Properties

Label 85.4.a.e.1.3
Level $85$
Weight $4$
Character 85.1
Self dual yes
Analytic conductor $5.015$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [85,4,Mod(1,85)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(85, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("85.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 85.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.01516235049\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1304.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.22168\) of defining polynomial
Character \(\chi\) \(=\) 85.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.22168 q^{2} -1.15753 q^{3} -6.50750 q^{4} -5.00000 q^{5} -1.41413 q^{6} +14.6743 q^{7} -17.7235 q^{8} -25.6601 q^{9} -6.10839 q^{10} -71.3743 q^{11} +7.53262 q^{12} -28.4035 q^{13} +17.9273 q^{14} +5.78764 q^{15} +30.4076 q^{16} +17.0000 q^{17} -31.3484 q^{18} +85.9592 q^{19} +32.5375 q^{20} -16.9860 q^{21} -87.1964 q^{22} -7.17872 q^{23} +20.5154 q^{24} +25.0000 q^{25} -34.7000 q^{26} +60.9556 q^{27} -95.4934 q^{28} -27.1610 q^{29} +7.07063 q^{30} -15.6170 q^{31} +178.936 q^{32} +82.6178 q^{33} +20.7685 q^{34} -73.3717 q^{35} +166.983 q^{36} -67.0036 q^{37} +105.014 q^{38} +32.8779 q^{39} +88.6175 q^{40} -38.5701 q^{41} -20.7514 q^{42} -251.495 q^{43} +464.469 q^{44} +128.301 q^{45} -8.77008 q^{46} +57.9121 q^{47} -35.1977 q^{48} -127.663 q^{49} +30.5419 q^{50} -19.6780 q^{51} +184.836 q^{52} -677.807 q^{53} +74.4680 q^{54} +356.872 q^{55} -260.081 q^{56} -99.5002 q^{57} -33.1819 q^{58} +598.645 q^{59} -37.6631 q^{60} +346.063 q^{61} -19.0789 q^{62} -376.546 q^{63} -24.6588 q^{64} +142.018 q^{65} +100.932 q^{66} -849.923 q^{67} -110.628 q^{68} +8.30957 q^{69} -89.6366 q^{70} -911.836 q^{71} +454.787 q^{72} +704.352 q^{73} -81.8568 q^{74} -28.9382 q^{75} -559.380 q^{76} -1047.37 q^{77} +40.1662 q^{78} +55.8414 q^{79} -152.038 q^{80} +622.266 q^{81} -47.1202 q^{82} -1235.19 q^{83} +110.536 q^{84} -85.0000 q^{85} -307.245 q^{86} +31.4396 q^{87} +1265.00 q^{88} -72.8069 q^{89} +156.742 q^{90} -416.803 q^{91} +46.7155 q^{92} +18.0771 q^{93} +70.7499 q^{94} -429.796 q^{95} -207.124 q^{96} +972.939 q^{97} -155.964 q^{98} +1831.47 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 4 q^{3} + 10 q^{4} - 15 q^{5} + 36 q^{6} + 8 q^{7} - 66 q^{8} + 39 q^{9} + 30 q^{10} - 118 q^{11} - 212 q^{12} - 10 q^{13} - 68 q^{14} + 20 q^{15} + 242 q^{16} + 51 q^{17} - 342 q^{18} - 160 q^{19}+ \cdots + 770 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22168 0.431928 0.215964 0.976401i \(-0.430711\pi\)
0.215964 + 0.976401i \(0.430711\pi\)
\(3\) −1.15753 −0.222766 −0.111383 0.993778i \(-0.535528\pi\)
−0.111383 + 0.993778i \(0.535528\pi\)
\(4\) −6.50750 −0.813438
\(5\) −5.00000 −0.447214
\(6\) −1.41413 −0.0962191
\(7\) 14.6743 0.792340 0.396170 0.918177i \(-0.370339\pi\)
0.396170 + 0.918177i \(0.370339\pi\)
\(8\) −17.7235 −0.783275
\(9\) −25.6601 −0.950375
\(10\) −6.10839 −0.193164
\(11\) −71.3743 −1.95638 −0.978189 0.207716i \(-0.933397\pi\)
−0.978189 + 0.207716i \(0.933397\pi\)
\(12\) 7.53262 0.181207
\(13\) −28.4035 −0.605979 −0.302989 0.952994i \(-0.597985\pi\)
−0.302989 + 0.952994i \(0.597985\pi\)
\(14\) 17.9273 0.342234
\(15\) 5.78764 0.0996241
\(16\) 30.4076 0.475119
\(17\) 17.0000 0.242536
\(18\) −31.3484 −0.410494
\(19\) 85.9592 1.03792 0.518958 0.854800i \(-0.326320\pi\)
0.518958 + 0.854800i \(0.326320\pi\)
\(20\) 32.5375 0.363781
\(21\) −16.9860 −0.176507
\(22\) −87.1964 −0.845015
\(23\) −7.17872 −0.0650811 −0.0325406 0.999470i \(-0.510360\pi\)
−0.0325406 + 0.999470i \(0.510360\pi\)
\(24\) 20.5154 0.174487
\(25\) 25.0000 0.200000
\(26\) −34.7000 −0.261739
\(27\) 60.9556 0.434478
\(28\) −95.4934 −0.644520
\(29\) −27.1610 −0.173919 −0.0869597 0.996212i \(-0.527715\pi\)
−0.0869597 + 0.996212i \(0.527715\pi\)
\(30\) 7.07063 0.0430305
\(31\) −15.6170 −0.0904803 −0.0452401 0.998976i \(-0.514405\pi\)
−0.0452401 + 0.998976i \(0.514405\pi\)
\(32\) 178.936 0.988493
\(33\) 82.6178 0.435815
\(34\) 20.7685 0.104758
\(35\) −73.3717 −0.354345
\(36\) 166.983 0.773071
\(37\) −67.0036 −0.297712 −0.148856 0.988859i \(-0.547559\pi\)
−0.148856 + 0.988859i \(0.547559\pi\)
\(38\) 105.014 0.448305
\(39\) 32.8779 0.134992
\(40\) 88.6175 0.350291
\(41\) −38.5701 −0.146918 −0.0734590 0.997298i \(-0.523404\pi\)
−0.0734590 + 0.997298i \(0.523404\pi\)
\(42\) −20.7514 −0.0762383
\(43\) −251.495 −0.891920 −0.445960 0.895053i \(-0.647138\pi\)
−0.445960 + 0.895053i \(0.647138\pi\)
\(44\) 464.469 1.59139
\(45\) 128.301 0.425021
\(46\) −8.77008 −0.0281104
\(47\) 57.9121 0.179731 0.0898654 0.995954i \(-0.471356\pi\)
0.0898654 + 0.995954i \(0.471356\pi\)
\(48\) −35.1977 −0.105841
\(49\) −127.663 −0.372197
\(50\) 30.5419 0.0863856
\(51\) −19.6780 −0.0540288
\(52\) 184.836 0.492926
\(53\) −677.807 −1.75668 −0.878339 0.478039i \(-0.841348\pi\)
−0.878339 + 0.478039i \(0.841348\pi\)
\(54\) 74.4680 0.187663
\(55\) 356.872 0.874919
\(56\) −260.081 −0.620620
\(57\) −99.5002 −0.231213
\(58\) −33.1819 −0.0751207
\(59\) 598.645 1.32097 0.660483 0.750841i \(-0.270352\pi\)
0.660483 + 0.750841i \(0.270352\pi\)
\(60\) −37.6631 −0.0810381
\(61\) 346.063 0.726375 0.363187 0.931716i \(-0.381689\pi\)
