Properties

Label 425.2.m.d.151.3
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.3
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.d.76.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.639117 - 0.639117i) q^{2} +(-1.10274 - 2.66226i) q^{3} -1.18306i q^{4} +(-0.996713 + 2.40628i) q^{6} +(-0.671652 - 0.278207i) q^{7} +(-2.03435 + 2.03435i) q^{8} +(-3.75027 + 3.75027i) q^{9} +(-0.958080 + 2.31301i) q^{11} +(-3.14961 + 1.30461i) q^{12} -6.29663i q^{13} +(0.251457 + 0.607071i) q^{14} +0.234252 q^{16} +(-2.08128 + 3.55925i) q^{17} +4.79372 q^{18} +(-0.143443 - 0.143443i) q^{19} +2.09490i q^{21} +(2.09061 - 0.865959i) q^{22} +(0.255217 - 0.616148i) q^{23} +(7.65933 + 3.17260i) q^{24} +(-4.02428 + 4.02428i) q^{26} +(6.13299 + 2.54037i) q^{27} +(-0.329136 + 0.794604i) q^{28} +(7.33161 - 3.03685i) q^{29} +(-2.12864 - 5.13900i) q^{31} +(3.91898 + 3.91898i) q^{32} +7.21436 q^{33} +(3.60496 - 0.944595i) q^{34} +(4.43679 + 4.43679i) q^{36} +(3.04037 + 7.34010i) q^{37} +0.183354i q^{38} +(-16.7633 + 6.94358i) q^{39} +(-4.73632 - 1.96185i) q^{41} +(1.33889 - 1.33889i) q^{42} +(-8.45426 + 8.45426i) q^{43} +(2.73643 + 1.13347i) q^{44} +(-0.556904 + 0.230677i) q^{46} -10.9207i q^{47} +(-0.258320 - 0.623640i) q^{48} +(-4.57603 - 4.57603i) q^{49} +(11.7708 + 1.61597i) q^{51} -7.44929 q^{52} +(2.74061 + 2.74061i) q^{53} +(-2.29611 - 5.54329i) q^{54} +(1.93234 - 0.800403i) q^{56} +(-0.223702 + 0.540065i) q^{57} +(-6.62666 - 2.74485i) q^{58} +(-2.38470 + 2.38470i) q^{59} +(-1.04828 - 0.434212i) q^{61} +(-1.92397 + 4.64487i) q^{62} +(3.56223 - 1.47552i) q^{63} -5.47788i q^{64} +(-4.61082 - 4.61082i) q^{66} -5.61946 q^{67} +(4.21081 + 2.46228i) q^{68} -1.92179 q^{69} +(-1.51683 - 3.66196i) q^{71} -15.2587i q^{72} +(-4.79409 + 1.98578i) q^{73} +(2.74803 - 6.63433i) q^{74} +(-0.169702 + 0.169702i) q^{76} +(1.28699 - 1.28699i) q^{77} +(15.1514 + 6.27594i) q^{78} +(5.37312 - 12.9718i) q^{79} -3.21797i q^{81} +(1.77321 + 4.28091i) q^{82} +(-8.73235 - 8.73235i) q^{83} +2.47840 q^{84} +10.8065 q^{86} +(-16.1698 - 16.1698i) q^{87} +(-2.75640 - 6.65453i) q^{88} +13.0419i q^{89} +(-1.75177 + 4.22914i) q^{91} +(-0.728940 - 0.301937i) q^{92} +(-11.3340 + 11.3340i) q^{93} +(-6.97959 + 6.97959i) q^{94} +(6.11171 - 14.7550i) q^{96} +(11.0168 - 4.56330i) q^{97} +5.84924i q^{98} +(-5.08135 - 12.2675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} + 12 q^{9} + 4 q^{11} + 12 q^{12} - 24 q^{14} - 24 q^{16} - 4 q^{17} + 40 q^{18} - 20 q^{19} - 16 q^{22} - 8 q^{23} + 16 q^{24} + 16 q^{26} + 12 q^{27} - 48 q^{28} + 4 q^{29} + 24 q^{31}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.639117 0.639117i −0.451924 0.451924i 0.444069 0.895993i \(-0.353535\pi\)
−0.895993 + 0.444069i \(0.853535\pi\)
\(3\) −1.10274 2.66226i −0.636670 1.53706i −0.831090 0.556139i \(-0.812282\pi\)
0.194420 0.980918i \(-0.437718\pi\)
\(4\) 1.18306i 0.591530i
\(5\) 0 0
\(6\) −0.996713 + 2.40628i −0.406906 + 0.982359i
\(7\) −0.671652 0.278207i −0.253861 0.105152i 0.252124 0.967695i \(-0.418871\pi\)
−0.505985 + 0.862542i \(0.668871\pi\)
\(8\) −2.03435 + 2.03435i −0.719250 + 0.719250i
\(9\) −3.75027 + 3.75027i −1.25009 + 1.25009i
\(10\) 0 0
\(11\) −0.958080 + 2.31301i −0.288872 + 0.697399i −0.999984 0.00567999i \(-0.998192\pi\)
0.711112 + 0.703079i \(0.248192\pi\)
\(12\) −3.14961 + 1.30461i −0.909215 + 0.376609i
\(13\) 6.29663i 1.74637i −0.487388 0.873186i \(-0.662050\pi\)
0.487388 0.873186i \(-0.337950\pi\)
\(14\) 0.251457 + 0.607071i 0.0672047 + 0.162247i
\(15\) 0 0
\(16\) 0.234252 0.0585630
\(17\) −2.08128 + 3.55925i −0.504785 + 0.863245i
\(18\) 4.79372 1.12989
\(19\) −0.143443 0.143443i −0.0329081 0.0329081i 0.690461 0.723369i \(-0.257408\pi\)
−0.723369 + 0.690461i \(0.757408\pi\)
\(20\) 0 0
\(21\) 2.09490i 0.457146i
\(22\) 2.09061 0.865959i 0.445719 0.184623i
\(23\) 0.255217 0.616148i 0.0532164 0.128476i −0.895035 0.445995i \(-0.852850\pi\)
0.948252 + 0.317519i \(0.102850\pi\)
\(24\) 7.65933 + 3.17260i 1.56345 + 0.647604i
\(25\) 0 0
\(26\) −4.02428 + 4.02428i −0.789227 + 0.789227i
\(27\) 6.13299 + 2.54037i 1.18030 + 0.488894i
\(28\) −0.329136 + 0.794604i −0.0622008 + 0.150166i
\(29\) 7.33161 3.03685i 1.36145 0.563929i 0.421990 0.906600i \(-0.361332\pi\)
0.939455 + 0.342671i \(0.111332\pi\)
\(30\) 0 0
\(31\) −2.12864 5.13900i −0.382315 0.922991i −0.991517 0.129976i \(-0.958510\pi\)
0.609202 0.793015i \(-0.291490\pi\)
\(32\) 3.91898 + 3.91898i 0.692784 + 0.692784i
\(33\) 7.21436 1.25586
\(34\) 3.60496 0.944595i 0.618245 0.161997i
\(35\) 0 0
\(36\) 4.43679 + 4.43679i 0.739465 + 0.739465i
\(37\) 3.04037 + 7.34010i 0.499834 + 1.20670i 0.949573 + 0.313545i \(0.101517\pi\)
−0.449740 + 0.893160i \(0.648483\pi\)
\(38\) 0.183354i 0.0297439i
\(39\) −16.7633 + 6.94358i −2.68427 + 1.11186i
\(40\) 0 0
\(41\) −4.73632 1.96185i −0.739688 0.306389i −0.0191619 0.999816i \(-0.506100\pi\)
−0.720526 + 0.693427i \(0.756100\pi\)
\(42\) 1.33889 1.33889i 0.206595 0.206595i
\(43\) −8.45426 + 8.45426i −1.28926 + 1.28926i −0.354028 + 0.935235i \(0.615188\pi\)
−0.935235 + 0.354028i \(0.884812\pi\)
\(44\) 2.73643 + 1.13347i 0.412532 + 0.170876i
\(45\) 0 0
\(46\) −0.556904 + 0.230677i −0.0821110 + 0.0340115i
\(47\) 10.9207i 1.59294i −0.604675 0.796472i \(-0.706697\pi\)
0.604675 0.796472i \(-0.293303\pi\)
\(48\) −0.258320 0.623640i −0.0372853 0.0900147i
\(49\) −4.57603 4.57603i −0.653719 0.653719i
\(50\) 0 0
\(51\) 11.7708 + 1.61597i 1.64824 + 0.226281i
\(52\) −7.44929 −1.03303
\(53\) 2.74061 + 2.74061i 0.376451 + 0.376451i 0.869820 0.493369i \(-0.164235\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(54\) −2.29611 5.54329i −0.312461 0.754347i
\(55\) 0 0
\(56\) 1.93234 0.800403i 0.258220 0.106958i
\(57\) −0.223702 + 0.540065i −0.0296301 + 0.0715333i
\(58\) −6.62666 2.74485i −0.870123 0.360417i
\(59\) −2.38470 + 2.38470i −0.310462 + 0.310462i −0.845088 0.534626i \(-0.820452\pi\)
0.534626 + 0.845088i \(0.320452\pi\)
\(60\) 0 0
\(61\) −1.04828 0.434212i −0.134219 0.0555952i 0.314563 0.949237i \(-0.398142\pi\)
−0.448782 + 0.893641i \(0.648142\pi\)
\(62\) −1.92397 + 4.64487i −0.244344 + 0.589899i
\(63\) 3.56223 1.47552i 0.448798 0.185898i
\(64\) 5.47788i 0.684734i
\(65\) 0 0
\(66\) −4.61082 4.61082i −0.567552 0.567552i
\(67\) −5.61946 −0.686526 −0.343263 0.939239i \(-0.611532\pi\)
−0.343263 + 0.939239i \(0.611532\pi\)
\(68\) 4.21081 + 2.46228i 0.510635 + 0.298595i
\(69\) −1.92179 −0.231356
\(70\) 0 0
\(71\) −1.51683 3.66196i −0.180015 0.434595i 0.807954 0.589245i \(-0.200575\pi\)
−0.987969 + 0.154650i \(0.950575\pi\)
\(72\) 15.2587i 1.79825i
