Properties

Label 425.4.b.g.324.4
Level $425$
Weight $4$
Character 425.324
Analytic conductor $25.076$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.27206656.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 4x^{3} + 25x^{2} - 30x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.4
Root \(1.90022 - 1.90022i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.4.b.g.324.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.22168i q^{2} +1.15753i q^{3} +6.50750 q^{4} -1.41413 q^{6} +14.6743i q^{7} +17.7235i q^{8} +25.6601 q^{9} -71.3743 q^{11} +7.53262i q^{12} +28.4035i q^{13} -17.9273 q^{14} +30.4076 q^{16} +17.0000i q^{17} +31.3484i q^{18} -85.9592 q^{19} -16.9860 q^{21} -87.1964i q^{22} +7.17872i q^{23} -20.5154 q^{24} -34.7000 q^{26} +60.9556i q^{27} +95.4934i q^{28} +27.1610 q^{29} -15.6170 q^{31} +178.936i q^{32} -82.6178i q^{33} -20.7685 q^{34} +166.983 q^{36} -67.0036i q^{37} -105.014i q^{38} -32.8779 q^{39} -38.5701 q^{41} -20.7514i q^{42} +251.495i q^{43} -464.469 q^{44} -8.77008 q^{46} +57.9121i q^{47} +35.1977i q^{48} +127.663 q^{49} -19.6780 q^{51} +184.836i q^{52} +677.807i q^{53} -74.4680 q^{54} -260.081 q^{56} -99.5002i q^{57} +33.1819i q^{58} -598.645 q^{59} +346.063 q^{61} -19.0789i q^{62} +376.546i q^{63} +24.6588 q^{64} +100.932 q^{66} -849.923i q^{67} +110.628i q^{68} -8.30957 q^{69} -911.836 q^{71} +454.787i q^{72} -704.352i q^{73} +81.8568 q^{74} -559.380 q^{76} -1047.37i q^{77} -40.1662i q^{78} -55.8414 q^{79} +622.266 q^{81} -47.1202i q^{82} +1235.19i q^{83} -110.536 q^{84} -307.245 q^{86} +31.4396i q^{87} -1265.00i q^{88} +72.8069 q^{89} -416.803 q^{91} +46.7155i q^{92} -18.0771i q^{93} -70.7499 q^{94} -207.124 q^{96} +972.939i q^{97} +155.964i q^{98} -1831.47 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 20 q^{4} + 72 q^{6} - 78 q^{9} - 236 q^{11} + 136 q^{14} + 484 q^{16} + 320 q^{19} - 944 q^{21} - 1608 q^{24} - 88 q^{26} - 748 q^{29} + 140 q^{31} + 204 q^{34} + 2516 q^{36} - 496 q^{39} - 708 q^{41}+ \cdots - 1540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22168i 0.431928i 0.976401 + 0.215964i \(0.0692894\pi\)
−0.976401 + 0.215964i \(0.930711\pi\)
\(3\) 1.15753i 0.222766i 0.993778 + 0.111383i \(0.0355281\pi\)
−0.993778 + 0.111383i \(0.964472\pi\)
\(4\) 6.50750 0.813438
\(5\) 0 0
\(6\) −1.41413 −0.0962191
\(7\) 14.6743i 0.792340i 0.918177 + 0.396170i \(0.129661\pi\)
−0.918177 + 0.396170i \(0.870339\pi\)
\(8\) 17.7235i 0.783275i
\(9\) 25.6601 0.950375
\(10\) 0 0
\(11\) −71.3743 −1.95638 −0.978189 0.207716i \(-0.933397\pi\)
−0.978189 + 0.207716i \(0.933397\pi\)
\(12\) 7.53262i 0.181207i
\(13\) 28.4035i 0.605979i 0.952994 + 0.302989i \(0.0979847\pi\)
−0.952994 + 0.302989i \(0.902015\pi\)
\(14\) −17.9273 −0.342234
\(15\) 0 0
\(16\) 30.4076 0.475119
\(17\) 17.0000i 0.242536i
\(18\) 31.3484i 0.410494i
\(19\) −85.9592 −1.03792 −0.518958 0.854800i \(-0.673680\pi\)
−0.518958 + 0.854800i \(0.673680\pi\)
\(20\) 0 0
\(21\) −16.9860 −0.176507
\(22\) − 87.1964i − 0.845015i
\(23\) 7.17872i 0.0650811i 0.999470 + 0.0325406i \(0.0103598\pi\)
−0.999470 + 0.0325406i \(0.989640\pi\)
\(24\) −20.5154 −0.174487
\(25\) 0 0
\(26\) −34.7000 −0.261739
\(27\) 60.9556i 0.434478i
\(28\) 95.4934i 0.644520i
\(29\) 27.1610 0.173919 0.0869597 0.996212i \(-0.472285\pi\)
0.0869597 + 0.996212i \(0.472285\pi\)
\(30\) 0 0
\(31\) −15.6170 −0.0904803 −0.0452401 0.998976i \(-0.514405\pi\)
−0.0452401 + 0.998976i \(0.514405\pi\)
\(32\) 178.936i 0.988493i
\(33\) − 82.6178i − 0.435815i
\(34\) −20.7685 −0.104758
\(35\) 0 0
\(36\) 166.983 0.773071
\(37\) − 67.0036i − 0.297712i −0.988859 0.148856i \(-0.952441\pi\)
0.988859 0.148856i \(-0.0475590\pi\)
\(38\) − 105.014i − 0.448305i
\(39\) −32.8779 −0.134992
\(40\) 0 0
\(41\) −38.5701 −0.146918 −0.0734590 0.997298i \(-0.523404\pi\)
−0.0734590 + 0.997298i \(0.523404\pi\)
\(42\) − 20.7514i − 0.0762383i
\(43\) 251.495i 0.891920i 0.895053 + 0.445960i \(0.147138\pi\)
−0.895053 + 0.445960i \(0.852862\pi\)
\(44\) −464.469 −1.59139
\(45\) 0 0
\(46\) −8.77008 −0.0281104
\(47\) 57.9121i 0.179731i 0.995954 + 0.0898654i \(0.0286437\pi\)
−0.995954 + 0.0898654i \(0.971356\pi\)
\(48\) 35.1977i 0.105841i
\(49\) 127.663 0.372197
\(50\) 0 0
\(51\) −19.6780 −0.0540288
\(52\) 184.836i 0.492926i
\(53\) 677.807i 1.75668i 0.478039 + 0.878339i \(0.341348\pi\)
−0.478039 + 0.878339i \(0.658652\pi\)
\(54\) −74.4680 −0.187663
\(55\) 0 0
\(56\) −260.081 −0.620620
\(57\) − 99.5002i − 0.231213i
\(58\) 33.1819i 0.0751207i
\(59\) −598.645 −1.32097 −0.660483 0.750841i \(-0.729648\pi\)
−0.660483 + 0.750841i \(0.729648\pi\)
\(60\) 0 0
\(61\) 346.063 0.726375 0.363187 0.931716i \(-0.381689\pi\)
0.363187 + 0.931716i \(0.381689\pi\)
\(62\) − 19.0789i − 0.0390810i
\(63\) 376.546i 0.753021i
\(64\) 24.6588 0.0481617
\(65\) 0 0
\(66\) 100.932 0.188241
\(67\) − 849.923i − 1.54977i −0.632102 0.774885i \(-0.717808\pi\)
0.632102 0.774885i \(-0.282192\pi\)
\(68\) 110.628i 0.197288i
\(69\) −8.30957 −0.0144979
