143i −0.243768 0.588508i
\(552\) 4.59468 4.59468i 0.195562 0.195562i
\(553\) 1.04647 1.04647i 0.0445003 0.0445003i
\(554\) −10.0039 24.1515i −0.425024 1.02610i
\(555\) 0 0
\(556\) −2.86647 + 6.92027i −0.121565 + 0.293485i
\(557\) 1.81038 0.0767084 0.0383542 0.999264i \(-0.487788\pi\)
0.0383542 + 0.999264i \(0.487788\pi\)
\(558\) −3.26807 + 7.88983i −0.138349 + 0.334003i
\(559\) 1.85660 1.85660i 0.0785257 0.0785257i
\(560\) 0 0
\(561\) −0.464493 + 0.0676434i −0.0196109 + 0.00285591i
\(562\) 12.8923i 0.543830i
\(563\) −15.2557 15.2557i −0.642950 0.642950i 0.308330 0.951280i \(-0.400230\pi\)
−0.951280 + 0.308330i \(0.900230\pi\)
\(564\) 2.37102 + 0.982108i 0.0998379 + 0.0413542i
\(565\) 0 0
\(566\) 6.18072 14.9216i 0.259795 0.627201i
\(567\) −1.60560 3.87627i −0.0674289 0.162788i
\(568\) 3.20380 1.32706i 0.134428 0.0556820i
\(569\) 1.85776 + 1.85776i 0.0778815 + 0.0778815i 0.744974 0.667093i \(-0.232462\pi\)
−0.667093 + 0.744974i \(0.732462\pi\)
\(570\) 0 0
\(571\) 2.24262 + 5.41417i 0.0938509 + 0.226576i 0.963833 0.266507i \(-0.0858697\pi\)
−0.869982 + 0.493084i \(0.835870\pi\)
\(572\) −0.00557639 0.0134626i −0.000233160 0.000562899i
\(573\) −41.8549 17.3369i −1.74851 0.724259i
\(574\) 3.31385i 0.138317i
\(575\) 0 0
\(576\) −7.42050 + 7.42050i −0.309187 + 0.309187i
\(577\) 20.9381i 0.871663i −0.900028 0.435832i \(-0.856454\pi\)
0.900028 0.435832i \(-0.143546\pi\)
\(578\) 17.1948 + 9.30833i 0.715210 + 0.387176i
\(579\) −30.1737 −1.25398
\(580\) 0 0
\(581\) −3.27479 1.35646i −0.135861 0.0562755i
\(582\) 12.4254 0.515048
\(583\) −0.465526 0.192827i −0.0192801 0.00798608i
\(584\) −6.23384 + 2.58214i −0.257958 + 0.106850i
\(585\) 0 0
\(586\) 22.7438 + 22.7438i 0.939537 + 0.939537i
\(587\) −13.7302 + 13.7302i −0.566706 + 0.566706i −0.931204 0.364498i \(-0.881240\pi\)
0.364498 + 0.931204i \(0.381240\pi\)
\(588\) −8.82043 + 3.65354i −0.363748 + 0.150669i
\(589\) −9.90463 + 4.10263i −0.408113 + 0.169046i
\(590\) 0 0
\(591\) 20.1426i 0.828555i
\(592\) −7.95072 + 19.1947i −0.326772 + 0.788898i
\(593\) 14.9131 + 14.9131i 0.612407 + 0.612407i 0.943573 0.331166i \(-0.107442\pi\)
−0.331166 + 0.943573i \(0.607442\pi\)
\(594\) 0.232367 0.00953412
\(595\) 0 0
\(596\) −3.51729 −0.144074
\(597\) 20.5820 + 20.5820i 0.842365 + 0.842365i
\(598\) 0.175574 0.423874i 0.00717976 0.0173335i
\(599\) 23.7029i 0.968476i −0.874936 0.484238i \(-0.839097\pi\)
0.874936 0.484238i \(-0.160903\pi\)
\(600\) 0 0
\(601\) 19.7112 8.16463i 0.804035 0.333042i 0.0574636 0.998348i \(-0.481699\pi\)
0.746571 + 0.665305i \(0.231699\pi\)
\(602\) −2.69598 + 1.11671i −0.109880 + 0.0455137i
\(603\) −12.4869 + 12.4869i −0.508507 + 0.508507i
\(604\) −3.37208 3.37208i −0.137208 0.137208i
\(605\) 0 0
\(606\) −8.80994 + 3.64920i −0.357880 + 0.148239i
\(607\) 26.8048 + 11.1029i 1.08797 + 0.450653i 0.853299 0.521421i \(-0.174598\pi\)
