Properties

Label 4304.2.a.n.1.12
Level 43044304
Weight 22
Character 4304.1
Self dual yes
Analytic conductor 34.36834.368
Analytic rank 00
Dimension 1818
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4304=24269 4304 = 2^{4} \cdot 269
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 34.367613030034.3676130300
Analytic rank: 00
Dimension: 1818
Coefficient field: Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x184x1728x16+121x15+293x141427x131440x12+8461x11++1006 x^{18} - 4 x^{17} - 28 x^{16} + 121 x^{15} + 293 x^{14} - 1427 x^{13} - 1440 x^{12} + 8461 x^{11} + \cdots + 1006 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 2152)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.12
Root 0.8011980.801198 of defining polynomial
Character χ\chi == 4304.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.801198q33.55277q5+0.142030q72.35808q95.09556q113.44639q132.84647q15+5.28924q174.97197q19+0.113794q211.58205q23+7.62217q254.29289q27+5.53031q29+0.382134q314.08255q330.504599q356.21978q372.76125q3911.4440q41+9.71230q43+8.37772q45+9.64910q476.97983q49+4.23773q5110.7665q53+18.1033q553.98354q572.10144q59+8.92802q610.334918q63+12.2442q6512.4585q671.26754q69+7.78439q71+8.61715q73+6.10687q750.723721q77+11.8091q79+3.63479q815.61859q8318.7914q85+4.43087q8712.7423q890.489491q91+0.306165q93+17.6643q95+8.41309q97+12.0157q99+O(q100)q+0.801198 q^{3} -3.55277 q^{5} +0.142030 q^{7} -2.35808 q^{9} -5.09556 q^{11} -3.44639 q^{13} -2.84647 q^{15} +5.28924 q^{17} -4.97197 q^{19} +0.113794 q^{21} -1.58205 q^{23} +7.62217 q^{25} -4.29289 q^{27} +5.53031 q^{29} +0.382134 q^{31} -4.08255 q^{33} -0.504599 q^{35} -6.21978 q^{37} -2.76125 q^{39} -11.4440 q^{41} +9.71230 q^{43} +8.37772 q^{45} +9.64910 q^{47} -6.97983 q^{49} +4.23773 q^{51} -10.7665 q^{53} +18.1033 q^{55} -3.98354 q^{57} -2.10144 q^{59} +8.92802 q^{61} -0.334918 q^{63} +12.2442 q^{65} -12.4585 q^{67} -1.26754 q^{69} +7.78439 q^{71} +8.61715 q^{73} +6.10687 q^{75} -0.723721 q^{77} +11.8091 q^{79} +3.63479 q^{81} -5.61859 q^{83} -18.7914 q^{85} +4.43087 q^{87} -12.7423 q^{89} -0.489491 q^{91} +0.306165 q^{93} +17.6643 q^{95} +8.41309 q^{97} +12.0157 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 18q+4q36q5+17q7+18q9+10q113q13+19q156q17+3q19+q21+37q23+18q25+13q273q29+35q319q33+12q358q37++41q99+O(q100) 18 q + 4 q^{3} - 6 q^{5} + 17 q^{7} + 18 q^{9} + 10 q^{11} - 3 q^{13} + 19 q^{15} - 6 q^{17} + 3 q^{19} + q^{21} + 37 q^{23} + 18 q^{25} + 13 q^{27} - 3 q^{29} + 35 q^{31} - 9 q^{33} + 12 q^{35} - 8 q^{37}+ \cdots + 41 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0.801198 0.462572 0.231286 0.972886i 0.425707π-0.425707\pi
0.231286 + 0.972886i 0.425707π0.425707\pi
44 0 0
55 −3.55277 −1.58885 −0.794423 0.607364i 0.792227π-0.792227\pi
−0.794423 + 0.607364i 0.792227π0.792227\pi
66 0 0
77 0.142030 0.0536822 0.0268411 0.999640i 0.491455π-0.491455\pi
0.0268411 + 0.999640i 0.491455π0.491455\pi
88 0 0
99 −2.35808 −0.786027
1010 0 0
1111 −5.09556 −1.53637 −0.768184 0.640229i 0.778839π-0.778839\pi
−0.768184 + 0.640229i 0.778839π0.778839\pi
1212 0 0
1313 −3.44639 −0.955858 −0.477929 0.878398i 0.658612π-0.658612\pi
−0.477929 + 0.878398i 0.658612π0.658612\pi
1414 0 0
1515 −2.84647 −0.734956
1616 0 0
1717 5.28924 1.28283 0.641414 0.767195i 0.278348π-0.278348\pi
0.641414 + 0.767195i 0.278348π0.278348\pi
1818 0 0
1919 −4.97197 −1.14065 −0.570324 0.821420i 0.693183π-0.693183\pi
−0.570324 + 0.821420i 0.693183π0.693183\pi
2020 0 0
2121 0.113794 0.0248319
2222 0 0
2323 −1.58205 −0.329881 −0.164940 0.986304i 0.552743π-0.552743\pi
−0.164940 + 0.986304i 0.552743π0.552743\pi
2424 0 0
2525 7.62217 1.52443
2626 0 0
2727 −4.29289 −0.826166
2828 0 0
2929 5.53031 1.02695 0.513476 0.858104i 0.328358π-0.328358\pi
0.513476 + 0.858104i 0.328358π0.328358\pi
3030 0 0
3131 0.382134 0.0686334 0.0343167 0.999411i 0.489075π-0.489075\pi
0.0343167 + 0.999411i 0.489075π0.489075\pi
3232 0 0
3333 −4.08255 −0.710681
3434 0 0
3535 −0.504599 −0.0852928
3636 0 0
3737 −6.21978 −1.02252 −0.511262 0.859425i 0.670822π-0.670822\pi
−0.511262 + 0.859425i 0.670822π0.670822\pi
3838 0 0
3939 −2.76125 −0.442153
4040 0 0
4141 −11.4440 −1.78725 −0.893623 0.448818i 0.851845π-0.851845\pi
−0.893623 + 0.448818i 0.851845π0.851845\pi
4242 0 0
4343 9.71230 1.48111 0.740556 0.671995i 0.234562π-0.234562\pi
0.740556 + 0.671995i 0.234562π0.234562\pi