\(70\) 0 0
\(71\) −911.836 −1.52415 −0.762077 0.647486i \(-0.775820\pi\)
−0.762077 + 0.647486i \(0.775820\pi\)
\(72\) 454.787i 0.744405i
\(73\) − 704.352i − 1.12929i −0.825334 0.564645i \(-0.809013\pi\)
0.825334 0.564645i \(-0.190987\pi\)
\(74\) 81.8568 0.128590
\(75\) 0 0
\(76\) −559.380 −0.844280
\(77\) − 1047.37i − 1.55012i
\(78\) − 40.1662i − 0.0583067i
\(79\) −55.8414 −0.0795272 −0.0397636 0.999209i \(-0.512660\pi\)
−0.0397636 + 0.999209i \(0.512660\pi\)
\(80\) 0 0
\(81\) 622.266 0.853588
\(82\) − 47.1202i − 0.0634580i
\(83\) 1235.19i 1.63350i 0.576995 + 0.816748i \(0.304225\pi\)
−0.576995 + 0.816748i \(0.695775\pi\)
\(84\) −110.536 −0.143577
\(85\) 0 0
\(86\) −307.245 −0.385246
\(87\) 31.4396i 0.0387434i
\(88\) − 1265.00i − 1.53238i
\(89\) 72.8069 0.0867136 0.0433568 0.999060i \(-0.486195\pi\)
0.0433568 + 0.999060i \(0.486195\pi\)
\(90\) 0 0
\(91\) −416.803 −0.480141
\(92\) 46.7155i 0.0529395i
\(93\) − 18.0771i − 0.0201560i
\(94\) −70.7499 −0.0776308
\(95\) 0 0
\(96\) −207.124 −0.220203
\(97\) 972.939i 1.01842i 0.860642 + 0.509211i \(0.170063\pi\)
−0.860642 + 0.509211i \(0.829937\pi\)
\(98\) 155.964i 0.160762i
\(99\) −1831.47 −1.85929
\(100\) 0 0
\(101\) −658.119 −0.648369 −0.324185 0.945994i \(-0.605090\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(102\) − 24.0401i − 0.0233366i
\(103\) 1727.68i 1.65275i 0.563120 + 0.826375i \(0.309601\pi\)
−0.563120 + 0.826375i \(0.690399\pi\)
\(104\) −503.410 −0.474648
\(105\) 0 0
\(106\) −828.061 −0.758758
\(107\) − 903.004i − 0.815857i −0.913014 0.407929i \(-0.866251\pi\)
0.913014 0.407929i \(-0.133749\pi\)
\(108\) 396.669i 0.353421i
\(109\) −833.557 −0.732480 −0.366240 0.930520i \(-0.619355\pi\)
−0.366240 + 0.930520i \(0.619355\pi\)
\(110\) 0 0
\(111\) 77.5586 0.0663201
\(112\) 446.212i 0.376456i
\(113\) − 1006.49i − 0.837900i −0.908009 0.418950i \(-0.862398\pi\)
0.908009 0.418950i \(-0.137602\pi\)
\(114\) 121.557 0.0998673
\(115\) 0 0
\(116\) 176.750 0.141473
\(117\) 728.838i 0.575907i
\(118\) − 731.352i − 0.570562i
\(119\) −249.464 −0.192171
\(120\) 0 0
\(121\) 3763.29 2.82742
\(122\) 422.778i 0.313742i
\(123\) − 44.6459i − 0.0327284i
\(124\) −101.627 −0.0736001
\(125\) 0 0
\(126\) −460.017 −0.325251
\(127\) 1114.87i 0.778970i 0.921033 + 0.389485i \(0.127347\pi\)
−0.921033 + 0.389485i \(0.872653\pi\)
\(128\) 1461.62i 1.00929i
\(129\) −291.112 −0.198690
\(130\) 0 0
\(131\) 1558.43 1.03939 0.519697 0.854351i \(-0.326045\pi\)
0.519697 + 0.854351i \(0.326045\pi\)
\(132\) − 537.635i − 0.354509i
\(133\) − 1261.40i − 0.822382i
\(134\) 1038.33 0.669389
\(135\) 0 0
\(136\) −301.299 −0.189972
\(137\) 235.190i 0.146669i 0.997307 + 0.0733346i \(0.0233641\pi\)
−0.997307 + 0.0733346i \(0.976636\pi\)
\(138\) − 10.1516i − 0.00626205i
\(139\) 2138.46 1.30490 0.652452 0.757830i \(-0.273740\pi\)
0.652452 + 0.757830i \(0.273740\pi\)
\(140\) 0 0
\(141\) −67.0349 −0.0400380
\(142\) − 1113.97i − 0.658325i
\(143\) − 2027.28i − 1.18552i
\(144\) 780.264 0.451542
\(145\) 0 0
\(146\) 860.491 0.487772
\(147\) 147.774i 0.0829129i
\(148\) − 436.026i − 0.242170i
\(149\) 3317.71 1.82414 0.912072 0.410030i \(-0.134482\pi\)
0.912072 + 0.410030i \(0.134482\pi\)
\(150\) 0 0
\(151\) 848.486 0.457277 0.228638 0.973511i \(-0.426573\pi\)
0.228638 + 0.973511i \(0.426573\pi\)
\(152\) − 1523.50i − 0.812973i
\(153\) 436.222i 0.230500i
\(154\) 1279.55 0.669539
\(155\) 0 0
\(156\) −213.953 −0.109807
\(157\) 949.821i 0.482828i 0.970422 + 0.241414i \(0.0776111\pi\)
−0.970422 + 0.241414i \(0.922389\pi\)
\(158\) − 68.2202i − 0.0343500i
\(159\) −784.580 −0.391329
\(160\) 0 0
\(161\) −105.343 −0.0515664
\(162\) 760.208i 0.368689i
\(163\) − 1942.09i − 0.933229i −0.884461 0.466615i \(-0.845473\pi\)
0.884461 0.466615i \(-0.154527\pi\)
\(164\) −250.995 −0.119509
\(165\) 0 0
\(166\) −1509.01 −0.705553
\(167\) − 3358.46i − 1.55620i −0.628141 0.778100i \(-0.716184\pi\)
0.628141 0.778100i \(-0.283816\pi\)
\(168\) − 301.051i − 0.138253i
\(169\) 1390.24 0.632790
\(170\) 0 0
\(171\) −2205.72 −0.986409
\(172\) 1636.60i 0.725522i
\(173\) − 216.466i − 0.0951308i −0.998868 0.0475654i \(-0.984854\pi\)
0.998868 0.0475654i \(-0.0151463\pi\)
\(174\) −38.4090 −0.0167344
\(175\) 0 0
\(176\) −2170.32 −0.929513
\(177\) − 692.949i − 0.294267i
\(178\) 88.9465i 0.0374541i
\(179\) 1142.30 0.476981 0.238490 0.971145i \(-0.423347\pi\)
0.238490 + 0.971145i \(0.423347\pi\)
\(180\) 0 0
\(181\) 1884.85 0.774031 0.387015 0.922073i \(-0.373506\pi\)
0.387015 + 0.922073i \(0.373506\pi\)
\(182\) − 509.199i − 0.207387i
\(183\) 400.578i 0.161812i
\(184\) −127.232 −0.0509764
\(185\) 0 0
\(186\) 22.0843 0.00870593
\(187\) − 1213.36i − 0.474491i
\(188\) 376.863i 0.146200i
\(189\) −894.483 −0.344254
\(190\) 0 0
\(191\) 2274.84 0.861790 0.430895 0.902402i \(-0.358198\pi\)
0.430895 + 0.902402i \(0.358198\pi\)
\(192\) 28.5432i 0.0107288i
\(193\) 2905.75i 1.08373i 0.840465 + 0.541866i \(0.182282\pi\)
−0.840465 + 0.541866i \(0.817718\pi\)
\(194\) −1188.62 −0.439885
\(195\) 0 0