0.234673 + 0.972074i \(0.424598\pi\)
\(608\) −6.44488 −0.261375
\(609\) −6.02600 2.49605i −0.244186 0.101145i
\(610\) 0 0
\(611\) 0.716413 0.0289830
\(612\) −2.74250 2.04526i −0.110859 0.0826749i
\(613\) 26.9206i 1.08731i 0.839308 + 0.543657i \(0.182961\pi\)
−0.839308 + 0.543657i \(0.817039\pi\)
\(614\) 16.6162 16.6162i 0.670574 0.670574i
\(615\) 0 0
\(616\) 0.0640286i 0.00257979i
\(617\) −13.7731 5.70499i −0.554483 0.229674i 0.0878053 0.996138i \(-0.472015\pi\)
−0.642288 + 0.766463i \(0.722015\pi\)
\(618\) 2.90956 + 7.02429i 0.117040 + 0.282558i
\(619\) 13.1072 + 31.6435i 0.526822 + 1.27186i 0.933594 + 0.358332i \(0.116654\pi\)
−0.406772 + 0.913530i \(0.633346\pi\)
\(620\) 0 0
\(621\) −2.64808 2.64808i −0.106264 0.106264i
\(622\) 13.2388 5.48370i 0.530828 0.219876i
\(623\) 0.375473 + 0.906472i 0.0150430 + 0.0363170i
\(624\) −0.668523 + 1.61396i −0.0267623 + 0.0646100i
\(625\) 0 0
\(626\) −9.78370 4.05254i −0.391035 0.161972i
\(627\) −0.142428 0.142428i −0.00568804 0.00568804i
\(628\) 10.6992i 0.426946i
\(629\) −37.9663 9.61707i −1.51382 0.383458i
\(630\) 0 0
\(631\) 22.2493 22.2493i 0.885730 0.885730i −0.108380 0.994110i \(-0.534566\pi\)
0.994110 + 0.108380i \(0.0345662\pi\)
\(632\) −4.64452 + 11.2129i −0.184749 + 0.446024i
\(633\) −10.7809 −0.428500
\(634\) −0.798315 + 1.92730i −0.0317051 + 0.0765430i
\(635\) 0 0
\(636\) −4.84619 11.6997i −0.192164 0.463925i
\(637\) −1.88453 + 1.88453i −0.0746678 + 0.0746678i
\(638\) 0.380658 0.380658i 0.0150704 0.0150704i
\(639\) 0.528120 + 1.27499i 0.0208921 + 0.0504380i
\(640\) 0 0
\(641\) −7.38863 + 17.8377i −0.291833 + 0.704548i −0.999999 0.00149842i \(-0.999523\pi\)
0.708166 + 0.706046i \(0.249523\pi\)
\(642\) 28.0729 1.10795
\(643\) −6.65200 + 16.0593i −0.262329 + 0.633319i −0.999082 0.0428438i \(-0.986358\pi\)
0.736753 + 0.676162i \(0.236358\pi\)
\(644\) 0.184561 0.184561i 0.00727271 0.00727271i
\(645\) 0 0
\(646\) 1.20912 + 8.30278i 0.0475722 + 0.326668i
\(647\) 39.9032i 1.56876i −0.620283 0.784378i \(-0.712982\pi\)
0.620283 0.784378i \(-0.287018\pi\)
\(648\) 24.3301 + 24.3301i 0.955778 + 0.955778i
\(649\) 0.695492 + 0.288082i 0.0273005 + 0.0113082i
\(650\) 0 0
\(651\) −1.78963 + 4.32055i −0.0701412 + 0.169336i
\(652\) −2.67348 6.45436i −0.104702 0.252772i
\(653\) −11.5855 + 4.79886i −0.453374 + 0.187794i −0.597672 0.801740i \(-0.703908\pi\)
0.144298 + 0.989534i \(0.453908\pi\)
\(654\) −34.6083 34.6083i −1.35329 1.35329i
\(655\) 0 0
\(656\) 6.42298 + 15.5065i 0.250775 + 0.605425i
\(657\) −1.02760 2.48084i −0.0400904 0.0967868i
\(658\) −0.735609 0.304699i −0.0286770 0.0118784i
\(659\) 10.7616i 0.419214i 0.977786 + 0.209607i \(0.0672184\pi\)
−0.977786 + 0.209607i \(0.932782\pi\)
\(660\) 0 0
\(661\) 4.37383 4.37383i 0.170122 0.170122i −0.616911 0.787033i \(-0.711616\pi\)