0.363187 + 0.931716i \(0.381689\pi\)
\(62\) −19.0789 −0.0390810
\(63\) −376.546 −0.753021
\(64\) −24.6588 −0.0481617
\(65\) 142.018 0.271002
\(66\) 100.932 0.188241
\(67\) −849.923 −1.54977 −0.774885 0.632102i \(-0.782192\pi\)
−0.774885 + 0.632102i \(0.782192\pi\)
\(68\) −110.628 −0.197288
\(69\) 8.30957 0.0144979
\(70\) −89.6366 −0.153052
\(71\) −911.836 −1.52415 −0.762077 0.647486i \(-0.775820\pi\)
−0.762077 + 0.647486i \(0.775820\pi\)
\(72\) 454.787 0.744405
\(73\) 704.352 1.12929 0.564645 0.825334i \(-0.309013\pi\)
0.564645 + 0.825334i \(0.309013\pi\)
\(74\) −81.8568 −0.128590
\(75\) −28.9382 −0.0445533
\(76\) −559.380 −0.844280
\(77\) −1047.37 −1.55012
\(78\) 40.1662 0.0583067
\(79\) 55.8414 0.0795272 0.0397636 0.999209i \(-0.487340\pi\)
0.0397636 + 0.999209i \(0.487340\pi\)
\(80\) −152.038 −0.212480
\(81\) 622.266 0.853588
\(82\) −47.1202 −0.0634580
\(83\) −1235.19 −1.63350 −0.816748 0.576995i \(-0.804225\pi\)
−0.816748 + 0.576995i \(0.804225\pi\)
\(84\) 110.536 0.143577
\(85\) −85.0000 −0.108465
\(86\) −307.245 −0.385246
\(87\) 31.4396 0.0387434
\(88\) 1265.00 1.53238
\(89\) −72.8069 −0.0867136 −0.0433568 0.999060i \(-0.513805\pi\)
−0.0433568 + 0.999060i \(0.513805\pi\)
\(90\) 156.742 0.183578
\(91\) −416.803 −0.480141
\(92\) 46.7155 0.0529395
\(93\) 18.0771 0.0201560
\(94\) 70.7499 0.0776308
\(95\) −429.796 −0.464170
\(96\) −207.124 −0.220203
\(97\) 972.939 1.01842 0.509211 0.860642i \(-0.329937\pi\)
0.509211 + 0.860642i \(0.329937\pi\)
\(98\) −155.964 −0.160762
\(99\) 1831.47 1.85929
\(100\) −162.688 −0.162688
\(101\) −658.119 −0.648369 −0.324185 0.945994i \(-0.605090\pi\)
−0.324185 + 0.945994i \(0.605090\pi\)
\(102\) −24.0401 −0.0233366
\(103\) −1727.68 −1.65275 −0.826375 0.563120i \(-0.809601\pi\)
−0.826375 + 0.563120i \(0.809601\pi\)
\(104\) 503.410 0.474648
\(105\) 84.9298 0.0789362
\(106\) −828.061 −0.758758
\(107\) −903.004 −0.815857 −0.407929 0.913014i \(-0.633749\pi\)
−0.407929 + 0.913014i \(0.633749\pi\)
\(108\) −396.669 −0.353421
\(109\) 833.557 0.732480 0.366240 0.930520i \(-0.380645\pi\)
0.366240 + 0.930520i \(0.380645\pi\)
\(110\) 435.982 0.377902
\(111\) 77.5586 0.0663201
\(112\) 446.212 0.376456
\(113\) 1006.49 0.837900 0.418950 0.908009i \(-0.362398\pi\)
0.418950 + 0.908009i \(0.362398\pi\)
\(114\) −121.557 −0.0998673
\(115\) 35.8936 0.0291052
\(116\) 176.750 0.141473
\(117\) 728.838 0.575907
\(118\) 731.352 0.570562
\(119\) 249.464 0.192171
\(120\) −102.577 −0.0780331
\(121\) 3763.29 2.82742
\(122\) 422.778 0.313742
\(123\) 44.6459 0.0327284
\(124\) 101.627 0.0736001
\(125\) −125.000 −0.0894427
\(126\) −460.017 −0.325251
\(127\) 1114.87 0.778970 0.389485 0.921033i \(-0.372653\pi\)
0.389485 + 0.921033i \(0.372653\pi\)
\(128\) −1461.62 −1.00929
\(129\) 291.112 0.198690
\(130\) 173.500 0.117053
\(131\) 1558.43 1.03939 0.519697 0.854351i \(-0.326045\pi\)
0.519697 + 0.854351i \(0.326045\pi\)
\(132\) −537.635 −0.354509
\(133\) 1261.40 0.822382
\(134\) −1038.33 −0.669389
\(135\) −304.778 −0.194304
\(136\) −301.299 −0.189972
\(137\) 235.190 0.146669 0.0733346 0.997307i \(-0.476636\pi\)
0.0733346 + 0.997307i \(0.476636\pi\)
\(138\) 10.1516 0.00626205
\(139\) −2138.46 −1.30490 −0.652452 0.757830i \(-0.726260\pi\)
−0.652452 + 0.757830i \(0.726260\pi\)
\(140\) 477.467 0.288238
\(141\) −67.0349 −0.0400380
\(142\) −1113.97 −0.658325
\(143\) 2027.28 1.18552
\(144\) −780.264 −0.451542
\(145\) 135.805 0.0777791
\(146\) 860.491 0.487772
\(147\) 147.774 0.0829129
\(148\) 436.026 0.242170
\(149\) −3317.71 −1.82414 −0.912072 0.410030i \(-0.865518\pi\)
−0.912072 + 0.410030i \(0.865518\pi\)
\(150\) −35.3531 −0.0192438
\(151\) 848.486 0.457277 0.228638 0.973511i \(-0.426573\pi\)
0.228638 + 0.973511i \(0.426573\pi\)
\(152\) −1523.50 −0.812973
\(153\) −436.222 −0.230500
\(154\) −1279.55 −0.669539
\(155\) 78.0848 0.0404640
\(156\) −213.953 −0.109807
\(157\) 949.821 0.482828 0.241414 0.970422i \(-0.422389\pi\)
0.241414 + 0.970422i \(0.422389\pi\)
\(158\) 68.2202 0.0343500
\(159\) 784.580 0.391329
\(160\) −894.681 −0.442067
\(161\) −105.343 −0.0515664
\(162\) 760.208 0.368689
\(163\) 1942.09 0.933229 0.466615 0.884461i \(-0.345473\pi\)
0.466615 + 0.884461i \(0.345473\pi\)
\(164\) 250.995 0.119509
\(165\) −413.089 −0.194903
\(166\) −1509.01 −0.705553
\(167\) −3358.46 −1.55620 −0.778100 0.628141i \(-0.783816\pi\)
−0.778100 + 0.628141i \(0.783816\pi\)
\(168\) 301.051 0.138253
\(169\) −1390.24 −0.632790
\(170\) −103.843 −0.0468492
\(171\) −2205.72 −0.986409
\(172\) 1636.60 0.725522
\(173\) 216.466 0.0951308 0.0475654 0.998868i \(-0.484854\pi\)
0.0475654 + 0.998868i \(0.484854\pi\)
\(174\) 38.4090 0.0167344
\(175\) 366.859 0.158468
\(176\) −2170.32 −0.929513
\(177\) −692.949 −0.294267
\(178\) −88.9465 −0.0374541
\(179\) −1142.30 −0.476981 −0.238490 0.971145i \(-0.576653\pi\)
−0.238490 + 0.971145i \(0.576653\pi\)
\(180\) −834.917 −0.345728
\(181\) 1884.85 0.774031 0.387015 0.922073i \(-0.373506\pi\)
0.387015 + 0.922073i \(0.373506\pi\)
\(182\) −509.199 −0.207387
\(183\) −400.578 −0.161812
\(184\) 127.232 0.0509764
\(185\) 335.018 0.133141
\(186\) 22.0843 0.00870593
\(187\) −1213.36 −0.474491
\(188\) −376.863 −0.146200
\(189\) 894.483 0.344254
\(190\) −525.072 −0.200488