\(196\) 830.771 0.302759
\(197\) 4837.99i 1.74971i 0.484388 + 0.874853i \(0.339042\pi\)
−0.484388 + 0.874853i \(0.660958\pi\)
\(198\) − 2237.47i − 0.803081i
\(199\) 2365.26 0.842558 0.421279 0.906931i \(-0.361581\pi\)
0.421279 + 0.906931i \(0.361581\pi\)
\(200\) 0 0
\(201\) 983.809 0.345237
\(202\) − 804.009i − 0.280049i
\(203\) 398.569i 0.137803i
\(204\) −128.055 −0.0439491
\(205\) 0 0
\(206\) −2110.67 −0.713869
\(207\) 184.207i 0.0618515i
\(208\) 863.685i 0.287912i
\(209\) 6135.28 2.03056
\(210\) 0 0
\(211\) 594.164 0.193858 0.0969288 0.995291i \(-0.469098\pi\)
0.0969288 + 0.995291i \(0.469098\pi\)
\(212\) 4410.83i 1.42895i
\(213\) − 1055.48i − 0.339530i
\(214\) 1103.18 0.352392
\(215\) 0 0
\(216\) −1080.35 −0.340316
\(217\) − 229.169i − 0.0716912i
\(218\) − 1018.34i − 0.316379i
\(219\) 815.307 0.251568
\(220\) 0 0
\(221\) −482.860 −0.146971
\(222\) 94.7516i 0.0286455i
\(223\) − 3040.15i − 0.912931i −0.889741 0.456466i \(-0.849115\pi\)
0.889741 0.456466i \(-0.150885\pi\)
\(224\) −2625.77 −0.783223
\(225\) 0 0
\(226\) 1229.61 0.361912
\(227\) − 459.136i − 0.134246i −0.997745 0.0671232i \(-0.978618\pi\)
0.997745 0.0671232i \(-0.0213821\pi\)
\(228\) − 647.498i − 0.188077i
\(229\) −2153.49 −0.621427 −0.310713 0.950504i \(-0.600568\pi\)
−0.310713 + 0.950504i \(0.600568\pi\)
\(230\) 0 0
\(231\) 1212.36 0.345314
\(232\) 481.387i 0.136227i
\(233\) − 5456.45i − 1.53418i −0.641540 0.767090i \(-0.721704\pi\)
0.641540 0.767090i \(-0.278296\pi\)
\(234\) −890.405 −0.248750
\(235\) 0 0
\(236\) −3895.69 −1.07452
\(237\) − 64.6380i − 0.0177160i
\(238\) − 304.764i − 0.0830040i
\(239\) 6073.58 1.64380 0.821898 0.569634i \(-0.192915\pi\)
0.821898 + 0.569634i \(0.192915\pi\)
\(240\) 0 0
\(241\) 7191.69 1.92223 0.961115 0.276148i \(-0.0890581\pi\)
0.961115 + 0.276148i \(0.0890581\pi\)
\(242\) 4597.53i 1.22124i
\(243\) 2366.09i 0.624629i
\(244\) 2252.01 0.590861
\(245\) 0 0
\(246\) 54.5429 0.0141363
\(247\) − 2441.54i − 0.628955i
\(248\) − 276.787i − 0.0708710i
\(249\) −1429.77 −0.363888
\(250\) 0 0
\(251\) −3778.49 −0.950185 −0.475092 0.879936i \(-0.657585\pi\)
−0.475092 + 0.879936i \(0.657585\pi\)
\(252\) 2450.37i 0.612536i
\(253\) − 512.376i − 0.127323i
\(254\) −1362.02 −0.336459
\(255\) 0 0
\(256\) −1588.35 −0.387781
\(257\) − 5002.13i − 1.21410i −0.794663 0.607051i \(-0.792352\pi\)
0.794663 0.607051i \(-0.207648\pi\)
\(258\) − 355.645i − 0.0858197i
\(259\) 983.235 0.235889
\(260\) 0 0
\(261\) 696.954 0.165289
\(262\) 1903.90i 0.448943i
\(263\) − 4745.06i − 1.11252i −0.831008 0.556260i \(-0.812236\pi\)
0.831008 0.556260i \(-0.187764\pi\)
\(264\) 1464.27 0.341363
\(265\) 0 0
\(266\) 1541.02 0.355210
\(267\) 84.2760i 0.0193169i
\(268\) − 5530.88i − 1.26064i
\(269\) −7844.29 −1.77797 −0.888987 0.457932i \(-0.848590\pi\)
−0.888987 + 0.457932i \(0.848590\pi\)
\(270\) 0 0
\(271\) 3730.24 0.836148 0.418074 0.908413i \(-0.362705\pi\)
0.418074 + 0.908413i \(0.362705\pi\)
\(272\) 516.930i 0.115233i
\(273\) − 482.462i − 0.106959i
\(274\) −287.327 −0.0633505
\(275\) 0 0
\(276\) −54.0745 −0.0117931
\(277\) − 1888.55i − 0.409646i −0.978799 0.204823i \(-0.934338\pi\)
0.978799 0.204823i \(-0.0656619\pi\)
\(278\) 2612.51i 0.563625i
\(279\) −400.733 −0.0859902
\(280\) 0 0
\(281\) −3340.77 −0.709231 −0.354615 0.935012i \(-0.615388\pi\)
−0.354615 + 0.935012i \(0.615388\pi\)
\(282\) − 81.8950i − 0.0172935i
\(283\) 7783.21i 1.63485i 0.576032 + 0.817427i \(0.304600\pi\)
−0.576032 + 0.817427i \(0.695400\pi\)
\(284\) −5933.77 −1.23981
\(285\) 0 0
\(286\) 2476.68 0.512061
\(287\) − 565.991i − 0.116409i
\(288\) 4591.53i 0.939439i
\(289\) −289.000 −0.0588235
\(290\) 0 0
\(291\) −1126.20 −0.226870
\(292\) − 4583.57i − 0.918608i
\(293\) 8514.61i 1.69771i 0.528626 + 0.848855i \(0.322707\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(294\) −180.532 −0.0358124
\(295\) 0 0
\(296\) 1187.54 0.233190
\(297\) − 4350.66i − 0.850003i
\(298\) 4053.17i 0.787899i
\(299\) −203.901 −0.0394378
\(300\) 0 0
\(301\) −3690.52 −0.706705
\(302\) 1036.58i 0.197511i
\(303\) − 761.792i − 0.144435i
\(304\) −2613.82 −0.493134
\(305\) 0 0
\(306\) −532.923 −0.0995594
\(307\) − 8954.07i − 1.66461i −0.554317 0.832306i \(-0.687020\pi\)
0.554317 0.832306i \(-0.312980\pi\)
\(308\) − 6815.77i − 1.26092i
\(309\) −1999.84 −0.368177
\(310\) 0 0
\(311\) −3842.82 −0.700664 −0.350332 0.936626i \(-0.613931\pi\)
−0.350332 + 0.936626i \(0.613931\pi\)
\(312\) − 582.711i − 0.105736i
\(313\) 4432.84i 0.800507i 0.916404 + 0.400254i \(0.131078\pi\)
−0.916404 + 0.400254i \(0.868922\pi\)
\(314\) −1160.37 −0.208547
\(315\) 0 0
\(316\) −363.388 −0.0646904
\(317\) 7694.21i 1.36325i 0.731702 + 0.681625i \(0.238726\pi\)
−0.731702 + 0.681625i \(0.761274\pi\)
\(318\) − 958.504i − 0.169026i
\(319\) −1938.59 −0.340252
\(320\) 0 0
\(321\) 1045.25 0.181746
\(322\) − 128.695i − 0.0222730i
\(323\) − 1461.31i − 0.251731i
\(324\) 4049.40 0.694341
\(325\) 0 0
\(326\) 2372.61 0.403088
\(327\) − 964.866i − 0.163172i
