Properties

Label 425.2.n.d.399.4
Level $425$
Weight $2$
Character 425.399
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 399.4
Character \(\chi\) \(=\) 425.399
Dual form 425.2.n.d.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.639117 + 0.639117i) q^{2} +(-2.66226 - 1.10274i) q^{3} -1.18306i q^{4} +(-0.996713 - 2.40628i) q^{6} +(0.278207 + 0.671652i) q^{7} +(2.03435 - 2.03435i) q^{8} +(3.75027 + 3.75027i) q^{9} +(-0.958080 - 2.31301i) q^{11} +(-1.30461 + 3.14961i) q^{12} -6.29663 q^{13} +(-0.251457 + 0.607071i) q^{14} +0.234252 q^{16} +(-3.55925 + 2.08128i) q^{17} +4.79372i q^{18} +(0.143443 - 0.143443i) q^{19} -2.09490i q^{21} +(0.865959 - 2.09061i) q^{22} +(-0.616148 + 0.255217i) q^{23} +(-7.65933 + 3.17260i) q^{24} +(-4.02428 - 4.02428i) q^{26} +(-2.54037 - 6.13299i) q^{27} +(0.794604 - 0.329136i) q^{28} +(-7.33161 - 3.03685i) q^{29} +(-2.12864 + 5.13900i) q^{31} +(-3.91898 - 3.91898i) q^{32} +7.21436i q^{33} +(-3.60496 - 0.944595i) q^{34} +(4.43679 - 4.43679i) q^{36} +(-7.34010 - 3.04037i) q^{37} +0.183354 q^{38} +(16.7633 + 6.94358i) q^{39} +(-4.73632 + 1.96185i) q^{41} +(1.33889 - 1.33889i) q^{42} +(8.45426 - 8.45426i) q^{43} +(-2.73643 + 1.13347i) q^{44} +(-0.556904 - 0.230677i) q^{46} +10.9207 q^{47} +(-0.623640 - 0.258320i) q^{48} +(4.57603 - 4.57603i) q^{49} +(11.7708 - 1.61597i) q^{51} +7.44929i q^{52} +(2.74061 + 2.74061i) q^{53} +(2.29611 - 5.54329i) q^{54} +(1.93234 + 0.800403i) q^{56} +(-0.540065 + 0.223702i) q^{57} +(-2.74485 - 6.62666i) q^{58} +(2.38470 + 2.38470i) q^{59} +(-1.04828 + 0.434212i) q^{61} +(-4.64487 + 1.92397i) q^{62} +(-1.47552 + 3.56223i) q^{63} -5.47788i q^{64} +(-4.61082 + 4.61082i) q^{66} +5.61946i q^{67} +(2.46228 + 4.21081i) q^{68} +1.92179 q^{69} +(-1.51683 + 3.66196i) q^{71} +15.2587 q^{72} +(1.98578 - 4.79409i) q^{73} +(-2.74803 - 6.63433i) q^{74} +(-0.169702 - 0.169702i) q^{76} +(1.28699 - 1.28699i) q^{77} +(6.27594 + 15.1514i) q^{78} +(-5.37312 - 12.9718i) q^{79} +3.21797i q^{81} +(-4.28091 - 1.77321i) q^{82} +(-8.73235 - 8.73235i) q^{83} -2.47840 q^{84} +10.8065 q^{86} +(16.1698 + 16.1698i) q^{87} +(-6.65453 - 2.75640i) q^{88} +13.0419i q^{89} +(-1.75177 - 4.22914i) q^{91} +(0.301937 + 0.728940i) q^{92} +(11.3340 - 11.3340i) q^{93} +(6.97959 + 6.97959i) q^{94} +(6.11171 + 14.7550i) q^{96} +(4.56330 - 11.0168i) q^{97} +5.84924 q^{98} +(5.08135 - 12.2675i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{3} - 8 q^{6} - 12 q^{9} + 4 q^{11} + 20 q^{12} - 16 q^{13} + 24 q^{14} - 24 q^{16} + 20 q^{19} - 12 q^{22} - 8 q^{23} - 16 q^{24} + 16 q^{26} - 16 q^{27} - 20 q^{28} - 4 q^{29} + 24 q^{31} - 60 q^{32}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.639117 + 0.639117i 0.451924 + 0.451924i 0.895993 0.444069i \(-0.146465\pi\)
−0.444069 + 0.895993i \(0.646465\pi\)
\(3\) −2.66226 1.10274i −1.53706 0.636670i −0.556139 0.831090i \(-0.687718\pi\)
−0.980918 + 0.194420i \(0.937718\pi\)
\(4\) 1.18306i 0.591530i
\(5\) 0 0
\(6\) −0.996713 2.40628i −0.406906 0.982359i
\(7\) 0.278207 + 0.671652i 0.105152 + 0.253861i 0.967695 0.252124i \(-0.0811292\pi\)
−0.862542 + 0.505985i \(0.831129\pi\)
\(8\) 2.03435 2.03435i 0.719250 0.719250i
\(9\) 3.75027 + 3.75027i 1.25009 + 1.25009i
\(10\) 0 0
\(11\) −0.958080 2.31301i −0.288872 0.697399i 0.711112 0.703079i \(-0.248192\pi\)
−0.999984 + 0.00567999i \(0.998192\pi\)
\(12\) −1.30461 + 3.14961i −0.376609 + 0.909215i
\(13\) −6.29663 −1.74637 −0.873186 0.487388i \(-0.837950\pi\)
−0.873186 + 0.487388i \(0.837950\pi\)
\(14\) −0.251457 + 0.607071i −0.0672047 + 0.162247i
\(15\) 0 0
\(16\) 0.234252 0.0585630
\(17\) −3.55925 + 2.08128i −0.863245 + 0.504785i
\(18\) 4.79372i 1.12989i
\(19\) 0.143443 0.143443i 0.0329081 0.0329081i −0.690461 0.723369i \(-0.742592\pi\)
0.723369 + 0.690461i \(0.242592\pi\)
\(20\) 0 0
\(21\) 2.09490i 0.457146i
\(22\) 0.865959 2.09061i 0.184623 0.445719i
\(23\) −0.616148 + 0.255217i −0.128476 + 0.0532164i −0.445995 0.895035i \(-0.647150\pi\)
0.317519 + 0.948252i \(0.397150\pi\)
\(24\) −7.65933 + 3.17260i −1.56345 + 0.647604i
\(25\) 0 0
\(26\) −4.02428 4.02428i −0.789227 0.789227i
\(27\) −2.54037 6.13299i −0.488894 1.18030i
\(28\) 0.794604 0.329136i 0.150166 0.0622008i
\(29\) −7.33161 3.03685i −1.36145 0.563929i −0.421990 0.906600i \(-0.638668\pi\)
−0.939455 + 0.342671i \(0.888668\pi\)
\(30\) 0 0
\(31\) −2.12864 + 5.13900i −0.382315 + 0.922991i 0.609202 + 0.793015i \(0.291490\pi\)
−0.991517 + 0.129976i \(0.958510\pi\)
\(32\) −3.91898 3.91898i −0.692784 0.692784i
\(33\) 7.21436i 1.25586i
\(34\) −3.60496 0.944595i −0.618245 0.161997i
\(35\) 0 0
\(36\) 4.43679 4.43679i 0.739465 0.739465i
\(37\) −7.34010 3.04037i −1.20670 0.499834i −0.313545 0.949573i \(-0.601517\pi\)
−0.893160 + 0.449740i \(0.851517\pi\)
\(38\) 0.183354 0.0297439
\(39\) 16.7633 + 6.94358i 2.68427 + 1.11186i
\(40\) 0 0
\(41\) −4.73632 + 1.96185i −0.739688 + 0.306389i −0.720526 0.693427i \(-0.756100\pi\)
−0.0191619 + 0.999816i \(0.506100\pi\)
\(42\) 1.33889 1.33889i 0.206595 0.206595i
\(43\) 8.45426 8.45426i 1.28926 1.28926i 0.354028 0.935235i \(-0.384812\pi\)
0.935235 0.354028i \(-0.115188\pi\)
\(44\) −2.73643 + 1.13347i −0.412532 + 0.170876i
\(45\) 0 0
\(46\) −0.556904 0.230677i −0.0821110 0.0340115i
\(47\) 10.9207 1.59294 0.796472 0.604675i \(-0.206697\pi\)
0.796472 + 0.604675i \(0.206697\pi\)
\(48\) −0.623640 0.258320i −0.0900147 0.0372853i
\(49\) 4.57603 4.57603i 0.653719 0.653719i
\(50\) 0 0
\(51\) 11.7708 1.61597i 1.64824 0.226281i
\(52\) 7.44929i 1.03303i
\(53\) 2.74061 + 2.74061i 0.376451 + 0.376451i 0.869820 0.493369i \(-0.164235\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(54\) 2.29611 5.54329i 0.312461 0.754347i
\(55\) 0 0
\(56\) 1.93234 + 0.800403i 0.258220 + 0.106958i
\(57\) −0.540065 + 0.223702i −0.0715333 + 0.0296301i
\(58\) −2.74485 6.62666i −0.360417 0.870123i
\(59\) 2.38470 + 2.38470i 0.310462 + 0.310462i 0.845088 0.534626i \(-0.179548\pi\)
−0.534626 + 0.845088i \(0.679548\pi\)
\(60\) 0 0
\(61\) −1.04828 + 0.434212i −0.134219 + 0.0555952i −0.448782 0.893641i \(-0.648142\pi\)
0.314563 + 0.949237i \(0.398142\pi\)
\(62\) −4.64487 + 1.92397i −0.589899 + 0.244344i
\(63\) −1.47552 + 3.56223i −0.185898 + 0.448798i
\(64\) 5.47788i 0.684734i
\(65\) 0 0
\(66\) −4.61082 + 4.61082i −0.567552 + 0.567552i
\(67\) 5.61946i 0.686526i 0.939239 + 0.343263i \(0.111532\pi\)
−0.939239 + 0.343263i \(0.888468\pi\)
\(68\) 2.46228 + 4.21081i 0.298595 + 0.510635i
\(69\) 1.92179 0.231356
\(70\) 0 0
\(71\) −1.51683 + 3.66196i −0.180015 + 0.434595i −0.987969 0.154650i \(-0.950575\pi\)
0.807954 + 0.589245i \(0.200575\pi\)
\(72\) 15.2587 1.79825