0.787033 + 0.616911i \(0.211616\pi\)
\(662\) 21.1136i 0.820602i
\(663\) −3.19234 0.808636i −0.123980 0.0314048i
\(664\) 29.0689 1.12809
\(665\) 0 0
\(666\) −12.3686 5.12326i −0.479275 0.198522i
\(667\) −8.67606 −0.335938
\(668\) −5.17338 2.14288i −0.200164 0.0829107i
\(669\) 25.7607 10.6704i 0.995967 0.412543i
\(670\) 0 0
\(671\) −0.227557 0.227557i −0.00878473 0.00878473i
\(672\) −1.98793 + 1.98793i −0.0766860 + 0.0766860i
\(673\) −4.45929 + 1.84710i −0.171893 + 0.0712004i −0.466970 0.884273i \(-0.654655\pi\)
0.295077 + 0.955473i \(0.404655\pi\)
\(674\) −11.3051 + 4.68274i −0.435458 + 0.180373i
\(675\) 0 0
\(676\) 8.70059i 0.334638i
\(677\) 10.6989 25.8295i 0.411193 0.992709i −0.573625 0.819118i \(-0.694463\pi\)
0.984818 0.173590i \(-0.0555368\pi\)
\(678\) −7.65775 7.65775i −0.294094 0.294094i
\(679\) 1.97327 0.0757271
\(680\) 0 0
\(681\) 27.6259 1.05863
\(682\) −0.272926 0.272926i −0.0104509 0.0104509i
\(683\) 4.46436 10.7779i 0.170824 0.412405i −0.815162 0.579233i \(-0.803352\pi\)
0.985986 + 0.166827i \(0.0533522\pi\)
\(684\) 1.46808i 0.0561334i
\(685\) 0 0
\(686\) 5.52932 2.29032i 0.211110 0.0874448i
\(687\) −19.4081 + 8.03908i −0.740464 + 0.306710i
\(688\) 10.4508 10.4508i 0.398434 0.398434i
\(689\) −2.49971 2.49971i −0.0952313 0.0952313i
\(690\) 0 0
\(691\) 35.3606 14.6468i 1.34518 0.557192i 0.410233 0.911981i \(-0.365447\pi\)
0.934946 + 0.354789i \(0.115447\pi\)
\(692\) 9.07691 + 3.75978i 0.345052 + 0.142925i
\(693\) −0.0254810 −0.000967945
\(694\) 25.3844 + 10.5146i 0.963580 + 0.399128i
\(695\) 0 0
\(696\) 53.4903 2.02754
\(697\) −27.1813 + 16.1941i −1.02957 + 0.613395i
\(698\) 30.2179i 1.14376i
\(699\) −27.4742 + 27.4742i −1.03917 + 1.03917i
\(700\) 0 0
\(701\) 13.5092i 0.510234i −0.966910 0.255117i \(-0.917886\pi\)
0.966910 0.255117i \(-0.0821141\pi\)
\(702\) 1.50614 + 0.623864i 0.0568456 + 0.0235462i
\(703\) −6.43157 15.5272i −0.242571 0.585619i
\(704\) −0.181508 0.438199i −0.00684084 0.0165152i
\(705\) 0 0
\(706\) −3.33811 3.33811i −0.125631 0.125631i
\(707\) −1.39910 + 0.579528i −0.0526187 + 0.0217954i
\(708\) 7.24018 + 17.4793i 0.272102 + 0.656914i
\(709\) 9.05657 21.8645i 0.340127 0.821138i −0.657576 0.753388i \(-0.728418\pi\)
0.997702 0.0677499i \(-0.0215820\pi\)
\(710\) 0 0
\(711\) −4.46231 1.84835i −0.167350 0.0693186i
\(712\) −5.68965 5.68965i −0.213229 0.213229i
\(713\) 6.22061i 0.232964i
\(714\) 2.93395 + 2.18804i 0.109800 + 0.0818855i
\(715\) 0 0
\(716\) 7.40473 7.40473i 0.276728 0.276728i
\(717\) 13.3879 32.3212i 0.499980 1.20706i
\(718\) −18.2968 −0.682829
\(719\) 6.74163 16.2757i 0.251420 0.606982i −0.746899 0.664938i \(-0.768458\pi\)
0.998319 + 0.0579555i \(0.0184581\pi\)
\(720\) 0 0
\(721\) 0.462066 + 1.11553i 0.0172082 + 0.0415443i
\(722\) 12.9065 12.9065i 0.480330 0.480330i
\(723\) −36.0725 + 36.0725i −1.34155 + 1.34155i
