Properties

Label 425.2.m.e.376.1
Level $425$
Weight $2$
Character 425.376
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 376.1
Character \(\chi\) \(=\) 425.376
Dual form 425.2.m.e.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48843 - 1.48843i) q^{2} +(-1.66813 + 0.690961i) q^{3} +2.43082i q^{4} +(3.51133 + 1.45444i) q^{6} +(-1.02689 + 2.47912i) q^{7} +(0.641241 - 0.641241i) q^{8} +(0.183901 - 0.183901i) q^{9} +(-0.901470 - 0.373401i) q^{11} +(-1.67960 - 4.05491i) q^{12} -2.65240i q^{13} +(5.21843 - 2.16155i) q^{14} +2.95276 q^{16} +(2.53030 - 3.25539i) q^{17} -0.547447 q^{18} +(0.478059 + 0.478059i) q^{19} -4.84503i q^{21} +(0.785991 + 1.89755i) q^{22} +(3.72748 + 1.54397i) q^{23} +(-0.626599 + 1.51274i) q^{24} +(-3.94790 + 3.94790i) q^{26} +(1.89318 - 4.57054i) q^{27} +(-6.02630 - 2.49617i) q^{28} +(-3.83958 - 9.26957i) q^{29} +(-9.10497 + 3.77140i) q^{31} +(-5.67744 - 5.67744i) q^{32} +1.76177 q^{33} +(-8.61157 + 1.07924i) q^{34} +(0.447031 + 0.447031i) q^{36} +(-6.31669 + 2.61646i) q^{37} -1.42311i q^{38} +(1.83270 + 4.42454i) q^{39} +(2.80190 - 6.76439i) q^{41} +(-7.21147 + 7.21147i) q^{42} +(6.29628 - 6.29628i) q^{43} +(0.907670 - 2.19131i) q^{44} +(-3.24999 - 7.84616i) q^{46} -0.874497i q^{47} +(-4.92558 + 2.04024i) q^{48} +(-0.141809 - 0.141809i) q^{49} +(-1.97152 + 7.17875i) q^{51} +6.44750 q^{52} +(-2.00842 - 2.00842i) q^{53} +(-9.62077 + 3.98505i) q^{54} +(0.931234 + 2.24820i) q^{56} +(-1.12778 - 0.467144i) q^{57} +(-8.08213 + 19.5120i) q^{58} +(7.59005 - 7.59005i) q^{59} +(0.793008 - 1.91449i) q^{61} +(19.1655 + 7.93862i) q^{62} +(0.267068 + 0.644760i) q^{63} +10.9954i q^{64} +(-2.62227 - 2.62227i) q^{66} +5.73990 q^{67} +(7.91327 + 6.15070i) q^{68} -7.28473 q^{69} +(1.03955 - 0.430595i) q^{71} -0.235850i q^{72} +(1.14748 + 2.77027i) q^{73} +(13.2963 + 5.50752i) q^{74} +(-1.16208 + 1.16208i) q^{76} +(1.85141 - 1.85141i) q^{77} +(3.85775 - 9.31343i) q^{78} +(0.377872 + 0.156520i) q^{79} +9.71259i q^{81} +(-14.2387 + 5.89786i) q^{82} +(-4.64846 - 4.64846i) q^{83} +11.7774 q^{84} -18.7431 q^{86} +(12.8098 + 12.8098i) q^{87} +(-0.817499 + 0.338619i) q^{88} -5.62649i q^{89} +(6.57562 + 2.72371i) q^{91} +(-3.75312 + 9.06082i) q^{92} +(12.5824 - 12.5824i) q^{93} +(-1.30162 + 1.30162i) q^{94} +(13.3936 + 5.54781i) q^{96} +(-5.89862 - 14.2405i) q^{97} +0.422145i q^{98} +(-0.234451 + 0.0971126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 24 q^{14} + 8 q^{16} + 24 q^{19} - 32 q^{24} - 16 q^{26} - 24 q^{29} - 24 q^{31} - 8 q^{34} + 8 q^{36} + 24 q^{39} - 48 q^{41} - 72 q^{44} - 16 q^{46} - 48 q^{49} - 32 q^{54} + 24 q^{56}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48843 1.48843i −1.05248 1.05248i −0.998545 0.0539308i \(-0.982825\pi\)
−0.0539308 0.998545i \(-0.517175\pi\)
\(3\) −1.66813 + 0.690961i −0.963094 + 0.398926i −0.808137 0.588995i \(-0.799524\pi\)
−0.154957 + 0.987921i \(0.549524\pi\)
\(4\) 2.43082i 1.21541i
\(5\) 0 0
\(6\) 3.51133 + 1.45444i 1.43349 + 0.593772i
\(7\) −1.02689 + 2.47912i −0.388127 + 0.937021i 0.602210 + 0.798338i \(0.294287\pi\)
−0.990337 + 0.138683i \(0.955713\pi\)
\(8\) 0.641241 0.641241i 0.226713 0.226713i
\(9\) 0.183901 0.183901i 0.0613005 0.0613005i
\(10\) 0 0
\(11\) −0.901470 0.373401i −0.271803 0.112585i 0.242619 0.970122i \(-0.421994\pi\)
−0.514422 + 0.857537i \(0.671994\pi\)
\(12\) −1.67960 4.05491i −0.484859 1.17055i
\(13\) 2.65240i 0.735643i −0.929896 0.367821i \(-0.880104\pi\)
0.929896 0.367821i \(-0.119896\pi\)
\(14\) 5.21843 2.16155i 1.39468 0.577697i
\(15\) 0 0
\(16\) 2.95276 0.738190
\(17\) 2.53030 3.25539i 0.613688 0.789548i
\(18\) −0.547447 −0.129034
\(19\) 0.478059 + 0.478059i 0.109674 + 0.109674i 0.759814 0.650140i \(-0.225290\pi\)
−0.650140 + 0.759814i \(0.725290\pi\)
\(20\) 0 0
\(21\) 4.84503i 1.05727i
\(22\) 0.785991 + 1.89755i 0.167574 + 0.404559i
\(23\) 3.72748 + 1.54397i 0.777233 + 0.321940i 0.735798 0.677201i \(-0.236807\pi\)
0.0414347 + 0.999141i \(0.486807\pi\)
\(24\) −0.626599 + 1.51274i −0.127904 + 0.308788i
\(25\) 0 0
\(26\) −3.94790 + 3.94790i −0.774246 + 0.774246i
\(27\) 1.89318 4.57054i 0.364343 0.879601i
\(28\) −6.02630 2.49617i −1.13886 0.471733i
\(29\) −3.83958 9.26957i −0.712992 1.72132i −0.692385 0.721528i \(-0.743440\pi\)
−0.0206072 0.999788i \(-0.506560\pi\)
\(30\) 0 0
\(31\) −9.10497 + 3.77140i −1.63530 + 0.677364i −0.995811 0.0914357i \(-0.970854\pi\)
−0.639490 + 0.768800i \(0.720854\pi\)
\(32\) −5.67744 5.67744i −1.00364 1.00364i
\(33\) 1.76177 0.306685
\(34\) −8.61157 + 1.07924i −1.47687 + 0.185089i
\(35\) 0 0
\(36\) 0.447031 + 0.447031i 0.0745052 + 0.0745052i
\(37\) −6.31669 + 2.61646i −1.03846 + 0.430143i −0.835758 0.549098i \(-0.814971\pi\)
−0.202699 + 0.979241i \(0.564971\pi\)
\(38\) 1.42311i 0.230859i
\(39\) 1.83270 + 4.42454i 0.293467 + 0.708493i
\(40\) 0 0
\(41\) 2.80190 6.76439i 0.437583 1.05642i −0.539198 0.842179i \(-0.681272\pi\)
0.976781 0.214240i \(-0.0687276\pi\)
\(42\) −7.21147 + 7.21147i −1.11275 + 1.11275i
\(43\) 6.29628 6.29628i 0.960173 0.960173i −0.0390633 0.999237i \(-0.512437\pi\)
0.999237 + 0.0390633i \(0.0124374\pi\)
\(44\) 0.907670 2.19131i 0.136836 0.330352i
\(45\) 0 0
\(46\) −3.24999 7.84616i −0.479184 1.15685i
\(47\) 0.874497i 0.127558i −0.997964 0.0637792i \(-0.979685\pi\)
0.997964 0.0637792i \(-0.0203154\pi\)
\(48\) −4.92558 + 2.04024i −0.710946 + 0.294483i
\(49\) −0.141809 0.141809i −0.0202585 0.0202585i
\(50\) 0 0
\(51\) −1.97152 + 7.17875i −0.276067 + 1.00523i
\(52\) 6.44750 0.894107
\(53\) −2.00842 2.00842i −0.275878 0.275878i 0.555583 0.831461i \(-0.312495\pi\)
−0.831461 + 0.555583i \(0.812495\pi\)
\(54\) −9.62077 + 3.98505i −1.30922 + 0.542297i
\(55\) 0 0
\(56\) 0.931234 + 2.24820i 0.124441 + 0.300428i
\(57\) −1.12778 0.467144i −0.149379 0.0618747i
\(58\) −8.08213 + 19.5120i −1.06124 + 2.56205i
\(59\) 7.59005 7.59005i 0.988140 0.988140i −0.0117908 0.999930i \(-0.503753\pi\)
0.999930 + 0.0117908i \(0.00375321\pi\)
\(60\) 0 0
\(61\) 0.793008 1.91449i 0.101534 0.245125i −0.864947 0.501864i \(-0.832648\pi\)
0.966481 + 0.256738i \(0.0826479\pi\)
\(62\) 19.1655 + 7.93862i 2.43402 + 1.00821i
\(63\) 0.267068 + 0.644760i 0.0336475 + 0.0812321i
\(64\) 10.9954i 1.37442i
\(65\) 0 0
\(66\) −2.62227 2.62227i −0.322779 0.322779i
\(67\) 5.73990 0.701240 0.350620 0.936518i \(-0.385971\pi\)
0.350620 + 0.936518i \(0.385971\pi\)
\(68\) 7.91327 + 6.15070i 0.959624 + 0.745882i
\(69\) −7.28473 −0.876979
\(70\) 0 0
\(71\) 1.03955 0.430595i 0.123372 0.0511022i −0.320144 0.947369i \(-0.603731\pi\)
0.443515 + 0.896267i \(0.353731\pi\)
\(72\) 0.235850i 0.0277952i
\(73\) 1.14748 + 2.77027i 0.134303 + 0.324236i 0.976696 0.214628i \(-0.0688538\pi\)