\(73\) 1.98578 4.79409i 0.232417 0.561105i −0.764043 0.645165i \(-0.776789\pi\)
0.996461 + 0.0840596i \(0.0267886\pi\)
\(74\) −2.74803 6.63433i −0.319452 0.771225i
\(75\) 0 0
\(76\) −0.169702 0.169702i −0.0194661 0.0194661i
\(77\) 1.28699 1.28699i 0.146666 0.146666i
\(78\) 6.27594 + 15.1514i 0.710610 + 1.71556i
\(79\) −5.37312 12.9718i −0.604523 1.45945i −0.868880 0.495022i \(-0.835160\pi\)
0.264358 0.964425i \(-0.414840\pi\)
\(80\) 0 0
\(81\) 3.21797i 0.357552i
\(82\) −4.28091 1.77321i −0.472747 0.195818i
\(83\) −8.73235 8.73235i −0.958500 0.958500i 0.0406730 0.999173i \(-0.487050\pi\)
−0.999173 + 0.0406730i \(0.987050\pi\)
\(84\) −2.47840 −0.270415
\(85\) 0 0
\(86\) 10.8065 1.16530
\(87\) 16.1698 + 16.1698i 1.73358 + 1.73358i
\(88\) −6.65453 2.75640i −0.709376 0.293833i
\(89\) 13.0419i 1.38244i 0.722644 + 0.691221i \(0.242927\pi\)
−0.722644 + 0.691221i \(0.757073\pi\)
\(90\) 0 0
\(91\) −1.75177 4.22914i −0.183635 0.443335i
\(92\) 0.301937 + 0.728940i 0.0314791 + 0.0759972i
\(93\) 11.3340 11.3340i 1.17528 1.17528i
\(94\) 6.97959 + 6.97959i 0.719890 + 0.719890i
\(95\) 0 0
\(96\) 6.11171 + 14.7550i 0.623774 + 1.50592i
\(97\) 4.56330 11.0168i 0.463333 1.11858i −0.503688 0.863886i \(-0.668024\pi\)
0.967020 0.254699i \(-0.0819763\pi\)
\(98\) 5.84924 0.590862
\(99\) 5.08135 12.2675i 0.510695 1.23293i
\(100\) 0 0
\(101\) −10.0642 −1.00143 −0.500713 0.865613i \(-0.666929\pi\)
−0.500713 + 0.865613i \(0.666929\pi\)
\(102\) 8.55569 + 6.49011i 0.847140 + 0.642617i
\(103\) 9.80719i 0.966331i −0.875529 0.483166i \(-0.839487\pi\)
0.875529 0.483166i \(-0.160513\pi\)
\(104\) −12.8095 + 12.8095i −1.25608 + 1.25608i
\(105\) 0 0
\(106\) 3.50314i 0.340255i
\(107\) 1.45993 3.52458i 0.141137 0.340734i −0.837467 0.546488i \(-0.815965\pi\)
0.978604 + 0.205754i \(0.0659646\pi\)
\(108\) −7.25570 + 3.00541i −0.698180 + 0.289195i
\(109\) 2.96319 1.22739i 0.283822 0.117563i −0.236231 0.971697i \(-0.575912\pi\)
0.520053 + 0.854134i \(0.325912\pi\)
\(110\) 0 0
\(111\) 16.1885 + 16.1885i 1.53655 + 1.53655i
\(112\) 0.0651706 + 0.157336i 0.00615805 + 0.0148668i
\(113\) −0.372584 + 0.154329i −0.0350498 + 0.0145181i −0.400139 0.916454i \(-0.631038\pi\)
0.365090 + 0.930972i \(0.381038\pi\)
\(114\) −0.488136 0.202193i −0.0457181 0.0189371i
\(115\) 0 0
\(116\) −3.59278 + 8.67373i −0.333581 + 0.805335i
\(117\) −23.6141 23.6141i −2.18312 2.18312i
\(118\) 3.04821i 0.280610i
\(119\) −2.38811 1.81155i −0.218917 0.166065i
\(120\) 0 0
\(121\) 3.34607 3.34607i 0.304188 0.304188i
\(122\) −0.947487 0.392462i −0.0857814 0.0355318i
\(123\) 14.7727 1.33201
\(124\) 6.07974 + 2.51831i 0.545976 + 0.226151i
\(125\) 0 0
\(126\) −3.21971 + 1.33365i −0.286835 + 0.118811i
\(127\) −1.52815 + 1.52815i −0.135601 + 0.135601i −0.771649 0.636048i \(-0.780568\pi\)
0.636048 + 0.771649i \(0.280568\pi\)
\(128\) −4.33696 + 4.33696i −0.383336 + 0.383336i
\(129\) −31.8303 + 13.1846i −2.80251 + 1.16084i
\(130\) 0 0
\(131\) −7.43241 3.07860i −0.649372 0.268979i 0.0335863 0.999436i \(-0.489307\pi\)
−0.682959 + 0.730457i \(0.739307\pi\)
\(132\) 8.53501 0.742877
\(133\) 0.136251 + 0.0564370i 0.0118144 + 0.00489371i
\(134\) −3.59149 + 3.59149i −0.310258 + 0.310258i
\(135\) 0 0
\(136\) −3.00670 + 11.4748i −0.257823 + 0.983956i
\(137\) 7.87082i 0.672450i −0.941782 0.336225i \(-0.890850\pi\)
0.941782 0.336225i \(-0.109150\pi\)
\(138\) 1.22825 + 1.22825i 0.104555 + 0.104555i
\(139\) 6.68268 16.1334i 0.566818 1.36842i −0.337405 0.941359i \(-0.609549\pi\)
0.904223 0.427060i \(-0.140451\pi\)
\(140\) 0 0
\(141\) −29.0737 12.0427i −2.44845 1.01418i
\(142\) −3.30986 + 1.37099i −0.277757 + 0.115051i
\(143\) 6.03268 + 14.5642i 0.504478 + 1.21792i
\(144\) 0.878508 + 0.878508i 0.0732090 + 0.0732090i
\(145\) 0 0
\(146\) 4.33312 1.79484i 0.358612 0.148542i
\(147\) −17.2288 + 7.13639i −1.42101 + 0.588600i
\(148\) −3.59694 + 8.68377i −0.295666 + 0.713802i
\(149\) 7.42906i 0.608613i −0.952574 0.304306i \(-0.901575\pi\)
0.952574 0.304306i \(-0.0984246\pi\)
\(150\) 0 0
\(151\) −9.55527 + 9.55527i −0.777597 + 0.777597i −0.979422 0.201825i \(-0.935313\pi\)
0.201825 + 0.979422i \(0.435313\pi\)
\(152\) 0.583627i 0.0473384i
\(153\) −21.1535 5.54278i −1.71016 0.448107i
\(154\) 1.64508 0.132564
\(155\) 0 0
\(156\) 8.21466 19.8320i 0.657699 1.58783i
\(157\) 2.75786 0.220101 0.110051 0.993926i \(-0.464899\pi\)
0.110051 + 0.993926i \(0.464899\pi\)
\(158\) 4.85648 11.7246i 0.386361 0.932757i
\(159\) −4.27402 10.3184i −0.338952 0.818303i
\(160\) 0 0
\(161\) −0.342834 0.342834i −0.0270191 0.0270191i
\(162\) −2.05666 + 2.05666i −0.161586 + 0.161586i
\(163\) 0.529525 + 1.27839i 0.0414756 + 0.100131i 0.943260 0.332056i \(-0.107742\pi\)
−0.901784 + 0.432187i \(0.857742\pi\)
\(164\) 2.32098 + 5.60334i 0.181238 + 0.437548i
\(165\) 0 0
\(166\) 11.1620i 0.866338i
\(167\) 13.5665 + 5.61942i 1.04981 + 0.434844i 0.839822 0.542861i \(-0.182659\pi\)
0.209983 + 0.977705i \(0.432659\pi\)
\(168\) −4.26176 4.26176i −0.328802 0.328802i
\(169\) 26.6476 2.04981
\(170\) 0 0
\(171\) 1.07590 0.0822762
\(172\) −10.0019 10.0019i −0.762637 0.762637i
\(173\) 13.6265 + 5.64428i 1.03600 + 0.429127i 0.834876 0.550439i \(-0.185539\pi\)
0.201127 + 0.979565i \(0.435539\pi\)
\(174\) 20.6688i 1.56689i
\(175\) 0 0
\(176\) −0.224432 0.541828i −0.0169172 0.0408418i
\(177\) −3.71899 8.97842i −0.279536 0.674860i
\(178\) −8.33531 + 8.33531i −0.624758 + 0.624758i
\(179\) 10.0949 + 10.0949i 0.754531 + 0.754531i 0.975321 0.220790i \(-0.0708636\pi\)
−0.220790 + 0.975321i \(0.570864\pi\)
\(180\) 0 0
\(181\) 2.30531 + 5.56552i 0.171353 + 0.413682i 0.986104 0.166129i \(-0.0531267\pi\)
−0.814752 + 0.579810i \(0.803127\pi\)
\(182\) 1.58333 3.82250i 0.117364 0.283343i
\(183\) 3.26962 0.241698
\(184\) −0.734259 + 1.77266i −0.0541303 + 0.130682i
\(185\) 0 0
\(186\) 14.4875 1.06227
\(187\) 8.22408 + 6.23855i 0.601404 + 0.456208i
\(188\) 12.9198i 0.942274i
\(189\) 3.41249 3.41249i 0.248222 0.248222i
\(190\) 0 0
\(191\) 14.1379i 1.02298i −0.859288 0.511492i \(-0.829093\pi\)
0.859288 0.511492i \(-0.170907\pi\)
\(192\) −6.04070 + 14.5835i −0.435950 + 1.05248i
\(193\) −21.5052 + 8.90773i −1.54797 + 0.641192i −0.982949 0.183881i \(-0.941134\pi\)
−0.565026 + 0.825073i \(0.691134\pi\)
\(194\) 9.95749 4.12453i 0.714906 0.296124i
\(195\) 0 0
\(196\) −5.41372 5.41372i −0.386694 0.386694i
\(197\) 3.55817 + 8.59019i 0.253509 + 0.612026i 0.998483 0.0550686i \(-0.0175377\pi\)
−0.744973 + 0.667094i \(0.767538\pi\)
\(198\) 11.0879 4.59277i 0.787984 0.326394i
\(199\) −6.98662 2.89395i −0.495268 0.205147i 0.121046 0.992647i \(-0.461375\pi\)
−0.616315 + 0.787500i \(0.711375\pi\)