\(73\) −4.79409 + 1.98578i −0.561105 + 0.232417i −0.645165 0.764043i \(-0.723211\pi\)
0.0840596 + 0.996461i \(0.473211\pi\)
\(74\) 2.74803 6.63433i 0.319452 0.771225i
\(75\) 0 0
\(76\) −0.169702 + 0.169702i −0.0194661 + 0.0194661i
\(77\) 1.28699 1.28699i 0.146666 0.146666i
\(78\) 15.1514 + 6.27594i 1.71556 + 0.710610i
\(79\) 5.37312 12.9718i 0.604523 1.45945i −0.264358 0.964425i \(-0.585160\pi\)
0.868880 0.495022i \(-0.164840\pi\)
\(80\) 0 0
\(81\) 3.21797i 0.357552i
\(82\) 1.77321 + 4.28091i 0.195818 + 0.472747i
\(83\) −8.73235 8.73235i −0.958500 0.958500i 0.0406730 0.999173i \(-0.487050\pi\)
−0.999173 + 0.0406730i \(0.987050\pi\)
\(84\) 2.47840 0.270415
\(85\) 0 0
\(86\) 10.8065 1.16530
\(87\) −16.1698 16.1698i −1.73358 1.73358i
\(88\) −2.75640 6.65453i −0.293833 0.709376i
\(89\) 13.0419i 1.38244i 0.722644 + 0.691221i \(0.242927\pi\)
−0.722644 + 0.691221i \(0.757073\pi\)
\(90\) 0 0
\(91\) −1.75177 + 4.22914i −0.183635 + 0.443335i
\(92\) −0.728940 0.301937i −0.0759972 0.0314791i
\(93\) −11.3340 + 11.3340i −1.17528 + 1.17528i
\(94\) −6.97959 + 6.97959i −0.719890 + 0.719890i
\(95\) 0 0
\(96\) 6.11171 14.7550i 0.623774 1.50592i
\(97\) 11.0168 4.56330i 1.11858 0.463333i 0.254699 0.967020i \(-0.418024\pi\)
0.863886 + 0.503688i \(0.168024\pi\)
\(98\) 5.84924i 0.590862i
\(99\) −5.08135 12.2675i −0.510695 1.23293i
\(100\) 0 0
\(101\) −10.0642 −1.00143 −0.500713 0.865613i \(-0.666929\pi\)
−0.500713 + 0.865613i \(0.666929\pi\)
\(102\) −6.49011 8.55569i −0.642617 0.847140i
\(103\) −9.80719 −0.966331 −0.483166 0.875529i \(-0.660513\pi\)
−0.483166 + 0.875529i \(0.660513\pi\)
\(104\) 12.8095 + 12.8095i 1.25608 + 1.25608i
\(105\) 0 0
\(106\) 3.50314i 0.340255i
\(107\) 3.52458 1.45993i 0.340734 0.141137i −0.205754 0.978604i \(-0.565965\pi\)
0.546488 + 0.837467i \(0.315965\pi\)
\(108\) 3.00541 7.25570i 0.289195 0.698180i
\(109\) −2.96319 1.22739i −0.283822 0.117563i 0.236231 0.971697i \(-0.424088\pi\)
−0.520053 + 0.854134i \(0.674088\pi\)
\(110\) 0 0
\(111\) 16.1885 16.1885i 1.53655 1.53655i
\(112\) −0.157336 0.0651706i −0.0148668 0.00615805i
\(113\) 0.154329 0.372584i 0.0145181 0.0350498i −0.916454 0.400139i \(-0.868962\pi\)
0.930972 + 0.365090i \(0.118962\pi\)
\(114\) 0.488136 0.202193i 0.0457181 0.0189371i
\(115\) 0 0
\(116\) −3.59278 8.67373i −0.333581 0.805335i
\(117\) 23.6141 + 23.6141i 2.18312 + 2.18312i
\(118\) 3.04821 0.280610
\(119\) 2.38811 1.81155i 0.218917 0.166065i
\(120\) 0 0
\(121\) 3.34607 + 3.34607i 0.304188 + 0.304188i
\(122\) 0.392462 + 0.947487i 0.0355318 + 0.0857814i
\(123\) 14.7727i 1.33201i
\(124\) −6.07974 + 2.51831i −0.545976 + 0.226151i
\(125\) 0 0
\(126\) −3.21971 1.33365i −0.286835 0.118811i
\(127\) −1.52815 + 1.52815i −0.135601 + 0.135601i −0.771649 0.636048i \(-0.780568\pi\)
0.636048 + 0.771649i \(0.280568\pi\)
\(128\) 4.33696 4.33696i 0.383336 0.383336i
\(129\) 31.8303 + 13.1846i 2.80251 + 1.16084i
\(130\) 0 0
\(131\) −7.43241 + 3.07860i −0.649372 + 0.268979i −0.682959 0.730457i \(-0.739307\pi\)
0.0335863 + 0.999436i \(0.489307\pi\)
\(132\) 8.53501i 0.742877i
\(133\) 0.0564370 + 0.136251i 0.00489371 + 0.0118144i
\(134\) 3.59149 + 3.59149i 0.310258 + 0.310258i
\(135\) 0 0
\(136\) −3.00670 11.4748i −0.257823 0.983956i
\(137\) 7.87082 0.672450 0.336225 0.941782i \(-0.390850\pi\)
0.336225 + 0.941782i \(0.390850\pi\)
\(138\) 1.22825 + 1.22825i 0.104555 + 0.104555i
\(139\) −6.68268 16.1334i −0.566818 1.36842i −0.904223 0.427060i \(-0.859549\pi\)
0.337405 0.941359i \(-0.390451\pi\)
\(140\) 0 0
\(141\) −29.0737 + 12.0427i −2.44845 + 1.01418i
\(142\) −1.37099 + 3.30986i −0.115051 + 0.277757i
\(143\) 14.5642 + 6.03268i 1.21792 + 0.504478i
\(144\) −0.878508 + 0.878508i −0.0732090 + 0.0732090i
\(145\) 0 0
\(146\) 4.33312 + 1.79484i 0.358612 + 0.148542i
\(147\) −7.13639 + 17.2288i −0.588600 + 1.42101i
\(148\) 8.68377 3.59694i 0.713802 0.295666i
\(149\) 7.42906i 0.608613i −0.952574 0.304306i \(-0.901575\pi\)
0.952574 0.304306i \(-0.0984246\pi\)
\(150\) 0 0
\(151\) −9.55527 9.55527i −0.777597 0.777597i 0.201825 0.979422i \(-0.435313\pi\)
−0.979422 + 0.201825i \(0.935313\pi\)
\(152\) 0.583627 0.0473384
\(153\) −5.54278 21.1535i −0.448107 1.71016i
\(154\) −1.64508 −0.132564
\(155\) 0 0
\(156\) 8.21466 + 19.8320i 0.657699 + 1.58783i
\(157\) 2.75786i 0.220101i −0.993926 0.110051i \(-0.964899\pi\)
0.993926 0.110051i \(-0.0351013\pi\)
\(158\) −11.7246 + 4.85648i −0.932757 + 0.386361i
\(159\) 4.27402 10.3184i 0.338952 0.818303i
\(160\) 0 0
\(161\) −0.342834 + 0.342834i −0.0270191 + 0.0270191i
\(162\) −2.05666 + 2.05666i −0.161586 + 0.161586i
\(163\) 1.27839 + 0.529525i 0.100131 + 0.0414756i 0.432187 0.901784i \(-0.357742\pi\)
−0.332056 + 0.943260i \(0.607742\pi\)
\(164\) −2.32098 + 5.60334i −0.181238 + 0.437548i
\(165\) 0 0
\(166\) 11.1620i 0.866338i
\(167\) −5.61942 13.5665i −0.434844 1.04981i −0.977705 0.209983i \(-0.932659\pi\)
0.542861 0.839822i \(-0.317341\pi\)
\(168\) −4.26176 4.26176i −0.328802 0.328802i
\(169\) −26.6476 −2.04981
\(170\) 0 0
\(171\) 1.07590 0.0822762
\(172\) 10.0019 + 10.0019i 0.762637 + 0.762637i
\(173\) 5.64428 + 13.6265i 0.429127 + 1.03600i 0.979565 + 0.201127i \(0.0644605\pi\)
−0.550439 + 0.834876i \(0.685539\pi\)
\(174\) 20.6688i 1.56689i
\(175\) 0 0
\(176\) −0.224432 + 0.541828i −0.0169172 + 0.0408418i
\(177\) 8.97842 + 3.71899i 0.674860 + 0.279536i
\(178\) 8.33531 8.33531i 0.624758 0.624758i
\(179\) −10.0949 + 10.0949i −0.754531 + 0.754531i −0.975321 0.220790i \(-0.929136\pi\)
0.220790 + 0.975321i \(0.429136\pi\)
\(180\) 0 0
\(181\) 2.30531 5.56552i 0.171353 0.413682i −0.814752 0.579810i \(-0.803127\pi\)
0.986104 + 0.166129i \(0.0531267\pi\)
\(182\) 3.82250 1.58333i 0.283343 0.117364i
\(183\) 3.26962i 0.241698i
\(184\) 0.734259 + 1.77266i 0.0541303 + 0.130682i
\(185\) 0 0
\(186\) 14.4875 1.06227
\(187\) −6.23855 8.22408i −0.456208 0.601404i
\(188\) −12.9198 −0.942274
\(189\) −3.41249 3.41249i −0.248222 0.248222i
\(190\) 0 0
\(191\) 14.1379i 1.02298i 0.859288 + 0.511492i \(0.170907\pi\)
−0.859288 + 0.511492i \(0.829093\pi\)
\(192\) −14.5835 + 6.04070i −1.05248 + 0.435950i
\(193\) 8.90773 21.5052i 0.641192 1.54797i −0.183881 0.982949i \(-0.558866\pi\)
0.825073 0.565026i \(-0.191134\pi\)
\(194\) −9.95749 4.12453i −0.714906 0.296124i
\(195\) 0 0
\(196\) −5.41372 + 5.41372i −0.386694 + 0.386694i
\(197\) −8.59019 3.55817i −0.612026 0.253509i 0.0550686 0.998483i \(-0.482462\pi\)
−0.667094 + 0.744973i \(0.732462\pi\)
\(198\) −4.59277 + 11.0879i −0.326394 + 0.787984i
\(199\) 6.98662 2.89395i 0.495268 0.205147i −0.121046 0.992647i \(-0.538625\pi\)
0.616315 + 0.787500i \(0.288625\pi\)