−0.842393 + 0.538864i \(0.818854\pi\)
\(74\) 13.2963 + 5.50752i 1.54567 + 0.640236i
\(75\) 0 0
\(76\) −1.16208 + 1.16208i −0.133299 + 0.133299i
\(77\) 1.85141 1.85141i 0.210988 0.210988i
\(78\) 3.85775 9.31343i 0.436804 1.05454i
\(79\) 0.377872 + 0.156520i 0.0425139 + 0.0176099i 0.403839 0.914830i \(-0.367676\pi\)
−0.361325 + 0.932440i \(0.617676\pi\)
\(80\) 0 0
\(81\) 9.71259i 1.07918i
\(82\) −14.2387 + 5.89786i −1.57240 + 0.651310i
\(83\) −4.64846 4.64846i −0.510235 0.510235i 0.404363 0.914598i \(-0.367493\pi\)
−0.914598 + 0.404363i \(0.867493\pi\)
\(84\) 11.7774 1.28502
\(85\) 0 0
\(86\) −18.7431 −2.02112
\(87\) 12.8098 + 12.8098i 1.37336 + 1.37336i
\(88\) −0.817499 + 0.338619i −0.0871457 + 0.0360969i
\(89\) 5.62649i 0.596407i −0.954502 0.298204i \(-0.903613\pi\)
0.954502 0.298204i \(-0.0963874\pi\)
\(90\) 0 0
\(91\) 6.57562 + 2.72371i 0.689312 + 0.285523i
\(92\) −3.75312 + 9.06082i −0.391289 + 0.944656i
\(93\) 12.5824 12.5824i 1.30473 1.30473i
\(94\) −1.30162 + 1.30162i −0.134252 + 0.134252i
\(95\) 0 0
\(96\) 13.3936 + 5.54781i 1.36698 + 0.566221i
\(97\) −5.89862 14.2405i −0.598915 1.44591i −0.874689 0.484685i \(-0.838934\pi\)
0.275774 0.961222i \(-0.411066\pi\)
\(98\) 0.422145i 0.0426430i
\(99\) −0.234451 + 0.0971126i −0.0235632 + 0.00976018i
\(100\) 0 0
\(101\) 14.6242 1.45516 0.727582 0.686021i \(-0.240644\pi\)
0.727582 + 0.686021i \(0.240644\pi\)
\(102\) 13.6195 7.75057i 1.34853 0.767421i
\(103\) −1.63280 −0.160884 −0.0804421 0.996759i \(-0.525633\pi\)
−0.0804421 + 0.996759i \(0.525633\pi\)
\(104\) −1.70083 1.70083i −0.166780 0.166780i
\(105\) 0 0
\(106\) 5.97877i 0.580710i
\(107\) 2.13151 + 5.14591i 0.206060 + 0.497474i 0.992796 0.119816i \(-0.0382305\pi\)
−0.786736 + 0.617290i \(0.788231\pi\)
\(108\) 11.1102 + 4.60198i 1.06908 + 0.442826i
\(109\) 1.00965 2.43750i 0.0967066 0.233470i −0.868122 0.496351i \(-0.834673\pi\)
0.964828 + 0.262881i \(0.0846727\pi\)
\(110\) 0 0
\(111\) 8.72917 8.72917i 0.828536 0.828536i
\(112\) −3.03215 + 7.32025i −0.286511 + 0.691699i
\(113\) 5.36662 + 2.22293i 0.504849 + 0.209115i 0.620547 0.784169i \(-0.286910\pi\)
−0.115698 + 0.993284i \(0.536910\pi\)
\(114\) 0.983314 + 2.37393i 0.0920958 + 0.222339i
\(115\) 0 0
\(116\) 22.5326 9.33332i 2.09210 0.866577i
\(117\) −0.487780 0.487780i −0.0450952 0.0450952i
\(118\) −22.5944 −2.07999
\(119\) 5.47219 + 9.61585i 0.501634 + 0.881483i
\(120\) 0 0
\(121\) −7.10496 7.10496i −0.645905 0.645905i
\(122\) −4.02991 + 1.66924i −0.364851 + 0.151126i
\(123\) 13.2199i 1.19199i
\(124\) −9.16759 22.1325i −0.823274 1.98756i
\(125\) 0 0
\(126\) 0.562166 1.35719i 0.0500817 0.120908i
\(127\) 7.53018 7.53018i 0.668195 0.668195i −0.289103 0.957298i \(-0.593357\pi\)
0.957298 + 0.289103i \(0.0933569\pi\)
\(128\) 5.01091 5.01091i 0.442906 0.442906i
\(129\) −6.15251 + 14.8535i −0.541698 + 1.30778i
\(130\) 0 0
\(131\) −0.619360 1.49527i −0.0541137 0.130642i 0.894511 0.447047i \(-0.147524\pi\)
−0.948624 + 0.316405i \(0.897524\pi\)
\(132\) 4.28255i 0.372748i
\(133\) −1.67608 + 0.694256i −0.145335 + 0.0601996i
\(134\) −8.54341 8.54341i −0.738038 0.738038i
\(135\) 0 0
\(136\) −0.464958 3.71002i −0.0398698 0.318132i
\(137\) −4.70326 −0.401826 −0.200913 0.979609i \(-0.564391\pi\)
−0.200913 + 0.979609i \(0.564391\pi\)
\(138\) 10.8428 + 10.8428i 0.922999 + 0.922999i
\(139\) −0.761078 + 0.315249i −0.0645538 + 0.0267391i −0.414727 0.909946i \(-0.636123\pi\)
0.350173 + 0.936685i \(0.386123\pi\)
\(140\) 0 0
\(141\) 0.604243 + 1.45877i 0.0508865 + 0.122851i
\(142\) −2.18820 0.906381i −0.183629 0.0760618i
\(143\) −0.990408 + 2.39106i −0.0828221 + 0.199950i
\(144\) 0.543017 0.543017i 0.0452514 0.0452514i
\(145\) 0 0
\(146\) 2.41540 5.83129i 0.199900 0.482601i
\(147\) 0.334540 + 0.138571i 0.0275924 + 0.0114292i
\(148\) −6.36014 15.3547i −0.522800 1.26215i
\(149\) 9.60320i 0.786725i −0.919383 0.393362i \(-0.871312\pi\)
0.919383 0.393362i \(-0.128688\pi\)
\(150\) 0 0
\(151\) −1.00179 1.00179i −0.0815244 0.0815244i 0.665169 0.746693i \(-0.268360\pi\)
−0.746693 + 0.665169i \(0.768360\pi\)
\(152\) 0.613103 0.0497292
\(153\) −0.133345 1.06400i −0.0107803 0.0860191i
\(154\) −5.51138 −0.444120
\(155\) 0 0
\(156\) −10.7552 + 4.45497i −0.861109 + 0.356683i
\(157\) 4.81882i 0.384584i 0.981338 + 0.192292i \(0.0615920\pi\)
−0.981338 + 0.192292i \(0.938408\pi\)
\(158\) −0.329467 0.795403i −0.0262109 0.0632788i
\(159\) 4.73804 + 1.96256i 0.375751 + 0.155641i
\(160\) 0 0
\(161\) −7.65539 + 7.65539i −0.603330 + 0.603330i
\(162\) 14.4565 14.4565i 1.13581 1.13581i
\(163\) 0.619572 1.49578i 0.0485286 0.117158i −0.897756 0.440493i \(-0.854804\pi\)
0.946285 + 0.323334i \(0.104804\pi\)
\(164\) 16.4430 + 6.81091i 1.28398 + 0.531843i
\(165\) 0 0
\(166\) 13.8378i 1.07402i
\(167\) −20.4490 + 8.47025i −1.58239 + 0.655447i −0.988790 0.149313i \(-0.952294\pi\)
−0.593600 + 0.804760i \(0.702294\pi\)
\(168\) −3.10683 3.10683i −0.239697 0.239697i
\(169\) 5.96479 0.458830
\(170\) 0 0
\(171\) 0.175832 0.0134462
\(172\) 15.3051 + 15.3051i 1.16700 + 1.16700i
\(173\) −9.58685 + 3.97100i −0.728875 + 0.301910i −0.716089 0.698008i \(-0.754070\pi\)
−0.0127852 + 0.999918i \(0.504070\pi\)
\(174\) 38.1329i 2.89085i
\(175\) 0 0
\(176\) −2.66182 1.10256i −0.200642 0.0831088i
\(177\) −7.41674 + 17.9056i −0.557476 + 1.34587i
\(178\) −8.37461 + 8.37461i −0.627704 + 0.627704i
\(179\) −13.2428 + 13.2428i −0.989813 + 0.989813i −0.999949 0.0101361i \(-0.996774\pi\)
0.0101361 + 0.999949i \(0.496774\pi\)
\(180\) 0 0
\(181\) −2.26809 0.939472i −0.168585 0.0698304i 0.296795 0.954941i \(-0.404082\pi\)
−0.465380 + 0.885111i \(0.654082\pi\)
\(182\) −5.73328 13.8414i −0.424979 1.02599i
\(183\) 3.74155i 0.276584i
\(184\) 3.38027 1.40015i 0.249197 0.103221i
\(185\) 0 0
\(186\) −37.4558 −2.74639
\(187\) −3.49656 + 1.98982i −0.255694 + 0.145510i
\(188\) 2.12574 0.155036
\(189\) 9.38686 + 9.38686i 0.682793 + 0.682793i
\(190\) 0 0
\(191\) 10.9126i 0.789607i −0.918766 0.394803i \(-0.870813\pi\)
0.918766 0.394803i \(-0.129187\pi\)
\(192\) −7.59738 18.3417i −0.548293 1.32370i
\(193\) −16.9768 7.03202i −1.22202 0.506176i −0.323966 0.946069i \(-0.605016\pi\)
−0.898050 + 0.439893i \(0.855016\pi\)
\(194\) −12.4163 + 29.9756i −0.891439 + 2.15213i
\(195\) 0 0
\(196\) 0.344712 0.344712i 0.0246223 0.0246223i
\(197\) 7.45879 18.0071i 0.531417 1.28295i −0.399168 0.916878i \(-0.630701\pi\)
0.930585 0.366076i \(-0.119299\pi\)
\(198\) 0.493507 + 0.204417i 0.0350720 + 0.0145273i
\(199\) 8.92336 + 21.5429i 0.632560 + 1.52713i 0.836394 + 0.548129i \(0.184660\pi\)
−0.203834 + 0.979005i \(0.565340\pi\)
\(200\) 0 0
\(201\) −9.57488 + 3.96605i −0.675360 + 0.279743i
\(202\) −21.7670 21.7670i −1.53152 1.53152i