\(200\) 0 0
\(201\) 6.19683 14.9605i 0.437090 1.05523i
\(202\) −6.43221 6.43221i −0.452569 0.452569i
\(203\) 5.76916i 0.404916i
\(204\) −1.91179 13.9255i −0.133852 0.974982i
\(205\) 0 0
\(206\) 6.26794 6.26794i 0.436708 0.436708i
\(207\) −3.26785 1.35359i −0.227131 0.0940809i
\(208\) −1.47500 −0.102273
\(209\) −0.469216 0.194356i −0.0324563 0.0134439i
\(210\) 0 0
\(211\) 23.0644 9.55359i 1.58782 0.657697i 0.598192 0.801353i \(-0.295886\pi\)
0.989628 + 0.143656i \(0.0458859\pi\)
\(212\) 3.24230 3.24230i 0.222682 0.222682i
\(213\) 8.07642 8.07642i 0.553387 0.553387i
\(214\) 3.18568 1.31955i 0.217769 0.0902028i
\(215\) 0 0
\(216\) −17.6446 7.30864i −1.20056 0.497290i
\(217\) −4.04382 −0.274512
\(218\) 2.67827 + 1.10938i 0.181395 + 0.0751364i
\(219\) −10.5733 + 10.5733i −0.714478 + 0.714478i
\(220\) 0 0
\(221\) 22.4113 13.1051i 1.50755 0.881542i
\(222\) 20.6927i 1.38880i
\(223\) −8.60440 8.60440i −0.576193 0.576193i 0.357659 0.933852i \(-0.383575\pi\)
−0.933852 + 0.357659i \(0.883575\pi\)
\(224\) 1.54190 3.72248i 0.103023 0.248719i
\(225\) 0 0
\(226\) −0.336759 0.139490i −0.0224009 0.00927876i
\(227\) 1.83530 0.760206i 0.121813 0.0504566i −0.320944 0.947098i \(-0.604000\pi\)
0.442757 + 0.896641i \(0.354000\pi\)
\(228\) 0.264653 + 0.638928i 0.0175271 + 0.0423141i
\(229\) −1.62070 1.62070i −0.107099 0.107099i 0.651527 0.758626i \(-0.274129\pi\)
−0.758626 + 0.651527i \(0.774129\pi\)
\(230\) 0 0
\(231\) −4.84554 + 2.00709i −0.318813 + 0.132057i
\(232\) −21.0930 + 8.73703i −1.38483 + 0.573614i
\(233\) −8.68807 + 20.9749i −0.569174 + 1.37411i 0.333078 + 0.942899i \(0.391913\pi\)
−0.902252 + 0.431209i \(0.858087\pi\)
\(234\) 30.1843i 1.97321i
\(235\) 0 0
\(236\) 2.82125 2.82125i 0.183647 0.183647i
\(237\) 40.4596i 2.62813i
\(238\) −0.368487 2.68407i −0.0238854 0.173982i
\(239\) −13.2285 −0.855683 −0.427841 0.903854i \(-0.640726\pi\)
−0.427841 + 0.903854i \(0.640726\pi\)
\(240\) 0 0
\(241\) 1.10950 2.67856i 0.0714689 0.172541i −0.884108 0.467282i \(-0.845233\pi\)
0.955577 + 0.294741i \(0.0952333\pi\)
\(242\) 4.27706 0.274940
\(243\) −4.07251 + 9.83190i −0.261251 + 0.630717i
\(244\) 0.513699 + 1.24018i 0.0328862 + 0.0793943i
\(245\) 0 0
\(246\) 9.44150 + 9.44150i 0.601968 + 0.601968i
\(247\) −0.903209 + 0.903209i −0.0574698 + 0.0574698i
\(248\) 6.12410 + 14.7849i 0.388881 + 0.938842i
\(249\) 13.6182 + 32.8773i 0.863021 + 2.08352i
\(250\) 0 0
\(251\) 9.85445i 0.622008i 0.950409 + 0.311004i \(0.100665\pi\)
−0.950409 + 0.311004i \(0.899335\pi\)
\(252\) 4.21432 + 1.74563i 0.265477 + 0.109964i
\(253\) 1.18064 + 1.18064i 0.0742261 + 0.0742261i
\(254\) −1.95333 −0.122563
\(255\) 0 0
\(256\) −16.4994 −1.03121
\(257\) −3.74014 3.74014i −0.233303 0.233303i 0.580767 0.814070i \(-0.302753\pi\)
−0.814070 + 0.580767i \(0.802753\pi\)
\(258\) −28.7698 11.9168i −1.79113 0.741910i
\(259\) 5.77584i 0.358893i
\(260\) 0 0
\(261\) −16.1065 38.8845i −0.996967 2.40689i
\(262\) −2.78259 6.71776i −0.171909 0.415025i
\(263\) −8.89552 + 8.89552i −0.548521 + 0.548521i −0.926013 0.377492i \(-0.876787\pi\)
0.377492 + 0.926013i \(0.376787\pi\)
\(264\) 14.6765 + 14.6765i 0.903276 + 0.903276i
\(265\) 0 0
\(266\) 0.0510104 + 0.123150i 0.00312765 + 0.00755081i
\(267\) 14.3819 34.7210i 0.880159 2.12489i
\(268\) 6.64815 0.406101
\(269\) −3.52167 + 8.50207i −0.214720 + 0.518380i −0.994137 0.108125i \(-0.965515\pi\)
0.779417 + 0.626505i \(0.215515\pi\)
\(270\) 0 0
\(271\) −14.6023 −0.887028 −0.443514 0.896267i \(-0.646268\pi\)
−0.443514 + 0.896267i \(0.646268\pi\)
\(272\) −0.833762 + 0.487545i −0.0505543 + 0.0295617i
\(273\) 13.1908i 0.798346i
\(274\) 5.03038 5.03038i 0.303896 0.303896i
\(275\) 0 0
\(276\) 2.27359i 0.136854i
\(277\) 5.00008 12.0713i 0.300425 0.725291i −0.699518 0.714615i \(-0.746602\pi\)
0.999943 0.0106758i \(-0.00339827\pi\)
\(278\) 14.5822 6.04013i 0.874580 0.362263i
\(279\) −27.2556 + 11.2896i −1.63175 + 0.675892i
\(280\) 0 0
\(281\) 5.34654 + 5.34654i 0.318948 + 0.318948i 0.848363 0.529415i \(-0.177589\pi\)
−0.529415 + 0.848363i \(0.677589\pi\)
\(282\) −10.8848 26.2782i −0.648179 1.56484i
\(283\) −3.80456 + 1.57590i −0.226157 + 0.0936775i −0.492885 0.870095i \(-0.664058\pi\)
0.266727 + 0.963772i \(0.414058\pi\)
\(284\) 4.33232 + 1.79450i 0.257076 + 0.106484i
\(285\) 0 0
\(286\) −5.45262 + 13.1638i −0.322420 + 0.778392i
\(287\) −2.63536 2.63536i −0.155560 0.155560i
\(288\) 29.3944i 1.73208i
\(289\) 8.33654 14.8156i 0.490385 0.871506i
\(290\) 0 0
\(291\) −24.2974 + 24.2974i −1.42434 + 1.42434i
\(292\) −5.67169 2.34929i −0.331911 0.137482i
\(293\) −18.5803 −1.08547 −0.542736 0.839903i \(-0.682612\pi\)
−0.542736 + 0.839903i \(0.682612\pi\)
\(294\) −15.5722 6.45021i −0.908189 0.376184i
\(295\) 0 0
\(296\) −21.1175 + 8.74714i −1.22743 + 0.508417i
\(297\) −11.7518 + 11.7518i −0.681909 + 0.681909i
\(298\) 4.74804 4.74804i 0.275047 0.275047i
\(299\) 3.87966 1.60701i 0.224366 0.0929356i
\(300\) 0 0
\(301\) 8.03036 + 3.32628i 0.462862 + 0.191724i
\(302\) −12.2139 −0.702829
\(303\) 26.7936 + 11.0983i 1.53925 + 0.637578i
\(304\) 0.0336019 0.0336019i 0.00192720 0.00192720i
\(305\) 0 0
\(306\) −9.97708 17.0620i −0.570351 0.975372i
\(307\) 9.82624i 0.560813i −0.959881 0.280407i \(-0.909531\pi\)
0.959881 0.280407i \(-0.0904693\pi\)
\(308\) −1.52259 1.52259i −0.0867576 0.0867576i
\(309\) −10.8148 + 26.1093i −0.615234 + 1.48531i
\(310\) 0 0
\(311\) 26.5045 + 10.9785i 1.50293 + 0.622536i 0.974086 0.226180i \(-0.0726237\pi\)
0.528849 + 0.848716i \(0.322624\pi\)
\(312\) 48.2280 19.9767i 2.73037 1.13096i
\(313\) −0.370684 0.894911i −0.0209523 0.0505834i 0.913057 0.407832i \(-0.133715\pi\)
−0.934009 + 0.357248i \(0.883715\pi\)
\(314\) 1.76259 + 1.76259i 0.0994689 + 0.0994689i
\(315\) 0 0
\(316\) −15.3465 + 6.35671i −0.863306 + 0.357593i
\(317\) −24.5058 + 10.1506i −1.37638 + 0.570116i −0.943511 0.331341i \(-0.892499\pi\)
−0.432870 + 0.901456i \(0.642499\pi\)
\(318\) 3.86307 9.32626i 0.216630 0.522991i
\(319\) 19.8676i 1.11237i
\(320\) 0 0
\(321\) −7.77342 + 7.77342i −0.433870 + 0.433870i
\(322\) 0.438222i 0.0244211i
\(323\) −0.212005 + 0.809096i −0.0117963 + 0.0450193i
\(324\) 3.80705 0.211503
\(325\) 0 0
\(326\) −0.478610 + 1.15547i −0.0265077 + 0.0639953i
\(327\) −9.24228 −0.511099
\(328\) −5.64423 + 13.6264i −0.311651 + 0.752391i
\(329\) 3.03821 + 7.33489i 0.167502 + 0.404386i
\(330\) 0 0
\(331\) 4.33174 + 4.33174i 0.238094 + 0.238094i 0.816060 0.577967i \(-0.196154\pi\)
−0.577967 + 0.816060i \(0.696154\pi\)
\(332\) −10.3309 + 10.3309i −0.566981 + 0.566981i
\(333\) −16.1251 38.9295i −0.883652 2.13333i
\(334\) 5.07910 + 12.2620i 0.277916 + 0.670949i
