Properties

Label 765.2.bh.b.604.1
Level $765$
Weight $2$
Character 765.604
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(19,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 4, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.bh (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 604.1
Character \(\chi\) \(=\) 765.604
Dual form 765.2.bh.b.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48843 - 1.48843i) q^{2} +2.43082i q^{4} +(2.22841 + 0.184902i) q^{5} +(-2.47912 + 1.02689i) q^{7} +(0.641241 - 0.641241i) q^{8} +(-3.04161 - 3.59203i) q^{10} +(0.901470 - 0.373401i) q^{11} -2.65240 q^{13} +(5.21843 + 2.16155i) q^{14} +2.95276 q^{16} +(-3.25539 + 2.53030i) q^{17} +(-0.478059 + 0.478059i) q^{19} +(-0.449464 + 5.41686i) q^{20} +(-1.89755 - 0.785991i) q^{22} +(-1.54397 - 3.72748i) q^{23} +(4.93162 + 0.824076i) q^{25} +(3.94790 + 3.94790i) q^{26} +(-2.49617 - 6.02630i) q^{28} +(-3.83958 + 9.26957i) q^{29} +(-9.10497 - 3.77140i) q^{31} +(-5.67744 - 5.67744i) q^{32} +(8.61157 + 1.07924i) q^{34} +(-5.71438 + 1.82993i) q^{35} +(-2.61646 + 6.31669i) q^{37} +1.42311 q^{38} +(1.54751 - 1.31038i) q^{40} +(-2.80190 - 6.76439i) q^{41} +(-6.29628 + 6.29628i) q^{43} +(0.907670 + 2.19131i) q^{44} +(-3.24999 + 7.84616i) q^{46} -0.874497 q^{47} +(0.141809 - 0.141809i) q^{49} +(-6.11377 - 8.56693i) q^{50} -6.44750i q^{52} +(2.00842 + 2.00842i) q^{53} +(2.07789 - 0.665407i) q^{55} +(-0.931234 + 2.24820i) q^{56} +(19.5120 - 8.08213i) q^{58} +(7.59005 + 7.59005i) q^{59} +(0.793008 + 1.91449i) q^{61} +(7.93862 + 19.1655i) q^{62} +10.9954i q^{64} +(-5.91063 - 0.490434i) q^{65} -5.73990i q^{67} +(-6.15070 - 7.91327i) q^{68} +(11.2291 + 5.78171i) q^{70} +(-1.03955 - 0.430595i) q^{71} +(2.77027 + 1.14748i) q^{73} +(13.2963 - 5.50752i) q^{74} +(-1.16208 - 1.16208i) q^{76} +(-1.85141 + 1.85141i) q^{77} +(-0.377872 + 0.156520i) q^{79} +(6.57996 + 0.545972i) q^{80} +(-5.89786 + 14.2387i) q^{82} +(4.64846 + 4.64846i) q^{83} +(-7.72221 + 5.03662i) q^{85} +18.7431 q^{86} +(0.338619 - 0.817499i) q^{88} +5.62649i q^{89} +(6.57562 - 2.72371i) q^{91} +(9.06082 - 3.75312i) q^{92} +(1.30162 + 1.30162i) q^{94} +(-1.15371 + 0.976918i) q^{95} +(14.2405 + 5.89862i) q^{97} -0.422145 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{10} + 24 q^{14} + 8 q^{16} - 24 q^{19} + 8 q^{20} + 16 q^{25} + 16 q^{26} - 24 q^{29} - 24 q^{31} + 8 q^{34} - 8 q^{35} + 16 q^{40} + 48 q^{41} - 72 q^{44} - 16 q^{46} + 48 q^{49} - 16 q^{50}+ \cdots + 88 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48843 1.48843i −1.05248 1.05248i −0.998545 0.0539308i \(-0.982825\pi\)
−0.0539308 0.998545i \(-0.517175\pi\)
\(3\) 0 0
\(4\) 2.43082i 1.21541i
\(5\) 2.22841 + 0.184902i 0.996575 + 0.0826908i
\(6\) 0 0
\(7\) −2.47912 + 1.02689i −0.937021 + 0.388127i −0.798338 0.602210i \(-0.794287\pi\)
−0.138683 + 0.990337i \(0.544287\pi\)
\(8\) 0.641241 0.641241i 0.226713 0.226713i
\(9\) 0 0
\(10\) −3.04161 3.59203i −0.961841 1.13590i
\(11\) 0.901470 0.373401i 0.271803 0.112585i −0.242619 0.970122i \(-0.578006\pi\)
0.514422 + 0.857537i \(0.328006\pi\)
\(12\) 0 0
\(13\) −2.65240 −0.735643 −0.367821 0.929896i \(-0.619896\pi\)
−0.367821 + 0.929896i \(0.619896\pi\)
\(14\) 5.21843 + 2.16155i 1.39468 + 0.577697i
\(15\) 0 0
\(16\) 2.95276 0.738190
\(17\) −3.25539 + 2.53030i −0.789548 + 0.613688i
\(18\) 0 0
\(19\) −0.478059 + 0.478059i −0.109674 + 0.109674i −0.759814 0.650140i \(-0.774710\pi\)
0.650140 + 0.759814i \(0.274710\pi\)
\(20\) −0.449464 + 5.41686i −0.100503 + 1.21125i
\(21\) 0 0
\(22\) −1.89755 0.785991i −0.404559 0.167574i
\(23\) −1.54397 3.72748i −0.321940 0.777233i −0.999141 0.0414347i \(-0.986807\pi\)
0.677201 0.735798i \(-0.263193\pi\)
\(24\) 0 0
\(25\) 4.93162 + 0.824076i 0.986324 + 0.164815i
\(26\) 3.94790 + 3.94790i 0.774246 + 0.774246i
\(27\) 0 0
\(28\) −2.49617 6.02630i −0.471733 1.13886i
\(29\) −3.83958 + 9.26957i −0.712992 + 1.72132i −0.0206072 + 0.999788i \(0.506560\pi\)
−0.692385 + 0.721528i \(0.743440\pi\)
\(30\) 0 0
\(31\) −9.10497 3.77140i −1.63530 0.677364i −0.639490 0.768800i \(-0.720854\pi\)
−0.995811 + 0.0914357i \(0.970854\pi\)
\(32\) −5.67744 5.67744i −1.00364 1.00364i
\(33\) 0 0
\(34\) 8.61157 + 1.07924i 1.47687 + 0.185089i
\(35\) −5.71438 + 1.82993i −0.965906 + 0.309314i
\(36\) 0 0
\(37\) −2.61646 + 6.31669i −0.430143 + 1.03846i 0.549098 + 0.835758i \(0.314971\pi\)
−0.979241 + 0.202699i \(0.935029\pi\)
\(38\) 1.42311 0.230859
\(39\) 0 0
\(40\) 1.54751 1.31038i 0.244684 0.207189i
\(41\) −2.80190 6.76439i −0.437583 1.05642i −0.976781 0.214240i \(-0.931272\pi\)
0.539198 0.842179i \(-0.318728\pi\)
\(42\) 0 0
\(43\) −6.29628 + 6.29628i −0.960173 + 0.960173i −0.999237 0.0390633i \(-0.987563\pi\)
0.0390633 + 0.999237i \(0.487563\pi\)
\(44\) 0.907670 + 2.19131i 0.136836 + 0.330352i
\(45\) 0 0
\(46\) −3.24999 + 7.84616i −0.479184 + 1.15685i
\(47\) −0.874497 −0.127558 −0.0637792 0.997964i \(-0.520315\pi\)
−0.0637792 + 0.997964i \(0.520315\pi\)
\(48\) 0 0
\(49\) 0.141809 0.141809i 0.0202585 0.0202585i
\(50\) −6.11377 8.56693i −0.864618 1.21155i
\(51\) 0 0
\(52\) 6.44750i 0.894107i
\(53\) 2.00842 + 2.00842i 0.275878 + 0.275878i 0.831461 0.555583i \(-0.187505\pi\)
−0.555583 + 0.831461i \(0.687505\pi\)
\(54\) 0 0
\(55\) 2.07789 0.665407i 0.280182 0.0897234i
\(56\) −0.931234 + 2.24820i −0.124441 + 0.300428i
\(57\) 0 0
\(58\) 19.5120 8.08213i 2.56205 1.06124i
\(59\) 7.59005 + 7.59005i 0.988140 + 0.988140i 0.999930 0.0117908i \(-0.00375321\pi\)
−0.0117908 + 0.999930i \(0.503753\pi\)
\(60\) 0 0
\(61\) 0.793008 + 1.91449i 0.101534 + 0.245125i 0.966481 0.256738i \(-0.0826479\pi\)
−0.864947 + 0.501864i \(0.832648\pi\)
\(62\) 7.93862 + 19.1655i 1.00821 + 2.43402i
\(63\) 0 0
\(64\) 10.9954i 1.37442i
\(65\) −5.91063 0.490434i −0.733123 0.0608309i
\(66\) 0 0
\(67\) 5.73990i 0.701240i −0.936518 0.350620i \(-0.885971\pi\)
0.936518 0.350620i \(-0.114029\pi\)
\(68\) −6.15070 7.91327i −0.745882 0.959624i
\(69\) 0 0
\(70\) 11.2291 + 5.78171i 1.34214 + 0.691047i
\(71\) −1.03955 0.430595i −0.123372 0.0511022i 0.320144 0.947369i \(-0.396269\pi\)
−0.443515 + 0.896267i \(0.646269\pi\)
\(72\) 0 0
\(73\) 2.77027 + 1.14748i 0.324236 + 0.134303i 0.538864 0.842393i \(-0.318854\pi\)