\(203\) 26.9232 1.88964
\(204\) −17.4502 4.79240i −1.22176 0.335535i
\(205\) 0 0
\(206\) 2.43029 + 2.43029i 0.169327 + 0.169327i
\(207\) 0.969427 0.401550i 0.0673798 0.0279096i
\(208\) 7.83189i 0.543044i
\(209\) −0.252448 0.609464i −0.0174622 0.0421575i
\(210\) 0 0
\(211\) −8.77140 + 21.1760i −0.603848 + 1.45782i 0.265742 + 0.964044i \(0.414383\pi\)
−0.869590 + 0.493774i \(0.835617\pi\)
\(212\) 4.88211 4.88211i 0.335305 0.335305i
\(213\) −1.43657 + 1.43657i −0.0984324 + 0.0984324i
\(214\) 4.48671 10.8319i 0.306706 0.740453i
\(215\) 0 0
\(216\) −1.71683 4.14480i −0.116816 0.282018i
\(217\) 26.4451i 1.79521i
\(218\) −5.13082 + 2.12526i −0.347503 + 0.143940i
\(219\) −3.82830 3.82830i −0.258692 0.258692i
\(220\) 0 0
\(221\) −8.63459 6.71137i −0.580826 0.451455i
\(222\) −25.9854 −1.74403
\(223\) −9.23194 9.23194i −0.618217 0.618217i 0.326857 0.945074i \(-0.394010\pi\)
−0.945074 + 0.326857i \(0.894010\pi\)
\(224\) 19.9052 8.24499i 1.32997 0.550892i
\(225\) 0 0
\(226\) −4.67915 11.2965i −0.311253 0.751430i
\(227\) 9.88506 + 4.09453i 0.656095 + 0.271763i 0.685794 0.727796i \(-0.259455\pi\)
−0.0296996 + 0.999559i \(0.509455\pi\)
\(228\) 1.13554 2.74144i 0.0752031 0.181556i
\(229\) −13.3171 + 13.3171i −0.880020 + 0.880020i −0.993536 0.113516i \(-0.963789\pi\)
0.113516 + 0.993536i \(0.463789\pi\)
\(230\) 0 0
\(231\) −1.80914 + 4.36765i −0.119033 + 0.287370i
\(232\) −8.40612 3.48193i −0.551889 0.228600i
\(233\) −0.859469 2.07494i −0.0563057 0.135934i 0.893223 0.449613i \(-0.148438\pi\)
−0.949529 + 0.313679i \(0.898438\pi\)
\(234\) 1.45205i 0.0949233i
\(235\) 0 0
\(236\) 18.4500 + 18.4500i 1.20099 + 1.20099i
\(237\) −0.738488 −0.0479700
\(238\) 6.16753 22.4574i 0.399782 1.45570i
\(239\) −16.7293 −1.08213 −0.541063 0.840982i \(-0.681978\pi\)
−0.541063 + 0.840982i \(0.681978\pi\)
\(240\) 0 0
\(241\) 10.8767 4.50526i 0.700627 0.290209i −0.00379273 0.999993i \(-0.501207\pi\)
0.704420 + 0.709784i \(0.251207\pi\)
\(242\) 21.1504i 1.35960i
\(243\) −1.03148 2.49021i −0.0661693 0.159747i
\(244\) 4.65378 + 1.92766i 0.297928 + 0.123406i
\(245\) 0 0
\(246\) 19.6768 19.6768i 1.25455 1.25455i
\(247\) 1.26800 1.26800i 0.0806812 0.0806812i
\(248\) −3.42010 + 8.25686i −0.217177 + 0.524311i
\(249\) 10.9661 + 4.54232i 0.694950 + 0.287858i
\(250\) 0 0
\(251\) 17.7019i 1.11733i −0.829392 0.558666i \(-0.811313\pi\)
0.829392 0.558666i \(-0.188687\pi\)
\(252\) −1.56729 + 0.649195i −0.0987303 + 0.0408954i
\(253\) −2.78369 2.78369i −0.175009 0.175009i
\(254\) −22.4162 −1.40652
\(255\) 0 0
\(256\) 7.07403 0.442127
\(257\) 5.44763 + 5.44763i 0.339814 + 0.339814i 0.856297 0.516483i \(-0.172759\pi\)
−0.516483 + 0.856297i \(0.672759\pi\)
\(258\) 31.2658 12.9507i 1.94653 0.806278i
\(259\) 18.3467i 1.14001i
\(260\) 0 0
\(261\) −2.41079 0.998582i −0.149224 0.0618107i
\(262\) −1.30372 + 3.14746i −0.0805442 + 0.194451i
\(263\) 4.45259 4.45259i 0.274558 0.274558i −0.556374 0.830932i \(-0.687808\pi\)
0.830932 + 0.556374i \(0.187808\pi\)
\(264\) 1.12972 1.12972i 0.0695295 0.0695295i
\(265\) 0 0
\(266\) 3.52807 + 1.46137i 0.216320 + 0.0896026i
\(267\) 3.88769 + 9.38571i 0.237923 + 0.574396i
\(268\) 13.9527i 0.852294i
\(269\) 8.55428 3.54330i 0.521563 0.216039i −0.106340 0.994330i \(-0.533913\pi\)
0.627904 + 0.778291i \(0.283913\pi\)
\(270\) 0 0
\(271\) 16.7791 1.01926 0.509628 0.860395i \(-0.329783\pi\)
0.509628 + 0.860395i \(0.329783\pi\)
\(272\) 7.47137 9.61239i 0.453018 0.582837i
\(273\) −12.8510 −0.777775
\(274\) 7.00044 + 7.00044i 0.422912 + 0.422912i
\(275\) 0 0
\(276\) 17.7079i 1.06589i
\(277\) −4.59456 11.0923i −0.276061 0.666469i 0.723659 0.690158i \(-0.242459\pi\)
−0.999719 + 0.0236887i \(0.992459\pi\)
\(278\) 1.60203 + 0.663584i 0.0960835 + 0.0397991i
\(279\) −0.980851 + 2.36798i −0.0587220 + 0.141767i
\(280\) 0 0
\(281\) −19.9411 + 19.9411i −1.18959 + 1.18959i −0.212403 + 0.977182i \(0.568129\pi\)
−0.977182 + 0.212403i \(0.931871\pi\)
\(282\) 1.27190 3.07064i 0.0757407 0.182854i
\(283\) 15.7782 + 6.53556i 0.937919 + 0.388499i 0.798677 0.601760i \(-0.205534\pi\)
0.139242 + 0.990258i \(0.455534\pi\)
\(284\) 1.04670 + 2.52695i 0.0621101 + 0.149947i
\(285\) 0 0
\(286\) 5.03306 2.08476i 0.297611 0.123274i
\(287\) 13.8925 + 13.8925i 0.820049 + 0.820049i
\(288\) −2.08818 −0.123047
\(289\) −4.19515 16.4742i −0.246774 0.969073i
\(290\) 0 0
\(291\) 19.6793 + 19.6793i 1.15362 + 1.15362i
\(292\) −6.73403 + 2.78933i −0.394079 + 0.163233i
\(293\) 6.82563i 0.398758i 0.979922 + 0.199379i \(0.0638924\pi\)
−0.979922 + 0.199379i \(0.936108\pi\)
\(294\) −0.291685 0.704191i −0.0170114 0.0410693i
\(295\) 0 0
\(296\) −2.37274 + 5.72830i −0.137913 + 0.332951i
\(297\) −3.41329 + 3.41329i −0.198059 + 0.198059i
\(298\) −14.2936 + 14.2936i −0.828009 + 0.828009i
\(299\) 4.09523 9.88676i 0.236833 0.571766i
\(300\) 0 0
\(301\) 9.14369 + 22.0748i 0.527033 + 1.27237i
\(302\) 2.98218i 0.171605i
\(303\) −24.3950 + 10.1048i −1.40146 + 0.580503i
\(304\) 1.41159 + 1.41159i 0.0809605 + 0.0809605i
\(305\) 0 0
\(306\) −1.38521 + 1.78215i −0.0791869 + 0.101879i
\(307\) −0.746287 −0.0425929 −0.0212964 0.999773i \(-0.506779\pi\)
−0.0212964 + 0.999773i \(0.506779\pi\)
\(308\) 4.50045 + 4.50045i 0.256437 + 0.256437i
\(309\) 2.72371 1.12820i 0.154947 0.0641810i
\(310\) 0 0
\(311\) −6.96494 16.8149i −0.394946 0.953483i −0.988846 0.148944i \(-0.952413\pi\)
0.593900 0.804539i \(-0.297587\pi\)
\(312\) 4.01240 + 1.66199i 0.227157 + 0.0940916i
\(313\) −3.79773 + 9.16854i −0.214661 + 0.518236i −0.994129 0.108206i \(-0.965490\pi\)
0.779468 + 0.626442i \(0.215490\pi\)
\(314\) 7.17245 7.17245i 0.404765 0.404765i
\(315\) 0 0
\(316\) −0.380471 + 0.918539i −0.0214032 + 0.0516718i
\(317\) −22.4610 9.30367i −1.26154 0.522546i −0.351157 0.936317i \(-0.614212\pi\)
−0.910381 + 0.413770i \(0.864212\pi\)
\(318\) −4.13110 9.97335i −0.231660 0.559278i
\(319\) 9.78994i 0.548131i
\(320\) 0 0
\(321\) −7.11125 7.11125i −0.396911 0.396911i
\(322\) 22.7890 1.26998
\(323\) 2.76591 0.346636i 0.153899 0.0192874i
\(324\) −23.6095 −1.31164
\(325\) 0 0
\(326\) −3.14854 + 1.30417i −0.174381 + 0.0722312i
\(327\) 4.76369i 0.263433i
\(328\) −2.54091 6.13429i −0.140298 0.338710i
\(329\) 2.16799 + 0.898009i 0.119525 + 0.0495088i
\(330\) 0 0
\(331\) −0.346315 + 0.346315i −0.0190352 + 0.0190352i −0.716560 0.697525i \(-0.754285\pi\)
0.697525 + 0.716560i \(0.254285\pi\)
\(332\) 11.2996 11.2996i 0.620144 0.620144i
\(333\) −0.680478 + 1.64282i −0.0372899 + 0.0900259i
\(334\) 43.0441 + 17.8295i 2.35527 + 0.975584i
\(335\) 0 0
\(336\) 14.3062i 0.780468i
\(337\) 5.55719 2.30186i 0.302719 0.125390i −0.226153 0.974092i \(-0.572615\pi\)
0.528872 + 0.848701i \(0.322615\pi\)