\(335\) 0 0
\(336\) 0.490736i 0.0267718i
\(337\) 14.6668 + 6.07517i 0.798950 + 0.330936i 0.744536 0.667583i \(-0.232671\pi\)
0.0544140 + 0.998518i \(0.482671\pi\)
\(338\) 17.0309 + 17.0309i 0.926360 + 0.926360i
\(339\) 1.16210 0.0631167
\(340\) 0 0
\(341\) 13.9260 0.754133
\(342\) 0.687626 + 0.687626i 0.0371826 + 0.0371826i
\(343\) 9.04815 + 3.74787i 0.488554 + 0.202366i
\(344\) 34.3978i 1.85461i
\(345\) 0 0
\(346\) 5.10157 + 12.3163i 0.274262 + 0.662127i
\(347\) 0.651859 + 1.57373i 0.0349936 + 0.0844821i 0.940410 0.340042i \(-0.110441\pi\)
−0.905417 + 0.424524i \(0.860441\pi\)
\(348\) 19.1298 19.1298i 1.02547 1.02547i
\(349\) −24.9284 24.9284i −1.33439 1.33439i −0.901401 0.432985i \(-0.857460\pi\)
−0.432985 0.901401i \(-0.642540\pi\)
\(350\) 0 0
\(351\) 15.9958 + 38.6172i 0.853791 + 2.06123i
\(352\) −5.30994 + 12.8193i −0.283021 + 0.683273i
\(353\) −22.4928 −1.19717 −0.598586 0.801059i \(-0.704270\pi\)
−0.598586 + 0.801059i \(0.704270\pi\)
\(354\) 3.36140 8.11513i 0.178656 0.431314i
\(355\) 0 0
\(356\) 15.4294 0.817755
\(357\) 4.36008 + 7.45629i 0.230760 + 0.394629i
\(358\) 12.9037i 0.681981i
\(359\) 12.7307 12.7307i 0.671898 0.671898i −0.286255 0.958153i \(-0.592410\pi\)
0.958153 + 0.286255i \(0.0924105\pi\)
\(360\) 0 0
\(361\) 18.9588i 0.997834i
\(362\) −2.08365 + 5.03038i −0.109514 + 0.264391i
\(363\) −12.5980 + 5.21826i −0.661223 + 0.273887i
\(364\) −5.00333 + 2.07245i −0.262246 + 0.108626i
\(365\) 0 0
\(366\) 2.08967 + 2.08967i 0.109229 + 0.109229i
\(367\) −11.9711 28.9008i −0.624887 1.50861i −0.845901 0.533340i \(-0.820937\pi\)
0.221015 0.975271i \(-0.429063\pi\)
\(368\) −0.144334 + 0.0597851i −0.00752393 + 0.00311651i
\(369\) −25.1199 10.4050i −1.30769 0.541663i
\(370\) 0 0
\(371\) −1.07828 + 2.60319i −0.0559814 + 0.135151i
\(372\) −13.4088 13.4088i −0.695213 0.695213i
\(373\) 24.3521i 1.26091i 0.776228 + 0.630453i \(0.217131\pi\)
−0.776228 + 0.630453i \(0.782869\pi\)
\(374\) 1.26898 + 9.24331i 0.0656175 + 0.477960i
\(375\) 0 0
\(376\) 22.2164 22.2164i 1.14573 1.14573i
\(377\) 46.1644 + 19.1219i 2.37759 + 0.984830i
\(378\) 4.36196 0.224355
\(379\) −6.04944 2.50576i −0.310739 0.128712i 0.221864 0.975078i \(-0.428786\pi\)
−0.532603 + 0.846365i \(0.678786\pi\)
\(380\) 0 0
\(381\) 5.75348 2.38317i 0.294760 0.122093i
\(382\) 9.03578 9.03578i 0.462311 0.462311i
\(383\) 13.0036 13.0036i 0.664451 0.664451i −0.291975 0.956426i \(-0.594312\pi\)
0.956426 + 0.291975i \(0.0943124\pi\)
\(384\) 16.3287 6.76355i 0.833269 0.345151i
\(385\) 0 0
\(386\) −19.4374 8.05123i −0.989337 0.409797i
\(387\) 63.4115 3.22339
\(388\) −13.0335 5.39865i −0.661676 0.274075i
\(389\) −1.52050 + 1.52050i −0.0770922 + 0.0770922i −0.744602 0.667509i \(-0.767360\pi\)
0.667509 + 0.744602i \(0.267360\pi\)
\(390\) 0 0
\(391\) 1.66185 2.19076i 0.0840433 0.110791i
\(392\) 18.6185i 0.940375i
\(393\) 16.3921 + 16.3921i 0.826872 + 0.826872i
\(394\) −3.21605 + 7.76423i −0.162022 + 0.391156i
\(395\) 0 0
\(396\) −14.5131 6.01154i −0.729313 0.302091i
\(397\) −0.358143 + 0.148348i −0.0179747 + 0.00744535i −0.391653 0.920113i \(-0.628097\pi\)
0.373678 + 0.927558i \(0.378097\pi\)
\(398\) −2.61569 6.31484i −0.131113 0.316534i
\(399\) −0.300500 0.300500i −0.0150438 0.0150438i
\(400\) 0 0
\(401\) −15.4465 + 6.39816i −0.771362 + 0.319509i −0.733424 0.679771i \(-0.762079\pi\)
−0.0379382 + 0.999280i \(0.512079\pi\)
\(402\) 13.5220 5.60099i 0.674415 0.279352i
\(403\) 13.4033 32.3584i 0.667665 1.61188i
\(404\) 11.9066i 0.592374i
\(405\) 0 0
\(406\) 3.68717 3.68717i 0.182991 0.182991i
\(407\) 19.8906i 0.985943i
\(408\) 20.6584 27.2333i 1.02274 1.34825i
\(409\) 15.7306 0.777828 0.388914 0.921274i \(-0.372850\pi\)
0.388914 + 0.921274i \(0.372850\pi\)
\(410\) 0 0
\(411\) −8.67951 + 20.9542i −0.428129 + 1.03359i
\(412\) −11.6025 −0.571613
\(413\) −0.938249 + 2.26513i −0.0461682 + 0.111460i
\(414\) −1.22344 2.95364i −0.0601287 0.145164i
\(415\) 0 0
\(416\) 24.6764 + 24.6764i 1.20986 + 1.20986i
\(417\) −35.5821 + 35.5821i −1.74246 + 1.74246i
\(418\) −0.175668 0.424100i −0.00859220 0.0207434i
\(419\) 4.06462 + 9.81286i 0.198570 + 0.479390i 0.991529 0.129885i \(-0.0414608\pi\)
−0.792959 + 0.609274i \(0.791461\pi\)
\(420\) 0 0
\(421\) 17.0231i 0.829656i −0.909900 0.414828i \(-0.863842\pi\)
0.909900 0.414828i \(-0.136158\pi\)
\(422\) 20.8467 + 8.63499i 1.01480 + 0.420345i
\(423\) 40.9555 + 40.9555i 1.99132 + 1.99132i
\(424\) 11.1507 0.541526
\(425\) 0 0
\(426\) 10.3235 0.500178
\(427\) −0.583279 0.583279i −0.0282269 0.0282269i
\(428\) −4.16979 1.72718i −0.201554 0.0834865i
\(429\) 45.4261i 2.19320i
\(430\) 0 0
\(431\) −7.53530 18.1918i −0.362963 0.876270i −0.994864 0.101221i \(-0.967725\pi\)
0.631901 0.775049i \(-0.282275\pi\)
\(432\) −0.595087 1.43667i −0.0286311 0.0691217i
\(433\) −15.5266 + 15.5266i −0.746159 + 0.746159i −0.973755 0.227597i \(-0.926913\pi\)
0.227597 + 0.973755i \(0.426913\pi\)
\(434\) −2.58447 2.58447i −0.124059 0.124059i
\(435\) 0 0
\(436\) −1.45208 3.50563i −0.0695419 0.167889i
\(437\) −0.0517732 + 0.124991i −0.00247665 + 0.00597915i
\(438\) −13.5152 −0.645779
\(439\) 3.25235 7.85186i 0.155226 0.374749i −0.827066 0.562105i \(-0.809992\pi\)
0.982292 + 0.187356i \(0.0599918\pi\)
\(440\) 0 0
\(441\) 34.3227 1.63441
\(442\) 22.6991 + 5.94777i 1.07969 + 0.282907i
\(443\) 4.70952i 0.223756i −0.993722 0.111878i \(-0.964313\pi\)
0.993722 0.111878i \(-0.0356866\pi\)
\(444\) 19.1520 19.1520i 0.908912 0.908912i
\(445\) 0 0
\(446\) 10.9984i 0.520791i
\(447\) −8.19236 + 19.7781i −0.387485 + 0.935472i
\(448\) 3.67923 1.52398i 0.173827 0.0720015i
\(449\) 24.2399 10.0405i 1.14395 0.473839i 0.271449 0.962453i \(-0.412497\pi\)
0.872500 + 0.488613i \(0.162497\pi\)
\(450\) 0 0
\(451\) 9.07554 + 9.07554i 0.427351 + 0.427351i
\(452\) 0.182581 + 0.440789i 0.00858788 + 0.0207330i
\(453\) 35.9756 14.9016i 1.69028 0.700138i
\(454\) 1.65883 + 0.687110i 0.0778528 + 0.0322477i
\(455\) 0 0
\(456\) −0.643591 + 1.55377i −0.0301389 + 0.0727618i
\(457\) 14.6247 + 14.6247i 0.684115 + 0.684115i 0.960925 0.276810i \(-0.0892771\pi\)
−0.276810 + 0.960925i \(0.589277\pi\)
\(458\) 2.07163i 0.0968009i
\(459\) 21.8063 + 16.5416i 1.01783 + 0.772098i
\(460\) 0 0
\(461\) −1.37250 + 1.37250i −0.0639239 + 0.0639239i −0.738346 0.674422i \(-0.764393\pi\)
0.674422 + 0.738346i \(0.264393\pi\)
\(462\) −4.37963 1.81410i −0.203759 0.0843996i
\(463\) 10.6872 0.496676 0.248338 0.968673i \(-0.420116\pi\)
0.248338 + 0.968673i \(0.420116\pi\)
\(464\) −1.71744 0.711389i −0.0797304 0.0330254i
\(465\) 0 0
\(466\) −18.9581 + 7.85269i −0.878216 + 0.363769i
\(467\) −3.43207 + 3.43207i −0.158817 + 0.158817i −0.782042 0.623225i \(-0.785822\pi\)