−0.214628 + 0.976696i \(0.568854\pi\)
\(74\) 13.2963 5.50752i 1.54567 0.640236i
\(75\) 0 0
\(76\) −1.16208 1.16208i −0.133299 0.133299i
\(77\) −1.85141 + 1.85141i −0.210988 + 0.210988i
\(78\) 0 0
\(79\) −0.377872 + 0.156520i −0.0425139 + 0.0176099i −0.403839 0.914830i \(-0.632324\pi\)
0.361325 + 0.932440i \(0.382324\pi\)
\(80\) 6.57996 + 0.545972i 0.735662 + 0.0610415i
\(81\) 0 0
\(82\) −5.89786 + 14.2387i −0.651310 + 1.57240i
\(83\) 4.64846 + 4.64846i 0.510235 + 0.510235i 0.914598 0.404363i \(-0.132507\pi\)
−0.404363 + 0.914598i \(0.632507\pi\)
\(84\) 0 0
\(85\) −7.72221 + 5.03662i −0.837591 + 0.546298i
\(86\) 18.7431 2.02112
\(87\) 0 0
\(88\) 0.338619 0.817499i 0.0360969 0.0871457i
\(89\) 5.62649i 0.596407i 0.954502 + 0.298204i \(0.0963874\pi\)
−0.954502 + 0.298204i \(0.903613\pi\)
\(90\) 0 0
\(91\) 6.57562 2.72371i 0.689312 0.285523i
\(92\) 9.06082 3.75312i 0.944656 0.391289i
\(93\) 0 0
\(94\) 1.30162 + 1.30162i 0.134252 + 0.134252i
\(95\) −1.15371 + 0.976918i −0.118368 + 0.100230i
\(96\) 0 0
\(97\) 14.2405 + 5.89862i 1.44591 + 0.598915i 0.961222 0.275774i \(-0.0889342\pi\)
0.484685 + 0.874689i \(0.338934\pi\)
\(98\) −0.422145 −0.0426430
\(99\) 0 0
\(100\) −2.00318 + 11.9879i −0.200318 + 1.19879i
\(101\) −14.6242 −1.45516 −0.727582 0.686021i \(-0.759356\pi\)
−0.727582 + 0.686021i \(0.759356\pi\)
\(102\) 0 0
\(103\) 1.63280i 0.160884i −0.996759 0.0804421i \(-0.974367\pi\)
0.996759 0.0804421i \(-0.0256332\pi\)
\(104\) −1.70083 + 1.70083i −0.166780 + 0.166780i
\(105\) 0 0
\(106\) 5.97877i 0.580710i
\(107\) 5.14591 + 2.13151i 0.497474 + 0.206060i 0.617290 0.786736i \(-0.288231\pi\)
−0.119816 + 0.992796i \(0.538231\pi\)
\(108\) 0 0
\(109\) −1.00965 2.43750i −0.0967066 0.233470i 0.868122 0.496351i \(-0.165327\pi\)
−0.964828 + 0.262881i \(0.915327\pi\)
\(110\) −4.08319 2.10237i −0.389317 0.200453i
\(111\) 0 0
\(112\) −7.32025 + 3.03215i −0.691699 + 0.286511i
\(113\) −2.22293 5.36662i −0.209115 0.504849i 0.784169 0.620547i \(-0.213090\pi\)
−0.993284 + 0.115698i \(0.963090\pi\)
\(114\) 0 0
\(115\) −2.75138 8.59183i −0.256568 0.801193i
\(116\) −22.5326 9.33332i −2.09210 0.866577i
\(117\) 0 0
\(118\) 22.5944i 2.07999i
\(119\) 5.47219 9.61585i 0.501634 0.881483i
\(120\) 0 0
\(121\) −7.10496 + 7.10496i −0.645905 + 0.645905i
\(122\) 1.66924 4.02991i 0.151126 0.364851i
\(123\) 0 0
\(124\) 9.16759 22.1325i 0.823274 1.98756i
\(125\) 10.8373 + 2.74825i 0.969318 + 0.245811i
\(126\) 0 0
\(127\) 7.53018 7.53018i 0.668195 0.668195i −0.289103 0.957298i \(-0.593357\pi\)
0.957298 + 0.289103i \(0.0933569\pi\)
\(128\) 5.01091 5.01091i 0.442906 0.442906i
\(129\) 0 0
\(130\) 8.06755 + 9.52750i 0.707571 + 0.835617i
\(131\) 0.619360 1.49527i 0.0541137 0.130642i −0.894511 0.447047i \(-0.852476\pi\)
0.948624 + 0.316405i \(0.102476\pi\)
\(132\) 0 0
\(133\) 0.694256 1.67608i 0.0601996 0.145335i
\(134\) −8.54341 + 8.54341i −0.738038 + 0.738038i
\(135\) 0 0
\(136\) −0.464958 + 3.71002i −0.0398698 + 0.318132i
\(137\) 4.70326i 0.401826i −0.979609 0.200913i \(-0.935609\pi\)
0.979609 0.200913i \(-0.0643909\pi\)
\(138\) 0 0
\(139\) 0.761078 + 0.315249i 0.0645538 + 0.0267391i 0.414727 0.909946i \(-0.363877\pi\)
−0.350173 + 0.936685i \(0.613877\pi\)
\(140\) −4.44822 13.8906i −0.375944 1.17397i
\(141\) 0 0
\(142\) 0.906381 + 2.18820i 0.0760618 + 0.183629i
\(143\) −2.39106 + 0.990408i −0.199950 + 0.0828221i
\(144\) 0 0
\(145\) −10.2701 + 19.9465i −0.852888 + 1.65646i
\(146\) −2.41540 5.83129i −0.199900 0.482601i
\(147\) 0 0
\(148\) −15.3547 6.36014i −1.26215 0.522800i
\(149\) 9.60320i 0.786725i 0.919383 + 0.393362i \(0.128688\pi\)
−0.919383 + 0.393362i \(0.871312\pi\)
\(150\) 0 0
\(151\) −1.00179 + 1.00179i −0.0815244 + 0.0815244i −0.746693 0.665169i \(-0.768360\pi\)
0.665169 + 0.746693i \(0.268360\pi\)
\(152\) 0.613103i 0.0497292i
\(153\) 0 0
\(154\) 5.51138 0.444120
\(155\) −19.5923 10.0878i −1.57369 0.810268i
\(156\) 0 0
\(157\) −4.81882 −0.384584 −0.192292 0.981338i \(-0.561592\pi\)
−0.192292 + 0.981338i \(0.561592\pi\)
\(158\) 0.795403 + 0.329467i 0.0632788 + 0.0262109i
\(159\) 0 0
\(160\) −11.6019 13.7014i −0.917210 1.08319i
\(161\) 7.65539 + 7.65539i 0.603330 + 0.603330i
\(162\) 0 0
\(163\) −1.49578 + 0.619572i −0.117158 + 0.0485286i −0.440493 0.897756i \(-0.645196\pi\)
0.323334 + 0.946285i \(0.395196\pi\)
\(164\) 16.4430 6.81091i 1.28398 0.531843i
\(165\) 0 0
\(166\) 13.8378i 1.07402i
\(167\) 8.47025 20.4490i 0.655447 1.58239i −0.149313 0.988790i \(-0.547706\pi\)
0.804760 0.593600i \(-0.202294\pi\)
\(168\) 0 0
\(169\) −5.96479 −0.458830
\(170\) 18.9906 + 3.99729i 1.45651 + 0.306579i
\(171\) 0 0
\(172\) −15.3051 15.3051i −1.16700 1.16700i
\(173\) −3.97100 + 9.58685i −0.301910 + 0.728875i 0.698008 + 0.716089i \(0.254070\pi\)
−0.999918 + 0.0127852i \(0.995930\pi\)
\(174\) 0 0
\(175\) −13.0723 + 3.02123i −0.988175 + 0.228384i
\(176\) 2.66182 1.10256i 0.200642 0.0831088i
\(177\) 0 0
\(178\) 8.37461 8.37461i 0.627704 0.627704i
\(179\) −13.2428 13.2428i −0.989813 0.989813i 0.0101361 0.999949i \(-0.496774\pi\)
−0.999949 + 0.0101361i \(0.996774\pi\)
\(180\) 0 0
\(181\) −2.26809 + 0.939472i −0.168585 + 0.0698304i −0.465380 0.885111i \(-0.654082\pi\)
0.296795 + 0.954941i \(0.404082\pi\)
\(182\) −13.8414 5.73328i −1.02599 0.424979i
\(183\) 0 0
\(184\) −3.38027 1.40015i −0.249197 0.103221i
\(185\) −6.99851 + 13.5924i −0.514541 + 0.999332i
\(186\) 0 0
\(187\) −1.98982 + 3.49656i −0.145510 + 0.255694i
\(188\) 2.12574i 0.155036i
\(189\) 0 0
\(190\) 3.17128 + 0.263137i 0.230069 + 0.0190899i
\(191\) 10.9126i 0.789607i −0.918766 0.394803i \(-0.870813\pi\)
0.918766 0.394803i \(-0.129187\pi\)
\(192\) 0 0
\(193\) −7.03202 16.9768i −0.506176 1.22202i −0.946069 0.323966i \(-0.894984\pi\)
0.439893 0.898050i \(-0.355016\pi\)
\(194\) −12.4163 29.9756i −0.891439 2.15213i
\(195\) 0 0
\(196\) 0.344712 + 0.344712i 0.0246223 + 0.0246223i
\(197\) −18.0071 + 7.45879i −1.28295 + 0.531417i −0.916878 0.399168i \(-0.869299\pi\)
−0.366076 + 0.930585i \(0.619299\pi\)
\(198\) 0 0
\(199\) −8.92336 + 21.5429i −0.632560 + 1.52713i 0.203834 + 0.979005i \(0.434660\pi\)
−0.836394 + 0.548129i \(0.815340\pi\)
\(200\) 3.69079 2.63393i 0.260978 0.186247i
\(201\) 0 0