\(200\) 0 0
\(201\) 6.19683 + 14.9605i 0.437090 + 1.05523i
\(202\) 6.43221 + 6.43221i 0.452569 + 0.452569i
\(203\) −5.76916 −0.404916
\(204\) 1.91179 13.9255i 0.133852 0.974982i
\(205\) 0 0
\(206\) 6.26794 + 6.26794i 0.436708 + 0.436708i
\(207\) 1.35359 + 3.26785i 0.0940809 + 0.227131i
\(208\) 1.47500i 0.102273i
\(209\) 0.469216 0.194356i 0.0324563 0.0134439i
\(210\) 0 0
\(211\) 23.0644 + 9.55359i 1.58782 + 0.657697i 0.989628 0.143656i \(-0.0458859\pi\)
0.598192 + 0.801353i \(0.295886\pi\)
\(212\) 3.24230 3.24230i 0.222682 0.222682i
\(213\) −8.07642 + 8.07642i −0.553387 + 0.553387i
\(214\) −3.18568 1.31955i −0.217769 0.0902028i
\(215\) 0 0
\(216\) −17.6446 + 7.30864i −1.20056 + 0.497290i
\(217\) 4.04382i 0.274512i
\(218\) 1.10938 + 2.67827i 0.0751364 + 0.181395i
\(219\) 10.5733 + 10.5733i 0.714478 + 0.714478i
\(220\) 0 0
\(221\) 22.4113 + 13.1051i 1.50755 + 0.881542i
\(222\) −20.6927 −1.38880
\(223\) −8.60440 8.60440i −0.576193 0.576193i 0.357659 0.933852i \(-0.383575\pi\)
−0.933852 + 0.357659i \(0.883575\pi\)
\(224\) −1.54190 3.72248i −0.103023 0.248719i
\(225\) 0 0
\(226\) −0.336759 + 0.139490i −0.0224009 + 0.00927876i
\(227\) 0.760206 1.83530i 0.0504566 0.121813i −0.896641 0.442757i \(-0.854000\pi\)
0.947098 + 0.320944i \(0.104000\pi\)
\(228\) 0.638928 + 0.264653i 0.0423141 + 0.0175271i
\(229\) 1.62070 1.62070i 0.107099 0.107099i −0.651527 0.758626i \(-0.725871\pi\)
0.758626 + 0.651527i \(0.225871\pi\)
\(230\) 0 0
\(231\) −4.84554 2.00709i −0.318813 0.132057i
\(232\) −8.73703 + 21.0930i −0.573614 + 1.38483i
\(233\) 20.9749 8.68807i 1.37411 0.569174i 0.431209 0.902252i \(-0.358087\pi\)
0.942899 + 0.333078i \(0.108087\pi\)
\(234\) 30.1843i 1.97321i
\(235\) 0 0
\(236\) 2.82125 + 2.82125i 0.183647 + 0.183647i
\(237\) −40.4596 −2.62813
\(238\) −2.68407 0.368487i −0.173982 0.0238854i
\(239\) 13.2285 0.855683 0.427841 0.903854i \(-0.359274\pi\)
0.427841 + 0.903854i \(0.359274\pi\)
\(240\) 0 0
\(241\) 1.10950 + 2.67856i 0.0714689 + 0.172541i 0.955577 0.294741i \(-0.0952333\pi\)
−0.884108 + 0.467282i \(0.845233\pi\)
\(242\) 4.27706i 0.274940i
\(243\) 9.83190 4.07251i 0.630717 0.261251i
\(244\) −0.513699 + 1.24018i −0.0328862 + 0.0793943i
\(245\) 0 0
\(246\) 9.44150 9.44150i 0.601968 0.601968i
\(247\) −0.903209 + 0.903209i −0.0574698 + 0.0574698i
\(248\) 14.7849 + 6.12410i 0.938842 + 0.388881i
\(249\) −13.6182 + 32.8773i −0.863021 + 2.08352i
\(250\) 0 0
\(251\) 9.85445i 0.622008i −0.950409 0.311004i \(-0.899335\pi\)
0.950409 0.311004i \(-0.100665\pi\)
\(252\) −1.74563 4.21432i −0.109964 0.265477i
\(253\) 1.18064 + 1.18064i 0.0742261 + 0.0742261i
\(254\) 1.95333 0.122563
\(255\) 0 0
\(256\) −16.4994 −1.03121
\(257\) 3.74014 + 3.74014i 0.233303 + 0.233303i 0.814070 0.580767i \(-0.197247\pi\)
−0.580767 + 0.814070i \(0.697247\pi\)
\(258\) −11.9168 28.7698i −0.741910 1.79113i
\(259\) 5.77584i 0.358893i
\(260\) 0 0
\(261\) −16.1065 + 38.8845i −0.996967 + 2.40689i
\(262\) 6.71776 + 2.78259i 0.415025 + 0.171909i
\(263\) 8.89552 8.89552i 0.548521 0.548521i −0.377492 0.926013i \(-0.623213\pi\)
0.926013 + 0.377492i \(0.123213\pi\)
\(264\) −14.6765 + 14.6765i −0.903276 + 0.903276i
\(265\) 0 0
\(266\) 0.0510104 0.123150i 0.00312765 0.00755081i
\(267\) 34.7210 14.3819i 2.12489 0.880159i
\(268\) 6.64815i 0.406101i
\(269\) 3.52167 + 8.50207i 0.214720 + 0.518380i 0.994137 0.108125i \(-0.0344847\pi\)
−0.779417 + 0.626505i \(0.784485\pi\)
\(270\) 0 0
\(271\) −14.6023 −0.887028 −0.443514 0.896267i \(-0.646268\pi\)
−0.443514 + 0.896267i \(0.646268\pi\)
\(272\) −0.487545 + 0.833762i −0.0295617 + 0.0505543i
\(273\) 13.1908 0.798346
\(274\) −5.03038 5.03038i −0.303896 0.303896i
\(275\) 0 0
\(276\) 2.27359i 0.136854i
\(277\) 12.0713 5.00008i 0.725291 0.300425i 0.0106758 0.999943i \(-0.496602\pi\)
0.714615 + 0.699518i \(0.246602\pi\)
\(278\) −6.04013 + 14.5822i −0.362263 + 0.874580i
\(279\) 27.2556 + 11.2896i 1.63175 + 0.675892i
\(280\) 0 0
\(281\) 5.34654 5.34654i 0.318948 0.318948i −0.529415 0.848363i \(-0.677589\pi\)
0.848363 + 0.529415i \(0.177589\pi\)
\(282\) 26.2782 + 10.8848i 1.56484 + 0.648179i
\(283\) 1.57590 3.80456i 0.0936775 0.226157i −0.870095 0.492885i \(-0.835942\pi\)
0.963772 + 0.266727i \(0.0859424\pi\)
\(284\) −4.33232 + 1.79450i −0.257076 + 0.106484i
\(285\) 0 0
\(286\) −5.45262 13.1638i −0.322420 0.778392i
\(287\) 2.63536 + 2.63536i 0.155560 + 0.155560i
\(288\) −29.3944 −1.73208
\(289\) −8.33654 14.8156i −0.490385 0.871506i
\(290\) 0 0
\(291\) −24.2974 24.2974i −1.42434 1.42434i
\(292\) 2.34929 + 5.67169i 0.137482 + 0.331911i
\(293\) 18.5803i 1.08547i −0.839903 0.542736i \(-0.817388\pi\)
0.839903 0.542736i \(-0.182612\pi\)
\(294\) 15.5722 6.45021i 0.908189 0.376184i
\(295\) 0 0
\(296\) −21.1175 8.74714i −1.22743 0.508417i
\(297\) −11.7518 + 11.7518i −0.681909 + 0.681909i
\(298\) −4.74804 + 4.74804i −0.275047 + 0.275047i
\(299\) −3.87966 1.60701i −0.224366 0.0929356i
\(300\) 0 0
\(301\) 8.03036 3.32628i 0.462862 0.191724i
\(302\) 12.2139i 0.702829i
\(303\) 11.0983 + 26.7936i 0.637578 + 1.53925i
\(304\) −0.0336019 0.0336019i −0.00192720 0.00192720i
\(305\) 0 0
\(306\) −9.97708 + 17.0620i −0.570351 + 0.975372i
\(307\) 9.82624 0.560813 0.280407 0.959881i \(-0.409531\pi\)
0.280407 + 0.959881i \(0.409531\pi\)
\(308\) −1.52259 1.52259i −0.0867576 0.0867576i
\(309\) 10.8148 + 26.1093i 0.615234 + 1.48531i
\(310\) 0 0
\(311\) 26.5045 10.9785i 1.50293 0.622536i 0.528849 0.848716i \(-0.322624\pi\)
0.974086 + 0.226180i \(0.0726237\pi\)
\(312\) 19.9767 48.2280i 1.13096 2.73037i
\(313\) −0.894911 0.370684i −0.0505834 0.0209523i 0.357248 0.934009i \(-0.383715\pi\)
−0.407832 + 0.913057i \(0.633715\pi\)
\(314\) −1.76259 + 1.76259i −0.0994689 + 0.0994689i
\(315\) 0 0
\(316\) −15.3465 6.35671i −0.863306 0.357593i
\(317\) −10.1506 + 24.5058i −0.570116 + 1.37638i 0.331341 + 0.943511i \(0.392499\pi\)
−0.901456 + 0.432870i \(0.857501\pi\)
\(318\) −9.32626 + 3.86307i −0.522991 + 0.216630i
\(319\) 19.8676i 1.11237i
\(320\) 0 0
\(321\) −7.77342 7.77342i −0.433870 0.433870i
\(322\) 0.438222 0.0244211
\(323\) 0.809096 0.212005i 0.0450193 0.0117963i
\(324\) −3.80705 −0.211503
\(325\) 0 0
\(326\) −0.478610 1.15547i −0.0265077 0.0639953i
\(327\) 9.24228i 0.511099i
\(328\) 13.6264 5.64423i 0.752391 0.311651i
\(329\) −3.03821 + 7.33489i −0.167502 + 0.404386i
\(330\) 0 0
\(331\) 4.33174 4.33174i 0.238094 0.238094i −0.577967 0.816060i \(-0.696154\pi\)
0.816060 + 0.577967i \(0.196154\pi\)
\(332\) −10.3309 + 10.3309i −0.566981 + 0.566981i
\(333\) −38.9295 16.1251i −2.13333 0.883652i
\(334\) −5.07910 + 12.2620i −0.277916 + 0.670949i