\(338\) −8.87814 8.87814i −0.482907 0.482907i
\(339\) −10.4882 −0.569639
\(340\) 0 0
\(341\) 9.61610 0.520741
\(342\) −0.261712 0.261712i −0.0141518 0.0141518i
\(343\) −16.8567 + 6.98227i −0.910175 + 0.377007i
\(344\) 8.07486i 0.435367i
\(345\) 0 0
\(346\) 20.1798 + 8.35877i 1.08488 + 0.449370i
\(347\) −3.02306 + 7.29831i −0.162286 + 0.391794i −0.984015 0.178085i \(-0.943010\pi\)
0.821729 + 0.569879i \(0.193010\pi\)
\(348\) −31.1383 + 31.1383i −1.66919 + 1.66919i
\(349\) 13.5417 13.5417i 0.724868 0.724868i −0.244725 0.969593i \(-0.578698\pi\)
0.969593 + 0.244725i \(0.0786976\pi\)
\(350\) 0 0
\(351\) −12.1229 5.02147i −0.647072 0.268026i
\(352\) 2.99808 + 7.23801i 0.159798 + 0.385787i
\(353\) 13.7165i 0.730055i −0.930997 0.365027i \(-0.881060\pi\)
0.930997 0.365027i \(-0.118940\pi\)
\(354\) 37.6904 15.6119i 2.00322 0.829761i
\(355\) 0 0
\(356\) 13.6770 0.724879
\(357\) −15.7725 12.2594i −0.834768 0.648836i
\(358\) 39.4218 2.08351
\(359\) −17.6460 17.6460i −0.931322 0.931322i 0.0664662 0.997789i \(-0.478828\pi\)
−0.997789 + 0.0664662i \(0.978828\pi\)
\(360\) 0 0
\(361\) 18.5429i 0.975943i
\(362\) 1.97754 + 4.77421i 0.103937 + 0.250927i
\(363\) 16.7612 + 6.94272i 0.879736 + 0.364398i
\(364\) −6.62085 + 15.9841i −0.347027 + 0.837797i
\(365\) 0 0
\(366\) 5.56902 5.56902i 0.291097 0.291097i
\(367\) −3.26363 + 7.87910i −0.170360 + 0.411286i −0.985882 0.167440i \(-0.946450\pi\)
0.815522 + 0.578726i \(0.196450\pi\)
\(368\) 11.0063 + 4.55898i 0.573745 + 0.237653i
\(369\) −0.728707 1.75925i −0.0379350 0.0915831i
\(370\) 0 0
\(371\) 7.04155 2.91670i 0.365579 0.151428i
\(372\) 30.5854 + 30.5854i 1.58578 + 1.58578i
\(373\) −11.5593 −0.598519 −0.299260 0.954172i \(-0.596740\pi\)
−0.299260 + 0.954172i \(0.596740\pi\)
\(374\) 8.16606 + 2.24266i 0.422257 + 0.115965i
\(375\) 0 0
\(376\) −0.560763 0.560763i −0.0289192 0.0289192i
\(377\) −24.5866 + 10.1841i −1.26627 + 0.524508i
\(378\) 27.9433i 1.43725i
\(379\) −4.70807 11.3663i −0.241837 0.583847i 0.755628 0.655001i \(-0.227332\pi\)
−0.997465 + 0.0711543i \(0.977332\pi\)
\(380\) 0 0
\(381\) −7.35824 + 17.7644i −0.376974 + 0.910096i
\(382\) −16.2426 + 16.2426i −0.831042 + 0.831042i
\(383\) −4.00295 + 4.00295i −0.204541 + 0.204541i −0.801942 0.597401i \(-0.796200\pi\)
0.597401 + 0.801942i \(0.296200\pi\)
\(384\) −4.89649 + 11.8212i −0.249873 + 0.603247i
\(385\) 0 0
\(386\) 14.8020 + 35.7353i 0.753404 + 1.81888i
\(387\) 2.31579i 0.117718i
\(388\) 34.6162 14.3385i 1.75737 0.727926i
\(389\) −1.15168 1.15168i −0.0583927 0.0583927i 0.677307 0.735700i \(-0.263147\pi\)
−0.735700 + 0.677307i \(0.763147\pi\)
\(390\) 0 0
\(391\) 14.4579 8.22769i 0.731166 0.416092i
\(392\) −0.181868 −0.00918570
\(393\) 2.06634 + 2.06634i 0.104233 + 0.104233i
\(394\) −37.9041 + 15.7004i −1.90958 + 0.790975i
\(395\) 0 0
\(396\) −0.236063 0.569907i −0.0118626 0.0286389i
\(397\) 11.8736 + 4.91819i 0.595917 + 0.246837i 0.660194 0.751095i \(-0.270474\pi\)
−0.0642772 + 0.997932i \(0.520474\pi\)
\(398\) 18.7832 45.3467i 0.941518 2.27303i
\(399\) 2.31621 2.31621i 0.115956 0.115956i
\(400\) 0 0
\(401\) −11.0222 + 26.6099i −0.550422 + 1.32884i 0.366741 + 0.930323i \(0.380473\pi\)
−0.917163 + 0.398512i \(0.869527\pi\)
\(402\) 20.1547 + 8.34833i 1.00522 + 0.416377i
\(403\) 10.0033 + 24.1500i 0.498298 + 1.20300i
\(404\) 35.5488i 1.76862i
\(405\) 0 0
\(406\) −40.0732 40.0732i −1.98880 1.98880i
\(407\) 6.67129 0.330684
\(408\) 3.33909 + 5.86752i 0.165310 + 0.290486i
\(409\) 13.6197 0.673451 0.336725 0.941603i \(-0.390681\pi\)
0.336725 + 0.941603i \(0.390681\pi\)
\(410\) 0 0
\(411\) 7.84563 3.24977i 0.386996 0.160299i
\(412\) 3.96903i 0.195540i
\(413\) 11.0225 + 26.6108i 0.542384 + 1.30943i
\(414\) −2.04060 0.845243i −0.100290 0.0415414i
\(415\) 0 0
\(416\) −15.0588 + 15.0588i −0.738320 + 0.738320i
\(417\) 1.05175 1.05175i 0.0515045 0.0515045i
\(418\) −0.531391 + 1.28289i −0.0259912 + 0.0627483i
\(419\) −13.1802 5.45940i −0.643893 0.266709i 0.0367500 0.999324i \(-0.488299\pi\)
−0.680643 + 0.732615i \(0.738299\pi\)
\(420\) 0 0
\(421\) 28.9349i 1.41020i −0.709107 0.705101i \(-0.750902\pi\)
0.709107 0.705101i \(-0.249098\pi\)
\(422\) 44.5745 18.4634i 2.16985 0.898783i
\(423\) −0.160821 0.160821i −0.00781940 0.00781940i
\(424\) −2.57576 −0.125090
\(425\) 0 0
\(426\) 4.27646 0.207195
\(427\) 3.93193 + 3.93193i 0.190279 + 0.190279i
\(428\) −12.5088 + 5.18130i −0.604634 + 0.250448i
\(429\) 4.67292i 0.225611i
\(430\) 0 0
\(431\) −18.9908 7.86623i −0.914753 0.378903i −0.124879 0.992172i \(-0.539854\pi\)
−0.789874 + 0.613269i \(0.789854\pi\)
\(432\) 5.59011 13.4957i 0.268954 0.649313i
\(433\) 17.0995 17.0995i 0.821748 0.821748i −0.164611 0.986359i \(-0.552637\pi\)
0.986359 + 0.164611i \(0.0526368\pi\)
\(434\) −39.3616 + 39.3616i −1.88942 + 1.88942i
\(435\) 0 0
\(436\) 5.92512 + 2.45427i 0.283762 + 0.117538i
\(437\) 1.04385 + 2.52007i 0.0499339 + 0.120551i
\(438\) 11.3963i 0.544535i
\(439\) 20.3668 8.43621i 0.972055 0.402638i 0.160578 0.987023i \(-0.448664\pi\)
0.811477 + 0.584385i \(0.198664\pi\)
\(440\) 0 0
\(441\) −0.0521578 −0.00248371
\(442\) 2.86258 + 22.8413i 0.136159 + 1.08645i
\(443\) −32.3324 −1.53616 −0.768079 0.640356i \(-0.778787\pi\)
−0.768079 + 0.640356i \(0.778787\pi\)
\(444\) 21.2190 + 21.2190i 1.00701 + 1.00701i
\(445\) 0 0
\(446\) 27.4821i 1.30132i
\(447\) 6.63544 + 16.0194i 0.313845 + 0.757690i
\(448\) −27.2589 11.2910i −1.28786 0.533450i
\(449\) −12.0051 + 28.9829i −0.566556 + 1.36779i 0.337885 + 0.941187i \(0.390288\pi\)
−0.904441 + 0.426599i \(0.859712\pi\)
\(450\) 0 0
\(451\) −5.05166 + 5.05166i −0.237873 + 0.237873i
\(452\) −5.40353 + 13.0453i −0.254161 + 0.613598i
\(453\) 2.36331 + 0.978914i 0.111038 + 0.0459934i
\(454\) −8.61878 20.8076i −0.404499 0.976548i
\(455\) 0 0
\(456\) −1.02273 + 0.423630i −0.0478939 + 0.0198383i
\(457\) 9.01432 + 9.01432i 0.421672 + 0.421672i 0.885779 0.464107i \(-0.153625\pi\)
−0.464107 + 0.885779i \(0.653625\pi\)
\(458\) 39.6431 1.85240
\(459\) −10.0886 17.7279i −0.470895 0.827467i
\(460\) 0 0
\(461\) −12.3023 12.3023i −0.572974 0.572974i 0.359984 0.932958i \(-0.382782\pi\)
−0.932958 + 0.359984i \(0.882782\pi\)
\(462\) 9.19369 3.80815i 0.427729 0.177171i
\(463\) 29.5747i 1.37445i 0.726443 + 0.687227i \(0.241172\pi\)
−0.726443 + 0.687227i \(0.758828\pi\)
\(464\) −11.3374 27.3708i −0.526324 1.27066i
\(465\) 0 0
\(466\) −1.80914 + 4.36765i −0.0838068 + 0.202327i
\(467\) 23.2530 23.2530i 1.07602 1.07602i 0.0791599 0.996862i \(-0.474776\pi\)
0.996862 0.0791599i \(-0.0252238\pi\)
\(468\) 1.18570 1.18570i 0.0548092 0.0548092i
\(469\) −5.89422 + 14.2299i −0.272170 + 0.657076i
\(470\) 0 0
\(471\) −3.32962 8.03840i −0.153421 0.370390i