4444 0 0
4545 8.37772 1.24888
4646 0 0
4747 9.64910 1.40747 0.703733 0.710464i 0.251515π-0.251515\pi
0.703733 + 0.710464i 0.251515π0.251515\pi
4848 0 0
4949 −6.97983 −0.997118
5050 0 0
5151 4.23773 0.593400
5252 0 0
5353 −10.7665 −1.47889 −0.739444 0.673218i 0.764911π-0.764911\pi
−0.739444 + 0.673218i 0.764911π0.764911\pi
5454 0 0
5555 18.1033 2.44105
5656 0 0
5757 −3.98354 −0.527632
5858 0 0
5959 −2.10144 −0.273584 −0.136792 0.990600i 0.543679π-0.543679\pi
−0.136792 + 0.990600i 0.543679π0.543679\pi
6060 0 0
6161 8.92802 1.14312 0.571558 0.820562i 0.306339π-0.306339\pi
0.571558 + 0.820562i 0.306339π0.306339\pi
6262 0 0
6363 −0.334918 −0.0421957
6464 0 0
6565 12.2442 1.51871
6666 0 0
6767 −12.4585 −1.52205 −0.761024 0.648724i 0.775303π-0.775303\pi
−0.761024 + 0.648724i 0.775303π0.775303\pi
6868 0 0
6969 −1.26754 −0.152594
7070 0 0
7171 7.78439 0.923837 0.461919 0.886922i 0.347161π-0.347161\pi
0.461919 + 0.886922i 0.347161π0.347161\pi
7272 0 0
7373 8.61715 1.00856 0.504281 0.863540i 0.331758π-0.331758\pi
0.504281 + 0.863540i 0.331758π0.331758\pi
7474 0 0
7575 6.10687 0.705160
7676 0 0
7777 −0.723721 −0.0824756
7878 0 0
7979 11.8091 1.32863 0.664314 0.747453i 0.268724π-0.268724\pi
0.664314 + 0.747453i 0.268724π0.268724\pi
8080 0 0
8181 3.63479 0.403866
8282 0 0
8383 −5.61859 −0.616720 −0.308360 0.951270i 0.599780π-0.599780\pi
−0.308360 + 0.951270i 0.599780π0.599780\pi
8484 0 0
8585 −18.7914 −2.03822
8686 0 0
8787 4.43087 0.475039
8888 0 0
8989 −12.7423 −1.35069 −0.675343 0.737504i 0.736004π-0.736004\pi
−0.675343 + 0.737504i 0.736004π0.736004\pi
9090 0 0
9191 −0.489491 −0.0513126
9292 0 0
9393 0.306165 0.0317479
9494 0 0
9595 17.6643 1.81232
9696 0 0
9797 8.41309 0.854220 0.427110 0.904200i 0.359532π-0.359532\pi
0.427110 + 0.904200i 0.359532π0.359532\pi
9898 0 0
9999 12.0157 1.20763
100100 0 0
101101 13.0360 1.29713 0.648565 0.761160i 0.275370π-0.275370\pi
0.648565 + 0.761160i 0.275370π0.275370\pi
102102 0 0
103103 14.0245 1.38188 0.690939 0.722913i 0.257197π-0.257197\pi
0.690939 + 0.722913i 0.257197π0.257197\pi
104104 0 0
105105 −0.404284 −0.0394541
106106 0 0
107107 18.8252 1.81990 0.909950 0.414717i 0.136119π-0.136119\pi
0.909950 + 0.414717i 0.136119π0.136119\pi
108108 0 0
109109 2.99688 0.287049 0.143525 0.989647i 0.454156π-0.454156\pi
0.143525 + 0.989647i 0.454156π0.454156\pi
110110 0 0
111111 −4.98327 −0.472991
112112 0 0
113113 −3.40804 −0.320602 −0.160301 0.987068i 0.551246π-0.551246\pi
−0.160301 + 0.987068i 0.551246π0.551246\pi
114114 0 0
115115 5.62067 0.524130
116116 0 0
117117 8.12688 0.751330
118118 0 0
119119 0.751229 0.0688650
120120 0 0
121121 14.9647 1.36043
122122 0 0
123123 −9.16888 −0.826730
124124 0 0
125125 −9.31596 −0.833245
126126 0 0
127127 13.9165 1.23489 0.617446 0.786613i 0.288167π-0.288167\pi
0.617446 + 0.786613i 0.288167π0.288167\pi
128128 0 0
129129 7.78147 0.685121
130130 0 0
131131 −5.62320 −0.491301 −0.245651 0.969358i 0.579002π-0.579002\pi
−0.245651 + 0.969358i 0.579002π0.579002\pi
132132 0 0
133133 −0.706168 −0.0612325
134134 0 0
135135 15.2516 1.31265
136136 0 0
137137 2.70088 0.230752 0.115376 0.993322i 0.463193π-0.463193\pi
0.115376 + 0.993322i 0.463193π0.463193\pi
138138 0 0
139139 −12.6711 −1.07475 −0.537376 0.843343i 0.680584π-0.680584\pi
−0.537376 + 0.843343i 0.680584π0.680584\pi
140140 0 0
141141 7.73085 0.651055
142142 0 0
143143 17.5613 1.46855
144144 0 0
145145 −19.6479 −1.63167
146146 0 0
147147 −5.59223 −0.461239
148148 0 0
149149 −13.8940 −1.13824 −0.569120 0.822254i 0.692716π-0.692716\pi
−0.569120 + 0.822254i 0.692716π0.692716\pi
150150 0 0
151151 −8.32426 −0.677419 −0.338710 0.940891i 0.609990π-0.609990\pi
−0.338710 + 0.940891i 0.609990π0.609990\pi
152152 0 0
153153 −12.4724 −1.00834
154154 0 0
155155 −1.35764 −0.109048
156156 0 0
157157 2.32917 0.185888 0.0929442 0.995671i 0.470372π-0.470372\pi
0.0929442 + 0.995671i 0.470372π0.470372\pi
158158 0 0
159159 −8.62607 −0.684092
160160 0 0
161161 −0.224699 −0.0177087
162162 0 0
163163 12.8628 1.00749 0.503745 0.863852i 0.331955π-0.331955\pi
0.503745 + 0.863852i 0.331955π0.331955\pi
164164 0 0
165165 14.5044 1.12916
166166 0 0
167167 −17.0141 −1.31659 −0.658295 0.752760i 0.728722π-0.728722\pi
−0.658295 + 0.752760i 0.728722π0.728722\pi
168168 0 0
169169 −1.12236 −0.0863357
170170 0 0
171171 11.7243 0.896581
172172 0 0