\(202\) 21.7670 + 21.7670i 1.53152 + 1.53152i
\(203\) 26.9232i 1.88964i
\(204\) 0 0
\(205\) −4.99303 15.5919i −0.348729 1.08899i
\(206\) −2.43029 + 2.43029i −0.169327 + 0.169327i
\(207\) 0 0
\(208\) −7.83189 −0.543044
\(209\) −0.252448 + 0.609464i −0.0174622 + 0.0421575i
\(210\) 0 0
\(211\) −8.77140 21.1760i −0.603848 1.45782i −0.869590 0.493774i \(-0.835617\pi\)
0.265742 0.964044i \(-0.414383\pi\)
\(212\) −4.88211 + 4.88211i −0.335305 + 0.335305i
\(213\) 0 0
\(214\) −4.48671 10.8319i −0.306706 0.740453i
\(215\) −15.1949 + 12.8665i −1.03628 + 0.877488i
\(216\) 0 0
\(217\) 26.4451 1.79521
\(218\) −2.12526 + 5.13082i −0.143940 + 0.347503i
\(219\) 0 0
\(220\) 1.61748 + 5.05097i 0.109051 + 0.340536i
\(221\) 8.63459 6.71137i 0.580826 0.451455i
\(222\) 0 0
\(223\) −9.23194 9.23194i −0.618217 0.618217i 0.326857 0.945074i \(-0.394010\pi\)
−0.945074 + 0.326857i \(0.894010\pi\)
\(224\) 19.9052 + 8.24499i 1.32997 + 0.550892i
\(225\) 0 0
\(226\) −4.67915 + 11.2965i −0.311253 + 0.751430i
\(227\) 4.09453 + 9.88506i 0.271763 + 0.656095i 0.999559 0.0296996i \(-0.00945506\pi\)
−0.727796 + 0.685794i \(0.759455\pi\)
\(228\) 0 0
\(229\) 13.3171 + 13.3171i 0.880020 + 0.880020i 0.993536 0.113516i \(-0.0362113\pi\)
−0.113516 + 0.993536i \(0.536211\pi\)
\(230\) −8.69307 + 16.8835i −0.573204 + 1.11327i
\(231\) 0 0
\(232\) 3.48193 + 8.40612i 0.228600 + 0.551889i
\(233\) 2.07494 + 0.859469i 0.135934 + 0.0563057i 0.449613 0.893223i \(-0.351562\pi\)
−0.313679 + 0.949529i \(0.601562\pi\)
\(234\) 0 0
\(235\) −1.94874 0.161696i −0.127122 0.0105479i
\(236\) −18.4500 + 18.4500i −1.20099 + 1.20099i
\(237\) 0 0
\(238\) −22.4574 + 6.16753i −1.45570 + 0.399782i
\(239\) −16.7293 −1.08213 −0.541063 0.840982i \(-0.681978\pi\)
−0.541063 + 0.840982i \(0.681978\pi\)
\(240\) 0 0
\(241\) 10.8767 + 4.50526i 0.700627 + 0.290209i 0.704420 0.709784i \(-0.251207\pi\)
−0.00379273 + 0.999993i \(0.501207\pi\)
\(242\) 21.1504 1.35960
\(243\) 0 0
\(244\) −4.65378 + 1.92766i −0.297928 + 0.123406i
\(245\) 0.342230 0.289788i 0.0218643 0.0185139i
\(246\) 0 0
\(247\) 1.26800 1.26800i 0.0806812 0.0806812i
\(248\) −8.25686 + 3.42010i −0.524311 + 0.217177i
\(249\) 0 0
\(250\) −12.0400 20.2211i −0.761473 1.27889i
\(251\) 17.7019i 1.11733i −0.829392 0.558666i \(-0.811313\pi\)
0.829392 0.558666i \(-0.188687\pi\)
\(252\) 0 0
\(253\) −2.78369 2.78369i −0.175009 0.175009i
\(254\) −22.4162 −1.40652
\(255\) 0 0
\(256\) 7.07403 0.442127
\(257\) 5.44763 + 5.44763i 0.339814 + 0.339814i 0.856297 0.516483i \(-0.172759\pi\)
−0.516483 + 0.856297i \(0.672759\pi\)
\(258\) 0 0
\(259\) 18.3467i 1.14001i
\(260\) 1.19216 14.3677i 0.0739344 0.891045i
\(261\) 0 0
\(262\) −3.14746 + 1.30372i −0.194451 + 0.0805442i
\(263\) 4.45259 4.45259i 0.274558 0.274558i −0.556374 0.830932i \(-0.687808\pi\)
0.830932 + 0.556374i \(0.187808\pi\)
\(264\) 0 0
\(265\) 4.10423 + 4.84695i 0.252121 + 0.297746i
\(266\) −3.52807 + 1.46137i −0.216320 + 0.0896026i
\(267\) 0 0
\(268\) 13.9527 0.852294
\(269\) 8.55428 + 3.54330i 0.521563 + 0.216039i 0.627904 0.778291i \(-0.283913\pi\)
−0.106340 + 0.994330i \(0.533913\pi\)
\(270\) 0 0
\(271\) 16.7791 1.01926 0.509628 0.860395i \(-0.329783\pi\)
0.509628 + 0.860395i \(0.329783\pi\)
\(272\) −9.61239 + 7.47137i −0.582837 + 0.453018i
\(273\) 0 0
\(274\) −7.00044 + 7.00044i −0.422912 + 0.422912i
\(275\) 4.75342 1.09859i 0.286642 0.0662476i
\(276\) 0 0
\(277\) 11.0923 + 4.59456i 0.666469 + 0.276061i 0.690158 0.723659i \(-0.257541\pi\)
−0.0236887 + 0.999719i \(0.507541\pi\)
\(278\) −0.663584 1.60203i −0.0397991 0.0960835i
\(279\) 0 0
\(280\) −2.49087 + 4.83772i −0.148858 + 0.289109i
\(281\) 19.9411 + 19.9411i 1.18959 + 1.18959i 0.977182 + 0.212403i \(0.0681291\pi\)
0.212403 + 0.977182i \(0.431871\pi\)
\(282\) 0 0
\(283\) 6.53556 + 15.7782i 0.388499 + 0.937919i 0.990258 + 0.139242i \(0.0444665\pi\)
−0.601760 + 0.798677i \(0.705534\pi\)
\(284\) 1.04670 2.52695i 0.0621101 0.149947i
\(285\) 0 0
\(286\) 5.03306 + 2.08476i 0.297611 + 0.123274i
\(287\) 13.8925 + 13.8925i 0.820049 + 0.820049i
\(288\) 0 0
\(289\) 4.19515 16.4742i 0.246774 0.969073i
\(290\) 44.9751 14.4025i 2.64103 0.845743i
\(291\) 0 0
\(292\) −2.78933 + 6.73403i −0.163233 + 0.394079i
\(293\) −6.82563 −0.398758 −0.199379 0.979922i \(-0.563892\pi\)
−0.199379 + 0.979922i \(0.563892\pi\)
\(294\) 0 0
\(295\) 15.5103 + 18.3171i 0.903046 + 1.06647i
\(296\) 2.37274 + 5.72830i 0.137913 + 0.332951i
\(297\) 0 0
\(298\) 14.2936 14.2936i 0.828009 0.828009i
\(299\) 4.09523 + 9.88676i 0.236833 + 0.571766i
\(300\) 0 0
\(301\) 9.14369 22.0748i 0.527033 1.27237i
\(302\) 2.98218 0.171605
\(303\) 0 0
\(304\) −1.41159 + 1.41159i −0.0809605 + 0.0809605i
\(305\) 1.41315 + 4.41290i 0.0809169 + 0.252682i
\(306\) 0 0
\(307\) 0.746287i 0.0425929i 0.999773 + 0.0212964i \(0.00677938\pi\)
−0.999773 + 0.0212964i \(0.993221\pi\)
\(308\) −4.50045 4.50045i −0.256437 0.256437i
\(309\) 0 0
\(310\) 14.1467 + 44.1765i 0.803481 + 2.50906i
\(311\) 6.96494 16.8149i 0.394946 0.953483i −0.593900 0.804539i \(-0.702413\pi\)
0.988846 0.148944i \(-0.0475874\pi\)
\(312\) 0 0
\(313\) 9.16854 3.79773i 0.518236 0.214661i −0.108206 0.994129i \(-0.534510\pi\)
0.626442 + 0.779468i \(0.284510\pi\)
\(314\) 7.17245 + 7.17245i 0.404765 + 0.404765i
\(315\) 0 0
\(316\) −0.380471 0.918539i −0.0214032 0.0516718i
\(317\) −9.30367 22.4610i −0.522546 1.26154i −0.936317 0.351157i \(-0.885788\pi\)
0.413770 0.910381i \(-0.364212\pi\)
\(318\) 0 0
\(319\) 9.78994i 0.548131i
\(320\) −2.03307 + 24.5022i −0.113652 + 1.36971i
\(321\) 0 0
\(322\) 22.7890i 1.26998i
\(323\) 0.346636 2.76591i 0.0192874 0.153899i
\(324\) 0 0
\(325\) −13.0806 2.18578i −0.725582 0.121245i
\(326\) 3.14854 + 1.30417i 0.174381 + 0.0722312i
\(327\) 0 0
\(328\) −6.13429 2.54091i −0.338710 0.140298i
\(329\) 2.16799 0.898009i 0.119525 0.0495088i
\(330\) 0 0
\(331\) −0.346315 0.346315i −0.0190352 0.0190352i 0.697525 0.716560i \(-0.254285\pi\)
−0.716560 + 0.697525i \(0.754285\pi\)
\(332\) −11.2996 + 11.2996i −0.620144 + 0.620144i
\(333\) 0 0
\(334\) −43.0441 + 17.8295i −2.35527 + 0.975584i
\(335\) 1.06132 12.7908i 0.0579861 0.698839i
\(336\) 0 0
\(337\) 2.30186 5.55719i 0.125390 0.302719i −0.848701 0.528872i \(-0.822615\pi\)
0.974092 + 0.226153i \(0.0726150\pi\)