\(191\) 2274.84 0.861790 0.430895 0.902402i \(-0.358198\pi\)
0.430895 + 0.902402i \(0.358198\pi\)
\(192\) 28.5432 0.0107288
\(193\) −2905.75 −1.08373 −0.541866 0.840465i \(-0.682282\pi\)
−0.541866 + 0.840465i \(0.682282\pi\)
\(194\) 1188.62 0.439885
\(195\) −164.389 −0.0603701
\(196\) 830.771 0.302759
\(197\) 4837.99 1.74971 0.874853 0.484388i \(-0.160958\pi\)
0.874853 + 0.484388i \(0.160958\pi\)
\(198\) 2237.47 0.803081
\(199\) −2365.26 −0.842558 −0.421279 0.906931i \(-0.638419\pi\)
−0.421279 + 0.906931i \(0.638419\pi\)
\(200\) −443.087 −0.156655
\(201\) 983.809 0.345237
\(202\) −804.009 −0.280049
\(203\) −398.569 −0.137803
\(204\) 128.055 0.0439491
\(205\) 192.850 0.0657037
\(206\) −2110.67 −0.713869
\(207\) 184.207 0.0618515
\(208\) −863.685 −0.287912
\(209\) −6135.28 −2.03056
\(210\) 103.757 0.0340948
\(211\) 594.164 0.193858 0.0969288 0.995291i \(-0.469098\pi\)
0.0969288 + 0.995291i \(0.469098\pi\)
\(212\) 4410.83 1.42895
\(213\) 1055.48 0.339530
\(214\) −1103.18 −0.352392
\(215\) 1257.47 0.398879
\(216\) −1080.35 −0.340316
\(217\) −229.169 −0.0716912
\(218\) 1018.34 0.316379
\(219\) −815.307 −0.251568
\(220\) −2322.34 −0.711692
\(221\) −482.860 −0.146971
\(222\) 94.7516 0.0286455
\(223\) 3040.15 0.912931 0.456466 0.889741i \(-0.349115\pi\)
0.456466 + 0.889741i \(0.349115\pi\)
\(224\) 2625.77 0.783223
\(225\) −641.503 −0.190075
\(226\) 1229.61 0.361912
\(227\) −459.136 −0.134246 −0.0671232 0.997745i \(-0.521382\pi\)
−0.0671232 + 0.997745i \(0.521382\pi\)
\(228\) 647.498 0.188077
\(229\) 2153.49 0.621427 0.310713 0.950504i \(-0.399432\pi\)
0.310713 + 0.950504i \(0.399432\pi\)
\(230\) 43.8504 0.0125713
\(231\) 1212.36 0.345314
\(232\) 481.387 0.136227
\(233\) 5456.45 1.53418 0.767090 0.641540i \(-0.221704\pi\)
0.767090 + 0.641540i \(0.221704\pi\)
\(234\) 890.405 0.248750
\(235\) −289.561 −0.0803781
\(236\) −3895.69 −1.07452
\(237\) −64.6380 −0.0177160
\(238\) 304.764 0.0830040
\(239\) −6073.58 −1.64380 −0.821898 0.569634i \(-0.807085\pi\)
−0.821898 + 0.569634i \(0.807085\pi\)
\(240\) 175.989 0.0473334
\(241\) 7191.69 1.92223 0.961115 0.276148i \(-0.0890581\pi\)
0.961115 + 0.276148i \(0.0890581\pi\)
\(242\) 4597.53 1.22124
\(243\) −2366.09 −0.624629
\(244\) −2252.01 −0.590861
\(245\) 638.317 0.166451
\(246\) 54.5429 0.0141363
\(247\) −2441.54 −0.628955
\(248\) 276.787 0.0708710
\(249\) 1429.77 0.363888
\(250\) −152.710 −0.0386328
\(251\) −3778.49 −0.950185 −0.475092 0.879936i \(-0.657585\pi\)
−0.475092 + 0.879936i \(0.657585\pi\)
\(252\) 2450.37 0.612536
\(253\) 512.376 0.127323
\(254\) 1362.02 0.336459
\(255\) 98.3899 0.0241624
\(256\) −1588.35 −0.387781
\(257\) −5002.13 −1.21410 −0.607051 0.794663i \(-0.707648\pi\)
−0.607051 + 0.794663i \(0.707648\pi\)
\(258\) 355.645 0.0858197
\(259\) −983.235 −0.235889
\(260\) −924.181 −0.220443
\(261\) 696.954 0.165289
\(262\) 1903.90 0.448943
\(263\) 4745.06 1.11252 0.556260 0.831008i \(-0.312236\pi\)
0.556260 + 0.831008i \(0.312236\pi\)
\(264\) −1464.27 −0.341363
\(265\) 3389.03 0.785610
\(266\) 1541.02 0.355210
\(267\) 84.2760 0.0193169
\(268\) 5530.88 1.26064
\(269\) 7844.29 1.77797 0.888987 0.457932i \(-0.151410\pi\)
0.888987 + 0.457932i \(0.151410\pi\)
\(270\) −372.340 −0.0839256
\(271\) 3730.24 0.836148 0.418074 0.908413i \(-0.362705\pi\)
0.418074 + 0.908413i \(0.362705\pi\)
\(272\) 516.930 0.115233
\(273\) 482.462 0.106959
\(274\) 287.327 0.0633505
\(275\) −1784.36 −0.391276
\(276\) −54.0745 −0.0117931
\(277\) −1888.55 −0.409646 −0.204823 0.978799i \(-0.565662\pi\)
−0.204823 + 0.978799i \(0.565662\pi\)
\(278\) −2612.51 −0.563625
\(279\) 400.733 0.0859902
\(280\) 1300.40 0.277550
\(281\) −3340.77 −0.709231 −0.354615 0.935012i \(-0.615388\pi\)
−0.354615 + 0.935012i \(0.615388\pi\)
\(282\) −81.8950 −0.0172935
\(283\) −7783.21 −1.63485 −0.817427 0.576032i \(-0.804600\pi\)
−0.817427 + 0.576032i \(0.804600\pi\)
\(284\) 5933.77 1.23981
\(285\) 497.501 0.103401
\(286\) 2476.68 0.512061
\(287\) −565.991 −0.116409
\(288\) −4591.53 −0.939439
\(289\) 289.000 0.0588235
\(290\) 165.910 0.0335950
\(291\) −1126.20 −0.226870
\(292\) −4583.57 −0.918608
\(293\) −8514.61 −1.69771 −0.848855 0.528626i \(-0.822707\pi\)
−0.848855 + 0.528626i \(0.822707\pi\)
\(294\) 180.532 0.0358124
\(295\) −2993.23 −0.590754
\(296\) 1187.54 0.233190
\(297\) −4350.66 −0.850003
\(298\) −4053.17 −0.787899
\(299\) 203.901 0.0394378
\(300\) 188.315 0.0362413
\(301\) −3690.52 −0.706705
\(302\) 1036.58 0.197511
\(303\) 761.792 0.144435
\(304\) 2613.82 0.493134
\(305\) −1730.32 −0.324845
\(306\) −532.923 −0.0995594
\(307\) −8954.07 −1.66461 −0.832306 0.554317i \(-0.812980\pi\)
−0.832306 + 0.554317i \(0.812980\pi\)
\(308\) 6815.77 1.26092
\(309\) 1999.84 0.368177
\(310\) 95.3945 0.0174776
\(311\) −3842.82 −0.700664 −0.350332 0.936626i \(-0.613931\pi\)
−0.350332 + 0.936626i \(0.613931\pi\)
\(312\) −582.711 −0.105736
\(313\) −4432.84 −0.800507 −0.400254 0.916404i \(-0.631078\pi\)
−0.400254 + 0.916404i \(0.631078\pi\)
\(314\) 1160.37 0.208547
\(315\) 1882.73 0.336761
\(316\) −363.388 −0.0646904
\(317\) 7694.21 1.36325 0.681625 0.731702i \(-0.261274\pi\)
0.681625 + 0.731702i \(0.261274\pi\)
\(318\) 958.504 0.169026
\(319\) 1938.59 0.340252
\(320\) 123.294 0.0215386
\(321\) 1045.25 0.181746