173173 −9.70735 −0.738036 −0.369018 0.929422i 0.620306π-0.620306\pi
−0.369018 + 0.929422i 0.620306π0.620306\pi
174174 0 0
175175 1.08257 0.0818349
176176 0 0
177177 −1.68367 −0.126552
178178 0 0
179179 11.6628 0.871716 0.435858 0.900015i 0.356445π-0.356445\pi
0.435858 + 0.900015i 0.356445π0.356445\pi
180180 0 0
181181 −0.149308 −0.0110980 −0.00554899 0.999985i 0.501766π-0.501766\pi
−0.00554899 + 0.999985i 0.501766π0.501766\pi
182182 0 0
183183 7.15312 0.528774
184184 0 0
185185 22.0974 1.62464
186186 0 0
187187 −26.9516 −1.97090
188188 0 0
189189 −0.609717 −0.0443504
190190 0 0
191191 −2.65407 −0.192042 −0.0960208 0.995379i 0.530612π-0.530612\pi
−0.0960208 + 0.995379i 0.530612π0.530612\pi
192192 0 0
193193 5.83060 0.419696 0.209848 0.977734i 0.432703π-0.432703\pi
0.209848 + 0.977734i 0.432703π0.432703\pi
194194 0 0
195195 9.81007 0.702514
196196 0 0
197197 −20.5474 −1.46394 −0.731972 0.681335i 0.761400π-0.761400\pi
−0.731972 + 0.681335i 0.761400π0.761400\pi
198198 0 0
199199 −20.1328 −1.42718 −0.713588 0.700566i 0.752931π-0.752931\pi
−0.713588 + 0.700566i 0.752931π0.752931\pi
200200 0 0
201201 −9.98173 −0.704057
202202 0 0
203203 0.785468 0.0551290
204204 0 0
205205 40.6577 2.83966
206206 0 0
207207 3.73061 0.259295
208208 0 0
209209 25.3350 1.75246
210210 0 0
211211 7.56873 0.521053 0.260526 0.965467i 0.416104π-0.416104\pi
0.260526 + 0.965467i 0.416104π0.416104\pi
212212 0 0
213213 6.23684 0.427341
214214 0 0
215215 −34.5055 −2.35326
216216 0 0
217217 0.0542744 0.00368439
218218 0 0
219219 6.90405 0.466532
220220 0 0
221221 −18.2288 −1.22620
222222 0 0
223223 26.2466 1.75760 0.878801 0.477188i 0.158344π-0.158344\pi
0.878801 + 0.477188i 0.158344π0.158344\pi
224224 0 0
225225 −17.9737 −1.19825
226226 0 0
227227 26.7791 1.77739 0.888697 0.458495i 0.151611π-0.151611\pi
0.888697 + 0.458495i 0.151611π0.151611\pi
228228 0 0
229229 21.4657 1.41849 0.709247 0.704961i 0.249035π-0.249035\pi
0.709247 + 0.704961i 0.249035π0.249035\pi
230230 0 0
231231 −0.579844 −0.0381509
232232 0 0
233233 −20.6557 −1.35320 −0.676600 0.736351i 0.736547π-0.736547\pi
−0.676600 + 0.736351i 0.736547π0.736547\pi
234234 0 0
235235 −34.2810 −2.23625
236236 0 0
237237 9.46144 0.614586
238238 0 0
239239 −3.68982 −0.238674 −0.119337 0.992854i 0.538077π-0.538077\pi
−0.119337 + 0.992854i 0.538077π0.538077\pi
240240 0 0
241241 −30.5306 −1.96665 −0.983324 0.181864i 0.941787π-0.941787\pi
−0.983324 + 0.181864i 0.941787π0.941787\pi
242242 0 0
243243 15.7908 1.01298
244244 0 0
245245 24.7977 1.58427
246246 0 0
247247 17.1354 1.09030
248248 0 0
249249 −4.50160 −0.285277
250250 0 0
251251 10.9051 0.688326 0.344163 0.938910i 0.388163π-0.388163\pi
0.344163 + 0.938910i 0.388163π0.388163\pi
252252 0 0
253253 8.06144 0.506819
254254 0 0
255255 −15.0557 −0.942822
256256 0 0
257257 −1.09648 −0.0683965 −0.0341983 0.999415i 0.510888π-0.510888\pi
−0.0341983 + 0.999415i 0.510888π0.510888\pi
258258 0 0
259259 −0.883393 −0.0548914
260260 0 0
261261 −13.0409 −0.807212
262262 0 0
263263 26.4167 1.62892 0.814462 0.580216i 0.197032π-0.197032\pi
0.814462 + 0.580216i 0.197032π0.197032\pi
264264 0 0
265265 38.2508 2.34973
266266 0 0
267267 −10.2091 −0.624790
268268 0 0
269269 1.00000 0.0609711
270270 0 0
271271 −1.64796 −0.100106 −0.0500532 0.998747i 0.515939π-0.515939\pi
−0.0500532 + 0.998747i 0.515939π0.515939\pi
272272 0 0
273273 −0.392179 −0.0237358
274274 0 0
275275 −38.8392 −2.34209
276276 0 0
277277 28.2663 1.69836 0.849178 0.528106i 0.177098π-0.177098\pi
0.849178 + 0.528106i 0.177098π0.177098\pi
278278 0 0
279279 −0.901104 −0.0539477
280280 0 0
281281 −25.2079 −1.50378 −0.751888 0.659290i 0.770857π-0.770857\pi
−0.751888 + 0.659290i 0.770857π0.770857\pi
282282 0 0
283283 −5.84396 −0.347387 −0.173694 0.984800i 0.555570π-0.555570\pi
−0.173694 + 0.984800i 0.555570π0.555570\pi
284284 0 0
285285 14.1526 0.838327
286286 0 0
287287 −1.62538 −0.0959433
288288 0 0
289289 10.9760 0.645648
290290 0 0
291291 6.74056 0.395138
292292 0 0
293293 18.7907 1.09777 0.548884 0.835899i 0.315053π-0.315053\pi
0.548884 + 0.835899i 0.315053π0.315053\pi
294294 0 0
295295 7.46593 0.434683
296296 0 0
297297 21.8746 1.26930
298298 0 0
299299 5.45238 0.315319
300300 0 0
301301 1.37943 0.0795093
302302 0 0
303303 10.4444 0.600016
304304 0 0
305305 −31.7192 −1.81624
306306 0 0
307307 −8.38000 −0.478272 −0.239136 0.970986i 0.576864π-0.576864\pi