\(472\) 9.73409i 0.448048i
\(473\) −8.02694 + 3.32487i −0.369079 + 0.152878i
\(474\) 1.09918 + 1.09918i 0.0504872 + 0.0504872i
\(475\) 0 0
\(476\) −23.3744 + 13.3019i −1.07136 + 0.609691i
\(477\) −0.738703 −0.0338229
\(478\) 24.9003 + 24.9003i 1.13891 + 1.13891i
\(479\) −0.548605 + 0.227240i −0.0250664 + 0.0103828i −0.395181 0.918603i \(-0.629318\pi\)
0.370115 + 0.928986i \(0.379318\pi\)
\(480\) 0 0
\(481\) 6.93989 + 16.7544i 0.316432 + 0.763934i
\(482\) −22.8948 9.48335i −1.04283 0.431955i
\(483\) 7.48059 18.0598i 0.340379 0.821747i
\(484\) 17.2709 17.2709i 0.785039 0.785039i
\(485\) 0 0
\(486\) −2.17121 + 5.24176i −0.0984881 + 0.237771i
\(487\) −2.08130 0.862103i −0.0943127 0.0390656i 0.335028 0.942208i \(-0.391254\pi\)
−0.429341 + 0.903142i \(0.641254\pi\)
\(488\) −0.719141 1.73616i −0.0325540 0.0785922i
\(489\) 2.92325i 0.132194i
\(490\) 0 0
\(491\) −5.16155 5.16155i −0.232937 0.232937i 0.580980 0.813918i \(-0.302669\pi\)
−0.813918 + 0.580980i \(0.802669\pi\)
\(492\) −32.1351 −1.44876
\(493\) −39.8914 10.9555i −1.79662 0.493409i
\(494\) −3.77466 −0.169830
\(495\) 0 0
\(496\) −26.8848 + 11.1360i −1.20716 + 0.500023i
\(497\) 3.01934i 0.135436i
\(498\) −9.56136 23.0832i −0.428455 1.03438i
\(499\) 7.02196 + 2.90859i 0.314346 + 0.130206i 0.534278 0.845309i \(-0.320584\pi\)
−0.219932 + 0.975515i \(0.570584\pi\)
\(500\) 0 0
\(501\) 28.2589 28.2589i 1.26251 1.26251i
\(502\) −26.3479 + 26.3479i −1.17597 + 1.17597i
\(503\) −5.93402 + 14.3260i −0.264585 + 0.638764i −0.999211 0.0397075i \(-0.987357\pi\)
0.734627 + 0.678472i \(0.237357\pi\)
\(504\) 0.584702 + 0.242191i 0.0260447 + 0.0107881i
\(505\) 0 0
\(506\) 8.28662i 0.368385i
\(507\) −9.95002 + 4.12143i −0.441896 + 0.183039i
\(508\) 18.3045 + 18.3045i 0.812131 + 0.812131i
\(509\) 29.3375 1.30036 0.650182 0.759779i \(-0.274693\pi\)
0.650182 + 0.759779i \(0.274693\pi\)
\(510\) 0 0
\(511\) −8.04618 −0.355942
\(512\) −20.5510 20.5510i −0.908233 0.908233i
\(513\) 3.09004 1.27994i 0.136429 0.0565107i
\(514\) 16.2168i 0.715292i
\(515\) 0 0
\(516\) −36.1061 14.9556i −1.58948 0.658385i
\(517\) −0.326538 + 0.788333i −0.0143611 + 0.0346708i
\(518\) −27.3076 + 27.3076i −1.19983 + 1.19983i
\(519\) 13.2483 13.2483i 0.581535 0.581535i
\(520\) 0 0
\(521\) −14.0288 5.81093i −0.614614 0.254581i 0.0535860 0.998563i \(-0.482935\pi\)
−0.668200 + 0.743982i \(0.732935\pi\)
\(522\) 2.10197 + 5.07460i 0.0920006 + 0.222109i
\(523\) 35.8569i 1.56791i −0.620815 0.783957i \(-0.713198\pi\)
0.620815 0.783957i \(-0.286802\pi\)
\(524\) 3.63472 1.50555i 0.158784 0.0657703i
\(525\) 0 0
\(526\) −13.2547 −0.577932
\(527\) −10.7609 + 39.1830i −0.468753 + 1.70684i
\(528\) 5.20209 0.226392
\(529\) −4.75321 4.75321i −0.206661 0.206661i
\(530\) 0 0
\(531\) 2.79164i 0.121147i
\(532\) −1.68761 4.07425i −0.0731671 0.176641i
\(533\) −17.9418 7.43175i −0.777148 0.321905i
\(534\) 8.18339 19.7565i 0.354130 0.854945i
\(535\) 0 0
\(536\) 3.68066 3.68066i 0.158980 0.158980i
\(537\) 12.9404 31.2409i 0.558420 1.34814i
\(538\) −18.0063 7.45847i −0.776308 0.321557i
\(539\) 0.0748850 + 0.180788i 0.00322553 + 0.00778711i
\(540\) 0 0
\(541\) 24.6831 10.2241i 1.06121 0.439568i 0.217329 0.976098i \(-0.430266\pi\)
0.843881 + 0.536531i \(0.180266\pi\)
\(542\) −24.9744 24.9744i −1.07274 1.07274i
\(543\) 4.43259 0.190221
\(544\) −32.8479 + 4.11666i −1.40834 + 0.176500i
\(545\) 0 0
\(546\) 19.1277 + 19.1277i 0.818589 + 0.818589i
\(547\) 12.4802 5.16946i 0.533614 0.221030i −0.0995712 0.995030i \(-0.531747\pi\)
0.633185 + 0.774000i \(0.281747\pi\)
\(548\) 11.4328i 0.488383i
\(549\) −0.206242 0.497913i −0.00880221 0.0212504i
\(550\) 0 0
\(551\) 2.59586 6.26695i 0.110587 0.266981i
\(552\) −4.67127 + 4.67127i −0.198822 + 0.198822i
\(553\) −0.776064 + 0.776064i −0.0330016 + 0.0330016i
\(554\) −9.67133 + 23.3487i −0.410895 + 0.991989i
\(555\) 0 0
\(556\) −0.766313 1.85004i −0.0324989 0.0784593i
\(557\) 16.9198i 0.716915i 0.933546 + 0.358458i \(0.116697\pi\)
−0.933546 + 0.358458i \(0.883303\pi\)
\(558\) 4.98449 2.06464i 0.211010 0.0874033i
\(559\) −16.7002 16.7002i −0.706345 0.706345i
\(560\) 0 0
\(561\) 4.45781 5.73526i 0.188209 0.242143i
\(562\) 59.3616 2.50402
\(563\) −26.6224 26.6224i −1.12200 1.12200i −0.991441 0.130558i \(-0.958323\pi\)
−0.130558 0.991441i \(-0.541677\pi\)
\(564\) −3.54601 + 1.46881i −0.149314 + 0.0618479i
\(565\) 0 0
\(566\) −13.7570 33.2124i −0.578251 1.39602i
\(567\) −24.0787 9.97373i −1.01121 0.418857i
\(568\) 0.390485 0.942715i 0.0163844 0.0395555i
\(569\) 21.0557 21.0557i 0.882701 0.882701i −0.111108 0.993808i \(-0.535440\pi\)
0.993808 + 0.111108i \(0.0354398\pi\)
\(570\) 0 0
\(571\) −3.82363 + 9.23107i −0.160014 + 0.386308i −0.983470 0.181072i \(-0.942043\pi\)
0.823456 + 0.567381i \(0.192043\pi\)
\(572\) −5.81222 2.40750i −0.243021 0.100663i
\(573\) 7.54017 + 18.2036i 0.314995 + 0.760465i
\(574\) 41.3559i 1.72616i
\(575\) 0 0
\(576\) 2.02207 + 2.02207i 0.0842527 + 0.0842527i
\(577\) −17.5104 −0.728968 −0.364484 0.931210i \(-0.618755\pi\)
−0.364484 + 0.931210i \(0.618755\pi\)
\(578\) −18.2765 + 30.7648i −0.760203 + 1.27965i
\(579\) 33.1783 1.37884
\(580\) 0 0
\(581\) 16.2976 6.75067i 0.676137 0.280065i
\(582\) 58.5824i 2.42832i
\(583\) 1.06058 + 2.56048i 0.0439249 + 0.106044i
\(584\) 2.51222 + 1.04060i 0.103957 + 0.0430602i
\(585\) 0 0
\(586\) 10.1594 10.1594i 0.419683 0.419683i
\(587\) 11.3396 11.3396i 0.468036 0.468036i −0.433242 0.901278i \(-0.642630\pi\)
0.901278 + 0.433242i \(0.142630\pi\)
\(588\) −0.336841 + 0.813207i −0.0138911 + 0.0335361i
\(589\) −6.15567 2.54976i −0.253640 0.105061i
\(590\) 0 0
\(591\) 35.1919i 1.44760i
\(592\) −18.6517 + 7.72577i −0.766579 + 0.317527i
\(593\) 27.1563 + 27.1563i 1.11517 + 1.11517i 0.992439 + 0.122735i \(0.0391667\pi\)
0.122735 + 0.992439i \(0.460833\pi\)
\(594\) 10.1609 0.416905
\(595\) 0 0
\(596\) 23.3436 0.956193
\(597\) −29.7706 29.7706i −1.21843 1.21843i
\(598\) −20.8111 + 8.62025i −0.851031 + 0.352508i
\(599\) 23.5261i 0.961251i 0.876926 + 0.480625i \(0.159590\pi\)
−0.876926 + 0.480625i \(0.840410\pi\)
\(600\) 0 0
\(601\) 23.1362 + 9.58331i 0.943744 + 0.390911i 0.800876 0.598830i \(-0.204368\pi\)
0.142868 + 0.989742i \(0.454368\pi\)
\(602\) 19.2470 46.4664i 0.784450 1.89383i
\(603\) 1.05558 1.05558i 0.0429864 0.0429864i
\(604\) 2.43517 2.43517i 0.0990855 0.0990855i
\(605\) 0 0
\(606\) 51.3504 + 21.2700i 2.08597 + 0.864036i
\(607\) 12.3827 + 29.8946i 0.502600 + 1.21338i 0.948063 + 0.318083i \(0.103039\pi\)
−0.445463 + 0.895300i \(0.646961\pi\)
\(608\) 5.42831i 0.220147i
\(609\) −44.9114 + 18.6029i −1.81990 + 0.753827i
\(610\) 0 0
\(611\) −2.31951 −0.0938375
\(612\) 2.58638 0.324138i 0.104548 0.0131025i