\(328\) − 683.596i − 0.115077i
\(329\) −849.823 −0.142408
\(330\) 0 0
\(331\) 7276.70 1.20835 0.604175 0.796852i \(-0.293503\pi\)
0.604175 + 0.796852i \(0.293503\pi\)
\(332\) 8038.03i 1.32875i
\(333\) − 1719.32i − 0.282938i
\(334\) 4102.95 0.672166
\(335\) 0 0
\(336\) −516.503 −0.0838618
\(337\) − 3300.91i − 0.533566i −0.963757 0.266783i \(-0.914039\pi\)
0.963757 0.266783i \(-0.0859607\pi\)
\(338\) 1698.42i 0.273320i
\(339\) 1165.04 0.186656
\(340\) 0 0
\(341\) 1114.65 0.177014
\(342\) − 2694.68i − 0.426058i
\(343\) 6906.68i 1.08725i
\(344\) −4457.36 −0.698619
\(345\) 0 0
\(346\) 264.452 0.0410897
\(347\) − 7998.41i − 1.23740i −0.785628 0.618699i \(-0.787660\pi\)
0.785628 0.618699i \(-0.212340\pi\)
\(348\) 204.593i 0.0315154i
\(349\) 4378.96 0.671634 0.335817 0.941927i \(-0.390988\pi\)
0.335817 + 0.941927i \(0.390988\pi\)
\(350\) 0 0
\(351\) −1731.35 −0.263284
\(352\) − 12771.5i − 1.93387i
\(353\) − 1508.37i − 0.227430i −0.993513 0.113715i \(-0.963725\pi\)
0.993513 0.113715i \(-0.0362750\pi\)
\(354\) 846.560 0.127102
\(355\) 0 0
\(356\) 473.791 0.0705362
\(357\) − 288.761i − 0.0428092i
\(358\) 1395.52i 0.206021i
\(359\) −3436.61 −0.505229 −0.252614 0.967567i \(-0.581290\pi\)
−0.252614 + 0.967567i \(0.581290\pi\)
\(360\) 0 0
\(361\) 529.984 0.0772684
\(362\) 2302.67i 0.334326i
\(363\) 4356.11i 0.629853i
\(364\) −2712.35 −0.390565
\(365\) 0 0
\(366\) −489.377 −0.0698911
\(367\) 10656.6i 1.51573i 0.652413 + 0.757863i \(0.273757\pi\)
−0.652413 + 0.757863i \(0.726243\pi\)
\(368\) 218.288i 0.0309213i
\(369\) −989.713 −0.139627
\(370\) 0 0
\(371\) −9946.37 −1.39189
\(372\) − 117.637i − 0.0163956i
\(373\) 9062.32i 1.25799i 0.777410 + 0.628994i \(0.216533\pi\)
−0.777410 + 0.628994i \(0.783467\pi\)
\(374\) 1482.34 0.204946
\(375\) 0 0
\(376\) −1026.40 −0.140779
\(377\) 771.467i 0.105391i
\(378\) − 1092.77i − 0.148693i
\(379\) −1080.44 −0.146434 −0.0732169 0.997316i \(-0.523327\pi\)
−0.0732169 + 0.997316i \(0.523327\pi\)
\(380\) 0 0
\(381\) −1290.50 −0.173528
\(382\) 2779.13i 0.372232i
\(383\) − 6920.65i − 0.923313i −0.887059 0.461656i \(-0.847255\pi\)
0.887059 0.461656i \(-0.152745\pi\)
\(384\) −1691.86 −0.224837
\(385\) 0 0
\(386\) −3549.88 −0.468094
\(387\) 6453.39i 0.847659i
\(388\) 6331.40i 0.828423i
\(389\) −9664.52 −1.25967 −0.629833 0.776730i \(-0.716877\pi\)
−0.629833 + 0.776730i \(0.716877\pi\)
\(390\) 0 0
\(391\) −122.038 −0.0157845
\(392\) 2262.64i 0.291532i
\(393\) 1803.92i 0.231542i
\(394\) −5910.46 −0.755748
\(395\) 0 0
\(396\) −11918.3 −1.51242
\(397\) − 7464.80i − 0.943697i −0.881680 0.471848i \(-0.843587\pi\)
0.881680 0.471848i \(-0.156413\pi\)
\(398\) 2889.59i 0.363924i
\(399\) 1460.10 0.183199
\(400\) 0 0
\(401\) 2948.70 0.367209 0.183605 0.983000i \(-0.441223\pi\)
0.183605 + 0.983000i \(0.441223\pi\)
\(402\) 1201.90i 0.149117i
\(403\) − 443.577i − 0.0548291i
\(404\) −4282.71 −0.527408
\(405\) 0 0
\(406\) −486.923 −0.0595212
\(407\) 4782.34i 0.582436i
\(408\) − 348.762i − 0.0423194i
\(409\) −5546.04 −0.670499 −0.335250 0.942129i \(-0.608821\pi\)
−0.335250 + 0.942129i \(0.608821\pi\)
\(410\) 0 0
\(411\) −272.239 −0.0326730
\(412\) 11242.9i 1.34441i
\(413\) − 8784.73i − 1.04665i
\(414\) −225.041 −0.0267154
\(415\) 0 0
\(416\) −5082.42 −0.599005
\(417\) 2475.33i 0.290689i
\(418\) 7495.33i 0.877054i
\(419\) −8245.75 −0.961411 −0.480706 0.876882i \(-0.659619\pi\)
−0.480706 + 0.876882i \(0.659619\pi\)
\(420\) 0 0
\(421\) −9972.70 −1.15449 −0.577244 0.816571i \(-0.695872\pi\)
−0.577244 + 0.816571i \(0.695872\pi\)
\(422\) 725.877i 0.0837325i
\(423\) 1486.03i 0.170812i
\(424\) −12013.1 −1.37596
\(425\) 0 0
\(426\) 1289.45 0.146653
\(427\) 5078.25i 0.575536i
\(428\) − 5876.30i − 0.663649i
\(429\) 2346.64 0.264095
\(430\) 0 0
\(431\) 10506.0 1.17415 0.587073 0.809534i \(-0.300280\pi\)
0.587073 + 0.809534i \(0.300280\pi\)
\(432\) 1853.52i 0.206429i
\(433\) − 13866.9i − 1.53903i −0.638631 0.769514i \(-0.720499\pi\)
0.638631 0.769514i \(-0.279501\pi\)
\(434\) 279.970 0.0309654
\(435\) 0 0
\(436\) −5424.38 −0.595827
\(437\) − 617.077i − 0.0675487i
\(438\) 996.043i 0.108659i
\(439\) −270.717 −0.0294319 −0.0147160 0.999892i \(-0.504684\pi\)
−0.0147160 + 0.999892i \(0.504684\pi\)
\(440\) 0 0
\(441\) 3275.86 0.353726
\(442\) − 589.899i − 0.0634811i
\(443\) 6809.29i 0.730291i 0.930950 + 0.365146i \(0.118981\pi\)
−0.930950 + 0.365146i \(0.881019\pi\)
\(444\) 504.713 0.0539473
\(445\) 0 0
\(446\) 3714.09 0.394321
\(447\) 3840.34i 0.406358i
\(448\) 361.852i 0.0381605i
\(449\) 9130.09 0.959633 0.479817 0.877369i \(-0.340703\pi\)
0.479817 + 0.877369i \(0.340703\pi\)
\(450\) 0 0
\(451\) 2752.91 0.287427
\(452\) − 6549.74i − 0.681579i
\(453\) 982.146i 0.101866i
\(454\) 560.916 0.0579848
\(455\) 0 0
\(456\) 1763.49 0.181103
\(457\) − 2524.80i − 0.258436i −0.991616 0.129218i \(-0.958753\pi\)
0.991616 0.129218i \(-0.0412467\pi\)
\(458\) − 2630.87i − 0.268412i
\(459\) −1036.24 −0.105376
\(460\) 0 0
\(461\) 11102.1 1.12164 0.560819 0.827938i \(-0.310486\pi\)