\(322\) −128.695 −0.0222730
\(323\) 1461.31 0.251731
\(324\) −4049.40 −0.694341
\(325\) −710.088 −0.121196
\(326\) 2372.61 0.403088
\(327\) −964.866 −0.163172
\(328\) 683.596 0.115077
\(329\) 849.823 0.142408
\(330\) −504.661 −0.0841839
\(331\) 7276.70 1.20835 0.604175 0.796852i \(-0.293503\pi\)
0.604175 + 0.796852i \(0.293503\pi\)
\(332\) 8038.03 1.32875
\(333\) 1719.32 0.282938
\(334\) −4102.95 −0.672166
\(335\) 4249.61 0.693078
\(336\) −516.503 −0.0838618
\(337\) −3300.91 −0.533566 −0.266783 0.963757i \(-0.585961\pi\)
−0.266783 + 0.963757i \(0.585961\pi\)
\(338\) −1698.42 −0.273320
\(339\) −1165.04 −0.186656
\(340\) 553.138 0.0882297
\(341\) 1114.65 0.177014
\(342\) −2694.68 −0.426058
\(343\) −6906.68 −1.08725
\(344\) 4457.36 0.698619
\(345\) −41.5478 −0.00648365
\(346\) 264.452 0.0410897
\(347\) −7998.41 −1.23740 −0.618699 0.785628i \(-0.712340\pi\)
−0.618699 + 0.785628i \(0.712340\pi\)
\(348\) −204.593 −0.0315154
\(349\) −4378.96 −0.671634 −0.335817 0.941927i \(-0.609012\pi\)
−0.335817 + 0.941927i \(0.609012\pi\)
\(350\) 448.183 0.0684468
\(351\) −1731.35 −0.263284
\(352\) −12771.5 −1.93387
\(353\) 1508.37 0.227430 0.113715 0.993513i \(-0.463725\pi\)
0.113715 + 0.993513i \(0.463725\pi\)
\(354\) −846.560 −0.127102
\(355\) 4559.18 0.681623
\(356\) 473.791 0.0705362
\(357\) −288.761 −0.0428092
\(358\) −1395.52 −0.206021
\(359\) 3436.61 0.505229 0.252614 0.967567i \(-0.418710\pi\)
0.252614 + 0.967567i \(0.418710\pi\)
\(360\) −2273.94 −0.332908
\(361\) 529.984 0.0772684
\(362\) 2302.67 0.334326
\(363\) −4356.11 −0.629853
\(364\) 2712.35 0.390565
\(365\) −3521.76 −0.505034
\(366\) −489.377 −0.0698911
\(367\) 10656.6 1.51573 0.757863 0.652413i \(-0.226243\pi\)
0.757863 + 0.652413i \(0.226243\pi\)
\(368\) −218.288 −0.0309213
\(369\) 989.713 0.139627
\(370\) 409.284 0.0575072
\(371\) −9946.37 −1.39189
\(372\) −117.637 −0.0163956
\(373\) −9062.32 −1.25799 −0.628994 0.777410i \(-0.716533\pi\)
−0.628994 + 0.777410i \(0.716533\pi\)
\(374\) −1482.34 −0.204946
\(375\) 144.691 0.0199248
\(376\) −1026.40 −0.140779
\(377\) 771.467 0.105391
\(378\) 1092.77 0.148693
\(379\) 1080.44 0.146434 0.0732169 0.997316i \(-0.476673\pi\)
0.0732169 + 0.997316i \(0.476673\pi\)
\(380\) 2796.90 0.377573
\(381\) −1290.50 −0.173528
\(382\) 2779.13 0.372232
\(383\) 6920.65 0.923313 0.461656 0.887059i \(-0.347255\pi\)
0.461656 + 0.887059i \(0.347255\pi\)
\(384\) 1691.86 0.224837
\(385\) 5236.86 0.693234
\(386\) −3549.88 −0.468094
\(387\) 6453.39 0.847659
\(388\) −6331.40 −0.828423
\(389\) 9664.52 1.25967 0.629833 0.776730i \(-0.283123\pi\)
0.629833 + 0.776730i \(0.283123\pi\)
\(390\) −200.831 −0.0260755
\(391\) −122.038 −0.0157845
\(392\) 2262.64 0.291532
\(393\) −1803.92 −0.231542
\(394\) 5910.46 0.755748
\(395\) −279.207 −0.0355656
\(396\) −11918.3 −1.51242
\(397\) −7464.80 −0.943697 −0.471848 0.881680i \(-0.656413\pi\)
−0.471848 + 0.881680i \(0.656413\pi\)
\(398\) −2889.59 −0.363924
\(399\) −1460.10 −0.183199
\(400\) 760.191 0.0950239
\(401\) 2948.70 0.367209 0.183605 0.983000i \(-0.441223\pi\)
0.183605 + 0.983000i \(0.441223\pi\)
\(402\) 1201.90 0.149117
\(403\) 443.577 0.0548291
\(404\) 4282.71 0.527408
\(405\) −3111.33 −0.381736
\(406\) −486.923 −0.0595212
\(407\) 4782.34 0.582436
\(408\) 348.762 0.0423194
\(409\) 5546.04 0.670499 0.335250 0.942129i \(-0.391179\pi\)
0.335250 + 0.942129i \(0.391179\pi\)
\(410\) 235.601 0.0283793
\(411\) −272.239 −0.0326730
\(412\) 11242.9 1.34441
\(413\) 8784.73 1.04665
\(414\) 225.041 0.0267154
\(415\) 6175.97 0.730521
\(416\) −5082.42 −0.599005
\(417\) 2475.33 0.290689
\(418\) −7495.33 −0.877054
\(419\) 8245.75 0.961411 0.480706 0.876882i \(-0.340381\pi\)
0.480706 + 0.876882i \(0.340381\pi\)
\(420\) −552.681 −0.0642097
\(421\) −9972.70 −1.15449 −0.577244 0.816571i \(-0.695872\pi\)
−0.577244 + 0.816571i \(0.695872\pi\)
\(422\) 725.877 0.0837325
\(423\) −1486.03 −0.170812
\(424\) 12013.1 1.37596
\(425\) 425.000 0.0485071
\(426\) 1289.45 0.146653
\(427\) 5078.25 0.575536
\(428\) 5876.30 0.663649
\(429\) −2346.64 −0.264095
\(430\) 1536.23 0.172287
\(431\) 10506.0 1.17415 0.587073 0.809534i \(-0.300280\pi\)
0.587073 + 0.809534i \(0.300280\pi\)
\(432\) 1853.52 0.206429
\(433\) 13866.9 1.53903 0.769514 0.638631i \(-0.220499\pi\)
0.769514 + 0.638631i \(0.220499\pi\)
\(434\) −279.970 −0.0309654
\(435\) −157.198 −0.0173266
\(436\) −5424.38 −0.595827
\(437\) −617.077 −0.0675487
\(438\) −996.043 −0.108659
\(439\) 270.717 0.0294319 0.0147160 0.999892i \(-0.495316\pi\)
0.0147160 + 0.999892i \(0.495316\pi\)
\(440\) −6325.01 −0.685302
\(441\) 3275.86 0.353726
\(442\) −589.899 −0.0634811
\(443\) −6809.29 −0.730291 −0.365146 0.930950i \(-0.618981\pi\)
−0.365146 + 0.930950i \(0.618981\pi\)
\(444\) −504.713 −0.0539473
\(445\) 364.034 0.0387795
\(446\) 3714.09 0.394321
\(447\) 3840.34 0.406358
\(448\) −361.852 −0.0381605
\(449\) −9130.09 −0.959633 −0.479817 0.877369i \(-0.659297\pi\)
−0.479817 + 0.877369i \(0.659297\pi\)
\(450\) −783.710 −0.0820988
\(451\) 2752.91 0.287427
\(452\) −6549.74 −0.681579
\(453\) −982.146 −0.101866
\(454\) −560.916 −0.0579848
\(455\) 2084.02 0.214726
\(456\) 1763.49 0.181103
\(457\) −2524.80 −0.258436 −0.129218 0.991616i \(-0.541247\pi\)
