Properties

Label 4304.2.a.n.1.12
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 4 x^{17} - 28 x^{16} + 121 x^{15} + 293 x^{14} - 1427 x^{13} - 1440 x^{12} + 8461 x^{11} + \cdots + 1006 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(0.801198\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.801198 q^{3} -3.55277 q^{5} +0.142030 q^{7} -2.35808 q^{9} -5.09556 q^{11} -3.44639 q^{13} -2.84647 q^{15} +5.28924 q^{17} -4.97197 q^{19} +0.113794 q^{21} -1.58205 q^{23} +7.62217 q^{25} -4.29289 q^{27} +5.53031 q^{29} +0.382134 q^{31} -4.08255 q^{33} -0.504599 q^{35} -6.21978 q^{37} -2.76125 q^{39} -11.4440 q^{41} +9.71230 q^{43} +8.37772 q^{45} +9.64910 q^{47} -6.97983 q^{49} +4.23773 q^{51} -10.7665 q^{53} +18.1033 q^{55} -3.98354 q^{57} -2.10144 q^{59} +8.92802 q^{61} -0.334918 q^{63} +12.2442 q^{65} -12.4585 q^{67} -1.26754 q^{69} +7.78439 q^{71} +8.61715 q^{73} +6.10687 q^{75} -0.723721 q^{77} +11.8091 q^{79} +3.63479 q^{81} -5.61859 q^{83} -18.7914 q^{85} +4.43087 q^{87} -12.7423 q^{89} -0.489491 q^{91} +0.306165 q^{93} +17.6643 q^{95} +8.41309 q^{97} +12.0157 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{3} - 6 q^{5} + 17 q^{7} + 18 q^{9} + 10 q^{11} - 3 q^{13} + 19 q^{15} - 6 q^{17} + 3 q^{19} + q^{21} + 37 q^{23} + 18 q^{25} + 13 q^{27} - 3 q^{29} + 35 q^{31} - 9 q^{33} + 12 q^{35} - 8 q^{37}+ \cdots + 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.801198 0.462572 0.231286 0.972886i \(-0.425707\pi\)
0.231286 + 0.972886i \(0.425707\pi\)
\(4\) 0 0
\(5\) −3.55277 −1.58885 −0.794423 0.607364i \(-0.792227\pi\)
−0.794423 + 0.607364i \(0.792227\pi\)
\(6\) 0 0
\(7\) 0.142030 0.0536822 0.0268411 0.999640i \(-0.491455\pi\)
0.0268411 + 0.999640i \(0.491455\pi\)
\(8\) 0 0
\(9\) −2.35808 −0.786027
\(10\) 0 0
\(11\) −5.09556 −1.53637 −0.768184 0.640229i \(-0.778839\pi\)
−0.768184 + 0.640229i \(0.778839\pi\)
\(12\) 0 0
\(13\) −3.44639 −0.955858 −0.477929 0.878398i \(-0.658612\pi\)
−0.477929 + 0.878398i \(0.658612\pi\)
\(14\) 0 0
\(15\) −2.84647 −0.734956
\(16\) 0 0
\(17\) 5.28924 1.28283 0.641414 0.767195i \(-0.278348\pi\)
0.641414 + 0.767195i \(0.278348\pi\)
\(18\) 0 0
\(19\) −4.97197 −1.14065 −0.570324 0.821420i \(-0.693183\pi\)
−0.570324 + 0.821420i \(0.693183\pi\)
\(20\) 0 0
\(21\) 0.113794 0.0248319
\(22\) 0 0
\(23\) −1.58205 −0.329881 −0.164940 0.986304i \(-0.552743\pi\)