−0.239136 + 0.970986i 0.576864π0.576864\pi
308308 0 0
309309 11.2364 0.639219
310310 0 0
311311 −1.71579 −0.0972936 −0.0486468 0.998816i 0.515491π-0.515491\pi
−0.0486468 + 0.998816i 0.515491π0.515491\pi
312312 0 0
313313 25.4846 1.44047 0.720237 0.693728i 0.244033π-0.244033\pi
0.720237 + 0.693728i 0.244033π0.244033\pi
314314 0 0
315315 1.18989 0.0670424
316316 0 0
317317 −9.20822 −0.517185 −0.258593 0.965986i 0.583259π-0.583259\pi
−0.258593 + 0.965986i 0.583259π0.583259\pi
318318 0 0
319319 −28.1800 −1.57778
320320 0 0
321321 15.0827 0.841835
322322 0 0
323323 −26.2979 −1.46326
324324 0 0
325325 −26.2690 −1.45714
326326 0 0
327327 2.40110 0.132781
328328 0 0
329329 1.37046 0.0755559
330330 0 0
331331 26.1658 1.43820 0.719101 0.694905i 0.244554π-0.244554\pi
0.719101 + 0.694905i 0.244554π0.244554\pi
332332 0 0
333333 14.6667 0.803732
334334 0 0
335335 44.2622 2.41830
336336 0 0
337337 −6.82467 −0.371763 −0.185882 0.982572i 0.559514π-0.559514\pi
−0.185882 + 0.982572i 0.559514π0.559514\pi
338338 0 0
339339 −2.73052 −0.148301
340340 0 0
341341 −1.94719 −0.105446
342342 0 0
343343 −1.98555 −0.107210
344344 0 0
345345 4.50327 0.242448
346346 0 0
347347 −17.2455 −0.925788 −0.462894 0.886414i 0.653189π-0.653189\pi
−0.462894 + 0.886414i 0.653189π0.653189\pi
348348 0 0
349349 −31.9670 −1.71115 −0.855576 0.517677i 0.826797π-0.826797\pi
−0.855576 + 0.517677i 0.826797π0.826797\pi
350350 0 0
351351 14.7950 0.789698
352352 0 0
353353 −26.5074 −1.41085 −0.705424 0.708785i 0.749243π-0.749243\pi
−0.705424 + 0.708785i 0.749243π0.749243\pi
354354 0 0
355355 −27.6561 −1.46784
356356 0 0
357357 0.601883 0.0318550
358358 0 0
359359 −8.56430 −0.452006 −0.226003 0.974127i 0.572566π-0.572566\pi
−0.226003 + 0.974127i 0.572566π0.572566\pi
360360 0 0
361361 5.72051 0.301080
362362 0 0
363363 11.9897 0.629296
364364 0 0
365365 −30.6147 −1.60245
366366 0 0
367367 4.49087 0.234421 0.117211 0.993107i 0.462605π-0.462605\pi
0.117211 + 0.993107i 0.462605π0.462605\pi
368368 0 0
369369 26.9858 1.40482
370370 0 0
371371 −1.52916 −0.0793899
372372 0 0
373373 −5.91255 −0.306140 −0.153070 0.988215i 0.548916π-0.548916\pi
−0.153070 + 0.988215i 0.548916π0.548916\pi
374374 0 0
375375 −7.46393 −0.385436
376376 0 0
377377 −19.0596 −0.981620
378378 0 0
379379 −0.145933 −0.00749606 −0.00374803 0.999993i 0.501193π-0.501193\pi
−0.00374803 + 0.999993i 0.501193π0.501193\pi
380380 0 0
381381 11.1499 0.571227
382382 0 0
383383 10.0575 0.513915 0.256957 0.966423i 0.417280π-0.417280\pi
0.256957 + 0.966423i 0.417280π0.417280\pi
384384 0 0
385385 2.57121 0.131041
386386 0 0
387387 −22.9024 −1.16419
388388 0 0
389389 −28.1159 −1.42553 −0.712765 0.701403i 0.752557π-0.752557\pi
−0.712765 + 0.701403i 0.752557π0.752557\pi
390390 0 0
391391 −8.36785 −0.423180
392392 0 0
393393 −4.50530 −0.227262
394394 0 0
395395 −41.9550 −2.11099
396396 0 0
397397 26.2520 1.31755 0.658776 0.752339i 0.271074π-0.271074\pi
0.658776 + 0.752339i 0.271074π0.271074\pi
398398 0 0
399399 −0.565781 −0.0283245
400400 0 0
401401 −6.87368 −0.343255 −0.171628 0.985162i 0.554903π-0.554903\pi
−0.171628 + 0.985162i 0.554903π0.554903\pi
402402 0 0
403403 −1.31699 −0.0656037
404404 0 0
405405 −12.9136 −0.641681
406406 0 0
407407 31.6932 1.57097
408408 0 0
409409 15.7448 0.778531 0.389265 0.921126i 0.372729π-0.372729\pi
0.389265 + 0.921126i 0.372729π0.372729\pi
410410 0 0
411411 2.16394 0.106739
412412 0 0
413413 −0.298467 −0.0146866
414414 0 0
415415 19.9615 0.979874
416416 0 0
417417 −10.1521 −0.497150
418418 0 0
419419 −24.3510 −1.18962 −0.594811 0.803865i 0.702773π-0.702773\pi
−0.594811 + 0.803865i 0.702773π0.702773\pi
420420 0 0
421421 15.4946 0.755160 0.377580 0.925977i 0.376756π-0.376756\pi
0.377580 + 0.925977i 0.376756π0.376756\pi
422422 0 0
423423 −22.7534 −1.10631
424424 0 0
425425 40.3154 1.95559
426426 0 0
427427 1.26804 0.0613650
428428 0 0
429429 14.0701 0.679310
430430 0 0
431431 24.5516 1.18261 0.591305 0.806448i 0.298613π-0.298613\pi
0.591305 + 0.806448i 0.298613π0.298613\pi
432432 0 0
433433 −4.92431 −0.236647 −0.118324 0.992975i 0.537752π-0.537752\pi
−0.118324 + 0.992975i 0.537752π0.537752\pi
434434 0 0
435435 −15.7419 −0.754765
436436 0 0
437437 7.86593 0.376278
438438 0 0
439439 5.49766 0.262389 0.131195 0.991357i 0.458119π-0.458119\pi
0.131195 + 0.991357i 0.458119π0.458119\pi
440440 0 0