−0.129218 + 0.991616i \(0.541247\pi\)
\(458\) 2630.87 0.268412
\(459\) 1036.24 0.105376
\(460\) −233.578 −0.0236752
\(461\) 11102.1 1.12164 0.560819 0.827938i \(-0.310486\pi\)
0.560819 + 0.827938i \(0.310486\pi\)
\(462\) 1481.11 0.149151
\(463\) −3045.92 −0.305736 −0.152868 0.988247i \(-0.548851\pi\)
−0.152868 + 0.988247i \(0.548851\pi\)
\(464\) −825.901 −0.0826325
\(465\) −90.3854 −0.00901402
\(466\) 6666.02 0.662655
\(467\) −14515.5 −1.43832 −0.719161 0.694844i \(-0.755473\pi\)
−0.719161 + 0.694844i \(0.755473\pi\)
\(468\) −4742.92 −0.468465
\(469\) −12472.1 −1.22795
\(470\) −353.750 −0.0347176
\(471\) −1099.44 −0.107558
\(472\) −10610.1 −1.03468
\(473\) 17950.3 1.74493
\(474\) −78.9668 −0.00765203
\(475\) 2148.98 0.207583
\(476\) −1623.39 −0.156319
\(477\) 17392.6 1.66950
\(478\) −7419.96 −0.710002
\(479\) −5511.93 −0.525775 −0.262888 0.964826i \(-0.584675\pi\)
−0.262888 + 0.964826i \(0.584675\pi\)
\(480\) 1035.62 0.0984777
\(481\) 1903.14 0.180407
\(482\) 8785.92 0.830265
\(483\) 121.937 0.0114873
\(484\) −24489.6 −2.29993
\(485\) −4864.69 −0.455452
\(486\) −2890.60 −0.269795
\(487\) −10132.2 −0.942777 −0.471388 0.881926i \(-0.656247\pi\)
−0.471388 + 0.881926i \(0.656247\pi\)
\(488\) −6133.45 −0.568951
\(489\) −2248.03 −0.207892
\(490\) 779.818 0.0718951
\(491\) −5965.90 −0.548345 −0.274172 0.961681i \(-0.588404\pi\)
−0.274172 + 0.961681i \(0.588404\pi\)
\(492\) −290.534 −0.0266225
\(493\) −461.736 −0.0421817
\(494\) −2982.78 −0.271663
\(495\) −9157.37 −0.831501
\(496\) −474.875 −0.0429890
\(497\) −13380.6 −1.20765
\(498\) 1746.72 0.157173
\(499\) 19690.2 1.76644 0.883220 0.468959i \(-0.155371\pi\)
0.883220 + 0.468959i \(0.155371\pi\)
\(500\) 813.438 0.0727561
\(501\) 3887.51 0.346669
\(502\) −4616.10 −0.410412
\(503\) −18780.3 −1.66476 −0.832378 0.554209i \(-0.813021\pi\)
−0.832378 + 0.554209i \(0.813021\pi\)
\(504\) 6673.70 0.589822
\(505\) 3290.60 0.289960
\(506\) 625.958 0.0549945
\(507\) 1609.24 0.140964
\(508\) −7255.05 −0.633644
\(509\) −4447.70 −0.387310 −0.193655 0.981070i \(-0.562034\pi\)
−0.193655 + 0.981070i \(0.562034\pi\)
\(510\) 120.201 0.0104364
\(511\) 10335.9 0.894782
\(512\) 9752.47 0.841801
\(513\) 5239.69 0.450951
\(514\) −6110.99 −0.524405
\(515\) 8638.39 0.739132
\(516\) −1894.41 −0.161622
\(517\) −4133.44 −0.351622
\(518\) −1201.20 −0.101887
\(519\) −250.566 −0.0211920
\(520\) −2517.05 −0.212269
\(521\) −9380.60 −0.788813 −0.394407 0.918936i \(-0.629050\pi\)
−0.394407 + 0.918936i \(0.629050\pi\)
\(522\) 851.453 0.0713929
\(523\) −2039.00 −0.170477 −0.0852384 0.996361i \(-0.527165\pi\)
−0.0852384 + 0.996361i \(0.527165\pi\)
\(524\) −10141.5 −0.845482
\(525\) −424.649 −0.0353014
\(526\) 5796.93 0.480529
\(527\) −265.488 −0.0219447
\(528\) 2512.21 0.207064
\(529\) −12115.5 −0.995764
\(530\) 4140.31 0.339327
\(531\) −15361.3 −1.25541
\(532\) −8208.54 −0.668957
\(533\) 1095.53 0.0890291
\(534\) 102.958 0.00834351
\(535\) 4515.02 0.364862
\(536\) 15063.6 1.21390
\(537\) 1322.24 0.106255
\(538\) 9583.20 0.767957
\(539\) 9111.89 0.728158
\(540\) 1983.34 0.158055
\(541\) −10362.5 −0.823510 −0.411755 0.911295i \(-0.635084\pi\)
−0.411755 + 0.911295i \(0.635084\pi\)
\(542\) 4557.15 0.361156
\(543\) −2181.76 −0.172428
\(544\) 3041.92 0.239745
\(545\) −4167.79 −0.327575
\(546\) 589.412 0.0461988
\(547\) 1466.22 0.114609 0.0573044 0.998357i \(-0.481749\pi\)
0.0573044 + 0.998357i \(0.481749\pi\)
\(548\) −1530.50 −0.119306
\(549\) −8880.03 −0.690328
\(550\) −2179.91 −0.169003
\(551\) −2334.73 −0.180514
\(552\) −147.275 −0.0113558
\(553\) 819.436 0.0630126
\(554\) −2307.20 −0.176938
\(555\) −387.793 −0.0296593
\(556\) 13916.0 1.06146
\(557\) 2400.26 0.182590 0.0912949 0.995824i \(-0.470899\pi\)
0.0912949 + 0.995824i \(0.470899\pi\)
\(558\) 489.567 0.0371416
\(559\) 7143.34 0.540485
\(560\) −2231.06 −0.168356
\(561\) 1404.50 0.105701
\(562\) −4081.35 −0.306337
\(563\) −14902.0 −1.11553 −0.557766 0.829998i \(-0.688341\pi\)
−0.557766 + 0.829998i \(0.688341\pi\)
\(564\) 436.230 0.0325684
\(565\) −5032.45 −0.374720
\(566\) −9508.57 −0.706140
\(567\) 9131.34 0.676332
\(568\) 16160.9 1.19383
\(569\) −9568.31 −0.704964 −0.352482 0.935819i \(-0.614662\pi\)
−0.352482 + 0.935819i \(0.614662\pi\)
\(570\) 607.786 0.0446620
\(571\) 10645.8 0.780235 0.390117 0.920765i \(-0.372434\pi\)
0.390117 + 0.920765i \(0.372434\pi\)
\(572\) −13192.5 −0.964350
\(573\) −2633.20 −0.191978
\(574\) −691.458 −0.0502803
\(575\) −179.468 −0.0130162
\(576\) 632.748 0.0457717
\(577\) 335.528 0.0242084 0.0121042 0.999927i \(-0.496147\pi\)
0.0121042 + 0.999927i \(0.496147\pi\)
\(578\) 353.065 0.0254075
\(579\) 3363.48 0.241419
\(580\) −883.750 −0.0632685
\(581\) −18125.7 −1.29428
\(582\) −1375.86 −0.0979916
\(583\) 48378.0 3.43673
\(584\) −12483.6 −0.884545
\(585\) −3644.19 −0.257553
\(586\) −10402.1 −0.733289
\(587\) 12512.7 0.879817 0.439908 0.898043i \(-0.355011\pi\)
0.439908 + 0.898043i \(0.355011\pi\)
\(588\) −961.640 −0.0674445
\(589\) −1342.42 −0.0939109
\(590\) −3656.76 −0.255163
\(591\) −5600.10 −0.389776
\(592\) −2037.42 −0.141449
\(593\) −11061.3 −0.765994 −0.382997 0.923749i \(-0.625108\pi\)
−0.382997 + 0.923749i \(0.625108\pi\)
\(594\) −5315.10 −0.367140
\(595\) −1247.32 −0.0859414
\(596\) 21590.0 1.48383