\(338\) 8.87814 + 8.87814i 0.482907 + 0.482907i
\(339\) 0 0
\(340\) −12.2431 18.7713i −0.663976 1.01802i
\(341\) −9.61610 −0.520741
\(342\) 0 0
\(343\) 6.98227 16.8567i 0.377007 0.910175i
\(344\) 8.07486i 0.435367i
\(345\) 0 0
\(346\) 20.1798 8.35877i 1.08488 0.449370i
\(347\) 7.29831 3.02306i 0.391794 0.162286i −0.178085 0.984015i \(-0.556990\pi\)
0.569879 + 0.821729i \(0.306990\pi\)
\(348\) 0 0
\(349\) −13.5417 13.5417i −0.724868 0.724868i 0.244725 0.969593i \(-0.421302\pi\)
−0.969593 + 0.244725i \(0.921302\pi\)
\(350\) 23.9541 + 14.9603i 1.28040 + 0.799662i
\(351\) 0 0
\(352\) −7.23801 2.99808i −0.385787 0.159798i
\(353\) 13.7165 0.730055 0.365027 0.930997i \(-0.381060\pi\)
0.365027 + 0.930997i \(0.381060\pi\)
\(354\) 0 0
\(355\) −2.23692 1.15176i −0.118723 0.0611289i
\(356\) −13.6770 −0.724879
\(357\) 0 0
\(358\) 39.4218i 2.08351i
\(359\) −17.6460 + 17.6460i −0.931322 + 0.931322i −0.997789 0.0664662i \(-0.978828\pi\)
0.0664662 + 0.997789i \(0.478828\pi\)
\(360\) 0 0
\(361\) 18.5429i 0.975943i
\(362\) 4.77421 + 1.97754i 0.250927 + 0.103937i
\(363\) 0 0
\(364\) 6.62085 + 15.9841i 0.347027 + 0.837797i
\(365\) 5.96113 + 3.06929i 0.312020 + 0.160654i
\(366\) 0 0
\(367\) −7.87910 + 3.26363i −0.411286 + 0.170360i −0.578726 0.815522i \(-0.696450\pi\)
0.167440 + 0.985882i \(0.446450\pi\)
\(368\) −4.55898 11.0063i −0.237653 0.573745i
\(369\) 0 0
\(370\) 30.6480 9.81449i 1.59331 0.510231i
\(371\) −7.04155 2.91670i −0.365579 0.151428i
\(372\) 0 0
\(373\) 11.5593i 0.598519i −0.954172 0.299260i \(-0.903260\pi\)
0.954172 0.299260i \(-0.0967397\pi\)
\(374\) 8.16606 2.24266i 0.422257 0.115965i
\(375\) 0 0
\(376\) −0.560763 + 0.560763i −0.0289192 + 0.0289192i
\(377\) 10.1841 24.5866i 0.524508 1.26627i
\(378\) 0 0
\(379\) 4.70807 11.3663i 0.241837 0.583847i −0.755628 0.655001i \(-0.772668\pi\)
0.997465 + 0.0711543i \(0.0226683\pi\)
\(380\) −2.37471 2.80445i −0.121820 0.143865i
\(381\) 0 0
\(382\) −16.2426 + 16.2426i −0.831042 + 0.831042i
\(383\) −4.00295 + 4.00295i −0.204541 + 0.204541i −0.801942 0.597401i \(-0.796200\pi\)
0.597401 + 0.801942i \(0.296200\pi\)
\(384\) 0 0
\(385\) −4.46804 + 3.78338i −0.227712 + 0.192819i
\(386\) −14.8020 + 35.7353i −0.753404 + 1.81888i
\(387\) 0 0
\(388\) −14.3385 + 34.6162i −0.727926 + 1.75737i
\(389\) −1.15168 + 1.15168i −0.0583927 + 0.0583927i −0.735700 0.677307i \(-0.763147\pi\)
0.677307 + 0.735700i \(0.263147\pi\)
\(390\) 0 0
\(391\) 14.4579 + 8.22769i 0.731166 + 0.416092i
\(392\) 0.181868i 0.00918570i
\(393\) 0 0
\(394\) 37.9041 + 15.7004i 1.90958 + 0.790975i
\(395\) −0.870995 + 0.278921i −0.0438245 + 0.0140340i
\(396\) 0 0
\(397\) −4.91819 11.8736i −0.246837 0.595917i 0.751095 0.660194i \(-0.229526\pi\)
−0.997932 + 0.0642772i \(0.979526\pi\)
\(398\) 45.3467 18.7832i 2.27303 0.941518i
\(399\) 0 0
\(400\) 14.5619 + 2.43330i 0.728095 + 0.121665i
\(401\) 11.0222 + 26.6099i 0.550422 + 1.32884i 0.917163 + 0.398512i \(0.130473\pi\)
−0.366741 + 0.930323i \(0.619527\pi\)
\(402\) 0 0
\(403\) 24.1500 + 10.0033i 1.20300 + 0.498298i
\(404\) 35.5488i 1.76862i
\(405\) 0 0
\(406\) −40.0732 + 40.0732i −1.98880 + 1.98880i
\(407\) 6.67129i 0.330684i
\(408\) 0 0
\(409\) −13.6197 −0.673451 −0.336725 0.941603i \(-0.609319\pi\)
−0.336725 + 0.941603i \(0.609319\pi\)
\(410\) −15.7756 + 30.6391i −0.779103 + 1.51316i
\(411\) 0 0
\(412\) 3.96903 0.195540
\(413\) −26.6108 11.0225i −1.30943 0.542384i
\(414\) 0 0
\(415\) 9.49917 + 11.2182i 0.466296 + 0.550679i
\(416\) 15.0588 + 15.0588i 0.738320 + 0.738320i
\(417\) 0 0
\(418\) 1.28289 0.531391i 0.0627483 0.0259912i
\(419\) −13.1802 + 5.45940i −0.643893 + 0.266709i −0.680643 0.732615i \(-0.738299\pi\)
0.0367500 + 0.999324i \(0.488299\pi\)
\(420\) 0 0
\(421\) 28.9349i 1.41020i 0.709107 + 0.705101i \(0.249098\pi\)
−0.709107 + 0.705101i \(0.750902\pi\)
\(422\) −18.4634 + 44.5745i −0.898783 + 2.16985i
\(423\) 0 0
\(424\) 2.57576 0.125090
\(425\) −18.1395 + 9.79580i −0.879896 + 0.475166i
\(426\) 0 0
\(427\) −3.93193 3.93193i −0.190279 0.190279i
\(428\) −5.18130 + 12.5088i −0.250448 + 0.604634i
\(429\) 0 0
\(430\) 41.7673 + 3.46564i 2.01420 + 0.167128i
\(431\) 18.9908 7.86623i 0.914753 0.378903i 0.124879 0.992172i \(-0.460146\pi\)
0.789874 + 0.613269i \(0.210146\pi\)
\(432\) 0 0
\(433\) −17.0995 + 17.0995i −0.821748 + 0.821748i −0.986359 0.164611i \(-0.947363\pi\)
0.164611 + 0.986359i \(0.447363\pi\)
\(434\) −39.3616 39.3616i −1.88942 1.88942i
\(435\) 0 0
\(436\) 5.92512 2.45427i 0.283762 0.117538i
\(437\) 2.52007 + 1.04385i 0.120551 + 0.0499339i
\(438\) 0 0
\(439\) −20.3668 8.43621i −0.972055 0.402638i −0.160578 0.987023i \(-0.551336\pi\)
−0.811477 + 0.584385i \(0.801336\pi\)
\(440\) 0.905740 1.75911i 0.0431795 0.0838624i
\(441\) 0 0
\(442\) −22.8413 2.86258i −1.08645 0.136159i
\(443\) 32.3324i 1.53616i 0.640356 + 0.768079i \(0.278787\pi\)
−0.640356 + 0.768079i \(0.721213\pi\)
\(444\) 0 0
\(445\) −1.04035 + 12.5381i −0.0493174 + 0.594365i
\(446\) 27.4821i 1.30132i
\(447\) 0 0
\(448\) −11.2910 27.2589i −0.533450 1.28786i
\(449\) −12.0051 28.9829i −0.566556 1.36779i −0.904441 0.426599i \(-0.859712\pi\)
0.337885 0.941187i \(-0.390288\pi\)
\(450\) 0 0
\(451\) −5.05166 5.05166i −0.237873 0.237873i
\(452\) 13.0453 5.40353i 0.613598 0.254161i
\(453\) 0 0
\(454\) 8.61878 20.8076i 0.404499 0.976548i
\(455\) 15.1568 4.85370i 0.710562 0.227545i
\(456\) 0 0
\(457\) −9.01432 9.01432i −0.421672 0.421672i 0.464107 0.885779i \(-0.346375\pi\)
−0.885779 + 0.464107i \(0.846375\pi\)
\(458\) 39.6431i 1.85240i
\(459\) 0 0
\(460\) 20.8852 6.68811i 0.973777 0.311835i
\(461\) 12.3023 12.3023i 0.572974 0.572974i −0.359984 0.932958i \(-0.617218\pi\)
0.932958 + 0.359984i \(0.117218\pi\)
\(462\) 0 0
\(463\) 29.5747 1.37445 0.687227 0.726443i \(-0.258828\pi\)
0.687227 + 0.726443i \(0.258828\pi\)
\(464\) −11.3374 + 27.3708i −0.526324 + 1.27066i
\(465\) 0 0
\(466\) −1.80914 4.36765i −0.0838068 0.202327i
\(467\) −23.2530 + 23.2530i −1.07602 + 1.07602i −0.0791599 + 0.996862i \(0.525224\pi\)
−0.996862 + 0.0791599i \(0.974776\pi\)
\(468\) 0 0
\(469\) 5.89422 + 14.2299i 0.272170 + 0.657076i
\(470\) 2.65988 + 3.14122i 0.122691 + 0.144894i
\(471\) 0 0
\(472\) 9.73409 0.448048