0.560819 + 0.827938i \(0.310486\pi\)
\(462\) 1481.11i 0.149151i
\(463\) 3045.92i 0.305736i 0.988247 + 0.152868i \(0.0488510\pi\)
−0.988247 + 0.152868i \(0.951149\pi\)
\(464\) 825.901 0.0826325
\(465\) 0 0
\(466\) 6666.02 0.662655
\(467\) − 14515.5i − 1.43832i −0.694844 0.719161i \(-0.744527\pi\)
0.694844 0.719161i \(-0.255473\pi\)
\(468\) 4742.92i 0.468465i
\(469\) 12472.1 1.22795
\(470\) 0 0
\(471\) −1099.44 −0.107558
\(472\) − 10610.1i − 1.03468i
\(473\) − 17950.3i − 1.74493i
\(474\) 78.9668 0.00765203
\(475\) 0 0
\(476\) −1623.39 −0.156319
\(477\) 17392.6i 1.66950i
\(478\) 7419.96i 0.710002i
\(479\) 5511.93 0.525775 0.262888 0.964826i \(-0.415325\pi\)
0.262888 + 0.964826i \(0.415325\pi\)
\(480\) 0 0
\(481\) 1903.14 0.180407
\(482\) 8785.92i 0.830265i
\(483\) − 121.937i − 0.0114873i
\(484\) 24489.6 2.29993
\(485\) 0 0
\(486\) −2890.60 −0.269795
\(487\) − 10132.2i − 0.942777i −0.881926 0.471388i \(-0.843753\pi\)
0.881926 0.471388i \(-0.156247\pi\)
\(488\) 6133.45i 0.568951i
\(489\) 2248.03 0.207892
\(490\) 0 0
\(491\) −5965.90 −0.548345 −0.274172 0.961681i \(-0.588404\pi\)
−0.274172 + 0.961681i \(0.588404\pi\)
\(492\) − 290.534i − 0.0266225i
\(493\) 461.736i 0.0421817i
\(494\) 2982.78 0.271663
\(495\) 0 0
\(496\) −474.875 −0.0429890
\(497\) − 13380.6i − 1.20765i
\(498\) − 1746.72i − 0.157173i
\(499\) −19690.2 −1.76644 −0.883220 0.468959i \(-0.844629\pi\)
−0.883220 + 0.468959i \(0.844629\pi\)
\(500\) 0 0
\(501\) 3887.51 0.346669
\(502\) − 4616.10i − 0.410412i
\(503\) 18780.3i 1.66476i 0.554209 + 0.832378i \(0.313021\pi\)
−0.554209 + 0.832378i \(0.686979\pi\)
\(504\) −6673.70 −0.589822
\(505\) 0 0
\(506\) 625.958 0.0549945
\(507\) 1609.24i 0.140964i
\(508\) 7255.05i 0.633644i
\(509\) 4447.70 0.387310 0.193655 0.981070i \(-0.437966\pi\)
0.193655 + 0.981070i \(0.437966\pi\)
\(510\) 0 0
\(511\) 10335.9 0.894782
\(512\) 9752.47i 0.841801i
\(513\) − 5239.69i − 0.450951i
\(514\) 6110.99 0.524405
\(515\) 0 0
\(516\) −1894.41 −0.161622
\(517\) − 4133.44i − 0.351622i
\(518\) 1201.20i 0.101887i
\(519\) 250.566 0.0211920
\(520\) 0 0
\(521\) −9380.60 −0.788813 −0.394407 0.918936i \(-0.629050\pi\)
−0.394407 + 0.918936i \(0.629050\pi\)
\(522\) 851.453i 0.0713929i
\(523\) 2039.00i 0.170477i 0.996361 + 0.0852384i \(0.0271652\pi\)
−0.996361 + 0.0852384i \(0.972835\pi\)
\(524\) 10141.5 0.845482
\(525\) 0 0
\(526\) 5796.93 0.480529
\(527\) − 265.488i − 0.0219447i
\(528\) − 2512.21i − 0.207064i
\(529\) 12115.5 0.995764
\(530\) 0 0
\(531\) −15361.3 −1.25541
\(532\) − 8208.54i − 0.668957i
\(533\) − 1095.53i − 0.0890291i
\(534\) −102.958 −0.00834351
\(535\) 0 0
\(536\) 15063.6 1.21390
\(537\) 1322.24i 0.106255i
\(538\) − 9583.20i − 0.767957i
\(539\) −9111.89 −0.728158
\(540\) 0 0
\(541\) −10362.5 −0.823510 −0.411755 0.911295i \(-0.635084\pi\)
−0.411755 + 0.911295i \(0.635084\pi\)
\(542\) 4557.15i 0.361156i
\(543\) 2181.76i 0.172428i
\(544\) −3041.92 −0.239745
\(545\) 0 0
\(546\) 589.412 0.0461988
\(547\) 1466.22i 0.114609i 0.998357 + 0.0573044i \(0.0182506\pi\)
−0.998357 + 0.0573044i \(0.981749\pi\)
\(548\) 1530.50i 0.119306i
\(549\) 8880.03 0.690328
\(550\) 0 0
\(551\) −2334.73 −0.180514
\(552\) − 147.275i − 0.0113558i
\(553\) − 819.436i − 0.0630126i
\(554\) 2307.20 0.176938
\(555\) 0 0
\(556\) 13916.0 1.06146
\(557\) 2400.26i 0.182590i 0.995824 + 0.0912949i \(0.0291006\pi\)
−0.995824 + 0.0912949i \(0.970899\pi\)
\(558\) − 489.567i − 0.0371416i
\(559\) −7143.34 −0.540485
\(560\) 0 0
\(561\) 1404.50 0.105701
\(562\) − 4081.35i − 0.306337i
\(563\) 14902.0i 1.11553i 0.829998 + 0.557766i \(0.188341\pi\)
−0.829998 + 0.557766i \(0.811659\pi\)
\(564\) −436.230 −0.0325684
\(565\) 0 0
\(566\) −9508.57 −0.706140
\(567\) 9131.34i 0.676332i
\(568\) − 16160.9i − 1.19383i
\(569\) 9568.31 0.704964 0.352482 0.935819i \(-0.385338\pi\)
0.352482 + 0.935819i \(0.385338\pi\)
\(570\) 0 0
\(571\) 10645.8 0.780235 0.390117 0.920765i \(-0.372434\pi\)
0.390117 + 0.920765i \(0.372434\pi\)
\(572\) − 13192.5i − 0.964350i
\(573\) 2633.20i 0.191978i
\(574\) 691.458 0.0502803
\(575\) 0 0
\(576\) 632.748 0.0457717
\(577\) 335.528i 0.0242084i 0.999927 + 0.0121042i \(0.00385298\pi\)
−0.999927 + 0.0121042i \(0.996147\pi\)
\(578\) − 353.065i − 0.0254075i
\(579\) −3363.48 −0.241419
\(580\) 0 0
\(581\) −18125.7 −1.29428
\(582\) − 1375.86i − 0.0979916i
\(583\) − 48378.0i − 3.43673i
\(584\) 12483.6 0.884545
\(585\) 0 0
\(586\) −10402.1 −0.733289
\(587\) 12512.7i 0.879817i 0.898043 + 0.439908i \(0.144989\pi\)
−0.898043 + 0.439908i \(0.855011\pi\)
\(588\) 961.640i 0.0674445i
\(589\) 1342.42 0.0939109
\(590\) 0 0
\(591\) −5600.10 −0.389776
\(592\) − 2037.42i − 0.141449i
\(593\) 11061.3i 0.765994i 0.923749 + 0.382997i \(0.125108\pi\)
−0.923749 + 0.382997i \(0.874892\pi\)
\(594\) 5315.10 0.367140
\(595\) 0 0
\(596\) 21590.0 1.48383
\(597\) 2737.86i 0.187694i
\(598\) − 249.101i − 0.0170343i
\(599\) −4672.09 −0.318692 −0.159346 0.987223i \(-0.550938\pi\)
−0.159346 + 0.987223i \(0.550938\pi\)