−0.164940 + 0.986304i \(0.552743\pi\)
\(24\) 0 0
\(25\) 7.62217 1.52443
\(26\) 0 0
\(27\) −4.29289 −0.826166
\(28\) 0 0
\(29\) 5.53031 1.02695 0.513476 0.858104i \(-0.328358\pi\)
0.513476 + 0.858104i \(0.328358\pi\)
\(30\) 0 0
\(31\) 0.382134 0.0686334 0.0343167 0.999411i \(-0.489075\pi\)
0.0343167 + 0.999411i \(0.489075\pi\)
\(32\) 0 0
\(33\) −4.08255 −0.710681
\(34\) 0 0
\(35\) −0.504599 −0.0852928
\(36\) 0 0
\(37\) −6.21978 −1.02252 −0.511262 0.859425i \(-0.670822\pi\)
−0.511262 + 0.859425i \(0.670822\pi\)
\(38\) 0 0
\(39\) −2.76125 −0.442153
\(40\) 0 0
\(41\) −11.4440 −1.78725 −0.893623 0.448818i \(-0.851845\pi\)
−0.893623 + 0.448818i \(0.851845\pi\)
\(42\) 0 0
\(43\) 9.71230 1.48111 0.740556 0.671995i \(-0.234562\pi\)
0.740556 + 0.671995i \(0.234562\pi\)
\(44\) 0 0
\(45\) 8.37772 1.24888
\(46\) 0 0
\(47\) 9.64910 1.40747 0.703733 0.710464i \(-0.251515\pi\)
0.703733 + 0.710464i \(0.251515\pi\)
\(48\) 0 0
\(49\) −6.97983 −0.997118
\(50\) 0 0
\(51\) 4.23773 0.593400
\(52\) 0 0
\(53\) −10.7665 −1.47889 −0.739444 0.673218i \(-0.764911\pi\)
−0.739444 + 0.673218i \(0.764911\pi\)
\(54\) 0 0
\(55\) 18.1033 2.44105
\(56\) 0 0
\(57\) −3.98354 −0.527632
\(58\) 0 0
\(59\) −2.10144 −0.273584 −0.136792 0.990600i \(-0.543679\pi\)
−0.136792 + 0.990600i \(0.543679\pi\)
\(60\) 0 0
\(61\) 8.92802 1.14312 0.571558 0.820562i \(-0.306339\pi\)
0.571558 + 0.820562i \(0.306339\pi\)
\(62\) 0 0
\(63\) −0.334918 −0.0421957
\(64\) 0 0
\(65\) 12.2442 1.51871
\(66\) 0 0
\(67\) −12.4585 −1.52205 −0.761024 0.648724i \(-0.775303\pi\)
−0.761024 + 0.648724i \(0.775303\pi\)
\(68\) 0 0
\(69\) −1.26754 −0.152594
\(70\) 0 0
\(71\) 7.78439 0.923837 0.461919 0.886922i \(-0.347161\pi\)
0.461919 + 0.886922i \(0.347161\pi\)
\(72\) 0 0
\(73\) 8.61715 1.00856 0.504281 0.863540i \(-0.331758\pi\)
0.504281 + 0.863540i \(0.331758\pi\)
\(74\) 0 0
\(75\) 6.10687 0.705160
\(76\) 0 0
\(77\) −0.723721 −0.0824756
\(78\) 0 0
\(79\) 11.8091 1.32863 0.664314 0.747453i \(-0.268724\pi\)
0.664314 + 0.747453i \(0.268724\pi\)
\(80\) 0 0
\(81\) 3.63479 0.403866
\(82\) 0 0
\(83\) −5.61859 −0.616720 −0.308360 0.951270i \(-0.599780\pi\)
−0.308360 + 0.951270i \(0.599780\pi\)
\(84\) 0 0
\(85\) −18.7914 −2.03822
\(86\) 0 0
\(87\) 4.43087 0.475039
\(88\) 0 0
\(89\) −12.7423 −1.35069 −0.675343 0.737504i \(-0.736004\pi\)
−0.675343 + 0.737504i \(0.736004\pi\)