\(473\) −3.32487 + 8.02694i −0.152878 + 0.369079i
\(474\) 0 0
\(475\) −2.75157 + 1.96365i −0.126251 + 0.0900985i
\(476\) 23.3744 + 13.3019i 1.07136 + 0.609691i
\(477\) 0 0
\(478\) 24.9003 + 24.9003i 1.13891 + 1.13891i
\(479\) −0.548605 0.227240i −0.0250664 0.0103828i 0.370115 0.928986i \(-0.379318\pi\)
−0.395181 + 0.918603i \(0.629318\pi\)
\(480\) 0 0
\(481\) 6.93989 16.7544i 0.316432 0.763934i
\(482\) −9.48335 22.8948i −0.431955 1.04283i
\(483\) 0 0
\(484\) −17.2709 17.2709i −0.785039 0.785039i
\(485\) 30.6431 + 15.7777i 1.39143 + 0.716427i
\(486\) 0 0
\(487\) 0.862103 + 2.08130i 0.0390656 + 0.0943127i 0.942208 0.335028i \(-0.108746\pi\)
−0.903142 + 0.429341i \(0.858746\pi\)
\(488\) 1.73616 + 0.719141i 0.0785922 + 0.0325540i
\(489\) 0 0
\(490\) −0.940711 0.0780555i −0.0424970 0.00352619i
\(491\) 5.16155 5.16155i 0.232937 0.232937i −0.580980 0.813918i \(-0.697331\pi\)
0.813918 + 0.580980i \(0.197331\pi\)
\(492\) 0 0
\(493\) −10.9555 39.8914i −0.493409 1.79662i
\(494\) −3.77466 −0.169830
\(495\) 0 0
\(496\) −26.8848 11.1360i −1.20716 0.500023i
\(497\) 3.01934 0.135436
\(498\) 0 0
\(499\) −7.02196 + 2.90859i −0.314346 + 0.130206i −0.534278 0.845309i \(-0.679416\pi\)
0.219932 + 0.975515i \(0.429416\pi\)
\(500\) −6.68049 + 26.3435i −0.298761 + 1.17812i
\(501\) 0 0
\(502\) −26.3479 + 26.3479i −1.17597 + 1.17597i
\(503\) −14.3260 + 5.93402i −0.638764 + 0.264585i −0.678472 0.734627i \(-0.737357\pi\)
0.0397075 + 0.999211i \(0.487357\pi\)
\(504\) 0 0
\(505\) −32.5887 2.70405i −1.45018 0.120329i
\(506\) 8.28662i 0.368385i
\(507\) 0 0
\(508\) 18.3045 + 18.3045i 0.812131 + 0.812131i
\(509\) 29.3375 1.30036 0.650182 0.759779i \(-0.274693\pi\)
0.650182 + 0.759779i \(0.274693\pi\)
\(510\) 0 0
\(511\) −8.04618 −0.355942
\(512\) −20.5510 20.5510i −0.908233 0.908233i
\(513\) 0 0
\(514\) 16.2168i 0.715292i
\(515\) 0.301908 3.63854i 0.0133036 0.160333i
\(516\) 0 0
\(517\) −0.788333 + 0.326538i −0.0346708 + 0.0143611i
\(518\) −27.3076 + 27.3076i −1.19983 + 1.19983i
\(519\) 0 0
\(520\) −4.10462 + 3.47565i −0.180000 + 0.152417i
\(521\) 14.0288 5.81093i 0.614614 0.254581i −0.0535860 0.998563i \(-0.517065\pi\)
0.668200 + 0.743982i \(0.267065\pi\)
\(522\) 0 0
\(523\) −35.8569 −1.56791 −0.783957 0.620815i \(-0.786802\pi\)
−0.783957 + 0.620815i \(0.786802\pi\)
\(524\) 3.63472 + 1.50555i 0.158784 + 0.0657703i
\(525\) 0 0
\(526\) −13.2547 −0.577932
\(527\) 39.1830 10.7609i 1.70684 0.468753i
\(528\) 0 0
\(529\) 4.75321 4.75321i 0.206661 0.206661i
\(530\) 1.10549 13.3232i 0.0480194 0.578721i
\(531\) 0 0
\(532\) 4.07425 + 1.68761i 0.176641 + 0.0731671i
\(533\) 7.43175 + 17.9418i 0.321905 + 0.777148i
\(534\) 0 0
\(535\) 11.0731 + 5.70136i 0.478731 + 0.246491i
\(536\) −3.68066 3.68066i −0.158980 0.158980i
\(537\) 0 0
\(538\) −7.45847 18.0063i −0.321557 0.776308i
\(539\) 0.0748850 0.180788i 0.00322553 0.00778711i
\(540\) 0 0
\(541\) 24.6831 + 10.2241i 1.06121 + 0.439568i 0.843881 0.536531i \(-0.180266\pi\)
0.217329 + 0.976098i \(0.430266\pi\)
\(542\) −24.9744 24.9744i −1.07274 1.07274i
\(543\) 0 0
\(544\) 32.8479 + 4.11666i 1.40834 + 0.176500i
\(545\) −1.79921 5.61844i −0.0770695 0.240667i
\(546\) 0 0
\(547\) 5.16946 12.4802i 0.221030 0.533614i −0.774000 0.633185i \(-0.781747\pi\)
0.995030 + 0.0995712i \(0.0317471\pi\)
\(548\) 11.4328 0.488383
\(549\) 0 0
\(550\) −8.71028 5.43994i −0.371408 0.231960i
\(551\) −2.59586 6.26695i −0.110587 0.266981i
\(552\) 0 0
\(553\) 0.776064 0.776064i 0.0330016 0.0330016i
\(554\) −9.67133 23.3487i −0.410895 0.991989i
\(555\) 0 0
\(556\) −0.766313 + 1.85004i −0.0324989 + 0.0784593i
\(557\) 16.9198 0.716915 0.358458 0.933546i \(-0.383303\pi\)
0.358458 + 0.933546i \(0.383303\pi\)
\(558\) 0 0
\(559\) 16.7002 16.7002i 0.706345 0.706345i
\(560\) −16.8732 + 5.40334i −0.713022 + 0.228333i
\(561\) 0 0
\(562\) 59.3616i 2.50402i
\(563\) 26.6224 + 26.6224i 1.12200 + 1.12200i 0.991441 + 0.130558i \(0.0416768\pi\)
0.130558 + 0.991441i \(0.458323\pi\)
\(564\) 0 0
\(565\) −3.96129 12.3701i −0.166653 0.520412i
\(566\) 13.7570 33.2124i 0.578251 1.39602i
\(567\) 0 0
\(568\) −0.942715 + 0.390485i −0.0395555 + 0.0163844i
\(569\) 21.0557 + 21.0557i 0.882701 + 0.882701i 0.993808 0.111108i \(-0.0354398\pi\)
−0.111108 + 0.993808i \(0.535440\pi\)
\(570\) 0 0
\(571\) −3.82363 9.23107i −0.160014 0.386308i 0.823456 0.567381i \(-0.192043\pi\)
−0.983470 + 0.181072i \(0.942043\pi\)
\(572\) −2.40750 5.81222i −0.100663 0.243021i
\(573\) 0 0
\(574\) 41.3559i 1.72616i
\(575\) −4.54256 19.6549i −0.189438 0.819665i
\(576\) 0 0
\(577\) 17.5104i 0.728968i 0.931210 + 0.364484i \(0.118755\pi\)
−0.931210 + 0.364484i \(0.881245\pi\)
\(578\) −30.7648 + 18.2765i −1.27965 + 0.760203i
\(579\) 0 0
\(580\) −48.4862 24.9648i −2.01328 1.03661i
\(581\) −16.2976 6.75067i −0.676137 0.280065i
\(582\) 0 0
\(583\) 2.56048 + 1.06058i 0.106044 + 0.0439249i
\(584\) 2.51222 1.04060i 0.103957 0.0430602i
\(585\) 0 0
\(586\) 10.1594 + 10.1594i 0.419683 + 0.419683i
\(587\) −11.3396 + 11.3396i −0.468036 + 0.468036i −0.901278 0.433242i \(-0.857370\pi\)
0.433242 + 0.901278i \(0.357370\pi\)
\(588\) 0 0
\(589\) 6.15567 2.54976i 0.253640 0.105061i
\(590\) 4.17776 50.3496i 0.171996 2.07286i
\(591\) 0 0
\(592\) −7.72577 + 18.6517i −0.317527 + 0.766579i
\(593\) −27.1563 27.1563i −1.11517 1.11517i −0.992439 0.122735i \(-0.960833\pi\)
−0.122735 0.992439i \(-0.539167\pi\)
\(594\) 0 0
\(595\) 13.9723 20.4162i 0.572807 0.836984i
\(596\) −23.3436 −0.956193
\(597\) 0 0
\(598\) 8.62025 20.8111i 0.352508 0.851031i
\(599\) 23.5261i 0.961251i −0.876926 0.480625i \(-0.840410\pi\)
0.876926 0.480625i \(-0.159590\pi\)
\(600\) 0 0
\(601\) 23.1362 9.58331i 0.943744 0.390911i 0.142868 0.989742i \(-0.454368\pi\)
0.800876 + 0.598830i \(0.204368\pi\)
\(602\) −46.4664 + 19.2470i −1.89383 + 0.784450i
\(603\) 0 0
\(604\) −2.43517 2.43517i −0.0990855 0.0990855i
\(605\) −17.1465 + 14.5190i −0.697103 + 0.590283i
\(606\) 0 0
\(607\) −29.8946 12.3827i −1.21338 0.502600i −0.318083 0.948063i \(-0.603039\pi\)
−0.895300 + 0.445463i \(0.853039\pi\)
\(608\) 5.42831 0.220147
\(609\) 0 0
\(610\) 4.46490 8.67164i 0.180778 0.351105i
\(611\) 2.31951 0.0938375
\(612\) 0 0
\(613\) 25.0386i 1.01130i 0.862739 + 0.505650i \(0.168747\pi\)