\(600\) 0 0
\(601\) 26076.4 1.76985 0.884924 0.465736i \(-0.154210\pi\)
0.884924 + 0.465736i \(0.154210\pi\)
\(602\) − 4508.63i − 0.305246i
\(603\) − 21809.1i − 1.47286i
\(604\) 5521.53 0.371966
\(605\) 0 0
\(606\) 930.663 0.0623855
\(607\) 11437.6i 0.764810i 0.923995 + 0.382405i \(0.124904\pi\)
−0.923995 + 0.382405i \(0.875096\pi\)
\(608\) − 15381.2i − 1.02597i
\(609\) −461.355 −0.0306980
\(610\) 0 0
\(611\) −1644.91 −0.108913
\(612\) 2838.72i 0.187497i
\(613\) − 28634.7i − 1.88670i −0.331806 0.943348i \(-0.607658\pi\)
0.331806 0.943348i \(-0.392342\pi\)
\(614\) 10939.0 0.718993
\(615\) 0 0
\(616\) 18563.1 1.21417
\(617\) − 3394.42i − 0.221482i −0.993849 0.110741i \(-0.964678\pi\)
0.993849 0.110741i \(-0.0353224\pi\)
\(618\) − 2443.15i − 0.159026i
\(619\) −10197.3 −0.662139 −0.331069 0.943606i \(-0.607409\pi\)
−0.331069 + 0.943606i \(0.607409\pi\)
\(620\) 0 0
\(621\) −437.583 −0.0282763
\(622\) − 4694.69i − 0.302637i
\(623\) 1068.39i 0.0687067i
\(624\) −999.739 −0.0641372
\(625\) 0 0
\(626\) −5415.50 −0.345762
\(627\) 7101.76i 0.452339i
\(628\) 6180.96i 0.392751i
\(629\) 1139.06 0.0722057
\(630\) 0 0
\(631\) 13195.9 0.832522 0.416261 0.909245i \(-0.363340\pi\)
0.416261 + 0.909245i \(0.363340\pi\)
\(632\) − 989.705i − 0.0622917i
\(633\) 687.761i 0.0431849i
\(634\) −9399.85 −0.588826
\(635\) 0 0
\(636\) −5105.66 −0.318322
\(637\) 3626.09i 0.225543i
\(638\) − 2368.34i − 0.146965i
\(639\) −23397.8 −1.44852
\(640\) 0 0
\(641\) −10280.5 −0.633469 −0.316734 0.948514i \(-0.602586\pi\)
−0.316734 + 0.948514i \(0.602586\pi\)
\(642\) 1276.96i 0.0785010i
\(643\) 16401.3i 1.00592i 0.864311 + 0.502959i \(0.167755\pi\)
−0.864311 + 0.502959i \(0.832245\pi\)
\(644\) −685.520 −0.0419461
\(645\) 0 0
\(646\) 1785.24 0.108730
\(647\) 18960.3i 1.15210i 0.817416 + 0.576048i \(0.195406\pi\)
−0.817416 + 0.576048i \(0.804594\pi\)
\(648\) 11028.7i 0.668594i
\(649\) 42727.9 2.58431
\(650\) 0 0
\(651\) 265.269 0.0159704
\(652\) − 12638.2i − 0.759124i
\(653\) − 1539.55i − 0.0922623i −0.998935 0.0461311i \(-0.985311\pi\)
0.998935 0.0461311i \(-0.0146892\pi\)
\(654\) 1178.76 0.0704785
\(655\) 0 0
\(656\) −1172.83 −0.0698036
\(657\) − 18073.8i − 1.07325i
\(658\) − 1038.21i − 0.0615100i
\(659\) 9245.33 0.546505 0.273253 0.961942i \(-0.411901\pi\)
0.273253 + 0.961942i \(0.411901\pi\)
\(660\) 0 0
\(661\) 28073.9 1.65197 0.825983 0.563696i \(-0.190621\pi\)
0.825983 + 0.563696i \(0.190621\pi\)
\(662\) 8889.78i 0.521920i
\(663\) − 558.924i − 0.0327403i
\(664\) −21891.9 −1.27948
\(665\) 0 0
\(666\) 2100.46 0.122209
\(667\) 194.981i 0.0113189i
\(668\) − 21855.2i − 1.26587i
\(669\) 3519.06 0.203370
\(670\) 0 0
\(671\) −24700.0 −1.42106
\(672\) − 3039.41i − 0.174476i
\(673\) 19690.2i 1.12779i 0.825848 + 0.563893i \(0.190697\pi\)
−0.825848 + 0.563893i \(0.809303\pi\)
\(674\) 4032.64 0.230462
\(675\) 0 0
\(676\) 9046.99 0.514735
\(677\) − 12023.4i − 0.682566i −0.939961 0.341283i \(-0.889139\pi\)
0.939961 0.341283i \(-0.110861\pi\)
\(678\) 1423.30i 0.0806219i
\(679\) −14277.2 −0.806937
\(680\) 0 0
\(681\) 531.463 0.0299056
\(682\) 1361.74i 0.0764572i
\(683\) 6517.76i 0.365147i 0.983192 + 0.182573i \(0.0584427\pi\)
−0.983192 + 0.182573i \(0.941557\pi\)
\(684\) −14353.8 −0.802383
\(685\) 0 0
\(686\) −8437.74 −0.469613
\(687\) − 2492.73i − 0.138433i
\(688\) 7647.36i 0.423769i
\(689\) −19252.1 −1.06451
\(690\) 0 0
\(691\) −25926.3 −1.42733 −0.713664 0.700488i \(-0.752966\pi\)
−0.713664 + 0.700488i \(0.752966\pi\)
\(692\) − 1408.66i − 0.0773830i
\(693\) − 26875.7i − 1.47319i
\(694\) 9771.47 0.534467
\(695\) 0 0
\(696\) −557.219 −0.0303467
\(697\) − 655.691i − 0.0356328i
\(698\) 5349.68i 0.290098i
\(699\) 6315.99 0.341764
\(700\) 0 0
\(701\) 1635.68 0.0881294 0.0440647 0.999029i \(-0.485969\pi\)
0.0440647 + 0.999029i \(0.485969\pi\)
\(702\) − 2115.16i − 0.113720i
\(703\) 5759.58i 0.308999i
\(704\) −1760.00 −0.0942225
\(705\) 0 0
\(706\) 1842.75 0.0982333
\(707\) − 9657.47i − 0.513729i
\(708\) − 4509.37i − 0.239368i
\(709\) 26057.0 1.38024 0.690122 0.723693i \(-0.257557\pi\)
0.690122 + 0.723693i \(0.257557\pi\)
\(710\) 0 0
\(711\) −1432.90 −0.0755807
\(712\) 1290.39i 0.0679206i
\(713\) − 112.110i − 0.00588856i
\(714\) 352.773 0.0184905
\(715\) 0 0
\(716\) 7433.53 0.387994
\(717\) 7030.34i 0.366183i
\(718\) − 4198.42i − 0.218223i
\(719\) −106.968 −0.00554828 −0.00277414 0.999996i \(-0.500883\pi\)
−0.00277414 + 0.999996i \(0.500883\pi\)
\(720\) 0 0
\(721\) −25352.6 −1.30954
\(722\) 647.469i 0.0333744i
\(723\) 8324.58i 0.428208i
\(724\) 12265.6 0.629626
\(725\) 0 0
\(726\) −5321.77 −0.272051
\(727\) − 17019.9i − 0.868273i −0.900847 0.434137i \(-0.857053\pi\)
0.900847 0.434137i \(-0.142947\pi\)
\(728\) − 7387.21i − 0.376083i
\(729\) 14062.4 0.714442
\(730\) 0 0
\(731\) −4275.41 −0.216322
\(732\) 2606.76i 0.131624i
\(733\) 27064.0i 1.36375i 0.731467 + 0.681877i \(0.238836\pi\)
−0.731467 + 0.681877i \(0.761164\pi\)
\(734\) −13019.0 −0.654685
\(735\) 0 0
\(736\) −1284.53 −0.0643322