\(90\) 0 0
\(91\) −0.489491 −0.0513126
\(92\) 0 0
\(93\) 0.306165 0.0317479
\(94\) 0 0
\(95\) 17.6643 1.81232
\(96\) 0 0
\(97\) 8.41309 0.854220 0.427110 0.904200i \(-0.359532\pi\)
0.427110 + 0.904200i \(0.359532\pi\)
\(98\) 0 0
\(99\) 12.0157 1.20763
\(100\) 0 0
\(101\) 13.0360 1.29713 0.648565 0.761160i \(-0.275370\pi\)
0.648565 + 0.761160i \(0.275370\pi\)
\(102\) 0 0
\(103\) 14.0245 1.38188 0.690939 0.722913i \(-0.257197\pi\)
0.690939 + 0.722913i \(0.257197\pi\)
\(104\) 0 0
\(105\) −0.404284 −0.0394541
\(106\) 0 0
\(107\) 18.8252 1.81990 0.909950 0.414717i \(-0.136119\pi\)
0.909950 + 0.414717i \(0.136119\pi\)
\(108\) 0 0
\(109\) 2.99688 0.287049 0.143525 0.989647i \(-0.454156\pi\)
0.143525 + 0.989647i \(0.454156\pi\)
\(110\) 0 0
\(111\) −4.98327 −0.472991
\(112\) 0 0
\(113\) −3.40804 −0.320602 −0.160301 0.987068i \(-0.551246\pi\)
−0.160301 + 0.987068i \(0.551246\pi\)
\(114\) 0 0
\(115\) 5.62067 0.524130
\(116\) 0 0
\(117\) 8.12688 0.751330
\(118\) 0 0
\(119\) 0.751229 0.0688650
\(120\) 0 0
\(121\) 14.9647 1.36043
\(122\) 0 0
\(123\) −9.16888 −0.826730
\(124\) 0 0
\(125\) −9.31596 −0.833245
\(126\) 0 0
\(127\) 13.9165 1.23489 0.617446 0.786613i \(-0.288167\pi\)
0.617446 + 0.786613i \(0.288167\pi\)
\(128\) 0 0
\(129\) 7.78147 0.685121
\(130\) 0 0
\(131\) −5.62320 −0.491301 −0.245651 0.969358i \(-0.579002\pi\)
−0.245651 + 0.969358i \(0.579002\pi\)
\(132\) 0 0
\(133\) −0.706168 −0.0612325
\(134\) 0 0
\(135\) 15.2516 1.31265
\(136\) 0 0
\(137\) 2.70088 0.230752 0.115376 0.993322i \(-0.463193\pi\)
0.115376 + 0.993322i \(0.463193\pi\)
\(138\) 0 0
\(139\) −12.6711 −1.07475 −0.537376 0.843343i \(-0.680584\pi\)
−0.537376 + 0.843343i \(0.680584\pi\)
\(140\) 0 0
\(141\) 7.73085 0.651055
\(142\) 0 0
\(143\) 17.5613 1.46855
\(144\) 0 0
\(145\) −19.6479 −1.63167
\(146\) 0 0
\(147\) −5.59223 −0.461239
\(148\) 0 0
\(149\) −13.8940 −1.13824 −0.569120 0.822254i \(-0.692716\pi\)
−0.569120 + 0.822254i \(0.692716\pi\)
\(150\) 0 0
\(151\) −8.32426 −0.677419 −0.338710 0.940891i \(-0.609990\pi\)
−0.338710 + 0.940891i \(0.609990\pi\)
\(152\) 0 0
\(153\) −12.4724 −1.00834
\(154\) 0 0
\(155\) −1.35764 −0.109048
\(156\) 0 0
\(157\) 2.32917 0.185888 0.0929442 0.995671i \(-0.470372\pi\)
0.0929442 + 0.995671i \(0.470372\pi\)
\(158\) 0 0
\(159\) −8.62607 −0.684092
\(160\) 0 0
\(161\) −0.224699 −0.0177087