\(335\) 0 0
\(336\) 0.490736i 0.0267718i
\(337\) −6.07517 14.6668i −0.330936 0.798950i −0.998518 0.0544140i \(-0.982671\pi\)
0.667583 0.744536i \(-0.267329\pi\)
\(338\) 17.0309 + 17.0309i 0.926360 + 0.926360i
\(339\) −1.16210 −0.0631167
\(340\) 0 0
\(341\) 13.9260 0.754133
\(342\) −0.687626 0.687626i −0.0371826 0.0371826i
\(343\) 3.74787 + 9.04815i 0.202366 + 0.488554i
\(344\) 34.3978i 1.85461i
\(345\) 0 0
\(346\) 5.10157 12.3163i 0.274262 0.662127i
\(347\) −1.57373 0.651859i −0.0844821 0.0349936i 0.340042 0.940410i \(-0.389559\pi\)
−0.424524 + 0.905417i \(0.639559\pi\)
\(348\) −19.1298 + 19.1298i −1.02547 + 1.02547i
\(349\) 24.9284 24.9284i 1.33439 1.33439i 0.432985 0.901401i \(-0.357460\pi\)
0.901401 0.432985i \(-0.142540\pi\)
\(350\) 0 0
\(351\) 15.9958 38.6172i 0.853791 2.06123i
\(352\) −12.8193 + 5.30994i −0.683273 + 0.283021i
\(353\) 22.4928i 1.19717i −0.801059 0.598586i \(-0.795730\pi\)
0.801059 0.598586i \(-0.204270\pi\)
\(354\) −3.36140 8.11513i −0.178656 0.431314i
\(355\) 0 0
\(356\) 15.4294 0.817755
\(357\) −7.45629 4.36008i −0.394629 0.230760i
\(358\) 12.9037 0.681981
\(359\) −12.7307 12.7307i −0.671898 0.671898i 0.286255 0.958153i \(-0.407590\pi\)
−0.958153 + 0.286255i \(0.907590\pi\)
\(360\) 0 0
\(361\) 18.9588i 0.997834i
\(362\) −5.03038 + 2.08365i −0.264391 + 0.109514i
\(363\) 5.21826 12.5980i 0.273887 0.661223i
\(364\) 5.00333 + 2.07245i 0.262246 + 0.108626i
\(365\) 0 0
\(366\) 2.08967 2.08967i 0.109229 0.109229i
\(367\) 28.9008 + 11.9711i 1.50861 + 0.624887i 0.975271 0.221015i \(-0.0709368\pi\)
0.533340 + 0.845901i \(0.320937\pi\)
\(368\) 0.0597851 0.144334i 0.00311651 0.00752393i
\(369\) 25.1199 10.4050i 1.30769 0.541663i
\(370\) 0 0
\(371\) −1.07828 2.60319i −0.0559814 0.135151i
\(372\) 13.4088 + 13.4088i 0.695213 + 0.695213i
\(373\) 24.3521 1.26091 0.630453 0.776228i \(-0.282869\pi\)
0.630453 + 0.776228i \(0.282869\pi\)
\(374\) −1.26898 + 9.24331i −0.0656175 + 0.477960i
\(375\) 0 0
\(376\) 22.2164 + 22.2164i 1.14573 + 1.14573i
\(377\) −19.1219 46.1644i −0.984830 2.37759i
\(378\) 4.36196i 0.224355i
\(379\) 6.04944 2.50576i 0.310739 0.128712i −0.221864 0.975078i \(-0.571214\pi\)
0.532603 + 0.846365i \(0.321214\pi\)
\(380\) 0 0
\(381\) 5.75348 + 2.38317i 0.294760 + 0.122093i
\(382\) 9.03578 9.03578i 0.462311 0.462311i
\(383\) −13.0036 + 13.0036i −0.664451 + 0.664451i −0.956426 0.291975i \(-0.905688\pi\)
0.291975 + 0.956426i \(0.405688\pi\)
\(384\) −16.3287 6.76355i −0.833269 0.345151i
\(385\) 0 0
\(386\) −19.4374 + 8.05123i −0.989337 + 0.409797i
\(387\) 63.4115i 3.22339i
\(388\) −5.39865 13.0335i −0.274075 0.661676i
\(389\) 1.52050 + 1.52050i 0.0770922 + 0.0770922i 0.744602 0.667509i \(-0.232640\pi\)
−0.667509 + 0.744602i \(0.732640\pi\)
\(390\) 0 0
\(391\) 1.66185 + 2.19076i 0.0840433 + 0.110791i
\(392\) 18.6185 0.940375
\(393\) 16.3921 + 16.3921i 0.826872 + 0.826872i
\(394\) 3.21605 + 7.76423i 0.162022 + 0.391156i
\(395\) 0 0
\(396\) −14.5131 + 6.01154i −0.729313 + 0.302091i
\(397\) −0.148348 + 0.358143i −0.00744535 + 0.0179747i −0.927558 0.373678i \(-0.878097\pi\)
0.920113 + 0.391653i \(0.128097\pi\)
\(398\) −6.31484 2.61569i −0.316534 0.131113i
\(399\) 0.300500 0.300500i 0.0150438 0.0150438i
\(400\) 0 0
\(401\) −15.4465 6.39816i −0.771362 0.319509i −0.0379382 0.999280i \(-0.512079\pi\)
−0.733424 + 0.679771i \(0.762079\pi\)
\(402\) 5.60099 13.5220i 0.279352 0.674415i
\(403\) −32.3584 + 13.4033i −1.61188 + 0.667665i
\(404\) 11.9066i 0.592374i
\(405\) 0 0
\(406\) 3.68717 + 3.68717i 0.182991 + 0.182991i
\(407\) −19.8906 −0.985943
\(408\) −27.2333 + 20.6584i −1.34825 + 1.02274i
\(409\) −15.7306 −0.777828 −0.388914 0.921274i \(-0.627150\pi\)
−0.388914 + 0.921274i \(0.627150\pi\)
\(410\) 0 0
\(411\) −8.67951 20.9542i −0.428129 1.03359i
\(412\) 11.6025i 0.571613i
\(413\) 2.26513 0.938249i 0.111460 0.0461682i
\(414\) 1.22344 2.95364i 0.0601287 0.145164i
\(415\) 0 0
\(416\) 24.6764 24.6764i 1.20986 1.20986i
\(417\) −35.5821 + 35.5821i −1.74246 + 1.74246i
\(418\) −0.424100 0.175668i −0.0207434 0.00859220i
\(419\) −4.06462 + 9.81286i −0.198570 + 0.479390i −0.991529 0.129885i \(-0.958539\pi\)
0.792959 + 0.609274i \(0.208539\pi\)
\(420\) 0 0
\(421\) 17.0231i 0.829656i 0.909900 + 0.414828i \(0.136158\pi\)
−0.909900 + 0.414828i \(0.863842\pi\)
\(422\) −8.63499 20.8467i −0.420345 1.01480i
\(423\) 40.9555 + 40.9555i 1.99132 + 1.99132i
\(424\) −11.1507 −0.541526
\(425\) 0 0
\(426\) 10.3235 0.500178
\(427\) 0.583279 + 0.583279i 0.0282269 + 0.0282269i
\(428\) −1.72718 4.16979i −0.0834865 0.201554i
\(429\) 45.4261i 2.19320i
\(430\) 0 0
\(431\) −7.53530 + 18.1918i −0.362963 + 0.876270i 0.631901 + 0.775049i \(0.282275\pi\)
−0.994864 + 0.101221i \(0.967725\pi\)
\(432\) 1.43667 + 0.595087i 0.0691217 + 0.0286311i
\(433\) 15.5266 15.5266i 0.746159 0.746159i −0.227597 0.973755i \(-0.573087\pi\)
0.973755 + 0.227597i \(0.0730868\pi\)
\(434\) 2.58447 2.58447i 0.124059 0.124059i
\(435\) 0 0
\(436\) −1.45208 + 3.50563i −0.0695419 + 0.167889i
\(437\) −0.124991 + 0.0517732i −0.00597915 + 0.00247665i
\(438\) 13.5152i 0.645779i
\(439\) −3.25235 7.85186i −0.155226 0.374749i 0.827066 0.562105i \(-0.190008\pi\)
−0.982292 + 0.187356i \(0.940008\pi\)
\(440\) 0 0
\(441\) 34.3227 1.63441
\(442\) −5.94777 22.6991i −0.282907 1.07969i
\(443\) −4.70952 −0.223756 −0.111878 0.993722i \(-0.535687\pi\)
−0.111878 + 0.993722i \(0.535687\pi\)
\(444\) −19.1520 19.1520i −0.908912 0.908912i
\(445\) 0 0
\(446\) 10.9984i 0.520791i
\(447\) −19.7781 + 8.19236i −0.935472 + 0.387485i
\(448\) −1.52398 + 3.67923i −0.0720015 + 0.173827i
\(449\) −24.2399 10.0405i −1.14395 0.473839i −0.271449 0.962453i \(-0.587503\pi\)
−0.872500 + 0.488613i \(0.837503\pi\)
\(450\) 0 0
\(451\) 9.07554 9.07554i 0.427351 0.427351i
\(452\) −0.440789 0.182581i −0.0207330 0.00858788i
\(453\) −14.9016 + 35.9756i −0.700138 + 1.69028i
\(454\) −1.65883 + 0.687110i −0.0778528 + 0.0322477i
\(455\) 0 0
\(456\) −0.643591 1.55377i −0.0301389 0.0727618i
\(457\) −14.6247 14.6247i −0.684115 0.684115i 0.276810 0.960925i \(-0.410723\pi\)
−0.960925 + 0.276810i \(0.910723\pi\)
\(458\) −2.07163 −0.0968009
\(459\) −21.8063 + 16.5416i −1.01783 + 0.772098i
\(460\) 0 0
\(461\) −1.37250 1.37250i −0.0639239 0.0639239i 0.674422 0.738346i \(-0.264393\pi\)
−0.738346 + 0.674422i \(0.764393\pi\)
\(462\) 1.81410 + 4.37963i 0.0843996 + 0.203759i
\(463\) 10.6872i 0.496676i 0.968673 + 0.248338i \(0.0798844\pi\)
−0.968673 + 0.248338i \(0.920116\pi\)
\(464\) 1.71744 0.711389i 0.0797304 0.0330254i
\(465\) 0 0
\(466\) −18.9581 7.85269i −0.878216 0.363769i