\(737\) 60662.6i 3.03194i
\(738\) − 1209.11i − 0.0603089i
\(739\) 13177.0 0.655919 0.327960 0.944692i \(-0.393639\pi\)
0.327960 + 0.944692i \(0.393639\pi\)
\(740\) 0 0
\(741\) 2826.16 0.140110
\(742\) − 12151.3i − 0.601195i
\(743\) − 1164.23i − 0.0574854i −0.999587 0.0287427i \(-0.990850\pi\)
0.999587 0.0287427i \(-0.00915034\pi\)
\(744\) 320.389 0.0157877
\(745\) 0 0
\(746\) −11071.2 −0.543360
\(747\) 31695.2i 1.55243i
\(748\) − 7895.97i − 0.385969i
\(749\) 13251.0 0.646437
\(750\) 0 0
\(751\) 5632.54 0.273681 0.136840 0.990593i \(-0.456305\pi\)
0.136840 + 0.990593i \(0.456305\pi\)
\(752\) 1760.97i 0.0853936i
\(753\) − 4373.71i − 0.211669i
\(754\) −942.484 −0.0455215
\(755\) 0 0
\(756\) −5820.85 −0.280030
\(757\) − 40260.8i − 1.93303i −0.256611 0.966515i \(-0.582606\pi\)
0.256611 0.966515i \(-0.417394\pi\)
\(758\) − 1319.95i − 0.0632489i
\(759\) 593.089 0.0283634
\(760\) 0 0
\(761\) −22060.7 −1.05085 −0.525427 0.850839i \(-0.676094\pi\)
−0.525427 + 0.850839i \(0.676094\pi\)
\(762\) − 1576.57i − 0.0749517i
\(763\) − 12231.9i − 0.580374i
\(764\) 14803.6 0.701013
\(765\) 0 0
\(766\) 8454.80 0.398805
\(767\) − 17003.6i − 0.800477i
\(768\) − 1838.56i − 0.0863846i
\(769\) −8923.07 −0.418432 −0.209216 0.977869i \(-0.567091\pi\)
−0.209216 + 0.977869i \(0.567091\pi\)
\(770\) 0 0
\(771\) 5790.10 0.270461
\(772\) 18909.2i 0.881548i
\(773\) − 3076.31i − 0.143140i −0.997436 0.0715699i \(-0.977199\pi\)
0.997436 0.0715699i \(-0.0228009\pi\)
\(774\) −7883.96 −0.366128
\(775\) 0 0
\(776\) −17243.9 −0.797705
\(777\) 1138.12i 0.0525481i
\(778\) − 11806.9i − 0.544086i
\(779\) 3315.45 0.152488
\(780\) 0 0
\(781\) 65081.6 2.98182
\(782\) − 149.091i − 0.00681777i
\(783\) 1655.61i 0.0755642i
\(784\) 3881.95 0.176838
\(785\) 0 0
\(786\) −2203.81 −0.100009
\(787\) − 20627.3i − 0.934286i −0.884182 0.467143i \(-0.845283\pi\)
0.884182 0.467143i \(-0.154717\pi\)
\(788\) 31483.2i 1.42328i
\(789\) 5492.54 0.247832
\(790\) 0 0
\(791\) 14769.6 0.663902
\(792\) − 32460.1i − 1.45634i
\(793\) 9829.42i 0.440167i
\(794\) 9119.58 0.407609
\(795\) 0 0
\(796\) 15392.0 0.685369
\(797\) 13976.5i 0.621172i 0.950545 + 0.310586i \(0.100525\pi\)
−0.950545 + 0.310586i \(0.899475\pi\)
\(798\) 1783.77i 0.0791289i
\(799\) −984.506 −0.0435911
\(800\) 0 0
\(801\) 1868.23 0.0824105
\(802\) 3602.36i 0.158608i
\(803\) 50272.6i 2.20932i
\(804\) 6402.14 0.280829
\(805\) 0 0
\(806\) 541.908 0.0236822
\(807\) − 9079.99i − 0.396073i
\(808\) − 11664.2i − 0.507852i
\(809\) −5425.25 −0.235774 −0.117887 0.993027i \(-0.537612\pi\)
−0.117887 + 0.993027i \(0.537612\pi\)
\(810\) 0 0
\(811\) −36180.8 −1.56656 −0.783279 0.621670i \(-0.786455\pi\)
−0.783279 + 0.621670i \(0.786455\pi\)
\(812\) 2593.69i 0.112095i
\(813\) 4317.86i 0.186266i
\(814\) −5842.47 −0.251571
\(815\) 0 0
\(816\) −598.361 −0.0256701
\(817\) − 21618.3i − 0.925738i
\(818\) − 6775.48i − 0.289608i
\(819\) −10695.2 −0.456314
\(820\) 0 0
\(821\) −17712.7 −0.752955 −0.376478 0.926426i \(-0.622865\pi\)
−0.376478 + 0.926426i \(0.622865\pi\)
\(822\) − 332.589i − 0.0141124i
\(823\) 15244.9i 0.645691i 0.946452 + 0.322845i \(0.104639\pi\)
−0.946452 + 0.322845i \(0.895361\pi\)
\(824\) −30620.5 −1.29456
\(825\) 0 0
\(826\) 10732.1 0.452080
\(827\) 4079.89i 0.171550i 0.996315 + 0.0857750i \(0.0273366\pi\)
−0.996315 + 0.0857750i \(0.972663\pi\)
\(828\) 1198.73i 0.0503124i
\(829\) −13959.9 −0.584857 −0.292429 0.956287i \(-0.594463\pi\)
−0.292429 + 0.956287i \(0.594463\pi\)
\(830\) 0 0
\(831\) 2186.05 0.0912554
\(832\) 700.397i 0.0291850i
\(833\) 2170.28i 0.0902710i
\(834\) −3024.05 −0.125557
\(835\) 0 0
\(836\) 39925.3 1.65173
\(837\) − 951.941i − 0.0393117i
\(838\) − 10073.6i − 0.415261i
\(839\) −45111.6 −1.85629 −0.928144 0.372221i \(-0.878596\pi\)
−0.928144 + 0.372221i \(0.878596\pi\)
\(840\) 0 0
\(841\) −23651.3 −0.969752
\(842\) − 12183.4i − 0.498656i
\(843\) − 3867.04i − 0.157993i
\(844\) 3866.52 0.157691
\(845\) 0 0
\(846\) −1815.45 −0.0737784
\(847\) 55223.8i 2.24028i
\(848\) 20610.5i 0.834632i
\(849\) −9009.28 −0.364191
\(850\) 0 0
\(851\) 481.000 0.0193754
\(852\) − 6868.51i − 0.276187i
\(853\) 37653.2i 1.51140i 0.654920 + 0.755698i \(0.272702\pi\)
−0.654920 + 0.755698i \(0.727298\pi\)
\(854\) −6203.99 −0.248590
\(855\) 0 0
\(856\) 16004.4 0.639041
\(857\) 7916.64i 0.315551i 0.987475 + 0.157776i \(0.0504322\pi\)
−0.987475 + 0.157776i \(0.949568\pi\)
\(858\) 2866.83i 0.114070i
\(859\) −4012.33 −0.159370 −0.0796850 0.996820i \(-0.525391\pi\)
−0.0796850 + 0.996820i \(0.525391\pi\)
\(860\) 0 0
\(861\) 655.150 0.0259320
\(862\) 12835.0i 0.507147i
\(863\) − 22547.6i − 0.889374i −0.895686 0.444687i \(-0.853315\pi\)
0.895686 0.444687i \(-0.146685\pi\)
\(864\) −10907.2 −0.429478
\(865\) 0 0
\(866\) 16940.8 0.664749
\(867\) − 334.526i − 0.0131039i
\(868\) − 1491.32i − 0.0583163i
\(869\) 3985.64 0.155585
\(870\) 0 0
\(871\) 24140.8 0.939127
\(872\) − 14773.5i − 0.573733i
\(873\) 24965.7i 0.967883i
\(874\) 753.869 0.0291762