0.623225 + 0.782042i \(0.285822\pi\)
\(468\) −27.9368 + 27.9368i −1.29138 + 1.29138i
\(469\) −3.77432 + 1.56337i −0.174282 + 0.0721899i
\(470\) 0 0
\(471\) −7.34214 3.04121i −0.338308 0.140132i
\(472\) 9.70263 0.446600
\(473\) −27.6547 11.4549i −1.27156 0.526699i
\(474\) −25.8584 + 25.8584i −1.18772 + 1.18772i
\(475\) 0 0
\(476\) −2.14317 + 2.82527i −0.0982321 + 0.129496i
\(477\) 20.5560i 0.941196i
\(478\) −8.45458 8.45458i −0.386703 0.386703i
\(479\) −2.91185 + 7.02983i −0.133046 + 0.321201i −0.976337 0.216256i \(-0.930615\pi\)
0.843291 + 0.537458i \(0.180615\pi\)
\(480\) 0 0
\(481\) 46.2179 + 19.1441i 2.10736 + 0.872895i
\(482\) 2.42101 1.00282i 0.110274 0.0456770i
\(483\) 0.534655 + 1.29077i 0.0243276 + 0.0587321i
\(484\) −3.95860 3.95860i −0.179937 0.179937i
\(485\) 0 0
\(486\) −8.88654 + 3.68093i −0.403102 + 0.166970i
\(487\) 0.393190 0.162865i 0.0178171 0.00738010i −0.373757 0.927527i \(-0.621931\pi\)
0.391574 + 0.920147i \(0.371931\pi\)
\(488\) −1.24923 + 3.01591i −0.0565500 + 0.136524i
\(489\) 3.98733i 0.180313i
\(490\) 0 0
\(491\) 0.197439 0.197439i 0.00891028 0.00891028i −0.702638 0.711548i \(-0.747994\pi\)
0.711548 + 0.702638i \(0.247994\pi\)
\(492\) 17.4770i 0.787924i
\(493\) 32.4156 4.45022i 1.45992 0.200428i
\(494\) −1.15451 −0.0519440
\(495\) 0 0
\(496\) −0.498639 + 1.20382i −0.0223895 + 0.0540531i
\(497\) −2.88156 −0.129256
\(498\) −12.3088 + 29.7161i −0.551571 + 1.33161i
\(499\) −7.08936 17.1152i −0.317363 0.766183i −0.999392 0.0348579i \(-0.988902\pi\)
0.682029 0.731325i \(-0.261098\pi\)
\(500\) 0 0
\(501\) −29.9207 29.9207i −1.33676 1.33676i
\(502\) −6.29815 + 6.29815i −0.281100 + 0.281100i
\(503\) 3.10919 + 7.50624i 0.138632 + 0.334687i 0.977913 0.209010i \(-0.0670242\pi\)
−0.839282 + 0.543697i \(0.817024\pi\)
\(504\) 4.24508 + 10.2485i 0.189091 + 0.456506i
\(505\) 0 0
\(506\) 1.50913i 0.0670891i
\(507\) −70.9428 29.3855i −3.15068 1.30505i
\(508\) 1.80789 + 1.80789i 0.0802120 + 0.0802120i
\(509\) −15.1877 −0.673181 −0.336590 0.941651i \(-0.609274\pi\)
−0.336590 + 0.941651i \(0.609274\pi\)
\(510\) 0 0
\(511\) 3.77241 0.166882
\(512\) −1.87113 1.87113i −0.0826930 0.0826930i
\(513\) −1.24414 0.515338i −0.0549299 0.0227527i
\(514\) 4.78077i 0.210871i
\(515\) 0 0
\(516\) 15.5981 + 37.6572i 0.686669 + 1.65777i
\(517\) −10.4629 25.2596i −0.460157 1.11092i
\(518\) 3.69144 3.69144i 0.162193 0.162193i
\(519\) −30.0531 30.0531i −1.31918 1.31918i
\(520\) 0 0
\(521\) −14.2931 34.5065i −0.626190 1.51176i −0.844321 0.535837i \(-0.819996\pi\)
0.218131 0.975919i \(-0.430004\pi\)
\(522\) 14.5578 35.1457i 0.637178 1.53828i
\(523\) 8.03541 0.351364 0.175682 0.984447i \(-0.443787\pi\)
0.175682 + 0.984447i \(0.443787\pi\)
\(524\) −3.64217 + 8.79298i −0.159109 + 0.384123i
\(525\) 0 0
\(526\) −11.3706 −0.495780
\(527\) −3.11932 22.7213i −0.135880 0.989754i
\(528\) 1.68998i 0.0735469i
\(529\) −15.9490 + 15.9490i −0.693433 + 0.693433i
\(530\) 0 0
\(531\) 17.8866i 0.776210i
\(532\) 0.0667683 0.161193i 0.00289477 0.00698860i
\(533\) 29.8228 12.3530i 1.29177 0.535069i
\(534\) 31.3825 12.9991i 1.35805 0.562524i
\(535\) 0 0
\(536\) 11.4319 + 11.4319i 0.493784 + 0.493784i
\(537\) −15.7432 38.0075i −0.679370 1.64014i
\(538\) −7.68457 + 3.18306i −0.331306 + 0.137231i
\(539\) −14.9686 6.20020i −0.644744 0.267062i
\(540\) 0 0
\(541\) 6.24786 15.0837i 0.268616 0.648498i −0.730802 0.682589i \(-0.760854\pi\)
0.999419 + 0.0340917i \(0.0108538\pi\)
\(542\) −9.33259 9.33259i −0.400869 0.400869i
\(543\) 17.3590i 0.744947i
\(544\) 22.1051 + 5.79213i 0.947750 + 0.248336i
\(545\) 0 0
\(546\) −8.43049 + 8.43049i −0.360792 + 0.360792i
\(547\) 26.6116 + 11.0229i 1.13783 + 0.471304i 0.870435 0.492283i \(-0.163838\pi\)
0.267394 + 0.963587i \(0.413838\pi\)
\(548\) −9.31165 −0.397774
\(549\) −5.55975 2.30292i −0.237284 0.0982864i
\(550\) 0 0
\(551\) −1.48729 + 0.616054i −0.0633605 + 0.0262448i
\(552\) 3.90958 3.90958i 0.166403 0.166403i
\(553\) 7.21773 7.21773i 0.306929 0.306929i
\(554\) 10.9106 4.51931i 0.463546 0.192007i
\(555\) 0 0
\(556\) −19.0868 7.90601i −0.809461 0.335290i
\(557\) −7.64838 −0.324072 −0.162036 0.986785i \(-0.551806\pi\)
−0.162036 + 0.986785i \(0.551806\pi\)
\(558\) −24.6349 10.2041i −1.04288 0.431974i
\(559\) −53.2334 + 53.2334i −2.25153 + 2.25153i
\(560\) 0 0
\(561\) −15.0151 25.6777i −0.633938 1.08411i
\(562\) 6.83413i 0.288280i
\(563\) −29.9736 29.9736i −1.26324 1.26324i −0.949514 0.313724i \(-0.898423\pi\)
−0.313724 0.949514i \(-0.601577\pi\)
\(564\) −14.2472 + 34.3959i −0.599917 + 1.44833i
\(565\) 0 0
\(566\) −3.43874 1.42437i −0.144541 0.0598709i
\(567\) −2.16136 + 0.895263i −0.0907684 + 0.0375975i
\(568\) 4.36393 + 10.5355i 0.183107 + 0.442058i
\(569\) 21.7924 + 21.7924i 0.913584 + 0.913584i 0.996552 0.0829686i \(-0.0264401\pi\)
−0.0829686 + 0.996552i \(0.526440\pi\)
\(570\) 0 0
\(571\) −20.3678 + 8.43662i −0.852366 + 0.353062i −0.765717 0.643177i \(-0.777616\pi\)
−0.0866487 + 0.996239i \(0.527616\pi\)
\(572\) 17.2303 7.13702i 0.720434 0.298414i
\(573\) −15.5905 + 37.6388i −0.651303 + 1.57238i
\(574\) 3.36860i 0.140603i
\(575\) 0 0
\(576\) 20.5435 20.5435i 0.855979 0.855979i
\(577\) 20.2437i 0.842755i −0.906885 0.421378i \(-0.861547\pi\)
0.906885 0.421378i \(-0.138453\pi\)
\(578\) 14.7969 4.14088i 0.615471 0.172238i
\(579\) 67.0753 2.78755
\(580\) 0 0
\(581\) 3.43569 8.29450i 0.142537 0.344114i
\(582\) −31.0577 −1.28738
\(583\) 3.71333 8.96478i 0.153791 0.371283i
\(584\) −5.71308 13.7926i −0.236409 0.570742i
\(585\) 0 0
\(586\) −11.8750 11.8750i −0.490551 0.490551i
\(587\) −9.02526 + 9.02526i −0.372513 + 0.372513i −0.868392 0.495879i \(-0.834846\pi\)
0.495879 + 0.868392i \(0.334846\pi\)
\(588\) 8.44278 + 20.3827i 0.348174 + 0.840567i
\(589\) 0.431815 + 1.04249i 0.0177926 + 0.0429552i
\(590\) 0 0
\(591\) 26.7931i 1.10212i
\(592\) −1.71943 0.712213i −0.0706683 0.0292718i
\(593\) 2.03582 + 2.03582i 0.0836009 + 0.0836009i 0.747671 0.664070i \(-0.231172\pi\)
−0.664070 + 0.747671i \(0.731172\pi\)
\(594\) −15.0216 −0.616342
\(595\) 0 0
\(596\) −8.78902 −0.360012
\(597\) 15.4089 + 15.4089i 0.630645 + 0.630645i
\(598\) 3.50662 + 1.45249i 0.143396 + 0.0593967i
\(599\) 12.6720i 0.517762i −0.965909 0.258881i \(-0.916646\pi\)
0.965909 0.258881i \(-0.0833538\pi\)
\(600\) 0 0
\(601\) −5.25226 12.6801i −0.214244 0.517231i 0.779823 0.626000i \(-0.215309\pi\)
−0.994067 + 0.108769i \(0.965309\pi\)
\(602\) 3.00645 + 7.25822i 0.122534 + 0.295823i
\(603\) −21.0745 + 21.0745i −0.858219 + 0.858219i
\(604\) 11.3045 + 11.3045i 0.459972 + 0.459972i
\(605\) 0 0
\(606\) 10.0311 + 24.2173i 0.407487 + 0.983760i