441441 16.4590 0.783762
442442 0 0
443443 −10.5997 −0.503609 −0.251804 0.967778i 0.581024π-0.581024\pi
−0.251804 + 0.967778i 0.581024π0.581024\pi
444444 0 0
445445 45.2706 2.14603
446446 0 0
447447 −11.1318 −0.526518
448448 0 0
449449 −17.0603 −0.805124 −0.402562 0.915393i 0.631880π-0.631880\pi
−0.402562 + 0.915393i 0.631880π0.631880\pi
450450 0 0
451451 58.3133 2.74587
452452 0 0
453453 −6.66939 −0.313355
454454 0 0
455455 1.73905 0.0815278
456456 0 0
457457 36.3474 1.70026 0.850131 0.526571i 0.176523π-0.176523\pi
0.850131 + 0.526571i 0.176523π0.176523\pi
458458 0 0
459459 −22.7061 −1.05983
460460 0 0
461461 −10.8274 −0.504280 −0.252140 0.967691i 0.581134π-0.581134\pi
−0.252140 + 0.967691i 0.581134π0.581134\pi
462462 0 0
463463 33.7594 1.56893 0.784466 0.620172i 0.212937π-0.212937\pi
0.784466 + 0.620172i 0.212937π0.212937\pi
464464 0 0
465465 −1.08773 −0.0504425
466466 0 0
467467 29.6160 1.37047 0.685233 0.728324i 0.259700π-0.259700\pi
0.685233 + 0.728324i 0.259700π0.259700\pi
468468 0 0
469469 −1.76948 −0.0817069
470470 0 0
471471 1.86613 0.0859868
472472 0 0
473473 −49.4896 −2.27553
474474 0 0
475475 −37.8972 −1.73884
476476 0 0
477477 25.3882 1.16245
478478 0 0
479479 −8.28091 −0.378364 −0.189182 0.981942i 0.560584π-0.560584\pi
−0.189182 + 0.981942i 0.560584π0.560584\pi
480480 0 0
481481 21.4358 0.977388
482482 0 0
483483 −0.180028 −0.00819156
484484 0 0
485485 −29.8898 −1.35722
486486 0 0
487487 −12.9498 −0.586814 −0.293407 0.955988i 0.594789π-0.594789\pi
−0.293407 + 0.955988i 0.594789π0.594789\pi
488488 0 0
489489 10.3056 0.466037
490490 0 0
491491 −34.8081 −1.57087 −0.785434 0.618946i 0.787560π-0.787560\pi
−0.785434 + 0.618946i 0.787560π0.787560\pi
492492 0 0
493493 29.2511 1.31740
494494 0 0
495495 −42.6891 −1.91873
496496 0 0
497497 1.10562 0.0495936
498498 0 0
499499 −1.98014 −0.0886434 −0.0443217 0.999017i 0.514113π-0.514113\pi
−0.0443217 + 0.999017i 0.514113π0.514113\pi
500500 0 0
501501 −13.6317 −0.609018
502502 0 0
503503 12.2052 0.544203 0.272101 0.962269i 0.412281π-0.412281\pi
0.272101 + 0.962269i 0.412281π0.412281\pi
504504 0 0
505505 −46.3139 −2.06094
506506 0 0
507507 −0.899236 −0.0399365
508508 0 0
509509 −5.62094 −0.249144 −0.124572 0.992211i 0.539756π-0.539756\pi
−0.124572 + 0.992211i 0.539756π0.539756\pi
510510 0 0
511511 1.22389 0.0541418
512512 0 0
513513 21.3441 0.942366
514514 0 0
515515 −49.8259 −2.19559
516516 0 0
517517 −49.1676 −2.16239
518518 0 0
519519 −7.77751 −0.341395
520520 0 0
521521 −33.6681 −1.47503 −0.737513 0.675333i 0.764000π-0.764000\pi
−0.737513 + 0.675333i 0.764000π0.764000\pi
522522 0 0
523523 −13.3997 −0.585927 −0.292964 0.956124i 0.594641π-0.594641\pi
−0.292964 + 0.956124i 0.594641π0.594641\pi
524524 0 0
525525 0.867357 0.0378546
526526 0 0
527527 2.02120 0.0880448
528528 0 0
529529 −20.4971 −0.891179
530530 0 0
531531 4.95537 0.215045
532532 0 0
533533 39.4404 1.70835
534534 0 0
535535 −66.8816 −2.89154
536536 0 0
537537 9.34419 0.403231
538538 0 0
539539 35.5661 1.53194
540540 0 0
541541 37.8128 1.62570 0.812850 0.582474i 0.197915π-0.197915\pi
0.812850 + 0.582474i 0.197915π0.197915\pi
542542 0 0
543543 −0.119625 −0.00513361
544544 0 0
545545 −10.6472 −0.456077
546546 0 0
547547 −12.0734 −0.516222 −0.258111 0.966115i 0.583100π-0.583100\pi
−0.258111 + 0.966115i 0.583100π0.583100\pi
548548 0 0
549549 −21.0530 −0.898520
550550 0 0
551551 −27.4965 −1.17139
552552 0 0
553553 1.67724 0.0713237
554554 0 0
555555 17.7044 0.751511
556556 0 0
557557 13.2024 0.559404 0.279702 0.960087i 0.409764π-0.409764\pi
0.279702 + 0.960087i 0.409764π0.409764\pi
558558 0 0
559559 −33.4724 −1.41573
560560 0 0
561561 −21.5936 −0.911682
562562 0 0
563563 6.12913 0.258312 0.129156 0.991624i 0.458773π-0.458773\pi
0.129156 + 0.991624i 0.458773π0.458773\pi
564564 0 0
565565 12.1080 0.509387
566566 0 0
567567 0.516248 0.0216804
568568 0 0
569569 39.1804 1.64253 0.821264 0.570548i 0.193269π-0.193269\pi
0.821264 + 0.570548i 0.193269π0.193269\pi
570570 0 0
571571 13.9089 0.582069 0.291034 0.956713i 0.406001π-0.406001\pi
0.291034 + 0.956713i 0.406001π0.406001\pi
572572 0 0
573573 −2.12644 −0.0888331
574574 0 0
575575 −12.0587 −0.502882
576576 0 0
577577 3.80449 0.158383 0.0791915 0.996859i 0.474766π-0.474766\pi
0.0791915 + 0.996859i 0.474766π0.474766\pi
578578 0 0
579579 4.67147 0.194139
580580 0 0
581581 −0.798007 −0.0331069