\(162\) 0 0
\(163\) 12.8628 1.00749 0.503745 0.863852i \(-0.331955\pi\)
0.503745 + 0.863852i \(0.331955\pi\)
\(164\) 0 0
\(165\) 14.5044 1.12916
\(166\) 0 0
\(167\) −17.0141 −1.31659 −0.658295 0.752760i \(-0.728722\pi\)
−0.658295 + 0.752760i \(0.728722\pi\)
\(168\) 0 0
\(169\) −1.12236 −0.0863357
\(170\) 0 0
\(171\) 11.7243 0.896581
\(172\) 0 0
\(173\) −9.70735 −0.738036 −0.369018 0.929422i \(-0.620306\pi\)
−0.369018 + 0.929422i \(0.620306\pi\)
\(174\) 0 0
\(175\) 1.08257 0.0818349
\(176\) 0 0
\(177\) −1.68367 −0.126552
\(178\) 0 0
\(179\) 11.6628 0.871716 0.435858 0.900015i \(-0.356445\pi\)
0.435858 + 0.900015i \(0.356445\pi\)
\(180\) 0 0
\(181\) −0.149308 −0.0110980 −0.00554899 0.999985i \(-0.501766\pi\)
−0.00554899 + 0.999985i \(0.501766\pi\)
\(182\) 0 0
\(183\) 7.15312 0.528774
\(184\) 0 0
\(185\) 22.0974 1.62464
\(186\) 0 0
\(187\) −26.9516 −1.97090
\(188\) 0 0
\(189\) −0.609717 −0.0443504
\(190\) 0 0
\(191\) −2.65407 −0.192042 −0.0960208 0.995379i \(-0.530612\pi\)
−0.0960208 + 0.995379i \(0.530612\pi\)
\(192\) 0 0
\(193\) 5.83060 0.419696 0.209848 0.977734i \(-0.432703\pi\)
0.209848 + 0.977734i \(0.432703\pi\)
\(194\) 0 0
\(195\) 9.81007 0.702514
\(196\) 0 0
\(197\) −20.5474 −1.46394 −0.731972 0.681335i \(-0.761400\pi\)
−0.731972 + 0.681335i \(0.761400\pi\)
\(198\) 0 0
\(199\) −20.1328 −1.42718 −0.713588 0.700566i \(-0.752931\pi\)
−0.713588 + 0.700566i \(0.752931\pi\)
\(200\) 0 0
\(201\) −9.98173 −0.704057
\(202\) 0 0
\(203\) 0.785468 0.0551290
\(204\) 0 0
\(205\) 40.6577 2.83966
\(206\) 0 0
\(207\) 3.73061 0.259295
\(208\) 0 0
\(209\) 25.3350 1.75246
\(210\) 0 0
\(211\) 7.56873 0.521053 0.260526 0.965467i \(-0.416104\pi\)
0.260526 + 0.965467i \(0.416104\pi\)
\(212\) 0 0
\(213\) 6.23684 0.427341
\(214\) 0 0
\(215\) −34.5055 −2.35326
\(216\) 0 0
\(217\) 0.0542744 0.00368439
\(218\) 0 0
\(219\) 6.90405 0.466532
\(220\) 0 0
\(221\) −18.2288 −1.22620
\(222\) 0 0
\(223\) 26.2466 1.75760 0.878801 0.477188i \(-0.158344\pi\)
0.878801 + 0.477188i \(0.158344\pi\)
\(224\) 0 0
\(225\) −17.9737 −1.19825
\(226\) 0 0
\(227\) 26.7791 1.77739 0.888697 0.458495i \(-0.151611\pi\)
0.888697 + 0.458495i \(0.151611\pi\)
\(228\) 0 0
\(229\) 21.4657 1.41849 0.709247 0.704961i \(-0.249035\pi\)
0.709247 + 0.704961i \(0.249035\pi\)
\(230\) 0 0
\(231\) −0.579844 −0.0381509
\(232\) 0 0