\(724\) −6.20026 14.9687i −0.230431 0.556309i
\(725\) 0 0
\(726\) −9.94950 + 24.0202i −0.369260 + 0.891473i
\(727\) −38.2375 −1.41815 −0.709076 0.705132i \(-0.750888\pi\)
−0.709076 + 0.705132i \(0.750888\pi\)
\(728\) −0.171906 + 0.415017i −0.00637124 + 0.0153815i
\(729\) 6.22409 6.22409i 0.230522 0.230522i
\(730\) 0 0
\(731\) 22.3344 + 16.6562i 0.826066 + 0.616053i
\(732\) 8.08793i 0.298939i
\(733\) 25.7052 + 25.7052i 0.949443 + 0.949443i 0.998782 0.0493393i \(-0.0157116\pi\)
−0.0493393 + 0.998782i \(0.515712\pi\)
\(734\) −18.5202 7.67132i −0.683593 0.283154i
\(735\) 0 0
\(736\) −1.43108 + 3.45494i −0.0527504 + 0.127351i
\(737\) −0.305435 0.737385i −0.0112508 0.0271619i
\(738\) −9.99200 + 4.13882i −0.367810 + 0.152352i
\(739\) 31.5666 + 31.5666i 1.16120 + 1.16120i 0.984214 + 0.176982i \(0.0566336\pi\)
0.176982 + 0.984214i \(0.443366\pi\)
\(740\) 0 0
\(741\) −0.540788 1.30558i −0.0198663 0.0479616i
\(742\) 1.50353 + 3.62985i 0.0551964 + 0.133256i
\(743\) 3.00035 + 1.24279i 0.110072 + 0.0455935i 0.437040 0.899442i \(-0.356027\pi\)
−0.326968 + 0.945036i \(0.606027\pi\)
\(744\) 38.3517i 1.40604i
\(745\) 0 0
\(746\) 21.2711 21.2711i 0.778790 0.778790i
\(747\) 11.5684i 0.423265i
\(748\) 0.132837 0.0791418i 0.00485701 0.00289371i
\(749\) 4.45825 0.162901
\(750\) 0 0
\(751\) 1.51618 + 0.628022i 0.0553262 + 0.0229169i 0.410175 0.912007i \(-0.365468\pi\)
−0.354849 + 0.934924i \(0.615468\pi\)
\(752\) 4.03270 0.147058
\(753\) 34.2163 + 14.1729i 1.24691 + 0.516487i
\(754\) 3.48932 1.44533i 0.127074 0.0526356i
\(755\) 0 0
\(756\) 0.655796 + 0.655796i 0.0238511 + 0.0238511i
\(757\) −6.36808 + 6.36808i −0.231452 + 0.231452i −0.813298 0.581847i \(-0.802330\pi\)
0.581847 + 0.813298i \(0.302330\pi\)
\(758\) 18.8699 7.81618i 0.685386 0.283896i
\(759\) −0.107978 + 0.0447261i −0.00391936 + 0.00162345i
\(760\) 0 0
\(761\) 40.8543i 1.48097i 0.672075 + 0.740484i \(0.265403\pi\)
−0.672075 + 0.740484i \(0.734597\pi\)
\(762\) −0.0786686 + 0.189923i −0.00284986 + 0.00688018i
\(763\) −5.49613 5.49613i −0.198973 0.198973i
\(764\) 14.9237 0.539921
\(765\) 0 0
\(766\) −33.1083 −1.19625
\(767\) 3.73455 + 3.73455i 0.134847 + 0.134847i
\(768\) 11.1531 26.9259i 0.402452 0.971606i
\(769\) 15.1859i 0.547617i 0.961784 + 0.273809i \(0.0882835\pi\)
−0.961784 + 0.273809i \(0.911716\pi\)
\(770\) 0 0
\(771\) 12.5573 5.20139i 0.452239 0.187324i
\(772\) 9.18312 3.80377i 0.330508 0.136901i
\(773\) 16.3437 16.3437i 0.587842 0.587842i −0.349204 0.937047i \(-0.613548\pi\)
0.937047 + 0.349204i \(0.113548\pi\)
\(774\) 6.73427 + 6.73427i 0.242058 + 0.242058i
\(775\) 0 0
\(776\) −14.9507 + 6.19280i −0.536700 + 0.222308i
\(777\) −6.77319 2.80555i −0.242987 0.100648i
\(778\) −30.9038 −1.10795
\(779\) −12.5436 5.19574i −0.449422 0.186157i
\(780\) 0 0
\(781\) −0.0623736 −0.00223190