\(607\) −2.98647 + 7.20998i −0.121217 + 0.292644i −0.972827 0.231531i \(-0.925626\pi\)
0.851610 + 0.524175i \(0.175626\pi\)
\(608\) −1.12430 −0.0455965
\(609\) −6.36191 + 15.3590i −0.257798 + 0.622379i
\(610\) 0 0
\(611\) −68.7635 −2.78187
\(612\) −6.55744 + 25.0258i −0.265069 + 1.01161i
\(613\) 44.7999i 1.80945i −0.425994 0.904726i \(-0.640076\pi\)
0.425994 0.904726i \(-0.359924\pi\)
\(614\) 6.28011 6.28011i 0.253445 0.253445i
\(615\) 0 0
\(616\) 5.23638i 0.210980i
\(617\) −8.25893 + 19.9388i −0.332492 + 0.802707i 0.665901 + 0.746040i \(0.268047\pi\)
−0.998393 + 0.0566667i \(0.981953\pi\)
\(618\) −23.5988 + 9.77495i −0.949284 + 0.393206i
\(619\) −35.6401 + 14.7626i −1.43250 + 0.593360i −0.957967 0.286879i \(-0.907382\pi\)
−0.474530 + 0.880239i \(0.657382\pi\)
\(620\) 0 0
\(621\) 3.13049 + 3.13049i 0.125622 + 0.125622i
\(622\) 9.92293 + 23.9561i 0.397873 + 0.960551i
\(623\) −8.75963 + 3.62836i −0.350947 + 0.145367i
\(624\) 3.92683 + 1.62655i 0.157199 + 0.0651140i
\(625\) 0 0
\(626\) 0.335042 0.808864i 0.0133910 0.0323287i
\(627\) 1.03485 + 1.03485i 0.0413280 + 0.0413280i
\(628\) 3.26271i 0.130196i
\(629\) 32.4531 4.45538i 1.29399 0.177647i
\(630\) 0 0
\(631\) 17.1283 17.1283i 0.681866 0.681866i −0.278555 0.960420i \(-0.589855\pi\)
0.960420 + 0.278555i \(0.0898553\pi\)
\(632\) −37.3200 15.4585i −1.48451 0.614904i
\(633\) −71.9387 −2.85931
\(634\) −22.1495 9.17461i −0.879668 0.364370i
\(635\) 0 0
\(636\) −12.2073 + 5.05642i −0.484050 + 0.200500i
\(637\) −28.8136 + 28.8136i −1.14164 + 1.14164i
\(638\) −12.6977 + 12.6977i −0.502708 + 0.502708i
\(639\) −19.4219 + 8.04480i −0.768317 + 0.318247i
\(640\) 0 0
\(641\) 40.1257 + 16.6206i 1.58487 + 0.656475i 0.989176 0.146737i \(-0.0468770\pi\)
0.595694 + 0.803211i \(0.296877\pi\)
\(642\) −9.93625 −0.392152
\(643\) 32.7815 + 13.5786i 1.29278 + 0.535486i 0.919812 0.392359i \(-0.128341\pi\)
0.372965 + 0.927845i \(0.378341\pi\)
\(644\) −0.405593 + 0.405593i −0.0159826 + 0.0159826i
\(645\) 0 0
\(646\) −0.652603 + 0.381611i −0.0256763 + 0.0150143i
\(647\) 28.2269i 1.10971i 0.831946 + 0.554857i \(0.187227\pi\)
−0.831946 + 0.554857i \(0.812773\pi\)
\(648\) 6.54647 + 6.54647i 0.257170 + 0.257170i
\(649\) 3.23111 7.80059i 0.126832 0.306200i
\(650\) 0 0
\(651\) 10.7657 + 4.45930i 0.421941 + 0.174774i
\(652\) 1.51241 0.626459i 0.0592304 0.0245340i
\(653\) 1.42702 + 3.44513i 0.0558436 + 0.134818i 0.949339 0.314254i \(-0.101754\pi\)
−0.893495 + 0.449073i \(0.851754\pi\)
\(654\) −5.90689 5.90689i −0.230978 0.230978i
\(655\) 0 0
\(656\) −1.10949 + 0.459567i −0.0433184 + 0.0179431i
\(657\) 25.4263 10.5319i 0.991974 0.410889i
\(658\) −2.74608 + 6.62962i −0.107053 + 0.258450i
\(659\) 16.0238i 0.624200i 0.950049 + 0.312100i \(0.101032\pi\)
−0.950049 + 0.312100i \(0.898968\pi\)
\(660\) 0 0
\(661\) −19.4741 + 19.4741i −0.757454 + 0.757454i −0.975858 0.218404i \(-0.929915\pi\)
0.218404 + 0.975858i \(0.429915\pi\)
\(662\) 5.53698i 0.215201i
\(663\) −74.1162 + 10.1752i −2.87844 + 0.395171i
\(664\) −35.5292 −1.37880
\(665\) 0 0
\(666\) 14.5747 35.1864i 0.564757 1.36344i
\(667\) 5.29241 0.204923
\(668\) 6.64811 16.0500i 0.257223 0.620991i
\(669\) 13.4187 + 32.3956i 0.518797 + 1.25249i
\(670\) 0 0
\(671\) 2.00868 + 2.00868i 0.0775441 + 0.0775441i
\(672\) −8.20989 + 8.20989i −0.316703 + 0.316703i
\(673\) −7.24825 17.4988i −0.279400 0.674530i 0.720420 0.693538i \(-0.243949\pi\)
−0.999819 + 0.0190080i \(0.993949\pi\)
\(674\) 5.49103 + 13.2565i 0.211507 + 0.510622i
\(675\) 0 0
\(676\) 31.5257i 1.21253i
\(677\) 9.78472 + 4.05297i 0.376058 + 0.155768i 0.562703 0.826659i \(-0.309762\pi\)
−0.186645 + 0.982427i \(0.559762\pi\)
\(678\) 0.742719 + 0.742719i 0.0285240 + 0.0285240i
\(679\) 8.66898 0.332685
\(680\) 0 0
\(681\) −5.72436 −0.219358
\(682\) 8.90032 + 8.90032i 0.340811 + 0.340811i
\(683\) 41.6347 + 17.2457i 1.59311 + 0.659887i 0.990420 0.138090i \(-0.0440963\pi\)
0.602688 + 0.797977i \(0.294096\pi\)
\(684\) 1.27285i 0.0486688i
\(685\) 0 0
\(686\) 3.38750 + 8.17815i 0.129335 + 0.312243i
\(687\) 2.52750 + 6.10193i 0.0964303 + 0.232803i
\(688\) 1.98043 1.98043i 0.0755031 0.0755031i
\(689\) −17.2566 17.2566i −0.657424 0.657424i
\(690\) 0 0
\(691\) −4.99288 12.0539i −0.189938 0.458551i 0.800009 0.599988i \(-0.204828\pi\)
−0.989947 + 0.141437i \(0.954828\pi\)
\(692\) 6.67752 16.1209i 0.253841 0.612827i
\(693\) 9.65314 0.366692
\(694\) −0.589181 + 1.42241i −0.0223650 + 0.0539939i
\(695\) 0 0
\(696\) 65.7899 2.49376
\(697\) 12.7746 16.8403i 0.483872 0.637872i
\(698\) 31.8643i 1.20608i
\(699\) 46.2598 46.2598i 1.74971 1.74971i
\(700\) 0 0
\(701\) 4.42228i 0.167027i −0.996507 0.0835136i \(-0.973386\pi\)
0.996507 0.0835136i \(-0.0266142\pi\)
\(702\) −14.4577 + 34.9041i −0.545672 + 1.31737i
\(703\) −1.48901 + 0.616767i −0.0561590 + 0.0232618i
\(704\) −12.6704 + 5.24825i −0.477533 + 0.197801i
\(705\) 0 0
\(706\) −14.3755 14.3755i −0.541030 0.541030i
\(707\) −2.79994 6.75965i −0.105302 0.254223i
\(708\) −10.6220 + 4.39978i −0.399200 + 0.165354i
\(709\) 29.6088 + 12.2644i 1.11198 + 0.460597i 0.861619 0.507555i \(-0.169451\pi\)
0.250361 + 0.968152i \(0.419451\pi\)
\(710\) 0 0
\(711\) 28.4973 68.7985i 1.06873 2.58015i
\(712\) 26.5318 + 26.5318i 0.994321 + 0.994321i
\(713\) 3.70965i 0.138927i
\(714\) −1.97884 + 7.55204i −0.0740561 + 0.282628i
\(715\) 0 0
\(716\) 11.9429 11.9429i 0.446327 0.446327i
\(717\) 35.2178 + 14.5877i 1.31523 + 0.544787i
\(718\) 16.2728 0.607294
\(719\) −25.6163 10.6106i −0.955329 0.395710i −0.150098 0.988671i \(-0.547959\pi\)
−0.805231 + 0.592961i \(0.797959\pi\)
\(720\) 0 0
\(721\) 6.58702 2.72843i 0.245313 0.101612i
\(722\) −12.1169 + 12.1169i −0.450945 + 0.450945i
\(723\) −5.90754 + 5.90754i −0.219704 + 0.219704i
\(724\) 6.58434 2.72732i 0.244705 0.101360i
\(725\) 0 0
\(726\) −11.3867 4.71651i −0.422599 0.175046i
\(727\) −10.5407 −0.390934 −0.195467 0.980710i \(-0.562622\pi\)
−0.195467 + 0.980710i \(0.562622\pi\)
\(728\) −12.1673 5.03984i −0.450948 0.186789i
\(729\) 28.5105 28.5105i 1.05594 1.05594i
\(730\) 0 0
\(731\) −12.4951 + 47.6865i −0.462150 + 1.76375i
\(732\) 3.86816i 0.142971i
\(733\) −11.6126 11.6126i −0.428920 0.428920i 0.459340 0.888260i \(-0.348086\pi\)
−0.888260 + 0.459340i \(0.848086\pi\)
\(734\) 10.8201 26.1219i 0.399376 0.964178i
\(735\) 0 0
\(736\) 3.41486 + 1.41448i 0.125873 + 0.0521385i
\(737\) 12.9979 5.38389i 0.478783 0.198318i
\(738\) −9.40454 22.7046i −0.346186 0.835767i
\(739\) −1.27919 1.27919i −0.0470556 0.0470556i 0.683187 0.730243i \(-0.260593\pi\)
−0.730243 + 0.683187i \(0.760593\pi\)
\(740\) 0 0
\(741\) 3.40059 1.40857i 0.124924 0.0517451i