\(597\) 2737.86 0.187694
\(598\) 249.101 0.0170343
\(599\) 4672.09 0.318692 0.159346 0.987223i \(-0.449062\pi\)
0.159346 + 0.987223i \(0.449062\pi\)
\(600\) 512.886 0.0348975
\(601\) 26076.4 1.76985 0.884924 0.465736i \(-0.154210\pi\)
0.884924 + 0.465736i \(0.154210\pi\)
\(602\) −4508.63 −0.305246
\(603\) 21809.1 1.47286
\(604\) −5521.53 −0.371966
\(605\) −18816.5 −1.26446
\(606\) 930.663 0.0623855
\(607\) 11437.6 0.764810 0.382405 0.923995i \(-0.375096\pi\)
0.382405 + 0.923995i \(0.375096\pi\)
\(608\) 15381.2 1.02597
\(609\) 461.355 0.0306980
\(610\) −2113.89 −0.140310
\(611\) −1644.91 −0.108913
\(612\) 2838.72 0.187497
\(613\) 28634.7 1.88670 0.943348 0.331806i \(-0.107658\pi\)
0.943348 + 0.331806i \(0.107658\pi\)
\(614\) −10939.0 −0.718993
\(615\) −223.230 −0.0146366
\(616\) 18563.1 1.21417
\(617\) −3394.42 −0.221482 −0.110741 0.993849i \(-0.535322\pi\)
−0.110741 + 0.993849i \(0.535322\pi\)
\(618\) 2443.15 0.159026
\(619\) 10197.3 0.662139 0.331069 0.943606i \(-0.392591\pi\)
0.331069 + 0.943606i \(0.392591\pi\)
\(620\) −508.137 −0.0329150
\(621\) −437.583 −0.0282763
\(622\) −4694.69 −0.302637
\(623\) −1068.39 −0.0687067
\(624\) 999.739 0.0641372
\(625\) 625.000 0.0400000
\(626\) −5415.50 −0.345762
\(627\) 7101.76 0.452339
\(628\) −6180.96 −0.392751
\(629\) −1139.06 −0.0722057
\(630\) 2300.09 0.145457
\(631\) 13195.9 0.832522 0.416261 0.909245i \(-0.363340\pi\)
0.416261 + 0.909245i \(0.363340\pi\)
\(632\) −989.705 −0.0622917
\(633\) −687.761 −0.0431849
\(634\) 9399.85 0.588826
\(635\) −5574.37 −0.348366
\(636\) −5105.66 −0.318322
\(637\) 3626.09 0.225543
\(638\) 2368.34 0.146965
\(639\) 23397.8 1.44852
\(640\) 7308.08 0.451370
\(641\) −10280.5 −0.633469 −0.316734 0.948514i \(-0.602586\pi\)
−0.316734 + 0.948514i \(0.602586\pi\)
\(642\) 1276.96 0.0785010
\(643\) −16401.3 −1.00592 −0.502959 0.864311i \(-0.667755\pi\)
−0.502959 + 0.864311i \(0.667755\pi\)
\(644\) 685.520 0.0419461
\(645\) −1455.56 −0.0888568
\(646\) 1785.24 0.108730
\(647\) 18960.3 1.15210 0.576048 0.817416i \(-0.304594\pi\)
0.576048 + 0.817416i \(0.304594\pi\)
\(648\) −11028.7 −0.668594
\(649\) −42727.9 −2.58431
\(650\) −867.499 −0.0523479
\(651\) 265.269 0.0159704
\(652\) −12638.2 −0.759124
\(653\) 1539.55 0.0922623 0.0461311 0.998935i \(-0.485311\pi\)
0.0461311 + 0.998935i \(0.485311\pi\)
\(654\) −1178.76 −0.0704785
\(655\) −7792.14 −0.464831
\(656\) −1172.83 −0.0698036
\(657\) −18073.8 −1.07325
\(658\) 1038.21 0.0615100
\(659\) −9245.33 −0.546505 −0.273253 0.961942i \(-0.588099\pi\)
−0.273253 + 0.961942i \(0.588099\pi\)
\(660\) 2688.18 0.158541
\(661\) 28073.9 1.65197 0.825983 0.563696i \(-0.190621\pi\)
0.825983 + 0.563696i \(0.190621\pi\)
\(662\) 8889.78 0.521920
\(663\) 558.924 0.0327403
\(664\) 21891.9 1.27948
\(665\) −6306.98 −0.367781
\(666\) 2100.46 0.122209
\(667\) 194.981 0.0113189
\(668\) 21855.2 1.26587
\(669\) −3519.06 −0.203370
\(670\) 5191.66 0.299360
\(671\) −24700.0 −1.42106
\(672\) −3039.41 −0.174476
\(673\) −19690.2 −1.12779 −0.563893 0.825848i \(-0.690697\pi\)
−0.563893 + 0.825848i \(0.690697\pi\)
\(674\) −4032.64 −0.230462
\(675\) 1523.89 0.0868956
\(676\) 9046.99 0.514735
\(677\) −12023.4 −0.682566 −0.341283 0.939961i \(-0.610861\pi\)
−0.341283 + 0.939961i \(0.610861\pi\)
\(678\) −1423.30 −0.0806219
\(679\) 14277.2 0.806937
\(680\) 1506.50 0.0849581
\(681\) 531.463 0.0299056
\(682\) 1361.74 0.0764572
\(683\) −6517.76 −0.365147 −0.182573 0.983192i \(-0.558443\pi\)
−0.182573 + 0.983192i \(0.558443\pi\)
\(684\) 14353.8 0.802383
\(685\) −1175.95 −0.0655924
\(686\) −8437.74 −0.469613
\(687\) −2492.73 −0.138433
\(688\) −7647.36 −0.423769
\(689\) 19252.1 1.06451
\(690\) −50.7580 −0.00280047
\(691\) −25926.3 −1.42733 −0.713664 0.700488i \(-0.752966\pi\)
−0.713664 + 0.700488i \(0.752966\pi\)
\(692\) −1408.66 −0.0773830
\(693\) 26875.7 1.47319
\(694\) −9771.47 −0.534467
\(695\) 10692.3 0.583571
\(696\) −557.219 −0.0303467
\(697\) −655.691 −0.0356328
\(698\) −5349.68 −0.290098
\(699\) −6315.99 −0.341764
\(700\) −2387.33 −0.128904
\(701\) 1635.68 0.0881294 0.0440647 0.999029i \(-0.485969\pi\)
0.0440647 + 0.999029i \(0.485969\pi\)
\(702\) −2115.16 −0.113720
\(703\) −5759.58 −0.308999
\(704\) 1760.00 0.0942225
\(705\) 335.175 0.0179055
\(706\) 1842.75 0.0982333
\(707\) −9657.47 −0.513729
\(708\) 4509.37 0.239368
\(709\) −26057.0 −1.38024 −0.690122 0.723693i \(-0.742443\pi\)
−0.690122 + 0.723693i \(0.742443\pi\)
\(710\) 5569.84 0.294412
\(711\) −1432.90 −0.0755807
\(712\) 1290.39 0.0679206
\(713\) 112.110 0.00588856
\(714\) −352.773 −0.0184905
\(715\) −10136.4 −0.530182
\(716\) 7433.53 0.387994
\(717\) 7030.34 0.366183
\(718\) 4198.42 0.218223
\(719\) 106.968 0.00554828 0.00277414 0.999996i \(-0.499117\pi\)
0.00277414 + 0.999996i \(0.499117\pi\)
\(720\) 3901.32 0.201936
\(721\) −25352.6 −1.30954
\(722\) 647.469 0.0333744
\(723\) −8324.58 −0.428208
\(724\) −12265.6 −0.629626
\(725\) −679.024 −0.0347839
\(726\) −5321.77 −0.272051
\(727\) −17019.9 −0.868273 −0.434137 0.900847i \(-0.642947\pi\)
−0.434137 + 0.900847i \(0.642947\pi\)
\(728\) 7387.21 0.376083
\(729\) −14062.4 −0.714442
\(730\) −4302.46 −0.218138
\(731\) −4275.41 −0.216322
\(732\) 2606.76 0.131624