\(233\) −20.6557 −1.35320 −0.676600 0.736351i \(-0.736547\pi\)
−0.676600 + 0.736351i \(0.736547\pi\)
\(234\) 0 0
\(235\) −34.2810 −2.23625
\(236\) 0 0
\(237\) 9.46144 0.614586
\(238\) 0 0
\(239\) −3.68982 −0.238674 −0.119337 0.992854i \(-0.538077\pi\)
−0.119337 + 0.992854i \(0.538077\pi\)
\(240\) 0 0
\(241\) −30.5306 −1.96665 −0.983324 0.181864i \(-0.941787\pi\)
−0.983324 + 0.181864i \(0.941787\pi\)
\(242\) 0 0
\(243\) 15.7908 1.01298
\(244\) 0 0
\(245\) 24.7977 1.58427
\(246\) 0 0
\(247\) 17.1354 1.09030
\(248\) 0 0
\(249\) −4.50160 −0.285277
\(250\) 0 0
\(251\) 10.9051 0.688326 0.344163 0.938910i \(-0.388163\pi\)
0.344163 + 0.938910i \(0.388163\pi\)
\(252\) 0 0
\(253\) 8.06144 0.506819
\(254\) 0 0
\(255\) −15.0557 −0.942822
\(256\) 0 0
\(257\) −1.09648 −0.0683965 −0.0341983 0.999415i \(-0.510888\pi\)
−0.0341983 + 0.999415i \(0.510888\pi\)
\(258\) 0 0
\(259\) −0.883393 −0.0548914
\(260\) 0 0
\(261\) −13.0409 −0.807212
\(262\) 0 0
\(263\) 26.4167 1.62892 0.814462 0.580216i \(-0.197032\pi\)
0.814462 + 0.580216i \(0.197032\pi\)
\(264\) 0 0
\(265\) 38.2508 2.34973
\(266\) 0 0
\(267\) −10.2091 −0.624790
\(268\) 0 0
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) −1.64796 −0.100106 −0.0500532 0.998747i \(-0.515939\pi\)
−0.0500532 + 0.998747i \(0.515939\pi\)
\(272\) 0 0
\(273\) −0.392179 −0.0237358
\(274\) 0 0
\(275\) −38.8392 −2.34209
\(276\) 0 0
\(277\) 28.2663 1.69836 0.849178 0.528106i \(-0.177098\pi\)
0.849178 + 0.528106i \(0.177098\pi\)
\(278\) 0 0
\(279\) −0.901104 −0.0539477
\(280\) 0 0
\(281\) −25.2079 −1.50378 −0.751888 0.659290i \(-0.770857\pi\)
−0.751888 + 0.659290i \(0.770857\pi\)
\(282\) 0 0
\(283\) −5.84396 −0.347387 −0.173694 0.984800i \(-0.555570\pi\)
−0.173694 + 0.984800i \(0.555570\pi\)
\(284\) 0 0
\(285\) 14.1526 0.838327
\(286\) 0 0
\(287\) −1.62538 −0.0959433
\(288\) 0 0
\(289\) 10.9760 0.645648
\(290\) 0 0
\(291\) 6.74056 0.395138
\(292\) 0 0
\(293\) 18.7907 1.09777 0.548884 0.835899i \(-0.315053\pi\)
0.548884 + 0.835899i \(0.315053\pi\)
\(294\) 0 0
\(295\) 7.46593 0.434683
\(296\) 0 0
\(297\) 21.8746 1.26930
\(298\) 0 0
\(299\) 5.45238 0.315319
\(300\) 0 0
\(301\) 1.37943 0.0795093
\(302\) 0 0
\(303\) 10.4444 0.600016
\(304\) 0 0
\(305\) −31.7192 −1.81624
\(306\) 0 0
\(307\) −8.38000 −0.478272 −0.239136 0.970986i \(-0.576864\pi\)
−0.239136 + 0.970986i \(0.576864\pi\)
\(308\) 0 0