\(467\) −3.43207 + 3.43207i −0.158817 + 0.158817i −0.782042 0.623225i \(-0.785822\pi\)
0.623225 + 0.782042i \(0.285822\pi\)
\(468\) 27.9368 27.9368i 1.29138 1.29138i
\(469\) 3.77432 + 1.56337i 0.174282 + 0.0721899i
\(470\) 0 0
\(471\) −7.34214 + 3.04121i −0.338308 + 0.140132i
\(472\) 9.70263i 0.446600i
\(473\) −11.4549 27.6547i −0.526699 1.27156i
\(474\) 25.8584 + 25.8584i 1.18772 + 1.18772i
\(475\) 0 0
\(476\) −2.14317 2.82527i −0.0982321 0.129496i
\(477\) −20.5560 −0.941196
\(478\) −8.45458 8.45458i −0.386703 0.386703i
\(479\) 2.91185 + 7.02983i 0.133046 + 0.321201i 0.976337 0.216256i \(-0.0693847\pi\)
−0.843291 + 0.537458i \(0.819385\pi\)
\(480\) 0 0
\(481\) 46.2179 19.1441i 2.10736 0.872895i
\(482\) 1.00282 2.42101i 0.0456770 0.110274i
\(483\) 1.29077 + 0.534655i 0.0587321 + 0.0243276i
\(484\) 3.95860 3.95860i 0.179937 0.179937i
\(485\) 0 0
\(486\) −8.88654 3.68093i −0.403102 0.166970i
\(487\) 0.162865 0.393190i 0.00738010 0.0178171i −0.920147 0.391574i \(-0.871931\pi\)
0.927527 + 0.373757i \(0.121931\pi\)
\(488\) 3.01591 1.24923i 0.136524 0.0565500i
\(489\) 3.98733i 0.180313i
\(490\) 0 0
\(491\) 0.197439 + 0.197439i 0.00891028 + 0.00891028i 0.711548 0.702638i \(-0.247994\pi\)
−0.702638 + 0.711548i \(0.747994\pi\)
\(492\) 17.4770 0.787924
\(493\) −4.45022 + 32.4156i −0.200428 + 1.45992i
\(494\) 1.15451 0.0519440
\(495\) 0 0
\(496\) −0.498639 1.20382i −0.0223895 0.0540531i
\(497\) 2.88156i 0.129256i
\(498\) 29.7161 12.3088i 1.33161 0.551571i
\(499\) 7.08936 17.1152i 0.317363 0.766183i −0.682029 0.731325i \(-0.738902\pi\)
0.999392 0.0348579i \(-0.0110979\pi\)
\(500\) 0 0
\(501\) −29.9207 + 29.9207i −1.33676 + 1.33676i
\(502\) −6.29815 + 6.29815i −0.281100 + 0.281100i
\(503\) 7.50624 + 3.10919i 0.334687 + 0.138632i 0.543697 0.839282i \(-0.317024\pi\)
−0.209010 + 0.977913i \(0.567024\pi\)
\(504\) −4.24508 + 10.2485i −0.189091 + 0.456506i
\(505\) 0 0
\(506\) 1.50913i 0.0670891i
\(507\) 29.3855 + 70.9428i 1.30505 + 3.15068i
\(508\) 1.80789 + 1.80789i 0.0802120 + 0.0802120i
\(509\) 15.1877 0.673181 0.336590 0.941651i \(-0.390726\pi\)
0.336590 + 0.941651i \(0.390726\pi\)
\(510\) 0 0
\(511\) 3.77241 0.166882
\(512\) 1.87113 + 1.87113i 0.0826930 + 0.0826930i
\(513\) −0.515338 1.24414i −0.0227527 0.0549299i
\(514\) 4.78077i 0.210871i
\(515\) 0 0
\(516\) 15.5981 37.6572i 0.686669 1.65777i
\(517\) 25.2596 + 10.4629i 1.11092 + 0.460157i
\(518\) −3.69144 + 3.69144i −0.162193 + 0.162193i
\(519\) 30.0531 30.0531i 1.31918 1.31918i
\(520\) 0 0
\(521\) −14.2931 + 34.5065i −0.626190 + 1.51176i 0.218131 + 0.975919i \(0.430004\pi\)
−0.844321 + 0.535837i \(0.819996\pi\)
\(522\) 35.1457 14.5578i 1.53828 0.637178i
\(523\) 8.03541i 0.351364i 0.984447 + 0.175682i \(0.0562130\pi\)
−0.984447 + 0.175682i \(0.943787\pi\)
\(524\) 3.64217 + 8.79298i 0.159109 + 0.384123i
\(525\) 0 0
\(526\) −11.3706 −0.495780
\(527\) 22.7213 + 3.11932i 0.989754 + 0.135880i
\(528\) 1.68998 0.0735469
\(529\) 15.9490 + 15.9490i 0.693433 + 0.693433i
\(530\) 0 0
\(531\) 17.8866i 0.776210i
\(532\) 0.161193 0.0667683i 0.00698860 0.00289477i
\(533\) −12.3530 + 29.8228i −0.535069 + 1.29177i
\(534\) −31.3825 12.9991i −1.35805 0.562524i
\(535\) 0 0
\(536\) 11.4319 11.4319i 0.493784 0.493784i
\(537\) 38.0075 + 15.7432i 1.64014 + 0.679370i
\(538\) 3.18306 7.68457i 0.137231 0.331306i
\(539\) 14.9686 6.20020i 0.644744 0.267062i
\(540\) 0 0
\(541\) 6.24786 + 15.0837i 0.268616 + 0.648498i 0.999419 0.0340917i \(-0.0108538\pi\)
−0.730802 + 0.682589i \(0.760854\pi\)
\(542\) 9.33259 + 9.33259i 0.400869 + 0.400869i
\(543\) −17.3590 −0.744947
\(544\) −22.1051 + 5.79213i −0.947750 + 0.248336i
\(545\) 0 0
\(546\) −8.43049 8.43049i −0.360792 0.360792i
\(547\) −11.0229 26.6116i −0.471304 1.13783i −0.963587 0.267394i \(-0.913838\pi\)
0.492283 0.870435i \(-0.336162\pi\)
\(548\) 9.31165i 0.397774i
\(549\) 5.55975 2.30292i 0.237284 0.0982864i
\(550\) 0 0
\(551\) −1.48729 0.616054i −0.0633605 0.0262448i
\(552\) 3.90958 3.90958i 0.166403 0.166403i
\(553\) −7.21773 + 7.21773i −0.306929 + 0.306929i
\(554\) −10.9106 4.51931i −0.463546 0.192007i
\(555\) 0 0
\(556\) −19.0868 + 7.90601i −0.809461 + 0.335290i
\(557\) 7.64838i 0.324072i 0.986785 + 0.162036i \(0.0518061\pi\)
−0.986785 + 0.162036i \(0.948194\pi\)
\(558\) −10.2041 24.6349i −0.431974 1.04288i
\(559\) 53.2334 + 53.2334i 2.25153 + 2.25153i
\(560\) 0 0
\(561\) −15.0151 + 25.6777i −0.633938 + 1.08411i
\(562\) −6.83413 −0.288280
\(563\) −29.9736 29.9736i −1.26324 1.26324i −0.949514 0.313724i \(-0.898423\pi\)
−0.313724 0.949514i \(-0.601577\pi\)
\(564\) 14.2472 + 34.3959i 0.599917 + 1.44833i
\(565\) 0 0
\(566\) −3.43874 + 1.42437i −0.144541 + 0.0598709i
\(567\) −0.895263 + 2.16136i −0.0375975 + 0.0907684i
\(568\) 10.5355 + 4.36393i 0.442058 + 0.183107i
\(569\) −21.7924 + 21.7924i −0.913584 + 0.913584i −0.996552 0.0829686i \(-0.973560\pi\)
0.0829686 + 0.996552i \(0.473560\pi\)
\(570\) 0 0
\(571\) −20.3678 8.43662i −0.852366 0.353062i −0.0866487 0.996239i \(-0.527616\pi\)
−0.765717 + 0.643177i \(0.777616\pi\)
\(572\) 7.13702 17.2303i 0.298414 0.720434i
\(573\) 37.6388 15.5905i 1.57238 0.651303i
\(574\) 3.36860i 0.140603i
\(575\) 0 0
\(576\) 20.5435 + 20.5435i 0.855979 + 0.855979i
\(577\) 20.2437 0.842755 0.421378 0.906885i \(-0.361547\pi\)
0.421378 + 0.906885i \(0.361547\pi\)
\(578\) −4.14088 + 14.7969i −0.172238 + 0.615471i
\(579\) −67.0753 −2.78755
\(580\) 0 0
\(581\) 3.43569 + 8.29450i 0.142537 + 0.344114i
\(582\) 31.0577i 1.28738i
\(583\) −8.96478 + 3.71333i −0.371283 + 0.153791i
\(584\) 5.71308 13.7926i 0.236409 0.570742i
\(585\) 0 0
\(586\) −11.8750 + 11.8750i −0.490551 + 0.490551i
\(587\) −9.02526 + 9.02526i −0.372513 + 0.372513i −0.868392 0.495879i \(-0.834846\pi\)
0.495879 + 0.868392i \(0.334846\pi\)
\(588\) 20.3827 + 8.44278i 0.840567 + 0.348174i
\(589\) −0.431815 + 1.04249i −0.0177926 + 0.0429552i
\(590\) 0 0
\(591\) 26.7931i 1.10212i
\(592\) 0.712213 + 1.71943i 0.0292718 + 0.0706683i
\(593\) 2.03582 + 2.03582i 0.0836009 + 0.0836009i 0.747671 0.664070i \(-0.231172\pi\)
−0.664070 + 0.747671i \(0.731172\pi\)
\(594\) 15.0216 0.616342
\(595\) 0 0
\(596\) −8.78902 −0.360012
\(597\) −15.4089 15.4089i −0.630645 0.630645i
\(598\) 1.45249 + 3.50662i 0.0593967 + 0.143396i
\(599\) 12.6720i 0.517762i −0.965909 0.258881i \(-0.916646\pi\)
0.965909 0.258881i \(-0.0833538\pi\)
\(600\) 0 0
\(601\) −5.25226 + 12.6801i −0.214244 + 0.517231i −0.994067 0.108769i \(-0.965309\pi\)
0.779823 + 0.626000i \(0.215309\pi\)
\(602\) −7.25822 3.00645i −0.295823 0.122534i
\(603\) 21.0745 21.0745i 0.858219 0.858219i
\(604\) −11.3045 + 11.3045i −0.459972 + 0.459972i
\(605\) 0 0