−0.862739 + 0.505650i \(0.831253\pi\)
\(614\) 1.11079 1.11079i 0.0448280 0.0448280i
\(615\) 0 0
\(616\) 2.37441i 0.0956675i
\(617\) 9.00101 + 3.72834i 0.362367 + 0.150097i 0.556436 0.830891i \(-0.312169\pi\)
−0.194069 + 0.980988i \(0.562169\pi\)
\(618\) 0 0
\(619\) −2.82897 6.82973i −0.113706 0.274510i 0.856774 0.515692i \(-0.172465\pi\)
−0.970480 + 0.241182i \(0.922465\pi\)
\(620\) 24.5215 47.6252i 0.984808 1.91268i
\(621\) 0 0
\(622\) −35.3944 + 14.6609i −1.41919 + 0.587847i
\(623\) −5.77777 13.9488i −0.231481 0.558846i
\(624\) 0 0
\(625\) 23.6418 + 8.12807i 0.945672 + 0.325123i
\(626\) −19.2993 7.99404i −0.771356 0.319506i
\(627\) 0 0
\(628\) 11.7137i 0.467426i
\(629\) −7.46553 27.1837i −0.297670 1.08389i
\(630\) 0 0
\(631\) −6.09529 + 6.09529i −0.242650 + 0.242650i −0.817945 0.575296i \(-0.804887\pi\)
0.575296 + 0.817945i \(0.304887\pi\)
\(632\) −0.141940 + 0.342674i −0.00564608 + 0.0136308i
\(633\) 0 0
\(634\) −19.5838 + 47.2794i −0.777771 + 1.87770i
\(635\) 18.1727 15.3880i 0.721161 0.610653i
\(636\) 0 0
\(637\) −0.376134 + 0.376134i −0.0149030 + 0.0149030i
\(638\) 14.5716 14.5716i 0.576895 0.576895i
\(639\) 0 0
\(640\) 12.0929 10.2398i 0.478013 0.404765i
\(641\) 14.9873 36.1825i 0.591963 1.42912i −0.289641 0.957135i \(-0.593536\pi\)
0.881604 0.471989i \(-0.156464\pi\)
\(642\) 0 0
\(643\) −17.4803 + 42.2011i −0.689355 + 1.66425i 0.0567210 + 0.998390i \(0.481935\pi\)
−0.746076 + 0.665861i \(0.768065\pi\)
\(644\) −18.6089 + 18.6089i −0.733292 + 0.733292i
\(645\) 0 0
\(646\) −4.63279 + 3.60090i −0.182275 + 0.141676i
\(647\) 9.17577i 0.360737i −0.983599 0.180368i \(-0.942271\pi\)
0.983599 0.180368i \(-0.0577290\pi\)
\(648\) 0 0
\(649\) 9.67633 + 4.00807i 0.379829 + 0.157330i
\(650\) 16.2162 + 22.7229i 0.636050 + 0.891265i
\(651\) 0 0
\(652\) −1.50607 3.63596i −0.0589821 0.142395i
\(653\) 15.3604 6.36250i 0.601100 0.248984i −0.0613178 0.998118i \(-0.519530\pi\)
0.662418 + 0.749134i \(0.269530\pi\)
\(654\) 0 0
\(655\) 1.65667 3.21755i 0.0647313 0.125720i
\(656\) −8.27334 19.9736i −0.323020 0.779838i
\(657\) 0 0
\(658\) −4.56350 1.89027i −0.177904 0.0736902i
\(659\) 5.95839i 0.232106i −0.993243 0.116053i \(-0.962976\pi\)
0.993243 0.116053i \(-0.0370242\pi\)
\(660\) 0 0
\(661\) 30.3724 30.3724i 1.18135 1.18135i 0.201955 0.979395i \(-0.435270\pi\)
0.979395 0.201955i \(-0.0647296\pi\)
\(662\) 1.03093i 0.0400681i
\(663\) 0 0
\(664\) 5.96157 0.231354
\(665\) 1.85700 3.60663i 0.0720113 0.139859i
\(666\) 0 0
\(667\) 40.4803 1.56740
\(668\) 49.7078 + 20.5896i 1.92325 + 0.796637i
\(669\) 0 0
\(670\) −20.6179 + 17.4585i −0.796539 + 0.674482i
\(671\) 1.42975 + 1.42975i 0.0551947 + 0.0551947i
\(672\) 0 0
\(673\) −16.0256 + 6.63803i −0.617743 + 0.255877i −0.669535 0.742781i \(-0.733507\pi\)
0.0517924 + 0.998658i \(0.483507\pi\)
\(674\) −11.6976 + 4.84531i −0.450575 + 0.186634i
\(675\) 0 0
\(676\) 14.4993i 0.557666i
\(677\) −9.79369 + 23.6441i −0.376402 + 0.908715i 0.616232 + 0.787565i \(0.288658\pi\)
−0.992634 + 0.121150i \(0.961342\pi\)
\(678\) 0 0
\(679\) −41.3613 −1.58730
\(680\) −1.72211 + 8.18148i −0.0660398 + 0.313745i
\(681\) 0 0
\(682\) 14.3128 + 14.3128i 0.548067 + 0.548067i
\(683\) 2.34480 5.66085i 0.0897213 0.216606i −0.872649 0.488348i \(-0.837600\pi\)
0.962370 + 0.271742i \(0.0875996\pi\)
\(684\) 0 0
\(685\) 0.869643 10.4808i 0.0332273 0.400450i
\(686\) −35.4825 + 14.6973i −1.35473 + 0.561146i
\(687\) 0 0
\(688\) −18.5914 + 18.5914i −0.708790 + 0.708790i
\(689\) −5.32713 5.32713i −0.202948 0.202948i
\(690\) 0 0
\(691\) −6.87633 + 2.84827i −0.261588 + 0.108353i −0.509623 0.860398i \(-0.670215\pi\)
0.248035 + 0.968751i \(0.420215\pi\)
\(692\) −23.3039 9.65279i −0.885881 0.366944i
\(693\) 0 0
\(694\) −15.3626 6.36339i −0.583156 0.241551i
\(695\) 1.63770 + 0.843229i 0.0621217 + 0.0319855i
\(696\) 0 0
\(697\) 26.2372 + 14.9311i 0.993806 + 0.565555i
\(698\) 40.3115i 1.52581i
\(699\) 0 0
\(700\) −7.34406 31.7765i −0.277579 1.20104i
\(701\) 25.3350i 0.956891i 0.878117 + 0.478445i \(0.158800\pi\)
−0.878117 + 0.478445i \(0.841200\pi\)
\(702\) 0 0
\(703\) −1.76893 4.27058i −0.0667165 0.161068i
\(704\) 4.10568 + 9.91200i 0.154739 + 0.373573i
\(705\) 0 0
\(706\) −20.4160 20.4160i −0.768365 0.768365i
\(707\) 36.2552 15.0174i 1.36352 0.564788i
\(708\) 0 0
\(709\) 6.10174 14.7309i 0.229156 0.553231i −0.766919 0.641744i \(-0.778211\pi\)
0.996075 + 0.0885126i \(0.0282113\pi\)
\(710\) 1.61519 + 5.04379i 0.0606168 + 0.189290i
\(711\) 0 0
\(712\) 3.60794 + 3.60794i 0.135213 + 0.135213i
\(713\) 39.7615i 1.48908i
\(714\) 0 0
\(715\) −5.51138 + 1.76492i −0.206114 + 0.0660044i
\(716\) 32.1908 32.1908i 1.20303 1.20303i
\(717\) 0 0
\(718\) 52.5296 1.96039
\(719\) −7.42813 + 17.9331i −0.277022 + 0.668791i −0.999750 0.0223415i \(-0.992888\pi\)
0.722728 + 0.691132i \(0.242888\pi\)
\(720\) 0 0
\(721\) 1.67670 + 4.04790i 0.0624434 + 0.150752i
\(722\) 27.5997 27.5997i 1.02716 1.02716i
\(723\) 0 0
\(724\) −2.28369 5.51330i −0.0848725 0.204900i
\(725\) −26.5742 + 42.5499i −0.986941 + 1.58026i
\(726\) 0 0
\(727\) 26.1442 0.969633 0.484817 0.874616i \(-0.338886\pi\)
0.484817 + 0.874616i \(0.338886\pi\)
\(728\) 2.47000 5.96311i 0.0915444 0.221008i
\(729\) 0 0
\(730\) −4.30428 13.4411i −0.159308 0.497478i
\(731\) 4.56537 36.4283i 0.168856 1.34735i
\(732\) 0 0
\(733\) 3.23474 + 3.23474i 0.119478 + 0.119478i 0.764318 0.644840i \(-0.223076\pi\)
−0.644840 + 0.764318i \(0.723076\pi\)
\(734\) 16.5851 + 6.86978i 0.612168 + 0.253568i
\(735\) 0 0
\(736\) −12.3967 + 29.9284i −0.456950 + 1.10317i
\(737\) −2.14328 5.17435i −0.0789489 0.190599i
\(738\) 0 0
\(739\) 28.5736 + 28.5736i 1.05110 + 1.05110i 0.998622 + 0.0524727i \(0.0167103\pi\)
0.0524727 + 0.998622i \(0.483290\pi\)
\(740\) −33.0406 17.0121i −1.21460 0.625378i
\(741\) 0 0
\(742\) 6.13952 + 14.8221i 0.225389 + 0.544137i
\(743\) −21.6747 8.97795i −0.795168 0.329369i −0.0521484 0.998639i \(-0.516607\pi\)
−0.743019 + 0.669270i \(0.766607\pi\)
\(744\) 0 0
\(745\) −1.77565 + 21.3999i −0.0650549 + 0.784030i
\(746\) −17.2052 + 17.2052i −0.629927 + 0.629927i
\(747\) 0 0
\(748\) −8.49949 4.83689i −0.310772 0.176854i
\(749\) −14.9462 −0.546121
\(750\) 0 0
\(751\) −29.7279 12.3137i −1.08479 0.449333i −0.232600 0.972572i \(-0.574723\pi\)