\(733\) −27064.0 −1.36375 −0.681877 0.731467i \(-0.738836\pi\)
−0.681877 + 0.731467i \(0.738836\pi\)
\(734\) 13019.0 0.654685
\(735\) −738.870 −0.0370798
\(736\) −1284.53 −0.0643322
\(737\) 60662.6 3.03194
\(738\) 1209.11 0.0603089
\(739\) −13177.0 −0.655919 −0.327960 0.944692i \(-0.606361\pi\)
−0.327960 + 0.944692i \(0.606361\pi\)
\(740\) −2180.13 −0.108302
\(741\) 2826.16 0.140110
\(742\) −12151.3 −0.601195
\(743\) 1164.23 0.0574854 0.0287427 0.999587i \(-0.490850\pi\)
0.0287427 + 0.999587i \(0.490850\pi\)
\(744\) −320.389 −0.0157877
\(745\) 16588.6 0.815782
\(746\) −11071.2 −0.543360
\(747\) 31695.2 1.55243
\(748\) 7895.97 0.385969
\(749\) −13251.0 −0.646437
\(750\) 176.766 0.00860610
\(751\) 5632.54 0.273681 0.136840 0.990593i \(-0.456305\pi\)
0.136840 + 0.990593i \(0.456305\pi\)
\(752\) 1760.97 0.0853936
\(753\) 4373.71 0.211669
\(754\) 942.484 0.0455215
\(755\) −4242.43 −0.204500
\(756\) −5820.85 −0.280030
\(757\) −40260.8 −1.93303 −0.966515 0.256611i \(-0.917394\pi\)
−0.966515 + 0.256611i \(0.917394\pi\)
\(758\) 1319.95 0.0632489
\(759\) −593.089 −0.0283634
\(760\) 7617.49 0.363573
\(761\) −22060.7 −1.05085 −0.525427 0.850839i \(-0.676094\pi\)
−0.525427 + 0.850839i \(0.676094\pi\)
\(762\) −1576.57 −0.0749517
\(763\) 12231.9 0.580374
\(764\) −14803.6 −0.701013
\(765\) 2181.11 0.103083
\(766\) 8454.80 0.398805
\(767\) −17003.6 −0.800477
\(768\) 1838.56 0.0863846
\(769\) 8923.07 0.418432 0.209216 0.977869i \(-0.432909\pi\)
0.209216 + 0.977869i \(0.432909\pi\)
\(770\) 6397.75 0.299427
\(771\) 5790.10 0.270461
\(772\) 18909.2 0.881548
\(773\) 3076.31 0.143140 0.0715699 0.997436i \(-0.477199\pi\)
0.0715699 + 0.997436i \(0.477199\pi\)
\(774\) 7883.96 0.366128
\(775\) −390.424 −0.0180961
\(776\) −17243.9 −0.797705
\(777\) 1138.12 0.0525481
\(778\) 11806.9 0.544086
\(779\) −3315.45 −0.152488
\(780\) 1069.76 0.0491073
\(781\) 65081.6 2.98182
\(782\) −149.091 −0.00681777
\(783\) −1655.61 −0.0755642
\(784\) −3881.95 −0.176838
\(785\) −4749.11 −0.215927
\(786\) −2203.81 −0.100009
\(787\) −20627.3 −0.934286 −0.467143 0.884182i \(-0.654717\pi\)
−0.467143 + 0.884182i \(0.654717\pi\)
\(788\) −31483.2 −1.42328
\(789\) −5492.54 −0.247832
\(790\) −341.101 −0.0153618
\(791\) 14769.6 0.663902
\(792\) −32460.1 −1.45634
\(793\) −9829.42 −0.440167
\(794\) −9119.58 −0.407609
\(795\) −3922.90 −0.175007
\(796\) 15392.0 0.685369
\(797\) 13976.5 0.621172 0.310586 0.950545i \(-0.399475\pi\)
0.310586 + 0.950545i \(0.399475\pi\)
\(798\) −1783.77 −0.0791289
\(799\) 984.506 0.0435911
\(800\) 4473.41 0.197699
\(801\) 1868.23 0.0824105
\(802\) 3602.36 0.158608
\(803\) −50272.6 −2.20932
\(804\) −6402.14 −0.280829
\(805\) 526.715 0.0230612
\(806\) 541.908 0.0236822
\(807\) −9079.99 −0.396073
\(808\) 11664.2 0.507852
\(809\) 5425.25 0.235774 0.117887 0.993027i \(-0.462388\pi\)
0.117887 + 0.993027i \(0.462388\pi\)
\(810\) −3801.04 −0.164883
\(811\) −36180.8 −1.56656 −0.783279 0.621670i \(-0.786455\pi\)
−0.783279 + 0.621670i \(0.786455\pi\)
\(812\) 2593.69 0.112095
\(813\) −4317.86 −0.186266
\(814\) 5842.47 0.251571
\(815\) −9710.46 −0.417353
\(816\) −598.361 −0.0256701
\(817\) −21618.3 −0.925738
\(818\) 6775.48 0.289608
\(819\) 10695.2 0.456314
\(820\) −1254.97 −0.0534459
\(821\) −17712.7 −0.752955 −0.376478 0.926426i \(-0.622865\pi\)
−0.376478 + 0.926426i \(0.622865\pi\)
\(822\) −332.589 −0.0141124
\(823\) −15244.9 −0.645691 −0.322845 0.946452i \(-0.604639\pi\)
−0.322845 + 0.946452i \(0.604639\pi\)
\(824\) 30620.5 1.29456
\(825\) 2065.44 0.0871631
\(826\) 10732.1 0.452080
\(827\) 4079.89 0.171550 0.0857750 0.996315i \(-0.472663\pi\)
0.0857750 + 0.996315i \(0.472663\pi\)
\(828\) −1198.73 −0.0503124
\(829\) 13959.9 0.584857 0.292429 0.956287i \(-0.405537\pi\)
0.292429 + 0.956287i \(0.405537\pi\)
\(830\) 7545.04 0.315533
\(831\) 2186.05 0.0912554
\(832\) 700.397 0.0291850
\(833\) −2170.28 −0.0902710
\(834\) 3024.05 0.125557
\(835\) 16792.3 0.695954
\(836\) 39925.3 1.65173
\(837\) −951.941 −0.0393117
\(838\) 10073.6 0.415261
\(839\) 45111.6 1.85629 0.928144 0.372221i \(-0.121404\pi\)
0.928144 + 0.372221i \(0.121404\pi\)
\(840\) −1505.25 −0.0618288
\(841\) −23651.3 −0.969752
\(842\) −12183.4 −0.498656
\(843\) 3867.04 0.157993
\(844\) −3866.52 −0.157691
\(845\) 6951.20 0.282992
\(846\) −1815.45 −0.0737784
\(847\) 55223.8 2.24028
\(848\) −20610.5 −0.834632
\(849\) 9009.28 0.364191
\(850\) 519.213 0.0209516
\(851\) 481.000 0.0193754
\(852\) −6868.51 −0.276187
\(853\) −37653.2 −1.51140 −0.755698 0.654920i \(-0.772702\pi\)
−0.755698 + 0.654920i \(0.772702\pi\)
\(854\) 6203.99 0.248590
\(855\) 11028.6 0.441136
\(856\) 16004.4 0.639041
\(857\) 7916.64 0.315551 0.157776 0.987475i \(-0.449568\pi\)
0.157776 + 0.987475i \(0.449568\pi\)
\(858\) −2866.83 −0.114070
\(859\) 4012.33 0.159370 0.0796850 0.996820i \(-0.474609\pi\)
0.0796850 + 0.996820i \(0.474609\pi\)
\(860\) −8183.01 −0.324463
\(861\) 655.150 0.0259320
\(862\) 12835.0 0.507147
\(863\) 22547.6 0.889374 0.444687 0.895686i \(-0.353315\pi\)
0.444687 + 0.895686i \(0.353315\pi\)
\(864\) 10907.2 0.429478
\(865\) −1082.33 −0.0425438
\(866\) 16940.8 0.664749
\(867\) −334.526 −0.0131039
\(868\) 1491.32 0.0583163
\(869\) −3985.64 −0.155585
\(870\) −192.045 −0.00748384
\(871\) 24140.8 0.939127