\(782\) 4.71939 + 1.19545i 0.168765 + 0.0427491i
\(783\) 30.8285i 1.10172i
\(784\) −10.6081 + 10.6081i −0.378859 + 0.378859i
\(785\) 0 0
\(786\) 18.5831i 0.662837i
\(787\) −31.6938 13.1280i −1.12976 0.467962i −0.262061 0.965051i \(-0.584402\pi\)
−0.867700 + 0.497089i \(0.834402\pi\)
\(788\) 2.53922 + 6.13023i 0.0904561 + 0.218380i
\(789\) 8.31335 + 20.0702i 0.295963 + 0.714518i
\(790\) 0 0
\(791\) −1.21612 1.21612i −0.0432404 0.0432404i
\(792\) 0.193061 0.0799683i 0.00686011 0.00284155i
\(793\) −0.864014 2.08591i −0.0306820 0.0740730i
\(794\) −11.7215 + 28.2983i −0.415981 + 1.00427i
\(795\) 0 0
\(796\) −8.85857 3.66934i −0.313984 0.130056i
\(797\) −7.47651 7.47651i −0.264832 0.264832i 0.562182 0.827014i \(-0.309962\pi\)
−0.827014 + 0.562182i \(0.809962\pi\)
\(798\) 1.57056i 0.0555974i
\(799\) 1.09552 + 7.52273i 0.0387568 + 0.266135i
\(800\) 0 0
\(801\) 2.26427 2.26427i 0.0800041 0.0800041i
\(802\) 1.19079 2.87482i 0.0420482 0.101513i
\(803\) 0.121364 0.00428286
\(804\) 7.67628 18.5322i 0.270722 0.653580i
\(805\) 0 0
\(806\) −1.03628 2.50179i −0.0365013 0.0881219i
\(807\) 5.51950 5.51950i 0.194296 0.194296i
\(808\) 8.78175 8.78175i 0.308941 0.308941i
\(809\) 15.7502 + 38.0243i 0.553747 + 1.33686i 0.914645 + 0.404259i \(0.132471\pi\)
−0.360897 + 0.932606i \(0.617529\pi\)
\(810\) 0 0
\(811\) 1.73158 4.18040i 0.0608039 0.146794i −0.890558 0.454871i \(-0.849685\pi\)
0.951361 + 0.308077i \(0.0996855\pi\)
\(812\) 2.14862 0.0754017
\(813\) 19.0362 45.9575i 0.667629 1.61180i
\(814\) 0.427857 0.427857i 0.0149964 0.0149964i
\(815\) 0 0
\(816\) −17.9697 4.55183i −0.629067 0.159346i
\(817\) 11.9557i 0.418278i
\(818\) −0.541319 0.541319i −0.0189268 0.0189268i
\(819\) −0.165162 0.0684121i −0.00577121 0.00239051i
\(820\) 0 0
\(821\) −7.96209 + 19.2222i −0.277879 + 0.670859i −0.999777 0.0211408i \(-0.993270\pi\)
0.721898 + 0.692000i \(0.243270\pi\)
\(822\) 13.0043 + 31.3952i 0.453577 + 1.09503i
\(823\) 42.3922 17.5594i 1.47770 0.612083i 0.509099 0.860708i \(-0.329979\pi\)
0.968600 + 0.248626i \(0.0799789\pi\)
\(824\) −7.00181 7.00181i −0.243920 0.243920i
\(825\) 0 0
\(826\) −2.24627 5.42296i −0.0781576 0.188689i
\(827\) 14.5723 + 35.1805i 0.506727 + 1.22335i 0.945757 + 0.324875i \(0.105322\pi\)
−0.439030 + 0.898472i \(0.644678\pi\)
\(828\) −0.786999 0.325986i −0.0273501 0.0113288i
\(829\) 36.1886i 1.25688i 0.777857 + 0.628441i \(0.216307\pi\)
−0.777857 + 0.628441i \(0.783693\pi\)
\(830\) 0 0
\(831\) −33.0362 + 33.0362i −1.14601 + 1.14601i
\(832\) 3.32761i 0.115364i
\(833\) −22.6704 16.9068i −0.785482 0.585786i
\(834\) −26.1528 −0.905599
\(835\) 0 0
\(836\) 0.0613017 + 0.0253920i 0.00212016 + 0.000878200i
\(837\) −22.1035 −0.764010
\(838\) −35.0338 14.5115i −1.21022 0.501291i
\(839\) 12.7679 5.28865i 0.440798 0.182585i −0.151236 0.988498i \(-0.548325\pi\)
0.592034 + 0.805913i \(0.298325\pi\)