582582 0 0
583583 54.8611 2.27212
584584 0 0
585585 −28.8729 −1.19375
586586 0 0
587587 3.45013 0.142402 0.0712011 0.997462i 0.477317π-0.477317\pi
0.0712011 + 0.997462i 0.477317π0.477317\pi
588588 0 0
589589 −1.89996 −0.0782866
590590 0 0
591591 −16.4626 −0.677179
592592 0 0
593593 −8.38305 −0.344251 −0.172125 0.985075i 0.555063π-0.555063\pi
−0.172125 + 0.985075i 0.555063π0.555063\pi
594594 0 0
595595 −2.66894 −0.109416
596596 0 0
597597 −16.1304 −0.660171
598598 0 0
599599 −5.07230 −0.207248 −0.103624 0.994617i 0.533044π-0.533044\pi
−0.103624 + 0.994617i 0.533044π0.533044\pi
600600 0 0
601601 −23.0191 −0.938967 −0.469483 0.882941i 0.655560π-0.655560\pi
−0.469483 + 0.882941i 0.655560π0.655560\pi
602602 0 0
603603 29.3781 1.19637
604604 0 0
605605 −53.1661 −2.16151
606606 0 0
607607 38.6041 1.56689 0.783445 0.621461i 0.213460π-0.213460\pi
0.783445 + 0.621461i 0.213460π0.213460\pi
608608 0 0
609609 0.629316 0.0255012
610610 0 0
611611 −33.2546 −1.34534
612612 0 0
613613 −42.6445 −1.72240 −0.861198 0.508269i 0.830285π-0.830285\pi
−0.861198 + 0.508269i 0.830285π0.830285\pi
614614 0 0
615615 32.5749 1.31355
616616 0 0
617617 1.54860 0.0623444 0.0311722 0.999514i 0.490076π-0.490076\pi
0.0311722 + 0.999514i 0.490076π0.490076\pi
618618 0 0
619619 −24.3055 −0.976922 −0.488461 0.872586i 0.662442π-0.662442\pi
−0.488461 + 0.872586i 0.662442π0.662442\pi
620620 0 0
621621 6.79157 0.272536
622622 0 0
623623 −1.80979 −0.0725078
624624 0 0
625625 −5.01339 −0.200536
626626 0 0
627627 20.2983 0.810638
628628 0 0
629629 −32.8979 −1.31172
630630 0 0
631631 6.16144 0.245283 0.122641 0.992451i 0.460863π-0.460863\pi
0.122641 + 0.992451i 0.460863π0.460863\pi
632632 0 0
633633 6.06405 0.241024
634634 0 0
635635 −49.4422 −1.96206
636636 0 0
637637 24.0552 0.953103
638638 0 0
639639 −18.3562 −0.726161
640640 0 0
641641 41.4384 1.63672 0.818358 0.574708i 0.194884π-0.194884\pi
0.818358 + 0.574708i 0.194884π0.194884\pi
642642 0 0
643643 −5.51179 −0.217364 −0.108682 0.994077i 0.534663π-0.534663\pi
−0.108682 + 0.994077i 0.534663π0.534663\pi
644644 0 0
645645 −27.6458 −1.08855
646646 0 0
647647 2.54222 0.0999451 0.0499726 0.998751i 0.484087π-0.484087\pi
0.0499726 + 0.998751i 0.484087π0.484087\pi
648648 0 0
649649 10.7080 0.420326
650650 0 0
651651 0.0434846 0.00170430
652652 0 0
653653 17.0401 0.666832 0.333416 0.942780i 0.391799π-0.391799\pi
0.333416 + 0.942780i 0.391799π0.391799\pi
654654 0 0
655655 19.9779 0.780602
656656 0 0
657657 −20.3199 −0.792756
658658 0 0
659659 −15.3350 −0.597366 −0.298683 0.954352i 0.596547π-0.596547\pi
−0.298683 + 0.954352i 0.596547π0.596547\pi
660660 0 0
661661 37.9168 1.47479 0.737396 0.675461i 0.236055π-0.236055\pi
0.737396 + 0.675461i 0.236055π0.236055\pi
662662 0 0
663663 −14.6049 −0.567206
664664 0 0
665665 2.50885 0.0972891
666666 0 0
667667 −8.74924 −0.338772
668668 0 0
669669 21.0287 0.813018
670670 0 0
671671 −45.4933 −1.75625
672672 0 0
673673 21.4804 0.828008 0.414004 0.910275i 0.364130π-0.364130\pi
0.414004 + 0.910275i 0.364130π0.364130\pi
674674 0 0
675675 −32.7211 −1.25944
676676 0 0
677677 −35.6115 −1.36866 −0.684330 0.729172i 0.739905π-0.739905\pi
−0.684330 + 0.729172i 0.739905π0.739905\pi
678678 0 0
679679 1.19491 0.0458564
680680 0 0
681681 21.4554 0.822173
682682 0 0
683683 29.8857 1.14354 0.571772 0.820412i 0.306256π-0.306256\pi
0.571772 + 0.820412i 0.306256π0.306256\pi
684684 0 0
685685 −9.59561 −0.366629
686686 0 0
687687 17.1983 0.656155
688688 0 0
689689 37.1055 1.41361
690690 0 0
691691 17.8935 0.680700 0.340350 0.940299i 0.389454π-0.389454\pi
0.340350 + 0.940299i 0.389454π0.389454\pi
692692 0 0
693693 1.70659 0.0648281
694694 0 0
695695 45.0176 1.70761
696696 0 0
697697 −60.5298 −2.29273
698698 0 0
699699 −16.5493 −0.625952
700700 0 0
701701 31.7463 1.19904 0.599520 0.800359i 0.295358π-0.295358\pi
0.599520 + 0.800359i 0.295358π0.295358\pi
702702 0 0
703703 30.9246 1.16634
704704 0 0
705705 −27.4659 −1.03443
706706 0 0
707707 1.85150 0.0696328
708708 0 0
709709 18.4531 0.693019 0.346510 0.938046i 0.387367π-0.387367\pi
0.346510 + 0.938046i 0.387367π0.387367\pi
710710 0 0
711711 −27.8468 −1.04434
712712 0 0
713713 −0.604557 −0.0226408
714714 0 0
715715 −62.3913 −2.33330
716716 0 0
717717 −2.95627 −0.110404
718718 0 0
719719 −6.75645 −0.251973 −0.125987 0.992032i 0.540210π-0.540210\pi