\(742\) −2.35289 + 0.974598i −0.0863773 + 0.0357786i
\(743\) 16.4954 39.8234i 0.605157 1.46098i −0.263052 0.964782i \(-0.584729\pi\)
0.868210 0.496198i \(-0.165271\pi\)
\(744\) 46.1146i 1.69064i
\(745\) 0 0
\(746\) −15.5639 + 15.5639i −0.569833 + 0.569833i
\(747\) 65.4973i 2.39642i
\(748\) 7.38058 9.72957i 0.269861 0.355748i
\(749\) 2.77345 0.101340
\(750\) 0 0
\(751\) −11.2128 + 27.0700i −0.409160 + 0.987799i 0.576199 + 0.817309i \(0.304535\pi\)
−0.985359 + 0.170490i \(0.945465\pi\)
\(752\) 2.55819 0.0932876
\(753\) 10.8669 26.2351i 0.396013 0.956061i
\(754\) 17.2833 + 41.7256i 0.629421 + 1.51956i
\(755\) 0 0
\(756\) −4.03717 4.03717i −0.146831 0.146831i
\(757\) 7.31966 7.31966i 0.266038 0.266038i −0.561464 0.827501i \(-0.689762\pi\)
0.827501 + 0.561464i \(0.189762\pi\)
\(758\) −2.26483 5.46777i −0.0822622 0.198598i
\(759\) −1.84123 4.44511i −0.0668323 0.161347i
\(760\) 0 0
\(761\) 40.0677i 1.45245i −0.687455 0.726227i \(-0.741272\pi\)
0.687455 0.726227i \(-0.258728\pi\)
\(762\) 5.20027 + 2.15402i 0.188386 + 0.0780319i
\(763\) 1.64876 + 1.64876i 0.0596891 + 0.0596891i
\(764\) −16.7260 −0.605125
\(765\) 0 0
\(766\) 16.6216 0.600562
\(767\) −15.0156 15.0156i −0.542182 0.542182i
\(768\) 43.9257 + 18.1946i 1.58503 + 0.656542i
\(769\) 40.8532i 1.47320i 0.676327 + 0.736602i \(0.263571\pi\)
−0.676327 + 0.736602i \(0.736429\pi\)
\(770\) 0 0
\(771\) 5.83281 + 14.0816i 0.210063 + 0.507138i
\(772\) 10.5384 + 25.4419i 0.379284 + 0.915673i
\(773\) −12.0994 + 12.0994i −0.435183 + 0.435183i −0.890387 0.455204i \(-0.849566\pi\)
0.455204 + 0.890387i \(0.349566\pi\)
\(774\) 40.5273 + 40.5273i 1.45673 + 1.45673i
\(775\) 0 0
\(776\) −13.1286 31.6953i −0.471290 1.13779i
\(777\) −6.36928 + 15.3768i −0.228497 + 0.551640i
\(778\) −1.94355 −0.0696796
\(779\) −0.397979 + 0.960806i −0.0142591 + 0.0344245i
\(780\) 0 0
\(781\) 9.92341 0.355087
\(782\) 2.46227 0.338036i 0.0880504 0.0120881i
\(783\) 52.6794i 1.88261i
\(784\) 1.07194 1.07194i 0.0382837 0.0382837i
\(785\) 0 0
\(786\) 20.9529i 0.747366i
\(787\) 7.04943 17.0188i 0.251285 0.606655i −0.747023 0.664798i \(-0.768518\pi\)
0.998308 + 0.0581423i \(0.0185177\pi\)
\(788\) 10.1627 4.20953i 0.362031 0.149958i
\(789\) 33.4917 13.8727i 1.19234 0.493882i
\(790\) 0 0
\(791\) −0.207311 0.207311i −0.00737114 0.00737114i
\(792\) −14.6191 35.2935i −0.519465 1.25410i
\(793\) 6.60064 2.73408i 0.234396 0.0970899i
\(794\) −0.323707 0.134084i −0.0114879 0.00475845i
\(795\) 0 0
\(796\) −3.42372 + 8.26559i −0.121350 + 0.292966i
\(797\) −20.2228 20.2228i −0.716328 0.716328i 0.251523 0.967851i \(-0.419069\pi\)
−0.967851 + 0.251523i \(0.919069\pi\)
\(798\) 0.384109i 0.0135973i
\(799\) −38.8694 + 22.7290i −1.37510 + 0.804094i
\(800\) 0 0
\(801\) −48.9107 + 48.9107i −1.72817 + 1.72817i
\(802\) −13.9613 5.78296i −0.492991 0.204203i
\(803\) −12.9913 −0.458453
\(804\) −17.6991 7.33121i −0.624200 0.258552i
\(805\) 0 0
\(806\) 29.2470 12.1145i 1.03018 0.426716i
\(807\) 18.7512 18.7512i 0.660074 0.660074i
\(808\) −20.4741 + 20.4741i −0.720276 + 0.720276i
\(809\) 25.1095 10.4007i 0.882801 0.365668i 0.105219 0.994449i \(-0.466446\pi\)
0.777583 + 0.628781i \(0.216446\pi\)
\(810\) 0 0
\(811\) 17.5782 + 7.28112i 0.617254 + 0.255675i 0.669326 0.742968i \(-0.266583\pi\)
−0.0520727 + 0.998643i \(0.516583\pi\)
\(812\) −6.82526 −0.239520
\(813\) 38.8752 + 16.1026i 1.36341 + 0.564744i
\(814\) −12.7124 + 12.7124i −0.445571 + 0.445571i
\(815\) 0 0
\(816\) 2.75733 0.378544i 0.0965258 0.0132517i
\(817\) 2.42541i 0.0848545i
\(818\) 10.0537 + 10.0537i 0.351519 + 0.351519i
\(819\) 9.29082 22.4300i 0.324648 0.783768i
\(820\) 0 0
\(821\) −26.6213 11.0269i −0.929089 0.384841i −0.133756 0.991014i \(-0.542704\pi\)
−0.795333 + 0.606173i \(0.792704\pi\)
\(822\) −18.9394 + 7.84495i −0.660587 + 0.273624i
\(823\) 15.9651 + 38.5431i 0.556507 + 1.34353i 0.912514 + 0.409044i \(0.134138\pi\)
−0.356007 + 0.934483i \(0.615862\pi\)
\(824\) −19.9512 19.9512i −0.695034 0.695034i
\(825\) 0 0
\(826\) −2.04734 + 0.848034i −0.0712359 + 0.0295069i
\(827\) −25.0091 + 10.3591i −0.869650 + 0.360221i −0.772474 0.635046i \(-0.780981\pi\)
−0.0971760 + 0.995267i \(0.530981\pi\)
\(828\) −1.60138 + 3.86606i −0.0556516 + 0.134355i
\(829\) 21.8341i 0.758331i −0.925329 0.379165i \(-0.876211\pi\)
0.925329 0.379165i \(-0.123789\pi\)
\(830\) 0 0
\(831\) −26.6230 + 26.6230i −0.923542 + 0.923542i
\(832\) 34.4922i 1.19580i
\(833\) −6.76324 + 25.8112i −0.234332 + 0.894307i
\(834\) −45.4822 −1.57492
\(835\) 0 0
\(836\) −0.229934 + 0.555110i −0.00795244 + 0.0191989i
\(837\) 36.9250 1.27631
\(838\) −3.67380 + 8.86933i −0.126909 + 0.306386i
\(839\) −17.4844 42.2111i −0.603629 1.45729i −0.869820 0.493369i \(-0.835765\pi\)
0.266191 0.963920i \(-0.414235\pi\)
\(840\) 0 0
\(841\) 24.0239 + 24.0239i 0.828411 + 0.828411i
\(842\) 10.8798 10.8798i 0.374942 0.374942i
\(843\) −8.33802 20.1298i −0.287177 0.693305i
\(844\) −11.3025 27.2866i −0.389047 0.939243i
\(845\) 0 0
\(846\) 52.3506i 1.79985i
\(847\) 3.17830 + 1.31649i 0.109208 + 0.0452353i
\(848\) 0.641993 + 0.641993i 0.0220461 + 0.0220461i
\(849\) 11.8665 0.407259
\(850\) 0 0
\(851\) 5.29854 0.181632
\(852\) −9.55488 9.55488i −0.327345 0.327345i
\(853\) −0.0896578 0.0371375i −0.00306983 0.00127156i 0.381148 0.924514i \(-0.375529\pi\)
−0.384218 + 0.923242i \(0.625529\pi\)
\(854\) 0.745567i 0.0255128i
\(855\) 0 0
\(856\) −4.20022 10.1402i −0.143560 0.346585i
\(857\) −17.8974 43.2082i −0.611364 1.47596i −0.861503 0.507753i \(-0.830476\pi\)
0.250139 0.968210i \(-0.419524\pi\)
\(858\) 29.0326 29.0326i 0.991157 0.991157i
\(859\) 18.6065 + 18.6065i 0.634845 + 0.634845i 0.949279 0.314434i \(-0.101815\pi\)
−0.314434 + 0.949279i \(0.601815\pi\)
\(860\) 0 0
\(861\) 4.10988 + 9.92213i 0.140064 + 0.338145i
\(862\) 6.81077 16.4426i 0.231976 0.560039i
\(863\) −33.5202 −1.14104 −0.570520 0.821284i \(-0.693258\pi\)
−0.570520 + 0.821284i \(0.693258\pi\)
\(864\) −14.0794 + 33.9907i −0.478992 + 1.15639i
\(865\) 0 0
\(866\) −19.8466 −0.674414
\(867\) −38.5319 + 30.2499i −1.30861 + 1.02734i
\(868\) 4.78408i 0.162382i
\(869\) −24.8561 + 24.8561i −0.843187 + 0.843187i
\(870\) 0 0
\(871\) 35.3837i 1.19893i
\(872\) 3.53121 8.52509i 0.119582 0.288696i
\(873\) 58.4295 24.2023i 1.97754 0.819123i
\(874\) −0.112973 + 0.0467950i −0.00382138 + 0.00158287i
\(875\) 0 0
\(876\) 12.5088 + 12.5088i 0.422635 + 0.422635i
\(877\) 1.51846 + 3.66588i 0.0512747 + 0.123788i 0.947441 0.319930i \(-0.103659\pi\)
−0.896167 + 0.443718i \(0.853659\pi\)
\(878\) 7.09689 2.93963i 0.239508 0.0992076i
\(879\) 49.4656 + 20.4893i 1.66843 + 0.691088i
\(880\) 0 0