\(606\) 10.0311 24.2173i 0.407487 0.983760i
\(607\) −7.20998 + 2.98647i −0.292644 + 0.121217i −0.524175 0.851610i \(-0.675626\pi\)
0.231531 + 0.972827i \(0.425626\pi\)
\(608\) 1.12430i 0.0455965i
\(609\) 6.36191 + 15.3590i 0.257798 + 0.622379i
\(610\) 0 0
\(611\) −68.7635 −2.78187
\(612\) −25.0258 + 6.55744i −1.01161 + 0.265069i
\(613\) −44.7999 −1.80945 −0.904726 0.425994i \(-0.859924\pi\)
−0.904726 + 0.425994i \(0.859924\pi\)
\(614\) −6.28011 6.28011i −0.253445 0.253445i
\(615\) 0 0
\(616\) 5.23638i 0.210980i
\(617\) −19.9388 + 8.25893i −0.802707 + 0.332492i −0.746040 0.665901i \(-0.768047\pi\)
−0.0566667 + 0.998393i \(0.518047\pi\)
\(618\) 9.77495 23.5988i 0.393206 0.949284i
\(619\) 35.6401 + 14.7626i 1.43250 + 0.593360i 0.957967 0.286879i \(-0.0926179\pi\)
0.474530 + 0.880239i \(0.342618\pi\)
\(620\) 0 0
\(621\) 3.13049 3.13049i 0.125622 0.125622i
\(622\) −23.9561 9.92293i −0.960551 0.397873i
\(623\) 3.62836 8.75963i 0.145367 0.350947i
\(624\) −3.92683 + 1.62655i −0.157199 + 0.0651140i
\(625\) 0 0
\(626\) 0.335042 + 0.808864i 0.0133910 + 0.0323287i
\(627\) −1.03485 1.03485i −0.0413280 0.0413280i
\(628\) −3.26271 −0.130196
\(629\) −32.4531 4.45538i −1.29399 0.177647i
\(630\) 0 0
\(631\) 17.1283 + 17.1283i 0.681866 + 0.681866i 0.960420 0.278555i \(-0.0898553\pi\)
−0.278555 + 0.960420i \(0.589855\pi\)
\(632\) 15.4585 + 37.3200i 0.614904 + 1.48451i
\(633\) 71.9387i 2.85931i
\(634\) 22.1495 9.17461i 0.879668 0.364370i
\(635\) 0 0
\(636\) −12.2073 5.05642i −0.484050 0.200500i
\(637\) −28.8136 + 28.8136i −1.14164 + 1.14164i
\(638\) 12.6977 12.6977i 0.502708 0.502708i
\(639\) 19.4219 + 8.04480i 0.768317 + 0.318247i
\(640\) 0 0
\(641\) 40.1257 16.6206i 1.58487 0.656475i 0.595694 0.803211i \(-0.296877\pi\)
0.989176 + 0.146737i \(0.0468770\pi\)
\(642\) 9.93625i 0.392152i
\(643\) 13.5786 + 32.7815i 0.535486 + 1.29278i 0.927845 + 0.372965i \(0.121659\pi\)
−0.392359 + 0.919812i \(0.628341\pi\)
\(644\) 0.405593 + 0.405593i 0.0159826 + 0.0159826i
\(645\) 0 0
\(646\) −0.652603 0.381611i −0.0256763 0.0150143i
\(647\) −28.2269 −1.10971 −0.554857 0.831946i \(-0.687227\pi\)
−0.554857 + 0.831946i \(0.687227\pi\)
\(648\) 6.54647 + 6.54647i 0.257170 + 0.257170i
\(649\) −3.23111 7.80059i −0.126832 0.306200i
\(650\) 0 0
\(651\) 10.7657 4.45930i 0.421941 0.174774i
\(652\) 0.626459 1.51241i 0.0245340 0.0592304i
\(653\) 3.44513 + 1.42702i 0.134818 + 0.0558436i 0.449073 0.893495i \(-0.351754\pi\)
−0.314254 + 0.949339i \(0.601754\pi\)
\(654\) 5.90689 5.90689i 0.230978 0.230978i
\(655\) 0 0
\(656\) −1.10949 0.459567i −0.0433184 0.0179431i
\(657\) 10.5319 25.4263i 0.410889 0.991974i
\(658\) 6.62962 2.74608i 0.258450 0.107053i
\(659\) 16.0238i 0.624200i 0.950049 + 0.312100i \(0.101032\pi\)
−0.950049 + 0.312100i \(0.898968\pi\)
\(660\) 0 0
\(661\) −19.4741 19.4741i −0.757454 0.757454i 0.218404 0.975858i \(-0.429915\pi\)
−0.975858 + 0.218404i \(0.929915\pi\)
\(662\) −5.53698 −0.215201
\(663\) 10.1752 74.1162i 0.395171 2.87844i
\(664\) 35.5292 1.37880
\(665\) 0 0
\(666\) 14.5747 + 35.1864i 0.564757 + 1.36344i
\(667\) 5.29241i 0.204923i
\(668\) −16.0500 + 6.64811i −0.620991 + 0.257223i
\(669\) −13.4187 + 32.3956i −0.518797 + 1.25249i
\(670\) 0 0
\(671\) 2.00868 2.00868i 0.0775441 0.0775441i
\(672\) −8.20989 + 8.20989i −0.316703 + 0.316703i
\(673\) −17.4988 7.24825i −0.674530 0.279400i 0.0190080 0.999819i \(-0.493949\pi\)
−0.693538 + 0.720420i \(0.743949\pi\)
\(674\) −5.49103 + 13.2565i −0.211507 + 0.510622i
\(675\) 0 0
\(676\) 31.5257i 1.21253i
\(677\) −4.05297 9.78472i −0.155768 0.376058i 0.826659 0.562703i \(-0.190238\pi\)
−0.982427 + 0.186645i \(0.940238\pi\)
\(678\) 0.742719 + 0.742719i 0.0285240 + 0.0285240i
\(679\) −8.66898 −0.332685
\(680\) 0 0
\(681\) −5.72436 −0.219358
\(682\) −8.90032 8.90032i −0.340811 0.340811i
\(683\) 17.2457 + 41.6347i 0.659887 + 1.59311i 0.797977 + 0.602688i \(0.205904\pi\)
−0.138090 + 0.990420i \(0.544096\pi\)
\(684\) 1.27285i 0.0486688i
\(685\) 0 0
\(686\) 3.38750 8.17815i 0.129335 0.312243i
\(687\) −6.10193 2.52750i −0.232803 0.0964303i
\(688\) −1.98043 + 1.98043i −0.0755031 + 0.0755031i
\(689\) 17.2566 17.2566i 0.657424 0.657424i
\(690\) 0 0
\(691\) −4.99288 + 12.0539i −0.189938 + 0.458551i −0.989947 0.141437i \(-0.954828\pi\)
0.800009 + 0.599988i \(0.204828\pi\)
\(692\) 16.1209 6.67752i 0.612827 0.253841i
\(693\) 9.65314i 0.366692i
\(694\) 0.589181 + 1.42241i 0.0223650 + 0.0539939i
\(695\) 0 0
\(696\) 65.7899 2.49376
\(697\) 16.8403 12.7746i 0.637872 0.483872i
\(698\) −31.8643 −1.20608
\(699\) −46.2598 46.2598i −1.74971 1.74971i
\(700\) 0 0
\(701\) 4.42228i 0.167027i 0.996507 + 0.0835136i \(0.0266142\pi\)
−0.996507 + 0.0835136i \(0.973386\pi\)
\(702\) −34.9041 + 14.4577i −1.31737 + 0.545672i
\(703\) 0.616767 1.48901i 0.0232618 0.0561590i
\(704\) 12.6704 + 5.24825i 0.477533 + 0.197801i
\(705\) 0 0
\(706\) −14.3755 + 14.3755i −0.541030 + 0.541030i
\(707\) 6.75965 + 2.79994i 0.254223 + 0.105302i
\(708\) 4.39978 10.6220i 0.165354 0.399200i
\(709\) −29.6088 + 12.2644i −1.11198 + 0.460597i −0.861619 0.507555i \(-0.830549\pi\)
−0.250361 + 0.968152i \(0.580549\pi\)
\(710\) 0 0
\(711\) 28.4973 + 68.7985i 1.06873 + 2.58015i
\(712\) −26.5318 26.5318i −0.994321 0.994321i
\(713\) −3.70965 −0.138927
\(714\) 1.97884 + 7.55204i 0.0740561 + 0.282628i
\(715\) 0 0
\(716\) 11.9429 + 11.9429i 0.446327 + 0.446327i
\(717\) −14.5877 35.2178i −0.544787 1.31523i
\(718\) 16.2728i 0.607294i
\(719\) 25.6163 10.6106i 0.955329 0.395710i 0.150098 0.988671i \(-0.452041\pi\)
0.805231 + 0.592961i \(0.202041\pi\)
\(720\) 0 0
\(721\) 6.58702 + 2.72843i 0.245313 + 0.101612i
\(722\) −12.1169 + 12.1169i −0.450945 + 0.450945i
\(723\) 5.90754 5.90754i 0.219704 0.219704i
\(724\) −6.58434 2.72732i −0.244705 0.101360i
\(725\) 0 0
\(726\) −11.3867 + 4.71651i −0.422599 + 0.175046i
\(727\) 10.5407i 0.390934i 0.980710 + 0.195467i \(0.0626222\pi\)
−0.980710 + 0.195467i \(0.937378\pi\)
\(728\) −5.03984 12.1673i −0.186789 0.450948i
\(729\) −28.5105 28.5105i −1.05594 1.05594i
\(730\) 0 0
\(731\) −12.4951 47.6865i −0.462150 1.76375i
\(732\) 3.86816 0.142971
\(733\) −11.6126 11.6126i −0.428920 0.428920i 0.459340 0.888260i \(-0.348086\pi\)
−0.888260 + 0.459340i \(0.848086\pi\)
\(734\) −10.8201 26.1219i −0.399376 0.964178i
\(735\) 0 0
\(736\) 3.41486 1.41448i 0.125873 0.0521385i
\(737\) 5.38389 12.9979i 0.198318 0.478783i
\(738\) −22.7046 9.40454i −0.835767 0.346186i
\(739\) 1.27919 1.27919i 0.0470556 0.0470556i −0.683187 0.730243i \(-0.739407\pi\)
0.730243 + 0.683187i \(0.239407\pi\)
\(740\) 0 0
\(741\) 3.40059 + 1.40857i 0.124924 + 0.0517451i