−0.852186 + 0.523239i \(0.824723\pi\)
\(752\) −2.58218 −0.0941624
\(753\) 0 0
\(754\) −51.7536 + 21.4370i −1.88475 + 0.780690i
\(755\) −2.41763 + 2.04716i −0.0879865 + 0.0745039i
\(756\) 0 0
\(757\) −25.3721 + 25.3721i −0.922165 + 0.922165i −0.997182 0.0750172i \(-0.976099\pi\)
0.0750172 + 0.997182i \(0.476099\pi\)
\(758\) −23.9255 + 9.91025i −0.869012 + 0.359957i
\(759\) 0 0
\(760\) −0.113364 + 1.36624i −0.00411215 + 0.0495589i
\(761\) 26.9643i 0.977453i 0.872437 + 0.488727i \(0.162538\pi\)
−0.872437 + 0.488727i \(0.837462\pi\)
\(762\) 0 0
\(763\) 5.00607 + 5.00607i 0.181232 + 0.181232i
\(764\) 26.5265 0.959695
\(765\) 0 0
\(766\) 11.9162 0.430549
\(767\) −20.1318 20.1318i −0.726918 0.726918i
\(768\) 0 0
\(769\) 13.1666i 0.474800i 0.971412 + 0.237400i \(0.0762952\pi\)
−0.971412 + 0.237400i \(0.923705\pi\)
\(770\) 12.2816 + 1.01907i 0.442599 + 0.0367246i
\(771\) 0 0
\(772\) 41.2675 17.0936i 1.48525 0.615210i
\(773\) 22.4347 22.4347i 0.806920 0.806920i −0.177247 0.984166i \(-0.556719\pi\)
0.984166 + 0.177247i \(0.0567191\pi\)
\(774\) 0 0
\(775\) −41.7943 26.1023i −1.50130 0.937623i
\(776\) 12.9141 5.34918i 0.463587 0.192024i
\(777\) 0 0
\(778\) 3.42839 0.122914
\(779\) 4.57325 + 1.89430i 0.163854 + 0.0678705i
\(780\) 0 0
\(781\) −1.09791 −0.0392861
\(782\) −9.27317 33.7658i −0.331608 1.20746i
\(783\) 0 0
\(784\) 0.418728 0.418728i 0.0149546 0.0149546i
\(785\) −10.7383 0.891011i −0.383266 0.0318015i
\(786\) 0 0
\(787\) 10.3704 + 4.29554i 0.369663 + 0.153120i 0.559779 0.828642i \(-0.310886\pi\)
−0.190115 + 0.981762i \(0.560886\pi\)
\(788\) −18.1310 43.7720i −0.645889 1.55931i
\(789\) 0 0
\(790\) 1.71156 + 0.881258i 0.0608947 + 0.0313538i
\(791\) 11.0218 + 11.0218i 0.391891 + 0.391891i
\(792\) 0 0
\(793\) −2.10337 5.07799i −0.0746930 0.180325i
\(794\) −10.3525 + 24.9932i −0.367398 + 0.886977i
\(795\) 0 0
\(796\) −52.3668 21.6911i −1.85609 0.768819i
\(797\) 23.8591 + 23.8591i 0.845134 + 0.845134i 0.989521 0.144388i \(-0.0461212\pi\)
−0.144388 + 0.989521i \(0.546121\pi\)
\(798\) 0 0
\(799\) 2.84683 2.21274i 0.100714 0.0782811i
\(800\) −23.3204 32.6776i −0.824499 1.15533i
\(801\) 0 0
\(802\) 23.2012 56.0125i 0.819261 1.97787i
\(803\) 2.92579 0.103249
\(804\) 0 0
\(805\) 15.6439 + 18.4749i 0.551374 + 0.651153i
\(806\) −21.0564 50.8346i −0.741679 1.79057i
\(807\) 0 0
\(808\) −9.37764 + 9.37764i −0.329904 + 0.329904i
\(809\) 5.44317 + 13.1410i 0.191372 + 0.462012i 0.990219 0.139522i \(-0.0445566\pi\)
−0.798847 + 0.601534i \(0.794557\pi\)
\(810\) 0 0
\(811\) −9.42238 + 22.7476i −0.330865 + 0.798778i 0.667659 + 0.744467i \(0.267296\pi\)
−0.998524 + 0.0543111i \(0.982704\pi\)
\(812\) 65.4455 2.29669
\(813\) 0 0
\(814\) 9.92972 9.92972i 0.348037 0.348037i
\(815\) −3.44777 + 1.10409i −0.120770 + 0.0386745i
\(816\) 0 0
\(817\) 6.01999i 0.210613i
\(818\) 20.2719 + 20.2719i 0.708790 + 0.708790i
\(819\) 0 0
\(820\) 37.9011 12.1372i 1.32356 0.423848i
\(821\) −9.55514 + 23.0681i −0.333477 + 0.805084i 0.664835 + 0.746991i \(0.268502\pi\)
−0.998311 + 0.0580931i \(0.981498\pi\)
\(822\) 0 0
\(823\) 26.6778 11.0503i 0.929931 0.385190i 0.134279 0.990944i \(-0.457128\pi\)
0.795652 + 0.605753i \(0.207128\pi\)
\(824\) −1.04702 1.04702i −0.0364745 0.0364745i
\(825\) 0 0
\(826\) 23.2019 + 56.0144i 0.807298 + 1.94899i
\(827\) 6.20037 + 14.9690i 0.215608 + 0.520524i 0.994267 0.106923i \(-0.0340999\pi\)
−0.778659 + 0.627447i \(0.784100\pi\)
\(828\) 0 0
\(829\) 22.2311i 0.772117i 0.922474 + 0.386058i \(0.126164\pi\)
−0.922474 + 0.386058i \(0.873836\pi\)
\(830\) 2.55864 30.8362i 0.0888116 1.07034i
\(831\) 0 0
\(832\) 29.1641i 1.01108i
\(833\) −0.102824 + 0.820464i −0.00356266 + 0.0284274i
\(834\) 0 0
\(835\) 22.6562 44.0026i 0.784052 1.52277i
\(836\) −1.48150 0.613656i −0.0512386 0.0212237i
\(837\) 0 0
\(838\) 27.7436 + 11.4918i 0.958386 + 0.396977i
\(839\) −43.2196 + 17.9021i −1.49211 + 0.618051i −0.971774 0.235914i \(-0.924192\pi\)
−0.520332 + 0.853964i \(0.674192\pi\)
\(840\) 0 0
\(841\) −50.6764 50.6764i −1.74746 1.74746i
\(842\) 43.0675 43.0675i 1.48420 1.48420i
\(843\) 0 0
\(844\) 51.4751 21.3217i 1.77185 0.733923i
\(845\) −13.2920 1.10290i −0.457258 0.0379410i
\(846\) 0 0
\(847\) 10.3181 24.9100i 0.354533 0.855919i
\(848\) 5.93039 + 5.93039i 0.203650 + 0.203650i
\(849\) 0 0
\(850\) 41.5796 + 12.4190i 1.42617 + 0.425969i
\(851\) 27.5851 0.945604
\(852\) 0 0
\(853\) −14.6828 + 35.4475i −0.502731 + 1.21370i 0.445259 + 0.895402i \(0.353111\pi\)
−0.947990 + 0.318299i \(0.896889\pi\)
\(854\) 11.7048i 0.400529i
\(855\) 0 0
\(856\) 4.66658 1.93296i 0.159500 0.0660672i
\(857\) −5.10428 + 2.11426i −0.174359 + 0.0722218i −0.468155 0.883646i \(-0.655081\pi\)
0.293796 + 0.955868i \(0.405081\pi\)
\(858\) 0 0
\(859\) 10.1314 + 10.1314i 0.345680 + 0.345680i 0.858498 0.512817i \(-0.171398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(860\) −31.2761 36.9360i −1.06651 1.25951i
\(861\) 0 0
\(862\) −39.9746 16.5580i −1.36154 0.563969i
\(863\) −9.68459 −0.329667 −0.164834 0.986321i \(-0.552709\pi\)
−0.164834 + 0.986321i \(0.552709\pi\)
\(864\) 0 0
\(865\) −10.6217 + 20.6292i −0.361147 + 0.701413i
\(866\) 50.9025 1.72974
\(867\) 0 0
\(868\) 64.2833i 2.18192i
\(869\) −0.282196 + 0.282196i −0.00957284 + 0.00957284i
\(870\) 0 0
\(871\) 15.2245i 0.515862i
\(872\) −2.21045 0.915599i −0.0748553 0.0310061i
\(873\) 0 0
\(874\) −2.19724 5.30462i −0.0743229 0.179431i
\(875\) −29.6891 + 4.31543i −1.00368 + 0.145888i
\(876\) 0 0
\(877\) 13.8214 5.72500i 0.466714 0.193319i −0.136918 0.990582i \(-0.543720\pi\)
0.603632 + 0.797263i \(0.293720\pi\)
\(878\) 17.7578 + 42.8711i 0.599297 + 1.44683i
\(879\) 0 0
\(880\) 6.13550 1.96479i 0.206828 0.0662329i
\(881\) −9.80896 4.06301i −0.330472 0.136886i 0.211277 0.977426i \(-0.432238\pi\)
−0.541749 + 0.840540i \(0.682238\pi\)
\(882\) 0 0
\(883\) 52.5251i 1.76761i 0.467855 + 0.883805i \(0.345027\pi\)
−0.467855 + 0.883805i \(0.654973\pi\)
\(884\) 16.3141 + 20.9891i 0.548703 + 0.705941i
\(885\) 0 0
\(886\) 48.1243 48.1243i 1.61677 1.61677i
\(887\) −6.57850 + 15.8819i −0.220884 + 0.533262i −0.995011 0.0997691i \(-0.968190\pi\)
0.774126 + 0.633031i \(0.218190\pi\)
\(888\) 0 0
\(889\) −10.9356 + 26.4009i −0.366768 + 0.885457i