\(881\) −17.1301 + 41.3558i −0.577129 + 1.39331i 0.318249 + 0.948007i \(0.396905\pi\)
−0.895378 + 0.445306i \(0.853095\pi\)
\(882\) 21.9362 + 21.9362i 0.738630 + 0.738630i
\(883\) 6.22372i 0.209445i 0.994501 + 0.104722i \(0.0333954\pi\)
−0.994501 + 0.104722i \(0.966605\pi\)
\(884\) −15.5041 26.5139i −0.521458 0.891759i
\(885\) 0 0
\(886\) 3.00993 3.00993i 0.101121 0.101121i
\(887\) −15.5607 6.44546i −0.522478 0.216417i 0.105827 0.994385i \(-0.466251\pi\)
−0.628305 + 0.777967i \(0.716251\pi\)
\(888\) 65.8661 2.21032
\(889\) −1.45152 0.601240i −0.0486825 0.0201650i
\(890\) 0 0
\(891\) 7.44320 3.08308i 0.249357 0.103287i
\(892\) −10.1795 + 10.1795i −0.340835 + 0.340835i
\(893\) 1.56650 1.56650i 0.0524208 0.0524208i
\(894\) −17.8764 + 7.40465i −0.597876 + 0.247648i
\(895\) 0 0
\(896\) −4.11950 1.70635i −0.137623 0.0570052i
\(897\) −12.1008 −0.404033
\(898\) 21.9091 + 9.07506i 0.731118 + 0.302839i
\(899\) 31.2127 31.2127i 1.04100 1.04100i
\(900\) 0 0
\(901\) −15.4585 4.05054i −0.514997 0.134943i
\(902\) 11.6007i 0.386260i
\(903\) −17.7109 17.7109i −0.589381 0.589381i
\(904\) −0.444006 + 1.07193i −0.0147674 + 0.0356517i
\(905\) 0 0
\(906\) 32.5165 + 13.4688i 1.08029 + 0.447470i
\(907\) 26.7345 11.0738i 0.887705 0.367699i 0.108225 0.994126i \(-0.465483\pi\)
0.779480 + 0.626427i \(0.215483\pi\)
\(908\) −0.899369 2.17127i −0.0298466 0.0720561i
\(909\) −37.7435 37.7435i −1.25187 1.25187i
\(910\) 0 0
\(911\) 14.2044 5.88367i 0.470614 0.194935i −0.134756 0.990879i \(-0.543025\pi\)
0.605370 + 0.795944i \(0.293025\pi\)
\(912\) −0.126511 + 0.0524027i −0.00418921 + 0.00173523i
\(913\) −11.8317 + 28.5643i −0.391573 + 0.945340i
\(914\) 18.6938i 0.618336i
\(915\) 0 0
\(916\) −1.91738 + 1.91738i −0.0633521 + 0.0633521i
\(917\) 5.84848i 0.193134i
\(918\) 3.36473 + 24.5088i 0.111053 + 0.808911i
\(919\) −9.89298 −0.326339 −0.163170 0.986598i \(-0.552172\pi\)
−0.163170 + 0.986598i \(0.552172\pi\)
\(920\) 0 0
\(921\) −10.8358 + 26.1600i −0.357053 + 0.862002i
\(922\) −1.75438 −0.0577774
\(923\) 9.55095 23.0580i 0.314373 0.758964i
\(924\) 2.37450 + 5.73256i 0.0781154 + 0.188587i
\(925\) 0 0
\(926\) 6.83036 + 6.83036i 0.224460 + 0.224460i
\(927\) 36.7796 36.7796i 1.20800 1.20800i
\(928\) 16.8311 + 40.6338i 0.552507 + 1.33387i
\(929\) 2.76136 + 6.66651i 0.0905973 + 0.218721i 0.962683 0.270632i \(-0.0872328\pi\)
−0.872085 + 0.489354i \(0.837233\pi\)
\(930\) 0 0
\(931\) 1.31280i 0.0430253i
\(932\) 24.8145 + 10.2785i 0.812826 + 0.336684i
\(933\) −58.4555 58.4555i −1.91375 1.91375i
\(934\) −4.38699 −0.143547
\(935\) 0 0
\(936\) −96.0783 −3.14042
\(937\) −3.46962 3.46962i −0.113348 0.113348i 0.648158 0.761506i \(-0.275540\pi\)
−0.761506 + 0.648158i \(0.775540\pi\)
\(938\) −3.41141 1.41305i −0.111386 0.0461378i
\(939\) 2.79126i 0.0910892i
\(940\) 0 0
\(941\) 10.0630 + 24.2941i 0.328043 + 0.791966i 0.998738 + 0.0502322i \(0.0159961\pi\)
−0.670695 + 0.741734i \(0.734004\pi\)
\(942\) −2.74879 6.63617i −0.0895605 0.216218i
\(943\) 2.41758 2.41758i 0.0787271 0.0787271i
\(944\) 0.558622 + 0.558622i 0.0181816 + 0.0181816i
\(945\) 0 0
\(946\) −10.3535 24.9956i −0.336622 0.812677i
\(947\) 12.6418 30.5201i 0.410804 0.991770i −0.574118 0.818773i \(-0.694655\pi\)
0.984922 0.172997i \(-0.0553451\pi\)
\(948\) 47.8661 1.55462
\(949\) −12.5037 + 30.1866i −0.405887 + 0.979899i
\(950\) 0 0
\(951\) 76.4343 2.47855
\(952\) −8.54356 + 1.17292i −0.276898 + 0.0380144i
\(953\) 51.4399i 1.66630i 0.553046 + 0.833151i \(0.313465\pi\)
−0.553046 + 0.833151i \(0.686535\pi\)
\(954\) −13.1377 + 13.1377i −0.425349 + 0.425349i
\(955\) 0 0
\(956\) 15.6501i 0.506162i
\(957\) 21.9089 52.8928i 0.708215 1.70978i
\(958\) −6.35390 + 2.63187i −0.205285 + 0.0850319i
\(959\) 5.28645 2.18972i 0.170708 0.0707098i
\(960\) 0 0
\(961\) 0.0421545 + 0.0421545i 0.00135982 + 0.00135982i
\(962\) 17.3033 + 41.7739i 0.557882 + 1.34685i
\(963\) 18.6932 7.74299i 0.602381 0.249514i
\(964\) −3.16890 1.31260i −0.102063 0.0422760i
\(965\) 0 0
\(966\) −0.483247 + 1.16666i −0.0155482 + 0.0375367i
\(967\) 21.4243 + 21.4243i 0.688960 + 0.688960i 0.962002 0.273042i \(-0.0880297\pi\)
−0.273042 + 0.962002i \(0.588030\pi\)
\(968\) 13.6141i 0.437575i
\(969\) 1.45664 1.92024i 0.0467940 0.0616869i
\(970\) 0 0
\(971\) −24.6251 + 24.6251i −0.790256 + 0.790256i −0.981536 0.191279i \(-0.938736\pi\)
0.191279 + 0.981536i \(0.438736\pi\)
\(972\) 11.6317 + 4.81802i 0.373088 + 0.154538i
\(973\) 12.6952 0.406990
\(974\) 0.355384 + 0.147205i 0.0113872 + 0.00471675i
\(975\) 0 0
\(976\) −0.245562 + 0.101715i −0.00786025 + 0.00325582i
\(977\) 14.6363 14.6363i 0.468257 0.468257i −0.433092 0.901349i \(-0.642578\pi\)
0.901349 + 0.433092i \(0.142578\pi\)
\(978\) 2.54837 2.54837i 0.0814878 0.0814878i
\(979\) 30.1661 12.4952i 0.964113 0.399349i
\(980\) 0 0
\(981\) 15.7158 + 6.50969i 0.501767 + 0.207839i
\(982\) 0.252373 0.00805354
\(983\) −40.9497 16.9619i −1.30609 0.541002i −0.382352 0.924017i \(-0.624886\pi\)
−0.923742 + 0.383015i \(0.874886\pi\)
\(984\) 30.0528 30.0528i 0.958050 0.958050i
\(985\) 0 0
\(986\) 23.5616 + 17.8731i 0.750353 + 0.569196i
\(987\) 22.8778i 0.728207i
\(988\) 1.06855 + 1.06855i 0.0339951 + 0.0339951i
\(989\) −3.05141 + 7.36675i −0.0970291 + 0.234249i
\(990\) 0 0
\(991\) 24.1426 + 10.0002i 0.766915 + 0.317667i 0.731622 0.681710i \(-0.238764\pi\)
0.0352929 + 0.999377i \(0.488764\pi\)
\(992\) 28.4817 11.7975i 0.904295 0.374571i
\(993\) −6.75542 16.3090i −0.214377 0.517551i
\(994\) −1.84165 1.84165i −0.0584137 0.0584137i
\(995\) 0 0
\(996\) 38.8958 16.1112i 1.23246 0.510502i
\(997\) −24.2756 + 10.0553i −0.768816 + 0.318454i −0.732393 0.680882i \(-0.761596\pi\)
−0.0364232 + 0.999336i \(0.511596\pi\)
\(998\) 6.40770 15.4696i 0.202832 0.489681i
\(999\) 52.7404i 1.66863i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.d.399.4 24
5.2 odd 4 425.2.m.d.76.3 yes 24
5.3 odd 4 425.2.m.c.76.4 24
5.4 even 2 425.2.n.e.399.3 24
17.15 even 8 425.2.n.e.49.3 24
85.7 even 16 7225.2.a.cb.1.14 24
85.27 even 16 7225.2.a.cb.1.13 24
85.32 odd 8 425.2.m.d.151.3 yes 24
85.49 even 8 inner 425.2.n.d.49.4 24
85.58 even 16 7225.2.a.bx.1.11 24
85.78 even 16 7225.2.a.bx.1.12 24
85.83 odd 8 425.2.m.c.151.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.76.4 24 5.3 odd 4
425.2.m.c.151.4 yes 24 85.83 odd 8
425.2.m.d.76.3 yes 24 5.2 odd 4
425.2.m.d.151.3 yes 24 85.32 odd 8
425.2.n.d.49.4 24 85.49 even 8 inner
425.2.n.d.399.4 24 1.1 even 1 trivial
425.2.n.e.49.3 24 17.15 even 8
425.2.n.e.399.3 24 5.4 even 2
7225.2.a.bx.1.11 24 85.58 even 16
7225.2.a.bx.1.12 24 85.78 even 16
7225.2.a.cb.1.13 24 85.27 even 16
7225.2.a.cb.1.14 24 85.7 even 16