\(742\) −0.974598 + 2.35289i −0.0357786 + 0.0863773i
\(743\) −39.8234 + 16.4954i −1.46098 + 0.605157i −0.964782 0.263052i \(-0.915271\pi\)
−0.496198 + 0.868210i \(0.665271\pi\)
\(744\) 46.1146i 1.69064i
\(745\) 0 0
\(746\) −15.5639 15.5639i −0.569833 0.569833i
\(747\) 65.4973 2.39642
\(748\) −9.72957 + 7.38058i −0.355748 + 0.269861i
\(749\) −2.77345 −0.101340
\(750\) 0 0
\(751\) −11.2128 27.0700i −0.409160 0.987799i −0.985359 0.170490i \(-0.945465\pi\)
0.576199 0.817309i \(-0.304535\pi\)
\(752\) 2.55819i 0.0932876i
\(753\) −26.2351 + 10.8669i −0.956061 + 0.396013i
\(754\) −17.2833 + 41.7256i −0.629421 + 1.51956i
\(755\) 0 0
\(756\) −4.03717 + 4.03717i −0.146831 + 0.146831i
\(757\) 7.31966 7.31966i 0.266038 0.266038i −0.561464 0.827501i \(-0.689762\pi\)
0.827501 + 0.561464i \(0.189762\pi\)
\(758\) −5.46777 2.26483i −0.198598 0.0822622i
\(759\) 1.84123 4.44511i 0.0668323 0.161347i
\(760\) 0 0
\(761\) 40.0677i 1.45245i 0.687455 + 0.726227i \(0.258728\pi\)
−0.687455 + 0.726227i \(0.741272\pi\)
\(762\) −2.15402 5.20027i −0.0780319 0.188386i
\(763\) 1.64876 + 1.64876i 0.0596891 + 0.0596891i
\(764\) 16.7260 0.605125
\(765\) 0 0
\(766\) 16.6216 0.600562
\(767\) 15.0156 + 15.0156i 0.542182 + 0.542182i
\(768\) 18.1946 + 43.9257i 0.656542 + 1.58503i
\(769\) 40.8532i 1.47320i 0.676327 + 0.736602i \(0.263571\pi\)
−0.676327 + 0.736602i \(0.736429\pi\)
\(770\) 0 0
\(771\) 5.83281 14.0816i 0.210063 0.507138i
\(772\) −25.4419 10.5384i −0.915673 0.379284i
\(773\) 12.0994 12.0994i 0.435183 0.435183i −0.455204 0.890387i \(-0.650434\pi\)
0.890387 + 0.455204i \(0.150434\pi\)
\(774\) −40.5273 + 40.5273i −1.45673 + 1.45673i
\(775\) 0 0
\(776\) −13.1286 + 31.6953i −0.471290 + 1.13779i
\(777\) −15.3768 + 6.36928i −0.551640 + 0.228497i
\(778\) 1.94355i 0.0696796i
\(779\) 0.397979 + 0.960806i 0.0142591 + 0.0344245i
\(780\) 0 0
\(781\) 9.92341 0.355087
\(782\) 0.338036 2.46227i 0.0120881 0.0880504i
\(783\) 52.6794 1.88261
\(784\) −1.07194 1.07194i −0.0382837 0.0382837i
\(785\) 0 0
\(786\) 20.9529i 0.747366i
\(787\) 17.0188 7.04943i 0.606655 0.251285i −0.0581423 0.998308i \(-0.518518\pi\)
0.664798 + 0.747023i \(0.268518\pi\)
\(788\) −4.20953 + 10.1627i −0.149958 + 0.362031i
\(789\) −33.4917 13.8727i −1.19234 0.493882i
\(790\) 0 0
\(791\) −0.207311 + 0.207311i −0.00737114 + 0.00737114i
\(792\) 35.2935 + 14.6191i 1.25410 + 0.519465i
\(793\) −2.73408 + 6.60064i −0.0970899 + 0.234396i
\(794\) 0.323707 0.134084i 0.0114879 0.00475845i
\(795\) 0 0
\(796\) −3.42372 8.26559i −0.121350 0.292966i
\(797\) 20.2228 + 20.2228i 0.716328 + 0.716328i 0.967851 0.251523i \(-0.0809314\pi\)
−0.251523 + 0.967851i \(0.580931\pi\)
\(798\) −0.384109 −0.0135973
\(799\) 38.8694 + 22.7290i 1.37510 + 0.804094i
\(800\) 0 0
\(801\) −48.9107 48.9107i −1.72817 1.72817i
\(802\) 5.78296 + 13.9613i 0.204203 + 0.492991i
\(803\) 12.9913i 0.458453i
\(804\) 17.6991 7.33121i 0.624200 0.258552i
\(805\) 0 0
\(806\) 29.2470 + 12.1145i 1.03018 + 0.426716i
\(807\) 18.7512 18.7512i 0.660074 0.660074i
\(808\) 20.4741 20.4741i 0.720276 0.720276i
\(809\) −25.1095 10.4007i −0.882801 0.365668i −0.105219 0.994449i \(-0.533554\pi\)
−0.777583 + 0.628781i \(0.783554\pi\)
\(810\) 0 0
\(811\) 17.5782 7.28112i 0.617254 0.255675i −0.0520727 0.998643i \(-0.516583\pi\)
0.669326 + 0.742968i \(0.266583\pi\)
\(812\) 6.82526i 0.239520i
\(813\) 16.1026 + 38.8752i 0.564744 + 1.36341i
\(814\) 12.7124 + 12.7124i 0.445571 + 0.445571i
\(815\) 0 0
\(816\) 2.75733 + 0.378544i 0.0965258 + 0.0132517i
\(817\) 2.42541 0.0848545
\(818\) 10.0537 + 10.0537i 0.351519 + 0.351519i
\(819\) −9.29082 22.4300i −0.324648 0.783768i
\(820\) 0 0
\(821\) −26.6213 + 11.0269i −0.929089 + 0.384841i −0.795333 0.606173i \(-0.792704\pi\)
−0.133756 + 0.991014i \(0.542704\pi\)
\(822\) −7.84495 + 18.9394i −0.273624 + 0.660587i
\(823\) 38.5431 + 15.9651i 1.34353 + 0.556507i 0.934483 0.356007i \(-0.115862\pi\)
0.409044 + 0.912514i \(0.365862\pi\)
\(824\) 19.9512 19.9512i 0.695034 0.695034i
\(825\) 0 0
\(826\) −2.04734 0.848034i −0.0712359 0.0295069i
\(827\) −10.3591 + 25.0091i −0.360221 + 0.869650i 0.635046 + 0.772474i \(0.280981\pi\)
−0.995267 + 0.0971760i \(0.969019\pi\)
\(828\) 3.86606 1.60138i 0.134355 0.0556516i
\(829\) 21.8341i 0.758331i −0.925329 0.379165i \(-0.876211\pi\)
0.925329 0.379165i \(-0.123789\pi\)
\(830\) 0 0
\(831\) −26.6230 26.6230i −0.923542 0.923542i
\(832\) −34.4922 −1.19580
\(833\) 25.8112 6.76324i 0.894307 0.234332i
\(834\) 45.4822 1.57492
\(835\) 0 0
\(836\) −0.229934 0.555110i −0.00795244 0.0191989i
\(837\) 36.9250i 1.27631i
\(838\) 8.86933 3.67380i 0.306386 0.126909i
\(839\) 17.4844 42.2111i 0.603629 1.45729i −0.266191 0.963920i \(-0.585765\pi\)
0.869820 0.493369i \(-0.164235\pi\)
\(840\) 0 0
\(841\) 24.0239 24.0239i 0.828411 0.828411i
\(842\) 10.8798 10.8798i 0.374942 0.374942i
\(843\) −20.1298 8.33802i −0.693305 0.287177i
\(844\) 11.3025 27.2866i 0.389047 0.939243i
\(845\) 0 0
\(846\) 52.3506i 1.79985i
\(847\) −1.31649 3.17830i −0.0452353 0.109208i
\(848\) 0.641993 + 0.641993i 0.0220461 + 0.0220461i
\(849\) −11.8665 −0.407259
\(850\) 0 0
\(851\) 5.29854 0.181632
\(852\) 9.55488 + 9.55488i 0.327345 + 0.327345i
\(853\) −0.0371375 0.0896578i −0.00127156 0.00306983i 0.923242 0.384218i \(-0.125529\pi\)
−0.924514 + 0.381148i \(0.875529\pi\)
\(854\) 0.745567i 0.0255128i
\(855\) 0 0
\(856\) −4.20022 + 10.1402i −0.143560 + 0.346585i
\(857\) 43.2082 + 17.8974i 1.47596 + 0.611364i 0.968210 0.250139i \(-0.0804762\pi\)
0.507753 + 0.861503i \(0.330476\pi\)
\(858\) −29.0326 + 29.0326i −0.991157 + 0.991157i
\(859\) −18.6065 + 18.6065i −0.634845 + 0.634845i −0.949279 0.314434i \(-0.898185\pi\)
0.314434 + 0.949279i \(0.398185\pi\)
\(860\) 0 0
\(861\) 4.10988 9.92213i 0.140064 0.338145i
\(862\) 16.4426 6.81077i 0.560039 0.231976i
\(863\) 33.5202i 1.14104i −0.821284 0.570520i \(-0.806742\pi\)
0.821284 0.570520i \(-0.193258\pi\)
\(864\) 14.0794 + 33.9907i 0.478992 + 1.15639i
\(865\) 0 0
\(866\) −19.8466 −0.674414
\(867\) −30.2499 + 38.5319i −1.02734 + 1.30861i
\(868\) 4.78408 0.162382
\(869\) 24.8561 + 24.8561i 0.843187 + 0.843187i
\(870\) 0 0
\(871\) 35.3837i 1.19893i
\(872\) 8.52509 3.53121i 0.288696 0.119582i
\(873\) −24.2023 + 58.4295i −0.819123 + 1.97754i
\(874\) 0.112973 + 0.0467950i 0.00382138 + 0.00158287i
\(875\) 0 0
\(876\) 12.5088 12.5088i 0.422635 0.422635i
\(877\) −3.66588 1.51846i −0.123788 0.0512747i 0.319930 0.947441i \(-0.396341\pi\)
−0.443718 + 0.896167i \(0.646341\pi\)
\(878\) −2.93963 + 7.09689i −0.0992076 + 0.239508i
\(879\) −49.4656 + 20.4893i −1.66843 + 0.691088i
\(880\) 0 0