\(872\) −14773.5 −0.573733
\(873\) −24965.7 −0.967883
\(874\) −753.869 −0.0291762
\(875\) −1834.29 −0.0708691
\(876\) 5305.62 0.204635
\(877\) 16964.9 0.653210 0.326605 0.945161i \(-0.394095\pi\)
0.326605 + 0.945161i \(0.394095\pi\)
\(878\) 330.729 0.0127125
\(879\) 9855.90 0.378193
\(880\) 10851.6 0.415691
\(881\) −28213.2 −1.07892 −0.539459 0.842012i \(-0.681371\pi\)
−0.539459 + 0.842012i \(0.681371\pi\)
\(882\) 4002.05 0.152784
\(883\) −44019.1 −1.67764 −0.838822 0.544405i \(-0.816755\pi\)
−0.838822 + 0.544405i \(0.816755\pi\)
\(884\) 3142.21 0.119552
\(885\) 3464.74 0.131600
\(886\) −8318.75 −0.315433
\(887\) 14078.8 0.532941 0.266471 0.963843i \(-0.414142\pi\)
0.266471 + 0.963843i \(0.414142\pi\)
\(888\) −1374.61 −0.0519469
\(889\) 16360.1 0.617209
\(890\) 444.733 0.0167500
\(891\) −44413.8 −1.66994
\(892\) −19783.8 −0.742613
\(893\) 4978.08 0.186545
\(894\) 4691.66 0.175517
\(895\) 5711.50 0.213312
\(896\) −21448.3 −0.799705
\(897\) −236.021 −0.00878541
\(898\) −11154.0 −0.414493
\(899\) 424.172 0.0157363
\(900\) 4174.58 0.154614
\(901\) −11522.7 −0.426057
\(902\) 3363.17 0.124148
\(903\) 4271.88 0.157430
\(904\) −17838.5 −0.656306
\(905\) −9424.23 −0.346157
\(906\) −1199.87 −0.0439988
\(907\) −12670.6 −0.463858 −0.231929 0.972733i \(-0.574504\pi\)
−0.231929 + 0.972733i \(0.574504\pi\)
\(908\) 2987.83 0.109201
\(909\) 16887.4 0.616194
\(910\) 2546.00 0.0927461
\(911\) 15336.4 0.557760 0.278880 0.960326i \(-0.410037\pi\)
0.278880 + 0.960326i \(0.410037\pi\)
\(912\) −3025.57 −0.109854
\(913\) 88161.1 3.19574
\(914\) −3084.49 −0.111626
\(915\) 2002.89 0.0723644
\(916\) −14013.9 −0.505492
\(917\) 22868.9 0.823553
\(918\) 1265.96 0.0455150
\(919\) 43929.1 1.57681 0.788404 0.615158i \(-0.210908\pi\)
0.788404 + 0.615158i \(0.210908\pi\)
\(920\) −636.160 −0.0227973
\(921\) 10364.6 0.370819
\(922\) 13563.2 0.484467
\(923\) 25899.3 0.923605
\(924\) −7889.45 −0.280892
\(925\) −1675.09 −0.0595423
\(926\) −3721.13 −0.132056
\(927\) 44332.5 1.57073
\(928\) −4860.08 −0.171918
\(929\) 28646.0 1.01167 0.505836 0.862629i \(-0.331184\pi\)
0.505836 + 0.862629i \(0.331184\pi\)
\(930\) −110.422 −0.00389341
\(931\) −10973.8 −0.386309
\(932\) −35507.9 −1.24796
\(933\) 4448.17 0.156084
\(934\) −17733.2 −0.621252
\(935\) 6066.82 0.212199
\(936\) −12917.6 −0.451094
\(937\) 25892.8 0.902753 0.451376 0.892334i \(-0.350933\pi\)
0.451376 + 0.892334i \(0.350933\pi\)
\(938\) −15236.8 −0.530384
\(939\) 5131.13 0.178326
\(940\) 1884.32 0.0653826
\(941\) −12650.8 −0.438263 −0.219131 0.975695i \(-0.570322\pi\)
−0.219131 + 0.975695i \(0.570322\pi\)
\(942\) −1343.17 −0.0464572
\(943\) 276.884 0.00956158
\(944\) 18203.4 0.627617
\(945\) −4472.42 −0.153955
\(946\) 21929.4 0.753686
\(947\) −19766.7 −0.678280 −0.339140 0.940736i \(-0.610136\pi\)
−0.339140 + 0.940736i \(0.610136\pi\)
\(948\) 420.632 0.0144109
\(949\) −20006.1 −0.684326
\(950\) 2625.36 0.0896610
\(951\) −8906.27 −0.303686
\(952\) −4421.37 −0.150523
\(953\) −6066.08 −0.206190 −0.103095 0.994671i \(-0.532875\pi\)
−0.103095 + 0.994671i \(0.532875\pi\)
\(954\) 21248.2 0.721105
\(955\) −11374.2 −0.385404
\(956\) 39523.9 1.33713
\(957\) −2243.98 −0.0757968
\(958\) −6733.80 −0.227097
\(959\) 3451.27 0.116212
\(960\) −142.716 −0.00479807
\(961\) −29547.1 −0.991813
\(962\) 2325.02 0.0779228
\(963\) 23171.2 0.775370
\(964\) −46799.9 −1.56361
\(965\) 14528.7 0.484659
\(966\) 148.968 0.00496167
\(967\) −31669.2 −1.05317 −0.526584 0.850123i \(-0.676527\pi\)
−0.526584 + 0.850123i \(0.676527\pi\)
\(968\) −66698.7 −2.21464
\(969\) −1691.50 −0.0560773
\(970\) −5943.09 −0.196723
\(971\) −24982.5 −0.825671 −0.412835 0.910806i \(-0.635462\pi\)
−0.412835 + 0.910806i \(0.635462\pi\)
\(972\) 15397.3 0.508097
\(973\) −31380.5 −1.03393
\(974\) −12378.2 −0.407212
\(975\) 821.947 0.0269983
\(976\) 10523.0 0.345115
\(977\) 26574.1 0.870194 0.435097 0.900384i \(-0.356714\pi\)
0.435097 + 0.900384i \(0.356714\pi\)
\(978\) −2746.36 −0.0897945
\(979\) 5196.54 0.169645
\(980\) −4153.85 −0.135398
\(981\) −21389.2 −0.696131
\(982\) −7288.41 −0.236846
\(983\) −19222.4 −0.623703 −0.311852 0.950131i \(-0.600949\pi\)
−0.311852 + 0.950131i \(0.600949\pi\)
\(984\) −791.282 −0.0256353
\(985\) −24189.9 −0.782493
\(986\) −564.093 −0.0182195
\(987\) −983.694 −0.0317237
\(988\) 15888.4 0.511616
\(989\) 1805.41 0.0580472
\(990\) −11187.4 −0.359149
\(991\) −22396.5 −0.717909 −0.358954 0.933355i \(-0.616867\pi\)
−0.358954 + 0.933355i \(0.616867\pi\)
\(992\) −2794.44 −0.0894391
\(993\) −8422.99 −0.269180
\(994\) −16346.8 −0.521618
\(995\) 11826.3 0.376803
\(996\) −9304.24 −0.296000
\(997\) 26548.7 0.843337 0.421669 0.906750i \(-0.361445\pi\)
0.421669 + 0.906750i \(0.361445\pi\)
\(998\) 24055.0 0.762975
\(999\) −4084.24 −0.129349
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.4.a.e.1.3 3
3.2 odd 2 765.4.a.l.1.1 3
4.3 odd 2 1360.4.a.s.1.2 3
5.2 odd 4 425.4.b.g.324.4 6
5.3 odd 4 425.4.b.g.324.3 6
5.4 even 2 425.4.a.h.1.1 3
17.16 even 2 1445.4.a.j.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.4.a.e.1.3 3 1.1 even 1 trivial
425.4.a.h.1.1 3 5.4 even 2
425.4.b.g.324.3 6 5.3 odd 4
425.4.b.g.324.4 6 5.2 odd 4
765.4.a.l.1.1 3 3.2 odd 2
1360.4.a.s.1.2 3 4.3 odd 2
1445.4.a.j.1.3 3 17.16 even 2