\(613\) 25.0386 1.01130 0.505650 0.862739i \(-0.331253\pi\)
0.505650 + 0.862739i \(0.331253\pi\)
\(614\) 1.11079 + 1.11079i 0.0448280 + 0.0448280i
\(615\) 0 0
\(616\) 2.37441i 0.0956675i
\(617\) 3.72834 + 9.00101i 0.150097 + 0.362367i 0.980988 0.194069i \(-0.0621685\pi\)
−0.830891 + 0.556436i \(0.812169\pi\)
\(618\) −5.73328 2.37480i −0.230626 0.0955285i
\(619\) 2.82897 6.82973i 0.113706 0.274510i −0.856774 0.515692i \(-0.827535\pi\)
0.970480 + 0.241182i \(0.0775350\pi\)
\(620\) 0 0
\(621\) 14.1136 14.1136i 0.566358 0.566358i
\(622\) −14.6609 + 35.3944i −0.587847 + 1.41919i
\(623\) 13.9488 + 5.77777i 0.558846 + 0.231481i
\(624\) 5.41153 + 13.0646i 0.216635 + 0.523002i
\(625\) 0 0
\(626\) 19.2993 7.99404i 0.771356 0.319506i
\(627\) 0.842232 + 0.842232i 0.0336355 + 0.0336355i
\(628\) −11.7137 −0.467426
\(629\) −7.46553 + 27.1837i −0.297670 + 1.08389i
\(630\) 0 0
\(631\) −6.09529 6.09529i −0.242650 0.242650i 0.575296 0.817945i \(-0.304887\pi\)
−0.817945 + 0.575296i \(0.804887\pi\)
\(632\) 0.342674 0.141940i 0.0136308 0.00564608i
\(633\) 41.3850i 1.64491i
\(634\) 19.5838 + 47.2794i 0.777771 + 1.87770i
\(635\) 0 0
\(636\) −4.77063 + 11.5173i −0.189168 + 0.456692i
\(637\) −0.376134 + 0.376134i −0.0149030 + 0.0149030i
\(638\) 14.5716 14.5716i 0.576895 0.576895i
\(639\) 0.111987 0.270361i 0.00443015 0.0106953i
\(640\) 0 0
\(641\) −14.9873 36.1825i −0.591963 1.42912i −0.881604 0.471989i \(-0.843536\pi\)
0.289641 0.957135i \(-0.406464\pi\)
\(642\) 21.1691i 0.835478i
\(643\) 42.2011 17.4803i 1.66425 0.689355i 0.665861 0.746076i \(-0.268065\pi\)
0.998390 + 0.0567210i \(0.0180645\pi\)
\(644\) −18.6089 18.6089i −0.733292 0.733292i
\(645\) 0 0
\(646\) −4.63279 3.60090i −0.182275 0.141676i
\(647\) −9.17577 −0.360737 −0.180368 0.983599i \(-0.557729\pi\)
−0.180368 + 0.983599i \(0.557729\pi\)
\(648\) 6.22811 + 6.22811i 0.244663 + 0.244663i
\(649\) −9.67633 + 4.00807i −0.379829 + 0.157330i
\(650\) 0 0
\(651\) 18.2726 + 44.1139i 0.716158 + 1.72896i
\(652\) 3.63596 + 1.50607i 0.142395 + 0.0589821i
\(653\) 6.36250 15.3604i 0.248984 0.601100i −0.749134 0.662418i \(-0.769530\pi\)
0.998118 + 0.0613178i \(0.0195303\pi\)
\(654\) 7.09039 7.09039i 0.277256 0.277256i
\(655\) 0 0
\(656\) 8.27334 19.9736i 0.323020 0.779838i
\(657\) 0.720481 + 0.298433i 0.0281086 + 0.0116430i
\(658\) −1.89027 4.56350i −0.0736902 0.177904i
\(659\) 5.95839i 0.232106i 0.993243 + 0.116053i \(0.0370242\pi\)
−0.993243 + 0.116053i \(0.962976\pi\)
\(660\) 0 0
\(661\) 30.3724 + 30.3724i 1.18135 + 1.18135i 0.979395 + 0.201955i \(0.0647296\pi\)
0.201955 + 0.979395i \(0.435270\pi\)
\(662\) 1.03093 0.0400681
\(663\) 19.0409 + 5.22924i 0.739487 + 0.203087i
\(664\) −5.96157 −0.231354
\(665\) 0 0
\(666\) 3.45805 1.43237i 0.133997 0.0555033i
\(667\) 40.4803i 1.56740i
\(668\) −20.5896 49.7078i −0.796637 1.92325i
\(669\) 21.7790 + 9.02114i 0.842024 + 0.348778i
\(670\) 0 0
\(671\) −1.42975 + 1.42975i −0.0551947 + 0.0551947i
\(672\) −27.5074 + 27.5074i −1.06112 + 1.06112i
\(673\) 6.63803 16.0256i 0.255877 0.617743i −0.742781 0.669535i \(-0.766493\pi\)
0.998658 + 0.0517924i \(0.0164934\pi\)
\(674\) −11.6976 4.84531i −0.450575 0.186634i
\(675\) 0 0
\(676\) 14.4993i 0.557666i
\(677\) 23.6441 9.79369i 0.908715 0.376402i 0.121150 0.992634i \(-0.461342\pi\)
0.787565 + 0.616232i \(0.211342\pi\)
\(678\) 15.6108 + 15.6108i 0.599531 + 0.599531i
\(679\) 41.3613 1.58730
\(680\) 0 0
\(681\) −19.3187 −0.740294
\(682\) −14.3128 14.3128i −0.548067 0.548067i
\(683\) 5.66085 2.34480i 0.216606 0.0897213i −0.271742 0.962370i \(-0.587600\pi\)
0.488348 + 0.872649i \(0.337600\pi\)
\(684\) 0.427415i 0.0163426i
\(685\) 0 0
\(686\) 35.4825 + 14.6973i 1.35473 + 0.561146i
\(687\) 13.0130 31.4163i 0.496479 1.19861i
\(688\) 18.5914 18.5914i 0.708790 0.708790i
\(689\) −5.32713 + 5.32713i −0.202948 + 0.202948i
\(690\) 0 0
\(691\) −6.87633 2.84827i −0.261588 0.108353i 0.248035 0.968751i \(-0.420215\pi\)
−0.509623 + 0.860398i \(0.670215\pi\)
\(692\) −9.65279 23.3039i −0.366944 0.885881i
\(693\) 0.680955i 0.0258674i
\(694\) 15.3626 6.36339i 0.583156 0.241551i
\(695\) 0 0
\(696\) 16.4284 0.622715
\(697\) −14.9311 26.2372i −0.565555 0.993806i
\(698\) −40.3115 −1.52581
\(699\) 2.86741 + 2.86741i 0.108455 + 0.108455i
\(700\) 0 0
\(701\) 25.3350i 0.956891i 0.878117 + 0.478445i \(0.158800\pi\)
−0.878117 + 0.478445i \(0.841200\pi\)
\(702\) 10.5699 + 25.5181i 0.398937 + 0.963119i
\(703\) −4.27058 1.76893i −0.161068 0.0667165i
\(704\) 4.10568 9.91200i 0.154739 0.373573i
\(705\) 0 0
\(706\) −20.4160 + 20.4160i −0.768365 + 0.768365i
\(707\) −15.0174 + 36.2552i −0.564788 + 1.36352i
\(708\) −43.5252 18.0287i −1.63578 0.677562i
\(709\) −6.10174 14.7309i −0.229156 0.553231i 0.766919 0.641744i \(-0.221789\pi\)
−0.996075 + 0.0885126i \(0.971789\pi\)
\(710\) 0 0
\(711\) 0.0982755 0.0407070i 0.00368562 0.00152663i
\(712\) −3.60794 3.60794i −0.135213 0.135213i
\(713\) −39.7615 −1.48908
\(714\) 5.22897 + 41.7233i 0.195689 + 1.56146i
\(715\) 0 0
\(716\) −32.1908 32.1908i −1.20303 1.20303i
\(717\) 27.9066 11.5593i 1.04219 0.431689i
\(718\) 52.5296i 1.96039i
\(719\) −7.42813 17.9331i −0.277022 0.668791i 0.722728 0.691132i \(-0.242888\pi\)
−0.999750 + 0.0223415i \(0.992888\pi\)
\(720\) 0 0
\(721\) 1.67670 4.04790i 0.0624434 0.150752i
\(722\) −27.5997 + 27.5997i −1.02716 + 1.02716i
\(723\) −15.0307 + 15.0307i −0.558997 + 0.558997i
\(724\) 2.28369 5.51330i 0.0848725 0.204900i
\(725\) 0 0
\(726\) −14.6141 35.2815i −0.542380 1.30942i
\(727\) 26.1442i 0.969633i −0.874616 0.484817i \(-0.838886\pi\)
0.874616 0.484817i \(-0.161114\pi\)
\(728\) 5.96311 2.47000i 0.221008 0.0915444i
\(729\) −17.1622 17.1622i −0.635639 0.635639i
\(730\) 0 0
\(731\) −4.56537 36.4283i −0.168856 1.34735i
\(732\) −9.09503 −0.336162
\(733\) 3.23474 + 3.23474i 0.119478 + 0.119478i 0.764318 0.644840i \(-0.223076\pi\)
−0.644840 + 0.764318i \(0.723076\pi\)
\(734\) 16.5851 6.86978i 0.612168 0.253568i
\(735\) 0 0
\(736\) −12.3967 29.9284i −0.456950 1.10317i
\(737\) −5.17435 2.14328i −0.190599 0.0789489i
\(738\) −1.53389 + 3.70314i −0.0564633 + 0.136315i
\(739\) −28.5736 + 28.5736i −1.05110 + 1.05110i −0.0524727 + 0.998622i \(0.516710\pi\)
−0.998622 + 0.0524727i \(0.983290\pi\)
\(740\) 0 0
\(741\) −1.23905 + 2.99133i −0.0455177 + 0.109889i
\(742\) −14.8221 6.13952i −0.544137 0.225389i
\(743\) 8.97795 + 21.6747i 0.329369 + 0.795168i 0.998639 + 0.0521484i \(0.0166069\pi\)
−0.669270 + 0.743019i \(0.733393\pi\)
\(744\) 16.1366i 0.591598i
\(745\) 0 0
\(746\) 17.2052 + 17.2052i 0.629927 + 0.629927i
\(747\) −1.70972 −0.0625553
\(748\) −4.83689 8.49949i −0.176854 0.310772i
\(749\) −14.9462 −0.546121
\(750\) 0 0