\(840\) 0 0
\(841\) −29.9964 29.9964i −1.03436 1.03436i
\(842\) −4.35410 + 4.35410i −0.150052 + 0.150052i
\(843\) 21.2874 8.81753i 0.733177 0.303692i
\(844\) 3.28106 1.35906i 0.112939 0.0467808i
\(845\) 0 0
\(846\) 2.59858i 0.0893410i
\(847\) −1.58008 + 3.81464i −0.0542921 + 0.131073i
\(848\) −14.0709 14.0709i −0.483197 0.483197i
\(849\) −28.8653 −0.990654
\(850\) 0 0
\(851\) −9.75185 −0.334289
\(852\) −1.10846 1.10846i −0.0379751 0.0379751i
\(853\) −1.25777 + 3.03652i −0.0430651 + 0.103968i −0.943948 0.330093i \(-0.892920\pi\)
0.900883 + 0.434061i \(0.142920\pi\)
\(854\) 2.50928i 0.0858658i
\(855\) 0 0
\(856\) −33.7785 + 13.9915i −1.15453 + 0.478220i
\(857\) 29.5906 12.2568i 1.01080 0.418686i 0.185051 0.982729i \(-0.440755\pi\)
0.825745 + 0.564043i \(0.190755\pi\)
\(858\) 0.0359757 0.0359757i 0.00122819 0.00122819i
\(859\) 22.5032 + 22.5032i 0.767801 + 0.767801i 0.977719 0.209918i \(-0.0673197\pi\)
−0.209918 + 0.977719i \(0.567320\pi\)
\(860\) 0 0
\(861\) −5.47172 + 2.26646i −0.186476 + 0.0772408i
\(862\) 11.7365 + 4.86143i 0.399748 + 0.165581i
\(863\) 35.8941 1.22185 0.610925 0.791688i \(-0.290798\pi\)
0.610925 + 0.791688i \(0.290798\pi\)
\(864\) −12.2764 5.08503i −0.417650 0.172996i
\(865\) 0 0
\(866\) −16.0559 −0.545602
\(867\) 3.60947 34.7578i 0.122584 1.18044i
\(868\) 1.54053i 0.0522889i
\(869\) 0.154361 0.154361i 0.00523634 0.00523634i
\(870\) 0 0
\(871\) 5.59957i 0.189734i
\(872\) 58.8909 + 24.3934i 1.99430 + 0.826065i
\(873\) −2.46451 5.94985i −0.0834109 0.201372i
\(874\) 0.799474 + 1.93010i 0.0270426 + 0.0652867i
\(875\) 0 0
\(876\) 2.15680 + 2.15680i 0.0728714 + 0.0728714i
\(877\) −29.9738 + 12.4156i −1.01214 + 0.419243i −0.826236 0.563324i \(-0.809522\pi\)
−0.185907 + 0.982567i \(0.559522\pi\)
\(878\) −13.9609 33.7047i −0.471159 1.13748i
\(879\) 21.9985 53.1091i 0.741992 1.79133i
\(880\) 0 0
\(881\) −37.0581 15.3500i −1.24852 0.517154i −0.342153 0.939644i \(-0.611156\pi\)
−0.906368 + 0.422490i \(0.861156\pi\)
\(882\) −6.83559 6.83559i −0.230166 0.230166i
\(883\) 10.0633i 0.338656i −0.985560 0.169328i \(-0.945840\pi\)
0.985560 0.169328i \(-0.0541597\pi\)
\(884\) 1.07350 0.156332i 0.0361057 0.00525801i
\(885\) 0 0
\(886\) −30.4977 + 30.4977i −1.02459 + 1.02459i
\(887\) 10.1549 24.5160i 0.340967 0.823167i −0.656652 0.754194i \(-0.728028\pi\)
0.997619 0.0689728i \(-0.0219722\pi\)
\(888\) 60.1228 2.01759
\(889\) −0.0124933 + 0.0301616i −0.000419013 + 0.00101159i
\(890\) 0 0
\(891\) −0.236837 0.571776i −0.00793435 0.0191552i
\(892\) −6.49491 + 6.49491i −0.217466 + 0.217466i
\(893\) −2.30670 + 2.30670i −0.0771909 + 0.0771909i
\(894\) −4.69957 11.3458i −0.157177 0.379459i
\(895\) 0 0
\(896\) −0.368500 + 0.889637i −0.0123107 + 0.0297207i
\(897\) −0.819968 −0.0273779
\(898\) 5.05710 12.2089i 0.168758 0.407417i
\(899\) −36.2095 + 36.2095i −1.20766 + 1.20766i