−0.125987 + 0.992032i 0.540210π0.540210\pi
720720 0 0
721721 1.99190 0.0741823
722722 0 0
723723 −24.4610 −0.909716
724724 0 0
725725 42.1529 1.56552
726726 0 0
727727 −29.9437 −1.11055 −0.555276 0.831666i 0.687387π-0.687387\pi
−0.555276 + 0.831666i 0.687387π0.687387\pi
728728 0 0
729729 1.74722 0.0647120
730730 0 0
731731 51.3706 1.90001
732732 0 0
733733 9.61089 0.354986 0.177493 0.984122i 0.443201π-0.443201\pi
0.177493 + 0.984122i 0.443201π0.443201\pi
734734 0 0
735735 19.8679 0.732838
736736 0 0
737737 63.4830 2.33843
738738 0 0
739739 −9.80839 −0.360808 −0.180404 0.983593i 0.557740π-0.557740\pi
−0.180404 + 0.983593i 0.557740π0.557740\pi
740740 0 0
741741 13.7288 0.504341
742742 0 0
743743 −39.8812 −1.46310 −0.731550 0.681787i 0.761203π-0.761203\pi
−0.731550 + 0.681787i 0.761203π0.761203\pi
744744 0 0
745745 49.3622 1.80849
746746 0 0
747747 13.2491 0.484759
748748 0 0
749749 2.67374 0.0976963
750750 0 0
751751 30.9473 1.12928 0.564641 0.825337i 0.309015π-0.309015\pi
0.564641 + 0.825337i 0.309015π0.309015\pi
752752 0 0
753753 8.73717 0.318400
754754 0 0
755755 29.5742 1.07631
756756 0 0
757757 −10.8965 −0.396041 −0.198021 0.980198i 0.563451π-0.563451\pi
−0.198021 + 0.980198i 0.563451π0.563451\pi
758758 0 0
759759 6.45881 0.234440
760760 0 0
761761 −38.0921 −1.38084 −0.690419 0.723410i 0.742574π-0.742574\pi
−0.690419 + 0.723410i 0.742574π0.742574\pi
762762 0 0
763763 0.425647 0.0154094
764764 0 0
765765 44.3117 1.60209
766766 0 0
767767 7.24239 0.261508
768768 0 0
769769 18.5966 0.670609 0.335304 0.942110i 0.391161π-0.391161\pi
0.335304 + 0.942110i 0.391161π0.391161\pi
770770 0 0
771771 −0.878498 −0.0316383
772772 0 0
773773 17.8334 0.641421 0.320711 0.947177i 0.396078π-0.396078\pi
0.320711 + 0.947177i 0.396078π0.396078\pi
774774 0 0
775775 2.91269 0.104627
776776 0 0
777777 −0.707773 −0.0253912
778778 0 0
779779 56.8991 2.03862
780780 0 0
781781 −39.6658 −1.41935
782782 0 0
783783 −23.7410 −0.848433
784784 0 0
785785 −8.27502 −0.295348
786786 0 0
787787 55.7464 1.98715 0.993573 0.113198i 0.0361093π-0.0361093\pi
0.993573 + 0.113198i 0.0361093π0.0361093\pi
788788 0 0
789789 21.1650 0.753495
790790 0 0
791791 −0.484043 −0.0172106
792792 0 0
793793 −30.7695 −1.09266
794794 0 0
795795 30.6464 1.08692
796796 0 0
797797 17.6090 0.623744 0.311872 0.950124i 0.399044π-0.399044\pi
0.311872 + 0.950124i 0.399044π0.399044\pi
798798 0 0
799799 51.0364 1.80554
800800 0 0
801801 30.0475 1.06168
802802 0 0
803803 −43.9092 −1.54952
804804 0 0
805805 0.798302 0.0281365
806806 0 0
807807 0.801198 0.0282035
808808 0 0
809809 32.0038 1.12519 0.562597 0.826731i 0.309802π-0.309802\pi
0.562597 + 0.826731i 0.309802π0.309802\pi
810810 0 0
811811 −36.6445 −1.28676 −0.643380 0.765547i 0.722469π-0.722469\pi
−0.643380 + 0.765547i 0.722469π0.722469\pi
812812 0 0
813813 −1.32034 −0.0463064
814814 0 0
815815 −45.6985 −1.60075
816816 0 0
817817 −48.2893 −1.68943
818818 0 0
819819 1.15426 0.0403331
820820 0 0
821821 −2.44510 −0.0853347 −0.0426673 0.999089i 0.513586π-0.513586\pi
−0.0426673 + 0.999089i 0.513586π0.513586\pi
822822 0 0
823823 −43.4422 −1.51430 −0.757150 0.653241i 0.773409π-0.773409\pi
−0.757150 + 0.653241i 0.773409π0.773409\pi
824824 0 0
825825 −31.1179 −1.08339
826826 0 0
827827 23.5761 0.819820 0.409910 0.912126i 0.365560π-0.365560\pi
0.409910 + 0.912126i 0.365560π0.365560\pi
828828 0 0
829829 −5.41698 −0.188139 −0.0940697 0.995566i 0.529988π-0.529988\pi
−0.0940697 + 0.995566i 0.529988π0.529988\pi
830830 0 0
831831 22.6469 0.785612
832832 0 0
833833 −36.9179 −1.27913
834834 0 0
835835 60.4472 2.09186
836836 0 0
837837 −1.64046 −0.0567026
838838 0 0
839839 −35.1327 −1.21291 −0.606457 0.795116i 0.707410π-0.707410\pi
−0.606457 + 0.795116i 0.707410π0.707410\pi
840840 0 0
841841 1.58429 0.0546307
842842 0 0
843843 −20.1965 −0.695605
844844 0 0
845845 3.98750 0.137174
846846 0 0
847847 2.12543 0.0730308
848848 0 0
849849 −4.68217 −0.160692
850850 0 0
851851 9.84002 0.337311
852852 0 0
853853 −50.2052 −1.71899 −0.859497 0.511141i 0.829223π-0.829223\pi
−0.859497 + 0.511141i 0.829223π0.829223\pi
854854 0 0
855855 −41.6538 −1.42453
856856 0 0
857857 11.6711 0.398677 0.199339 0.979931i 0.436121π-0.436121\pi
0.199339 + 0.979931i 0.436121π0.436121\pi
858858 0 0
859859 4.54823 0.155184 0.0775918 0.996985i 0.475277π-0.475277\pi
0.0775918 + 0.996985i 0.475277π0.475277\pi