\(751\) −29.7279 + 12.3137i −1.08479 + 0.449333i −0.852186 0.523239i \(-0.824723\pi\)
−0.232600 + 0.972572i \(0.574723\pi\)
\(752\) 2.58218i 0.0941624i
\(753\) 12.2313 + 29.5290i 0.445734 + 1.07610i
\(754\) 51.7536 + 21.4370i 1.88475 + 0.780690i
\(755\) 0 0
\(756\) −22.8177 + 22.8177i −0.829873 + 0.829873i
\(757\) −25.3721 + 25.3721i −0.922165 + 0.922165i −0.997182 0.0750172i \(-0.976099\pi\)
0.0750172 + 0.997182i \(0.476099\pi\)
\(758\) −9.91025 + 23.9255i −0.359957 + 0.869012i
\(759\) 6.56697 + 2.72013i 0.238366 + 0.0987343i
\(760\) 0 0
\(761\) 26.9643i 0.977453i 0.872437 + 0.488727i \(0.162538\pi\)
−0.872437 + 0.488727i \(0.837462\pi\)
\(762\) 37.3931 15.4887i 1.35461 0.561098i
\(763\) 5.00607 + 5.00607i 0.181232 + 0.181232i
\(764\) 26.5265 0.959695
\(765\) 0 0
\(766\) 11.9162 0.430549
\(767\) −20.1318 20.1318i −0.726918 0.726918i
\(768\) −11.8004 + 4.88788i −0.425809 + 0.176376i
\(769\) 13.1666i 0.474800i 0.971412 + 0.237400i \(0.0762952\pi\)
−0.971412 + 0.237400i \(0.923705\pi\)
\(770\) 0 0
\(771\) −12.8514 5.32324i −0.462834 0.191712i
\(772\) 17.0936 41.2675i 0.615210 1.48525i
\(773\) 22.4347 22.4347i 0.806920 0.806920i −0.177247 0.984166i \(-0.556719\pi\)
0.984166 + 0.177247i \(0.0567191\pi\)
\(774\) −3.44688 + 3.44688i −0.123895 + 0.123895i
\(775\) 0 0
\(776\) −12.9141 5.34918i −0.463587 0.192024i
\(777\) 12.6768 + 30.6046i 0.454779 + 1.09793i
\(778\) 3.42839i 0.122914i
\(779\) 4.57325 1.89430i 0.163854 0.0678705i
\(780\) 0 0
\(781\) −1.09791 −0.0392861
\(782\) −33.7658 9.27317i −1.20746 0.331608i
\(783\) −49.6360 −1.77385
\(784\) −0.418728 0.418728i −0.0149546 0.0149546i
\(785\) 0 0
\(786\) 6.15119i 0.219406i
\(787\) −4.29554 10.3704i −0.153120 0.369663i 0.828642 0.559779i \(-0.189114\pi\)
−0.981762 + 0.190115i \(0.939114\pi\)
\(788\) 43.7720 + 18.1310i 1.55931 + 0.645889i
\(789\) −4.35092 + 10.5041i −0.154897 + 0.373954i
\(790\) 0 0
\(791\) −11.0218 + 11.0218i −0.391891 + 0.391891i
\(792\) −0.0880667 + 0.212612i −0.00312931 + 0.00755483i
\(793\) −5.07799 2.10337i −0.180325 0.0746930i
\(794\) −10.3525 24.9932i −0.367398 0.886977i
\(795\) 0 0
\(796\) −52.3668 + 21.6911i −1.85609 + 0.768819i
\(797\) 23.8591 + 23.8591i 0.845134 + 0.845134i 0.989521 0.144388i \(-0.0461212\pi\)
−0.144388 + 0.989521i \(0.546121\pi\)
\(798\) −6.89502 −0.244081
\(799\) −2.84683 2.21274i −0.100714 0.0782811i
\(800\) 0 0
\(801\) −1.03472 1.03472i −0.0365600 0.0365600i
\(802\) 56.0125 23.2012i 1.97787 0.819261i
\(803\) 2.92579i 0.103249i
\(804\) −9.64074 23.2748i −0.340003 0.820839i
\(805\) 0 0
\(806\) 21.0564 50.8346i 0.741679 1.79057i
\(807\) −11.8213 + 11.8213i −0.416131 + 0.416131i
\(808\) 9.37764 9.37764i 0.329904 0.329904i
\(809\) 5.44317 13.1410i 0.191372 0.462012i −0.798847 0.601534i \(-0.794557\pi\)
0.990219 + 0.139522i \(0.0445566\pi\)
\(810\) 0 0
\(811\) −9.42238 22.7476i −0.330865 0.798778i −0.998524 0.0543111i \(-0.982704\pi\)
0.667659 0.744467i \(-0.267296\pi\)
\(812\) 65.4455i 2.29669i
\(813\) −27.9896 + 11.5937i −0.981639 + 0.406608i
\(814\) −9.92972 9.92972i −0.348037 0.348037i
\(815\) 0 0
\(816\) −5.82141 + 21.1971i −0.203790 + 0.742047i
\(817\) 6.01999 0.210613
\(818\) −20.2719 20.2719i −0.708790 0.708790i
\(819\) 1.71016 0.708372i 0.0597578 0.0247525i
\(820\) 0 0
\(821\) 9.55514 + 23.0681i 0.333477 + 0.805084i 0.998311 + 0.0580931i \(0.0185020\pi\)
−0.664835 + 0.746991i \(0.731498\pi\)
\(822\) −16.5147 6.84060i −0.576015 0.238593i
\(823\) −11.0503 + 26.6778i −0.385190 + 0.929931i 0.605753 + 0.795652i \(0.292872\pi\)
−0.990944 + 0.134279i \(0.957128\pi\)
\(824\) −1.04702 + 1.04702i −0.0364745 + 0.0364745i
\(825\) 0 0
\(826\) 23.2019 56.0144i 0.807298 1.94899i
\(827\) 14.9690 + 6.20037i 0.520524 + 0.215608i 0.627447 0.778659i \(-0.284100\pi\)
−0.106923 + 0.994267i \(0.534100\pi\)
\(828\) 0.976095 + 2.35650i 0.0339216 + 0.0818941i
\(829\) 22.2311i 0.772117i 0.922474 + 0.386058i \(0.126164\pi\)
−0.922474 + 0.386058i \(0.873836\pi\)
\(830\) 0 0
\(831\) 15.3286 + 15.3286i 0.531744 + 0.531744i
\(832\) 29.1641 1.01108
\(833\) −0.820464 + 0.102824i −0.0284274 + 0.00356266i
\(834\) −3.13090 −0.108414
\(835\) 0 0
\(836\) 1.48150 0.613656i 0.0512386 0.0212237i
\(837\) 48.7546i 1.68521i
\(838\) 11.4918 + 27.7436i 0.396977 + 0.958386i
\(839\) −43.2196 17.9021i −1.49211 0.618051i −0.520332 0.853964i \(-0.674192\pi\)
−0.971774 + 0.235914i \(0.924192\pi\)
\(840\) 0 0
\(841\) −50.6764 + 50.6764i −1.74746 + 1.74746i
\(842\) −43.0675 + 43.0675i −1.48420 + 1.48420i
\(843\) 19.4858 47.0428i 0.671125 1.62024i
\(844\) −51.4751 21.3217i −1.77185 0.733923i
\(845\) 0 0
\(846\) 0.478741i 0.0164594i
\(847\) 24.9100 10.3181i 0.855919 0.354533i
\(848\) −5.93039 5.93039i −0.203650 0.203650i
\(849\) −30.8359 −1.05829
\(850\) 0 0
\(851\) −27.5851 −0.945604
\(852\) −3.49205 3.49205i −0.119636 0.119636i
\(853\) 35.4475 14.6828i 1.21370 0.502731i 0.318299 0.947990i \(-0.396889\pi\)
0.895402 + 0.445259i \(0.146889\pi\)
\(854\) 11.7048i 0.400529i
\(855\) 0 0
\(856\) 4.66658 + 1.93296i 0.159500 + 0.0660672i
\(857\) 2.11426 5.10428i 0.0722218 0.174359i −0.883646 0.468155i \(-0.844919\pi\)
0.955868 + 0.293796i \(0.0949188\pi\)
\(858\) −6.95529 + 6.95529i −0.237450 + 0.237450i
\(859\) −10.1314 + 10.1314i −0.345680 + 0.345680i −0.858498 0.512817i \(-0.828602\pi\)
0.512817 + 0.858498i \(0.328602\pi\)
\(860\) 0 0
\(861\) −32.7737 13.5753i −1.11692 0.462645i
\(862\) 16.5580 + 39.9746i 0.563969 + 1.36154i
\(863\) 9.68459i 0.329667i 0.986321 + 0.164834i \(0.0527087\pi\)
−0.986321 + 0.164834i \(0.947291\pi\)
\(864\) −36.6974 + 15.2006i −1.24847 + 0.517134i
\(865\) 0 0
\(866\) −50.9025 −1.72974
\(867\) 18.3811 + 24.5825i 0.624255 + 0.834864i
\(868\) 64.2833 2.18192
\(869\) −0.282196 0.282196i −0.00957284 0.00957284i
\(870\) 0 0
\(871\) 15.2245i 0.515862i
\(872\) −0.915599 2.21045i −0.0310061 0.0748553i
\(873\) −3.70362 1.53409i −0.125349 0.0519211i
\(874\) 2.19724 5.30462i 0.0743229 0.179431i
\(875\) 0 0
\(876\) 9.30590 9.30590i 0.314417 0.314417i
\(877\) 5.72500 13.8214i 0.193319 0.466714i −0.797263 0.603632i \(-0.793720\pi\)
0.990582 + 0.136918i \(0.0437196\pi\)
\(878\) −42.8711 17.7578i −1.44683 0.599297i
\(879\) −4.71625 11.3860i −0.159075 0.384041i
\(880\) 0 0
\(881\) 9.80896 4.06301i 0.330472 0.136886i −0.211277 0.977426i \(-0.567762\pi\)
0.541749 + 0.840540i \(0.317762\pi\)
\(882\) 0.0776330 + 0.0776330i 0.00261404 + 0.00261404i
\(883\) 52.5251 1.76761 0.883805 0.467855i \(-0.154973\pi\)
0.883805 + 0.467855i \(0.154973\pi\)
\(884\) 16.3141 20.9891i 0.548703 0.705941i
\(885\) 0 0
\(886\) 48.1243 + 48.1243i 1.61677 + 1.61677i
\(887\) 15.8819 6.57850i 0.533262 0.220884i −0.0997691 0.995011i \(-0.531810\pi\)