\(890\) 20.2106 17.1136i 0.677459 0.573649i
\(891\) 0 0
\(892\) 22.4412 22.4412i 0.751386 0.751386i
\(893\) 0.418062 0.418062i 0.0139899 0.0139899i
\(894\) 0 0
\(895\) −27.0617 31.9590i −0.904574 1.06827i
\(896\) −7.27703 + 17.5683i −0.243108 + 0.586916i
\(897\) 0 0
\(898\) −25.2701 + 61.0075i −0.843276 + 2.03585i
\(899\) 69.9185 69.9185i 2.33191 2.33191i
\(900\) 0 0
\(901\) −11.6201 1.45629i −0.387122 0.0485160i
\(902\) 15.0380i 0.500712i
\(903\) 0 0
\(904\) −4.86673 2.01586i −0.161865 0.0670467i
\(905\) −5.22794 + 1.67415i −0.173782 + 0.0556508i
\(906\) 0 0
\(907\) −4.28190 10.3374i −0.142178 0.343248i 0.836710 0.547647i \(-0.184476\pi\)
−0.978888 + 0.204398i \(0.934476\pi\)
\(908\) −24.0288 + 9.95305i −0.797423 + 0.330304i
\(909\) 0 0
\(910\) −29.7841 15.3354i −0.987334 0.508363i
\(911\) −1.24981 3.01730i −0.0414080 0.0999677i 0.901822 0.432107i \(-0.142230\pi\)
−0.943230 + 0.332139i \(0.892230\pi\)
\(912\) 0 0
\(913\) 5.92619 + 2.45471i 0.196128 + 0.0812390i
\(914\) 26.8343i 0.887599i
\(915\) 0 0
\(916\) −32.3715 + 32.3715i −1.06958 + 1.06958i
\(917\) 4.34296i 0.143417i
\(918\) 0 0
\(919\) 32.6905 1.07836 0.539179 0.842191i \(-0.318735\pi\)
0.539179 + 0.842191i \(0.318735\pi\)
\(920\) −7.27373 3.74514i −0.239808 0.123473i
\(921\) 0 0
\(922\) −36.6220 −1.20608
\(923\) 2.75729 + 1.14211i 0.0907574 + 0.0375930i
\(924\) 0 0
\(925\) −18.1088 + 28.9954i −0.595414 + 0.953362i
\(926\) −44.0198 44.0198i −1.44658 1.44658i
\(927\) 0 0
\(928\) 74.4264 30.8284i 2.44317 1.01199i
\(929\) 7.83598 3.24577i 0.257090 0.106490i −0.250416 0.968138i \(-0.580567\pi\)
0.507506 + 0.861648i \(0.330567\pi\)
\(930\) 0 0
\(931\) 0.135586i 0.00444367i
\(932\) −2.08921 + 5.04381i −0.0684344 + 0.165215i
\(933\) 0 0
\(934\) 69.2208 2.26497
\(935\) −5.08066 + 7.42384i −0.166155 + 0.242786i
\(936\) 0 0
\(937\) 22.0610 + 22.0610i 0.720703 + 0.720703i 0.968748 0.248045i \(-0.0797882\pi\)
−0.248045 + 0.968748i \(0.579788\pi\)
\(938\) 12.4071 29.9533i 0.405105 0.978009i
\(939\) 0 0
\(940\) 0.393055 4.73703i 0.0128200 0.154505i
\(941\) −19.9946 + 8.28202i −0.651804 + 0.269986i −0.683985 0.729496i \(-0.739755\pi\)
0.0321810 + 0.999482i \(0.489755\pi\)
\(942\) 0 0
\(943\) −20.8880 + 20.8880i −0.680208 + 0.680208i
\(944\) 22.4116 + 22.4116i 0.729435 + 0.729435i
\(945\) 0 0
\(946\) 16.8963 6.99868i 0.549347 0.227547i
\(947\) −3.63370 1.50513i −0.118079 0.0489101i 0.322862 0.946446i \(-0.395355\pi\)
−0.440941 + 0.897536i \(0.645355\pi\)
\(948\) 0 0
\(949\) −7.34786 3.04358i −0.238522 0.0987989i
\(950\) 7.01825 + 1.17275i 0.227702 + 0.0380491i
\(951\) 0 0
\(952\) −2.65708 9.67506i −0.0861166 0.313571i
\(953\) 4.24356i 0.137462i −0.997635 0.0687312i \(-0.978105\pi\)
0.997635 0.0687312i \(-0.0218951\pi\)
\(954\) 0 0
\(955\) 2.01776 24.3177i 0.0652932 0.786903i
\(956\) 40.6658i 1.31523i
\(957\) 0 0
\(958\) 0.478328 + 1.15479i 0.0154541 + 0.0373095i
\(959\) 4.82971 + 11.6600i 0.155959 + 0.376519i
\(960\) 0 0
\(961\) 46.7567 + 46.7567i 1.50828 + 1.50828i
\(962\) −35.2671 + 14.6081i −1.13706 + 0.470985i
\(963\) 0 0
\(964\) −10.9515 + 26.4392i −0.352723 + 0.851549i
\(965\) −12.5312 39.1315i −0.403393 1.25969i
\(966\) 0 0
\(967\) 25.3036 + 25.3036i 0.813708 + 0.813708i 0.985188 0.171480i \(-0.0548548\pi\)
−0.171480 + 0.985188i \(0.554855\pi\)
\(968\) 9.11197i 0.292870i
\(969\) 0 0
\(970\) −22.1261 69.0938i −0.710425 2.21847i
\(971\) 26.0013 26.0013i 0.834423 0.834423i −0.153695 0.988118i \(-0.549117\pi\)
0.988118 + 0.153695i \(0.0491174\pi\)
\(972\) 0 0
\(973\) −2.21053 −0.0708664
\(974\) 1.81468 4.38103i 0.0581462 0.140377i
\(975\) 0 0
\(976\) 2.34156 + 5.65303i 0.0749516 + 0.180949i
\(977\) −18.3472 + 18.3472i −0.586977 + 0.586977i −0.936812 0.349834i \(-0.886238\pi\)
0.349834 + 0.936812i \(0.386238\pi\)
\(978\) 0 0
\(979\) 2.10094 + 5.07211i 0.0671463 + 0.162105i
\(980\) 0.704422 + 0.831898i 0.0225019 + 0.0265740i
\(981\) 0 0
\(982\) −15.3652 −0.490322
\(983\) −12.6630 + 30.5712i −0.403888 + 0.975071i 0.582825 + 0.812598i \(0.301947\pi\)
−0.986713 + 0.162474i \(0.948053\pi\)
\(984\) 0 0
\(985\) −41.5064 + 13.2917i −1.32250 + 0.423509i
\(986\) −43.0689 + 75.6817i −1.37159 + 2.41020i
\(987\) 0 0
\(988\) 3.08229 + 3.08229i 0.0980606 + 0.0980606i
\(989\) 33.1905 + 13.7480i 1.05540 + 0.437160i
\(990\) 0 0
\(991\) 13.3710 32.2804i 0.424744 1.02542i −0.556186 0.831058i \(-0.687736\pi\)
0.980930 0.194364i \(-0.0622643\pi\)
\(992\) 30.2810 + 73.1049i 0.961423 + 2.32108i
\(993\) 0 0
\(994\) −4.49406 4.49406i −0.142543 0.142543i
\(995\) −23.8682 + 46.3564i −0.756674 + 1.46960i
\(996\) 0 0
\(997\) 6.29396 + 15.1950i 0.199332 + 0.481229i 0.991662 0.128862i \(-0.0411325\pi\)
−0.792331 + 0.610092i \(0.791133\pi\)
\(998\) 14.7809 + 6.12244i 0.467881 + 0.193802i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.bh.b.604.1 24
3.2 odd 2 85.2.m.a.9.6 yes 24
5.4 even 2 inner 765.2.bh.b.604.6 24
15.2 even 4 425.2.m.e.26.1 24
15.8 even 4 425.2.m.e.26.6 24
15.14 odd 2 85.2.m.a.9.1 24
17.2 even 8 inner 765.2.bh.b.19.6 24
51.2 odd 8 85.2.m.a.19.1 yes 24
51.11 even 16 1445.2.b.i.579.22 24
51.23 even 16 1445.2.b.i.579.21 24
85.19 even 8 inner 765.2.bh.b.19.1 24
255.2 even 8 425.2.m.e.376.1 24
255.23 odd 16 7225.2.a.by.1.22 24
255.53 even 8 425.2.m.e.376.6 24
255.62 odd 16 7225.2.a.by.1.4 24
255.74 even 16 1445.2.b.i.579.4 24
255.104 odd 8 85.2.m.a.19.6 yes 24
255.113 odd 16 7225.2.a.by.1.21 24
255.164 even 16 1445.2.b.i.579.3 24
255.227 odd 16 7225.2.a.by.1.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.9.1 24 15.14 odd 2
85.2.m.a.9.6 yes 24 3.2 odd 2
85.2.m.a.19.1 yes 24 51.2 odd 8
85.2.m.a.19.6 yes 24 255.104 odd 8
425.2.m.e.26.1 24 15.2 even 4
425.2.m.e.26.6 24 15.8 even 4
425.2.m.e.376.1 24 255.2 even 8
425.2.m.e.376.6 24 255.53 even 8
765.2.bh.b.19.1 24 85.19 even 8 inner
765.2.bh.b.19.6 24 17.2 even 8 inner
765.2.bh.b.604.1 24 1.1 even 1 trivial
765.2.bh.b.604.6 24 5.4 even 2 inner
1445.2.b.i.579.3 24 255.164 even 16
1445.2.b.i.579.4 24 255.74 even 16
1445.2.b.i.579.21 24 51.23 even 16
1445.2.b.i.579.22 24 51.11 even 16
7225.2.a.by.1.3 24 255.227 odd 16
7225.2.a.by.1.4 24 255.62 odd 16
7225.2.a.by.1.21 24 255.113 odd 16
7225.2.a.by.1.22 24 255.23 odd 16