860860 0 0
861861 −1.30225 −0.0443807
862862 0 0
863863 28.6408 0.974945 0.487473 0.873138i 0.337919π-0.337919\pi
0.487473 + 0.873138i 0.337919π0.337919\pi
864864 0 0
865865 34.4880 1.17263
866866 0 0
867867 8.79396 0.298659
868868 0 0
869869 −60.1740 −2.04126
870870 0 0
871871 42.9369 1.45486
872872 0 0
873873 −19.8388 −0.671440
874874 0 0
875875 −1.32314 −0.0447304
876876 0 0
877877 19.0303 0.642606 0.321303 0.946976i 0.395879π-0.395879\pi
0.321303 + 0.946976i 0.395879π0.395879\pi
878878 0 0
879879 15.0551 0.507796
880880 0 0
881881 −2.53478 −0.0853990 −0.0426995 0.999088i 0.513596π-0.513596\pi
−0.0426995 + 0.999088i 0.513596π0.513596\pi
882882 0 0
883883 40.7580 1.37162 0.685809 0.727782i 0.259449π-0.259449\pi
0.685809 + 0.727782i 0.259449π0.259449\pi
884884 0 0
885885 5.98169 0.201072
886886 0 0
887887 42.7811 1.43645 0.718224 0.695812i 0.244955π-0.244955\pi
0.718224 + 0.695812i 0.244955π0.244955\pi
888888 0 0
889889 1.97656 0.0662918
890890 0 0
891891 −18.5213 −0.620486
892892 0 0
893893 −47.9751 −1.60543
894894 0 0
895895 −41.4351 −1.38502
896896 0 0
897897 4.36844 0.145858
898898 0 0
899899 2.11332 0.0704832
900900 0 0
901901 −56.9464 −1.89716
902902 0 0
903903 1.10520 0.0367788
904904 0 0
905905 0.530457 0.0176330
906906 0 0
907907 −39.5376 −1.31282 −0.656412 0.754402i 0.727927π-0.727927\pi
−0.656412 + 0.754402i 0.727927π0.727927\pi
908908 0 0
909909 −30.7399 −1.01958
910910 0 0
911911 −54.0502 −1.79076 −0.895382 0.445299i 0.853097π-0.853097\pi
−0.895382 + 0.445299i 0.853097π0.853097\pi
912912 0 0
913913 28.6298 0.947509
914914 0 0
915915 −25.4134 −0.840140
916916 0 0
917917 −0.798661 −0.0263741
918918 0 0
919919 51.9582 1.71394 0.856971 0.515365i 0.172344π-0.172344\pi
0.856971 + 0.515365i 0.172344π0.172344\pi
920920 0 0
921921 −6.71404 −0.221235
922922 0 0
923923 −26.8281 −0.883057
924924 0 0
925925 −47.4082 −1.55877
926926 0 0
927927 −33.0710 −1.08619
928928 0 0
929929 52.5137 1.72292 0.861460 0.507826i 0.169551π-0.169551\pi
0.861460 + 0.507826i 0.169551π0.169551\pi
930930 0 0
931931 34.7035 1.13736
932932 0 0
933933 −1.37469 −0.0450053
934934 0 0
935935 95.7528 3.13145
936936 0 0
937937 37.4481 1.22338 0.611688 0.791099i 0.290491π-0.290491\pi
0.611688 + 0.791099i 0.290491π0.290491\pi
938938 0 0
939939 20.4182 0.666323
940940 0 0
941941 −39.0492 −1.27297 −0.636484 0.771290i 0.719612π-0.719612\pi
−0.636484 + 0.771290i 0.719612π0.719612\pi
942942 0 0
943943 18.1050 0.589578
944944 0 0
945945 2.16619 0.0704660
946946 0 0
947947 −7.07707 −0.229974 −0.114987 0.993367i 0.536683π-0.536683\pi
−0.114987 + 0.993367i 0.536683π0.536683\pi
948948 0 0
949949 −29.6981 −0.964041
950950 0 0
951951 −7.37761 −0.239235
952952 0 0
953953 −25.8353 −0.836888 −0.418444 0.908243i 0.637424π-0.637424\pi
−0.418444 + 0.908243i 0.637424π0.637424\pi
954954 0 0
955955 9.42929 0.305125
956956 0 0
957957 −22.5778 −0.729835
958958 0 0
959959 0.383606 0.0123873
960960 0 0
961961 −30.8540 −0.995289
962962 0 0
963963 −44.3914 −1.43049
964964 0 0
965965 −20.7148 −0.666832
966966 0 0
967967 30.4711 0.979885 0.489942 0.871755i 0.337018π-0.337018\pi
0.489942 + 0.871755i 0.337018π0.337018\pi
968968 0 0
969969 −21.0699 −0.676861
970970 0 0
971971 46.7058 1.49886 0.749429 0.662084i 0.230328π-0.230328\pi
0.749429 + 0.662084i 0.230328π0.230328\pi
972972 0 0
973973 −1.79968 −0.0576950
974974 0 0
975975 −21.0467 −0.674033
976976 0 0
977977 32.5862 1.04253 0.521263 0.853396i 0.325461π-0.325461\pi
0.521263 + 0.853396i 0.325461π0.325461\pi
978978 0 0
979979 64.9294 2.07515
980980 0 0
981981 −7.06689 −0.225629
982982 0 0
983983 −11.1617 −0.356002 −0.178001 0.984030i 0.556963π-0.556963\pi
−0.178001 + 0.984030i 0.556963π0.556963\pi
984984 0 0
985985 73.0002 2.32598
986986 0 0
987987 1.09801 0.0349500
988988 0 0
989989 −15.3654 −0.488590
990990 0 0
991991 11.2149 0.356253 0.178127 0.984008i 0.442996π-0.442996\pi
0.178127 + 0.984008i 0.442996π0.442996\pi
992992 0 0
993993 20.9640 0.665272
994994 0 0
995995 71.5271 2.26756
996996 0 0
997997 −27.1338 −0.859336 −0.429668 0.902987i 0.641369π-0.641369\pi
−0.429668 + 0.902987i 0.641369π0.641369\pi
998998 0 0
999999 26.7008 0.844775
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.n.1.12 18
4.3 odd 2 2152.2.a.d.1.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2152.2.a.d.1.7 18 4.3 odd 2
4304.2.a.n.1.12 18 1.1 even 1 trivial