0.633031 + 0.774126i \(0.281810\pi\)
\(888\) 11.1950i 0.375680i
\(889\) 10.9356 + 26.4009i 0.366768 + 0.885457i
\(890\) 0 0
\(891\) 3.62669 8.75561i 0.121499 0.293324i
\(892\) 22.4412 22.4412i 0.751386 0.751386i
\(893\) 0.418062 0.418062i 0.0139899 0.0139899i
\(894\) 13.9673 33.7200i 0.467135 1.12776i
\(895\) 0 0
\(896\) 7.27703 + 17.5683i 0.243108 + 0.586916i
\(897\) 19.3220i 0.645143i
\(898\) 61.0075 25.2701i 2.03585 0.843276i
\(899\) 69.9185 + 69.9185i 2.33191 + 2.33191i
\(900\) 0 0
\(901\) −11.6201 + 1.45629i −0.387122 + 0.0485160i
\(902\) 15.0380 0.500712
\(903\) −30.5057 30.5057i −1.01517 1.01517i
\(904\) 4.86673 2.01586i 0.161865 0.0670467i
\(905\) 0 0
\(906\) −2.06057 4.97465i −0.0684577 0.165272i
\(907\) 10.3374 + 4.28190i 0.343248 + 0.142178i 0.547647 0.836710i \(-0.315524\pi\)
−0.204398 + 0.978888i \(0.565524\pi\)
\(908\) −9.95305 + 24.0288i −0.330304 + 0.797423i
\(909\) 2.68941 2.68941i 0.0892022 0.0892022i
\(910\) 0 0
\(911\) 1.24981 3.01730i 0.0414080 0.0999677i −0.901822 0.432107i \(-0.857770\pi\)
0.943230 + 0.332139i \(0.107770\pi\)
\(912\) −3.33008 1.37936i −0.110270 0.0456753i
\(913\) 2.45471 + 5.92619i 0.0812390 + 0.196128i
\(914\) 26.8343i 0.887599i
\(915\) 0 0
\(916\) −32.3715 32.3715i −1.06958 1.06958i
\(917\) 4.34296 0.143417
\(918\) −11.3705 + 41.4027i −0.375284 + 1.36649i
\(919\) −32.6905 −1.07836 −0.539179 0.842191i \(-0.681265\pi\)
−0.539179 + 0.842191i \(0.681265\pi\)
\(920\) 0 0
\(921\) 1.24490 0.515655i 0.0410209 0.0169914i
\(922\) 36.6220i 1.20608i
\(923\) −1.14211 2.75729i −0.0375930 0.0907574i
\(924\) −10.6170 4.39769i −0.349272 0.144673i
\(925\) 0 0
\(926\) 44.0198 44.0198i 1.44658 1.44658i
\(927\) −0.300273 + 0.300273i −0.00986227 + 0.00986227i
\(928\) −30.8284 + 74.4264i −1.01199 + 2.44317i
\(929\) 7.83598 + 3.24577i 0.257090 + 0.106490i 0.507506 0.861648i \(-0.330567\pi\)
−0.250416 + 0.968138i \(0.580567\pi\)
\(930\) 0 0
\(931\) 0.135586i 0.00444367i
\(932\) 5.04381 2.08921i 0.165215 0.0684344i
\(933\) 23.2368 + 23.2368i 0.760739 + 0.760739i
\(934\) −69.2208 −2.26497
\(935\) 0 0
\(936\) −0.625569 −0.0204473
\(937\) −22.0610 22.0610i −0.720703 0.720703i 0.248045 0.968748i \(-0.420212\pi\)
−0.968748 + 0.248045i \(0.920212\pi\)
\(938\) 29.9533 12.4071i 0.978009 0.405105i
\(939\) 17.9184i 0.584744i
\(940\) 0 0
\(941\) 19.9946 + 8.28202i 0.651804 + 0.269986i 0.683985 0.729496i \(-0.260245\pi\)
−0.0321810 + 0.999482i \(0.510245\pi\)
\(942\) −7.00868 + 16.9204i −0.228355 + 0.551298i
\(943\) 20.8880 20.8880i 0.680208 0.680208i
\(944\) 22.4116 22.4116i 0.729435 0.729435i
\(945\) 0 0
\(946\) 16.8963 + 6.99868i 0.549347 + 0.227547i
\(947\) −1.50513 3.63370i −0.0489101 0.118079i 0.897536 0.440941i \(-0.145355\pi\)
−0.946446 + 0.322862i \(0.895355\pi\)
\(948\) 1.79513i 0.0583031i
\(949\) 7.34786 3.04358i 0.238522 0.0987989i
\(950\) 0 0
\(951\) 43.8964 1.42344
\(952\) 9.67506 + 2.65708i 0.313571 + 0.0861166i
\(953\) 4.24356 0.137462 0.0687312 0.997635i \(-0.478105\pi\)
0.0687312 + 0.997635i \(0.478105\pi\)
\(954\) 1.09950 + 1.09950i 0.0355978 + 0.0355978i
\(955\) 0 0
\(956\) 40.6658i 1.31523i
\(957\) −6.76447 16.3309i −0.218664 0.527902i
\(958\) 1.15479 + 0.478328i 0.0373095 + 0.0154541i
\(959\) 4.82971 11.6600i 0.155959 0.376519i
\(960\) 0 0
\(961\) 46.7567 46.7567i 1.50828 1.50828i
\(962\) 14.6081 35.2671i 0.470985 1.13706i
\(963\) 1.33833 + 0.554353i 0.0431270 + 0.0178638i
\(964\) 10.9515 + 26.4392i 0.352723 + 0.851549i
\(965\) 0 0
\(966\) −38.0149 + 15.7463i −1.22311 + 0.506628i
\(967\) −25.3036 25.3036i −0.813708 0.813708i 0.171480 0.985188i \(-0.445145\pi\)
−0.985188 + 0.171480i \(0.945145\pi\)
\(968\) −9.11197 −0.292870
\(969\) −4.37437 + 2.48937i −0.140525 + 0.0799700i
\(970\) 0 0
\(971\) −26.0013 26.0013i −0.834423 0.834423i 0.153695 0.988118i \(-0.450883\pi\)
−0.988118 + 0.153695i \(0.950883\pi\)
\(972\) 6.05324 2.50733i 0.194158 0.0804228i
\(973\) 2.21053i 0.0708664i
\(974\) 1.81468 + 4.38103i 0.0581462 + 0.140377i
\(975\) 0 0
\(976\) 2.34156 5.65303i 0.0749516 0.180949i
\(977\) 18.3472 18.3472i 0.586977 0.586977i −0.349834 0.936812i \(-0.613762\pi\)
0.936812 + 0.349834i \(0.113762\pi\)
\(978\) 4.35104 4.35104i 0.139131 0.139131i
\(979\) −2.10094 + 5.07211i −0.0671463 + 0.162105i
\(980\) 0 0
\(981\) −0.262585 0.633935i −0.00838368 0.0202400i
\(982\) 15.3652i 0.490322i
\(983\) −30.5712 + 12.6630i −0.975071 + 0.403888i −0.812598 0.582825i \(-0.801947\pi\)
−0.162474 + 0.986713i \(0.551947\pi\)
\(984\) 8.47711 + 8.47711i 0.270241 + 0.270241i
\(985\) 0 0
\(986\) 43.0689 + 75.6817i 1.37159 + 2.41020i
\(987\) −4.23697 −0.134864
\(988\) 3.08229 + 3.08229i 0.0980606 + 0.0980606i
\(989\) 33.1905 13.7480i 1.05540 0.437160i
\(990\) 0 0
\(991\) 13.3710 + 32.2804i 0.424744 + 1.02542i 0.980930 + 0.194364i \(0.0622643\pi\)
−0.556186 + 0.831058i \(0.687736\pi\)
\(992\) 73.1049 + 30.2810i 2.32108 + 0.961423i
\(993\) 0.338407 0.816987i 0.0107390 0.0259263i
\(994\) 4.49406 4.49406i 0.142543 0.142543i
\(995\) 0 0
\(996\) −11.0416 + 26.6567i −0.349865 + 0.844649i
\(997\) −15.1950 6.29396i −0.481229 0.199332i 0.128862 0.991662i \(-0.458867\pi\)
−0.610092 + 0.792331i \(0.708867\pi\)
\(998\) −6.12244 14.7809i −0.193802 0.467881i
\(999\) 33.8241i 1.07015i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.e.376.1 24
5.2 odd 4 85.2.m.a.19.6 yes 24
5.3 odd 4 85.2.m.a.19.1 yes 24
5.4 even 2 inner 425.2.m.e.376.6 24
15.2 even 4 765.2.bh.b.19.1 24
15.8 even 4 765.2.bh.b.19.6 24
17.3 odd 16 7225.2.a.by.1.3 24
17.9 even 8 inner 425.2.m.e.26.1 24
17.14 odd 16 7225.2.a.by.1.4 24
85.3 even 16 1445.2.b.i.579.21 24
85.9 even 8 inner 425.2.m.e.26.6 24
85.14 odd 16 7225.2.a.by.1.21 24
85.37 even 16 1445.2.b.i.579.4 24
85.43 odd 8 85.2.m.a.9.6 yes 24
85.48 even 16 1445.2.b.i.579.22 24
85.54 odd 16 7225.2.a.by.1.22 24
85.77 odd 8 85.2.m.a.9.1 24
85.82 even 16 1445.2.b.i.579.3 24
255.77 even 8 765.2.bh.b.604.6 24
255.128 even 8 765.2.bh.b.604.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.1 24 85.77 odd 8
85.2.m.a.9.6 yes 24 85.43 odd 8
85.2.m.a.19.1 yes 24 5.3 odd 4
85.2.m.a.19.6 yes 24 5.2 odd 4
425.2.m.e.26.1 24 17.9 even 8 inner
425.2.m.e.26.6 24 85.9 even 8 inner
425.2.m.e.376.1 24 1.1 even 1 trivial
425.2.m.e.376.6 24 5.4 even 2 inner
765.2.bh.b.19.1 24 15.2 even 4
765.2.bh.b.19.6 24 15.8 even 4
765.2.bh.b.604.1 24 255.128 even 8
765.2.bh.b.604.6 24 255.77 even 8
1445.2.b.i.579.3 24 85.82 even 16
1445.2.b.i.579.4 24 85.37 even 16
1445.2.b.i.579.21 24 85.3 even 16
1445.2.b.i.579.22 24 85.48 even 16
7225.2.a.by.1.3 24 17.3 odd 16
7225.2.a.by.1.4 24 17.14 odd 16
7225.2.a.by.1.21 24 85.14 odd 16
7225.2.a.by.1.22 24 85.54 odd 16