\(900\) 0 0
\(901\) 22.4258 30.0708i 0.747112 1.00180i
\(902\) 0.488815i 0.0162758i
\(903\) 3.68776 + 3.68776i 0.122721 + 0.122721i
\(904\) 13.0308 + 5.39752i 0.433397 + 0.179519i
\(905\) 0 0
\(906\) 6.37182 15.3829i 0.211689 0.511064i
\(907\) 3.16804 + 7.64833i 0.105193 + 0.253959i 0.967708 0.252072i \(-0.0811121\pi\)
−0.862515 + 0.506031i \(0.831112\pi\)
\(908\) −8.40771 + 3.48259i −0.279020 + 0.115574i
\(909\) 3.49482 + 3.49482i 0.115916 + 0.115916i
\(910\) 0 0
\(911\) 13.6431 + 32.9374i 0.452017 + 1.09126i 0.971554 + 0.236817i \(0.0761042\pi\)
−0.519538 + 0.854448i \(0.673896\pi\)
\(912\) −3.04411 7.34913i −0.100801 0.243354i
\(913\) −0.483054 0.200088i −0.0159868 0.00662193i
\(914\) 27.8872i 0.922427i
\(915\) 0 0
\(916\) 4.89325 4.89325i 0.161678 0.161678i
\(917\) 2.95118i 0.0974564i
\(918\) −4.24776 + 16.7693i −0.140197 + 0.553470i
\(919\) 44.5065 1.46813 0.734067 0.679077i \(-0.237620\pi\)
0.734067 + 0.679077i \(0.237620\pi\)
\(920\) 0 0
\(921\) −38.8005 16.0717i −1.27852 0.529581i
\(922\) −30.4423 −1.00256
\(923\) −0.404289 0.167462i −0.0133073 0.00551208i
\(924\) 0.0267407 0.0110764i 0.000879705 0.000364386i
\(925\) 0 0
\(926\) −13.0640 13.0640i −0.429309 0.429309i
\(927\) 2.78647 2.78647i 0.0915195 0.0915195i
\(928\) −28.4410 + 11.7807i −0.933622 + 0.386719i
\(929\) −3.92217 + 1.62462i −0.128682 + 0.0533019i −0.446095 0.894985i \(-0.647186\pi\)
0.317413 + 0.948287i \(0.397186\pi\)
\(930\) 0 0
\(931\) 12.1356i 0.397729i
\(932\) 4.89807 11.8250i 0.160442 0.387341i
\(933\) −18.1090 18.1090i −0.592863 0.592863i
\(934\) −22.4244 −0.733748
\(935\) 0 0
\(936\) 1.46607 0.0479200
\(937\) 7.19384 + 7.19384i 0.235012 + 0.235012i 0.814781 0.579769i \(-0.196857\pi\)
−0.579769 + 0.814781i \(0.696857\pi\)
\(938\) −2.38157 + 5.74961i −0.0777609 + 0.187732i
\(939\) 18.9262i 0.617634i
\(940\) 0 0
\(941\) −28.1724 + 11.6694i −0.918395 + 0.380412i −0.791264 0.611474i \(-0.790577\pi\)
−0.127131 + 0.991886i \(0.540577\pi\)
\(942\) 34.5127 14.2956i 1.12449 0.465777i
\(943\) −5.57061 + 5.57061i −0.181404 + 0.181404i
\(944\) 21.0219 + 21.0219i 0.684203 + 0.684203i
\(945\) 0 0
\(946\) −0.397675 + 0.164722i −0.0129295 + 0.00535559i
\(947\) −40.3302 16.7053i −1.31056 0.542850i −0.385509 0.922704i \(-0.625974\pi\)
−0.925047 + 0.379854i \(0.875974\pi\)
\(948\) 5.48637 0.178189
\(949\) 0.786652 + 0.325842i 0.0255358 + 0.0105773i
\(950\) 0 0
\(951\) 3.72830 0.120898
\(952\) −4.62078 1.17047i −0.149760 0.0379351i
\(953\) 6.19010i 0.200517i −0.994961 0.100258i \(-0.968033\pi\)
0.994961 0.100258i \(-0.0319670\pi\)
\(954\) 9.06697 9.06697i 0.293554 0.293554i
\(955\) 0 0
\(956\) 11.5244i 0.372726i
\(957\) −0.888876 0.368184i −0.0287333 0.0119017i
\(958\) 10.6371 + 25.6803i 0.343670 + 0.829693i
\(959\) 2.06521 + 4.98586i 0.0666891 + 0.161002i
\(960\) 0 0