\(309\) 11.2364 0.639219
\(310\) 0 0
\(311\) −1.71579 −0.0972936 −0.0486468 0.998816i \(-0.515491\pi\)
−0.0486468 + 0.998816i \(0.515491\pi\)
\(312\) 0 0
\(313\) 25.4846 1.44047 0.720237 0.693728i \(-0.244033\pi\)
0.720237 + 0.693728i \(0.244033\pi\)
\(314\) 0 0
\(315\) 1.18989 0.0670424
\(316\) 0 0
\(317\) −9.20822 −0.517185 −0.258593 0.965986i \(-0.583259\pi\)
−0.258593 + 0.965986i \(0.583259\pi\)
\(318\) 0 0
\(319\) −28.1800 −1.57778
\(320\) 0 0
\(321\) 15.0827 0.841835
\(322\) 0 0
\(323\) −26.2979 −1.46326
\(324\) 0 0
\(325\) −26.2690 −1.45714
\(326\) 0 0
\(327\) 2.40110 0.132781
\(328\) 0 0
\(329\) 1.37046 0.0755559
\(330\) 0 0
\(331\) 26.1658 1.43820 0.719101 0.694905i \(-0.244554\pi\)
0.719101 + 0.694905i \(0.244554\pi\)
\(332\) 0 0
\(333\) 14.6667 0.803732
\(334\) 0 0
\(335\) 44.2622 2.41830
\(336\) 0 0
\(337\) −6.82467 −0.371763 −0.185882 0.982572i \(-0.559514\pi\)
−0.185882 + 0.982572i \(0.559514\pi\)
\(338\) 0 0
\(339\) −2.73052 −0.148301
\(340\) 0 0
\(341\) −1.94719 −0.105446
\(342\) 0 0
\(343\) −1.98555 −0.107210
\(344\) 0 0
\(345\) 4.50327 0.242448
\(346\) 0 0
\(347\) −17.2455 −0.925788 −0.462894 0.886414i \(-0.653189\pi\)
−0.462894 + 0.886414i \(0.653189\pi\)
\(348\) 0 0
\(349\) −31.9670 −1.71115 −0.855576 0.517677i \(-0.826797\pi\)
−0.855576 + 0.517677i \(0.826797\pi\)
\(350\) 0 0
\(351\) 14.7950 0.789698
\(352\) 0 0
\(353\) −26.5074 −1.41085 −0.705424 0.708785i \(-0.749243\pi\)
−0.705424 + 0.708785i \(0.749243\pi\)
\(354\) 0 0
\(355\) −27.6561 −1.46784
\(356\) 0 0
\(357\) 0.601883 0.0318550
\(358\) 0 0
\(359\) −8.56430 −0.452006 −0.226003 0.974127i \(-0.572566\pi\)
−0.226003 + 0.974127i \(0.572566\pi\)
\(360\) 0 0
\(361\) 5.72051 0.301080
\(362\) 0 0
\(363\) 11.9897 0.629296
\(364\) 0 0
\(365\) −30.6147 −1.60245
\(366\) 0 0
\(367\) 4.49087 0.234421 0.117211 0.993107i \(-0.462605\pi\)
0.117211 + 0.993107i \(0.462605\pi\)
\(368\) 0 0
\(369\) 26.9858 1.40482
\(370\) 0 0
\(371\) −1.52916 −0.0793899
\(372\) 0 0
\(373\) −5.91255 −0.306140 −0.153070 0.988215i \(-0.548916\pi\)
−0.153070 + 0.988215i \(0.548916\pi\)
\(374\) 0 0
\(375\) −7.46393 −0.385436
\(376\) 0 0
\(377\) −19.0596 −0.981620
\(378\) 0 0
\(379\) −0.145933 −0.00749606 −0.00374803 0.999993i \(-0.501193\pi\)
−0.00374803 + 0.999993i \(0.501193\pi\)
\(380\) 0 0
\(381\) 11.1499 0.571227
\(382\) 0 0