\(875\) 0 0
\(876\) 5305.62 0.204635
\(877\) 16964.9i 0.653210i 0.945161 + 0.326605i \(0.105905\pi\)
−0.945161 + 0.326605i \(0.894095\pi\)
\(878\) − 330.729i − 0.0127125i
\(879\) −9855.90 −0.378193
\(880\) 0 0
\(881\) −28213.2 −1.07892 −0.539459 0.842012i \(-0.681371\pi\)
−0.539459 + 0.842012i \(0.681371\pi\)
\(882\) 4002.05i 0.152784i
\(883\) 44019.1i 1.67764i 0.544405 + 0.838822i \(0.316755\pi\)
−0.544405 + 0.838822i \(0.683245\pi\)
\(884\) −3142.21 −0.119552
\(885\) 0 0
\(886\) −8318.75 −0.315433
\(887\) 14078.8i 0.532941i 0.963843 + 0.266471i \(0.0858576\pi\)
−0.963843 + 0.266471i \(0.914142\pi\)
\(888\) 1374.61i 0.0519469i
\(889\) −16360.1 −0.617209
\(890\) 0 0
\(891\) −44413.8 −1.66994
\(892\) − 19783.8i − 0.742613i
\(893\) − 4978.08i − 0.186545i
\(894\) −4691.66 −0.175517
\(895\) 0 0
\(896\) −21448.3 −0.799705
\(897\) − 236.021i − 0.00878541i
\(898\) 11154.0i 0.414493i
\(899\) −424.172 −0.0157363
\(900\) 0 0
\(901\) −11522.7 −0.426057
\(902\) 3363.17i 0.124148i
\(903\) − 4271.88i − 0.157430i
\(904\) 17838.5 0.656306
\(905\) 0 0
\(906\) −1199.87 −0.0439988
\(907\) − 12670.6i − 0.463858i −0.972733 0.231929i \(-0.925496\pi\)
0.972733 0.231929i \(-0.0745037\pi\)
\(908\) − 2987.83i − 0.109201i
\(909\) −16887.4 −0.616194
\(910\) 0 0
\(911\) 15336.4 0.557760 0.278880 0.960326i \(-0.410037\pi\)
0.278880 + 0.960326i \(0.410037\pi\)
\(912\) − 3025.57i − 0.109854i
\(913\) − 88161.1i − 3.19574i
\(914\) 3084.49 0.111626
\(915\) 0 0
\(916\) −14013.9 −0.505492
\(917\) 22868.9i 0.823553i
\(918\) − 1265.96i − 0.0455150i
\(919\) −43929.1 −1.57681 −0.788404 0.615158i \(-0.789092\pi\)
−0.788404 + 0.615158i \(0.789092\pi\)
\(920\) 0 0
\(921\) 10364.6 0.370819
\(922\) 13563.2i 0.484467i
\(923\) − 25899.3i − 0.923605i
\(924\) 7889.45 0.280892
\(925\) 0 0
\(926\) −3721.13 −0.132056
\(927\) 44332.5i 1.57073i
\(928\) 4860.08i 0.171918i
\(929\) −28646.0 −1.01167 −0.505836 0.862629i \(-0.668816\pi\)
−0.505836 + 0.862629i \(0.668816\pi\)
\(930\) 0 0
\(931\) −10973.8 −0.386309
\(932\) − 35507.9i − 1.24796i
\(933\) − 4448.17i − 0.156084i
\(934\) 17733.2 0.621252
\(935\) 0 0
\(936\) −12917.6 −0.451094
\(937\) 25892.8i 0.902753i 0.892334 + 0.451376i \(0.149067\pi\)
−0.892334 + 0.451376i \(0.850933\pi\)
\(938\) 15236.8i 0.530384i
\(939\) −5131.13 −0.178326
\(940\) 0 0
\(941\) −12650.8 −0.438263 −0.219131 0.975695i \(-0.570322\pi\)
−0.219131 + 0.975695i \(0.570322\pi\)
\(942\) − 1343.17i − 0.0464572i
\(943\) − 276.884i − 0.00956158i
\(944\) −18203.4 −0.627617
\(945\) 0 0
\(946\) 21929.4 0.753686
\(947\) − 19766.7i − 0.678280i −0.940736 0.339140i \(-0.889864\pi\)
0.940736 0.339140i \(-0.110136\pi\)
\(948\) − 420.632i − 0.0144109i
\(949\) 20006.1 0.684326
\(950\) 0 0
\(951\) −8906.27 −0.303686
\(952\) − 4421.37i − 0.150523i
\(953\) 6066.08i 0.206190i 0.994671 + 0.103095i \(0.0328746\pi\)
−0.994671 + 0.103095i \(0.967125\pi\)
\(954\) −21248.2 −0.721105
\(955\) 0 0
\(956\) 39523.9 1.33713
\(957\) − 2243.98i − 0.0757968i
\(958\) 6733.80i 0.227097i
\(959\) −3451.27 −0.116212
\(960\) 0 0
\(961\) −29547.1 −0.991813
\(962\) 2325.02i 0.0779228i
\(963\) − 23171.2i − 0.775370i
\(964\) 46799.9 1.56361
\(965\) 0 0
\(966\) 148.968 0.00496167
\(967\) − 31669.2i − 1.05317i −0.850123 0.526584i \(-0.823473\pi\)
0.850123 0.526584i \(-0.176527\pi\)
\(968\) 66698.7i 2.21464i
\(969\) 1691.50 0.0560773
\(970\) 0 0
\(971\) −24982.5 −0.825671 −0.412835 0.910806i \(-0.635462\pi\)
−0.412835 + 0.910806i \(0.635462\pi\)
\(972\) 15397.3i 0.508097i
\(973\) 31380.5i 1.03393i
\(974\) 12378.2 0.407212
\(975\) 0 0
\(976\) 10523.0 0.345115
\(977\) 26574.1i 0.870194i 0.900384 + 0.435097i \(0.143286\pi\)
−0.900384 + 0.435097i \(0.856714\pi\)
\(978\) 2746.36i 0.0897945i
\(979\) −5196.54 −0.169645
\(980\) 0 0
\(981\) −21389.2 −0.696131
\(982\) − 7288.41i − 0.236846i
\(983\) 19222.4i 0.623703i 0.950131 + 0.311852i \(0.100949\pi\)
−0.950131 + 0.311852i \(0.899051\pi\)
\(984\) 791.282 0.0256353
\(985\) 0 0
\(986\) −564.093 −0.0182195
\(987\) − 983.694i − 0.0317237i
\(988\) − 15888.4i − 0.511616i
\(989\) −1805.41 −0.0580472
\(990\) 0 0
\(991\) −22396.5 −0.717909 −0.358954 0.933355i \(-0.616867\pi\)
−0.358954 + 0.933355i \(0.616867\pi\)
\(992\) − 2794.44i − 0.0894391i
\(993\) 8422.99i 0.269180i
\(994\) 16346.8 0.521618
\(995\) 0 0
\(996\) −9304.24 −0.296000
\(997\) 26548.7i 0.843337i 0.906750 + 0.421669i \(0.138555\pi\)
−0.906750 + 0.421669i \(0.861445\pi\)
\(998\) − 24055.0i − 0.762975i
\(999\) 4084.24 0.129349
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.4.b.g.324.4 6
5.2 odd 4 425.4.a.h.1.1 3
5.3 odd 4 85.4.a.e.1.3 3
5.4 even 2 inner 425.4.b.g.324.3 6
15.8 even 4 765.4.a.l.1.1 3
20.3 even 4 1360.4.a.s.1.2 3
85.33 odd 4 1445.4.a.j.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.4.a.e.1.3 3 5.3 odd 4
425.4.a.h.1.1 3 5.2 odd 4
425.4.b.g.324.3 6 5.4 even 2 inner
425.4.b.g.324.4 6 1.1 even 1 trivial
765.4.a.l.1.1 3 15.8 even 4
1360.4.a.s.1.2 3 20.3 even 4
1445.4.a.j.1.3 3 85.33 odd 4