\(961\) 4.04139 + 4.04139i 0.130367 + 0.130367i
\(962\) 3.92198 1.62454i 0.126450 0.0523772i
\(963\) −5.56812 13.4426i −0.179430 0.433182i
\(964\) 6.43098 15.5258i 0.207128 0.500051i
\(965\) 0 0
\(966\) 0.841939 + 0.348743i 0.0270890 + 0.0112206i
\(967\) −31.3914 31.3914i −1.00948 1.00948i −0.999955 0.00952406i \(-0.996968\pi\)
−0.00952406 0.999955i \(-0.503032\pi\)
\(968\) 33.8610i 1.08833i
\(969\) 12.8823 7.67503i 0.413840 0.246558i
\(970\) 0 0
\(971\) 34.3536 34.3536i 1.10246 1.10246i 0.108345 0.994113i \(-0.465445\pi\)
0.994113 0.108345i \(-0.0345552\pi\)
\(972\) 3.11646 7.52380i 0.0999605 0.241326i
\(973\) −4.15333 −0.133149
\(974\) 16.0210 38.6780i 0.513345 1.23932i
\(975\) 0 0
\(976\) −4.86355 11.7417i −0.155679 0.375841i
\(977\) −5.46940 + 5.46940i −0.174982 + 0.174982i −0.789164 0.614182i \(-0.789486\pi\)
0.614182 + 0.789164i \(0.289486\pi\)
\(978\) 17.2478 17.2478i 0.551524 0.551524i
\(979\) 0.0553849 + 0.133711i 0.00177011 + 0.00427342i
\(980\) 0 0
\(981\) −9.70769 + 23.4364i −0.309943 + 0.748268i
\(982\) 44.3546 1.41541
\(983\) −7.28969 + 17.5989i −0.232505 + 0.561317i −0.996471 0.0839398i \(-0.973250\pi\)
0.763966 + 0.645257i \(0.223250\pi\)
\(984\) 34.3443 34.3443i 1.09486 1.09486i
\(985\) 0 0
\(986\) 20.5125 + 34.4297i 0.653251 + 1.09646i
\(987\) 1.42301i 0.0452949i
\(988\) 0.329168 + 0.329168i 0.0104722 + 0.0104722i
\(989\) 6.40917 + 2.65476i 0.203800 + 0.0844166i
\(990\) 0 0
\(991\) 4.66953 11.2732i 0.148332 0.358106i −0.832196 0.554481i \(-0.812917\pi\)
0.980529 + 0.196375i \(0.0629169\pi\)
\(992\) 8.44656 + 20.3918i 0.268178 + 0.647440i
\(993\) 34.8621 14.4403i 1.10631 0.458250i
\(994\) 0.343898 + 0.343898i 0.0109078 + 0.0109078i
\(995\) 0 0
\(996\) −5.02866 12.1403i −0.159339 0.384679i
\(997\) −8.44938 20.3986i −0.267595 0.646031i 0.731774 0.681547i \(-0.238692\pi\)
−0.999369 + 0.0355163i \(0.988692\pi\)
\(998\) 38.5722 + 15.9771i 1.22098 + 0.505747i
\(999\) 34.6510i 1.09631i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.e.349.2 24
5.2 odd 4 425.2.m.c.26.5 24
5.3 odd 4 425.2.m.d.26.2 yes 24
5.4 even 2 425.2.n.d.349.5 24
17.2 even 8 425.2.n.d.274.5 24
85.2 odd 8 425.2.m.c.376.5 yes 24
85.19 even 8 inner 425.2.n.e.274.2 24
85.23 even 16 7225.2.a.cb.1.7 24
85.28 even 16 7225.2.a.cb.1.8 24
85.53 odd 8 425.2.m.d.376.2 yes 24
85.57 even 16 7225.2.a.bx.1.18 24
85.62 even 16 7225.2.a.bx.1.17 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.26.5 24 5.2 odd 4
425.2.m.c.376.5 yes 24 85.2 odd 8
425.2.m.d.26.2 yes 24 5.3 odd 4
425.2.m.d.376.2 yes 24 85.53 odd 8
425.2.n.d.274.5 24 17.2 even 8
425.2.n.d.349.5 24 5.4 even 2
425.2.n.e.274.2 24 85.19 even 8 inner
425.2.n.e.349.2 24 1.1 even 1 trivial
7225.2.a.bx.1.17 24 85.62 even 16
7225.2.a.bx.1.18 24 85.57 even 16
7225.2.a.cb.1.7 24 85.23 even 16
7225.2.a.cb.1.8 24 85.28 even 16