\(881\) −17.1301 41.3558i −0.577129 1.39331i −0.895378 0.445306i \(-0.853095\pi\)
0.318249 0.948007i \(-0.396905\pi\)
\(882\) −21.9362 21.9362i −0.738630 0.738630i
\(883\) 6.22372 0.209445 0.104722 0.994501i \(-0.466605\pi\)
0.104722 + 0.994501i \(0.466605\pi\)
\(884\) 15.5041 26.5139i 0.521458 0.891759i
\(885\) 0 0
\(886\) 3.00993 + 3.00993i 0.101121 + 0.101121i
\(887\) 6.44546 + 15.5607i 0.216417 + 0.522478i 0.994385 0.105827i \(-0.0337491\pi\)
−0.777967 + 0.628305i \(0.783749\pi\)
\(888\) 65.8661i 2.21032i
\(889\) 1.45152 0.601240i 0.0486825 0.0201650i
\(890\) 0 0
\(891\) 7.44320 + 3.08308i 0.249357 + 0.103287i
\(892\) −10.1795 + 10.1795i −0.340835 + 0.340835i
\(893\) −1.56650 + 1.56650i −0.0524208 + 0.0524208i
\(894\) 17.8764 + 7.40465i 0.597876 + 0.247648i
\(895\) 0 0
\(896\) −4.11950 + 1.70635i −0.137623 + 0.0570052i
\(897\) 12.1008i 0.404033i
\(898\) 9.07506 + 21.9091i 0.302839 + 0.731118i
\(899\) −31.2127 31.2127i −1.04100 1.04100i
\(900\) 0 0
\(901\) −15.4585 + 4.05054i −0.514997 + 0.134943i
\(902\) −11.6007 −0.386260
\(903\) −17.7109 17.7109i −0.589381 0.589381i
\(904\) 0.444006 + 1.07193i 0.0147674 + 0.0356517i
\(905\) 0 0
\(906\) 32.5165 13.4688i 1.08029 0.447470i
\(907\) 11.0738 26.7345i 0.367699 0.887705i −0.626427 0.779480i \(-0.715483\pi\)
0.994126 0.108225i \(-0.0345167\pi\)
\(908\) −2.17127 0.899369i −0.0720561 0.0298466i
\(909\) 37.7435 37.7435i 1.25187 1.25187i
\(910\) 0 0
\(911\) 14.2044 + 5.88367i 0.470614 + 0.194935i 0.605370 0.795944i \(-0.293025\pi\)
−0.134756 + 0.990879i \(0.543025\pi\)
\(912\) −0.0524027 + 0.126511i −0.00173523 + 0.00418921i
\(913\) 28.5643 11.8317i 0.945340 0.391573i
\(914\) 18.6938i 0.618336i
\(915\) 0 0
\(916\) −1.91738 1.91738i −0.0633521 0.0633521i
\(917\) 5.84848 0.193134
\(918\) 24.5088 + 3.36473i 0.808911 + 0.111053i
\(919\) 9.89298 0.326339 0.163170 0.986598i \(-0.447828\pi\)
0.163170 + 0.986598i \(0.447828\pi\)
\(920\) 0 0
\(921\) −10.8358 26.1600i −0.357053 0.862002i
\(922\) 1.75438i 0.0577774i
\(923\) −23.0580 + 9.55095i −0.758964 + 0.314373i
\(924\) −2.37450 + 5.73256i −0.0781154 + 0.188587i
\(925\) 0 0
\(926\) 6.83036 6.83036i 0.224460 0.224460i
\(927\) 36.7796 36.7796i 1.20800 1.20800i
\(928\) 40.6338 + 16.8311i 1.33387 + 0.552507i
\(929\) −2.76136 + 6.66651i −0.0905973 + 0.218721i −0.962683 0.270632i \(-0.912767\pi\)
0.872085 + 0.489354i \(0.162767\pi\)
\(930\) 0 0
\(931\) 1.31280i 0.0430253i
\(932\) −10.2785 24.8145i −0.336684 0.812826i
\(933\) −58.4555 58.4555i −1.91375 1.91375i
\(934\) 4.38699 0.143547
\(935\) 0 0
\(936\) −96.0783 −3.14042
\(937\) 3.46962 + 3.46962i 0.113348 + 0.113348i 0.761506 0.648158i \(-0.224460\pi\)
−0.648158 + 0.761506i \(0.724460\pi\)
\(938\) −1.41305 3.41141i −0.0461378 0.111386i
\(939\) 2.79126i 0.0910892i
\(940\) 0 0
\(941\) 10.0630 24.2941i 0.328043 0.791966i −0.670695 0.741734i \(-0.734004\pi\)
0.998738 0.0502322i \(-0.0159961\pi\)
\(942\) 6.63617 + 2.74879i 0.216218 + 0.0895605i
\(943\) −2.41758 + 2.41758i −0.0787271 + 0.0787271i
\(944\) −0.558622 + 0.558622i −0.0181816 + 0.0181816i
\(945\) 0 0
\(946\) −10.3535 + 24.9956i −0.336622 + 0.812677i
\(947\) 30.5201 12.6418i 0.991770 0.410804i 0.172997 0.984922i \(-0.444655\pi\)
0.818773 + 0.574118i \(0.194655\pi\)
\(948\) 47.8661i 1.55462i
\(949\) 12.5037 + 30.1866i 0.405887 + 0.979899i
\(950\) 0 0
\(951\) 76.4343 2.47855
\(952\) −1.17292 + 8.54356i −0.0380144 + 0.276898i
\(953\) 51.4399 1.66630 0.833151 0.553046i \(-0.186535\pi\)
0.833151 + 0.553046i \(0.186535\pi\)
\(954\) 13.1377 + 13.1377i 0.425349 + 0.425349i
\(955\) 0 0
\(956\) 15.6501i 0.506162i
\(957\) 52.8928 21.9089i 1.70978 0.708215i
\(958\) 2.63187 6.35390i 0.0850319 0.205285i
\(959\) −5.28645 2.18972i −0.170708 0.0707098i
\(960\) 0 0
\(961\) 0.0421545 0.0421545i 0.00135982 0.00135982i
\(962\) −41.7739 17.3033i −1.34685 0.557882i
\(963\) −7.74299 + 18.6932i −0.249514 + 0.602381i
\(964\) 3.16890 1.31260i 0.102063 0.0422760i
\(965\) 0 0
\(966\) −0.483247 1.16666i −0.0155482 0.0375367i
\(967\) −21.4243 21.4243i −0.688960 0.688960i 0.273042 0.962002i \(-0.411970\pi\)
−0.962002 + 0.273042i \(0.911970\pi\)
\(968\) −13.6141 −0.437575
\(969\) −1.45664 1.92024i −0.0467940 0.0616869i
\(970\) 0 0
\(971\) −24.6251 24.6251i −0.790256 0.790256i 0.191279 0.981536i \(-0.438736\pi\)
−0.981536 + 0.191279i \(0.938736\pi\)
\(972\) −4.81802 11.6317i −0.154538 0.373088i
\(973\) 12.6952i 0.406990i
\(974\) −0.355384 + 0.147205i −0.0113872 + 0.00471675i
\(975\) 0 0
\(976\) −0.245562 0.101715i −0.00786025 0.00325582i
\(977\) 14.6363 14.6363i 0.468257 0.468257i −0.433092 0.901349i \(-0.642578\pi\)
0.901349 + 0.433092i \(0.142578\pi\)
\(978\) −2.54837 + 2.54837i −0.0814878 + 0.0814878i
\(979\) −30.1661 12.4952i −0.964113 0.399349i
\(980\) 0 0
\(981\) 15.7158 6.50969i 0.501767 0.207839i
\(982\) 0.252373i 0.00805354i
\(983\) −16.9619 40.9497i −0.541002 1.30609i −0.924017 0.382352i \(-0.875114\pi\)
0.383015 0.923742i \(-0.374886\pi\)
\(984\) −30.0528 30.0528i −0.958050 0.958050i
\(985\) 0 0
\(986\) 23.5616 17.8731i 0.750353 0.569196i
\(987\) 22.8778 0.728207
\(988\) 1.06855 + 1.06855i 0.0339951 + 0.0339951i
\(989\) 3.05141 + 7.36675i 0.0970291 + 0.234249i
\(990\) 0 0
\(991\) 24.1426 10.0002i 0.766915 0.317667i 0.0352929 0.999377i \(-0.488764\pi\)
0.731622 + 0.681710i \(0.238764\pi\)
\(992\) 11.7975 28.4817i 0.374571 0.904295i
\(993\) −16.3090 6.75542i −0.517551 0.214377i
\(994\) 1.84165 1.84165i 0.0584137 0.0584137i
\(995\) 0 0
\(996\) 38.8958 + 16.1112i 1.23246 + 0.510502i
\(997\) −10.0553 + 24.2756i −0.318454 + 0.768816i 0.680882 + 0.732393i \(0.261596\pi\)
−0.999336 + 0.0364232i \(0.988404\pi\)
\(998\) −15.4696 + 6.40770i −0.489681 + 0.202832i
\(999\) 52.7404i 1.66863i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.d.151.3 yes 24
5.2 odd 4 425.2.n.d.49.4 24
5.3 odd 4 425.2.n.e.49.3 24
5.4 even 2 425.2.m.c.151.4 yes 24
17.5 odd 16 7225.2.a.cb.1.14 24
17.8 even 8 inner 425.2.m.d.76.3 yes 24
17.12 odd 16 7225.2.a.cb.1.13 24
85.8 odd 8 425.2.n.d.399.4 24
85.29 odd 16 7225.2.a.bx.1.12 24
85.39 odd 16 7225.2.a.bx.1.11 24
85.42 odd 8 425.2.n.e.399.3 24
85.59 even 8 425.2.m.c.76.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.76.4 24 85.59 even 8
425.2.m.c.151.4 yes 24 5.4 even 2
425.2.m.d.76.3 yes 24 17.8 even 8 inner
425.2.m.d.151.3 yes 24 1.1 even 1 trivial
425.2.n.d.49.4 24 5.2 odd 4
425.2.n.d.399.4 24 85.8 odd 8
425.2.n.e.49.3 24 5.3 odd 4
425.2.n.e.399.3 24 85.42 odd 8
7225.2.a.bx.1.11 24 85.39 odd 16
7225.2.a.bx.1.12 24 85.29 odd 16
7225.2.a.cb.1.13 24 17.12 odd 16
7225.2.a.cb.1.14 24 17.5 odd 16