\(383\) 10.0575 0.513915 0.256957 0.966423i \(-0.417280\pi\)
0.256957 + 0.966423i \(0.417280\pi\)
\(384\) 0 0
\(385\) 2.57121 0.131041
\(386\) 0 0
\(387\) −22.9024 −1.16419
\(388\) 0 0
\(389\) −28.1159 −1.42553 −0.712765 0.701403i \(-0.752557\pi\)
−0.712765 + 0.701403i \(0.752557\pi\)
\(390\) 0 0
\(391\) −8.36785 −0.423180
\(392\) 0 0
\(393\) −4.50530 −0.227262
\(394\) 0 0
\(395\) −41.9550 −2.11099
\(396\) 0 0
\(397\) 26.2520 1.31755 0.658776 0.752339i \(-0.271074\pi\)
0.658776 + 0.752339i \(0.271074\pi\)
\(398\) 0 0
\(399\) −0.565781 −0.0283245
\(400\) 0 0
\(401\) −6.87368 −0.343255 −0.171628 0.985162i \(-0.554903\pi\)
−0.171628 + 0.985162i \(0.554903\pi\)
\(402\) 0 0
\(403\) −1.31699 −0.0656037
\(404\) 0 0
\(405\) −12.9136 −0.641681
\(406\) 0 0
\(407\) 31.6932 1.57097
\(408\) 0 0
\(409\) 15.7448 0.778531 0.389265 0.921126i \(-0.372729\pi\)
0.389265 + 0.921126i \(0.372729\pi\)
\(410\) 0 0
\(411\) 2.16394 0.106739
\(412\) 0 0
\(413\) −0.298467 −0.0146866
\(414\) 0 0
\(415\) 19.9615 0.979874
\(416\) 0 0
\(417\) −10.1521 −0.497150
\(418\) 0 0
\(419\) −24.3510 −1.18962 −0.594811 0.803865i \(-0.702773\pi\)
−0.594811 + 0.803865i \(0.702773\pi\)
\(420\) 0 0
\(421\) 15.4946 0.755160 0.377580 0.925977i \(-0.376756\pi\)
0.377580 + 0.925977i \(0.376756\pi\)
\(422\) 0 0
\(423\) −22.7534 −1.10631
\(424\) 0 0
\(425\) 40.3154 1.95559
\(426\) 0 0
\(427\) 1.26804 0.0613650
\(428\) 0 0
\(429\) 14.0701 0.679310
\(430\) 0 0
\(431\) 24.5516 1.18261 0.591305 0.806448i \(-0.298613\pi\)
0.591305 + 0.806448i \(0.298613\pi\)
\(432\) 0 0
\(433\) −4.92431 −0.236647 −0.118324 0.992975i \(-0.537752\pi\)
−0.118324 + 0.992975i \(0.537752\pi\)
\(434\) 0 0
\(435\) −15.7419 −0.754765
\(436\) 0 0
\(437\) 7.86593 0.376278
\(438\) 0 0
\(439\) 5.49766 0.262389 0.131195 0.991357i \(-0.458119\pi\)
0.131195 + 0.991357i \(0.458119\pi\)
\(440\) 0 0
\(441\) 16.4590 0.783762
\(442\) 0 0
\(443\) −10.5997 −0.503609 −0.251804 0.967778i \(-0.581024\pi\)
−0.251804 + 0.967778i \(0.581024\pi\)
\(444\) 0 0
\(445\) 45.2706 2.14603
\(446\) 0 0
\(447\) −11.1318 −0.526518
\(448\) 0 0
\(449\) −17.0603 −0.805124 −0.402562 0.915393i \(-0.631880\pi\)
−0.402562 + 0.915393i \(0.631880\pi\)
\(450\) 0 0
\(451\) 58.3133 2.74587
\(452\) 0 0
\(453\) −6.66939 −0.313355
\(454\) 0 0
\(455\) 1.73905 0.0815278
\(456\) 0 0
\(457\) 36.3474 1.70026 0.850131 0.526571i \(-0.176523\pi\)
0.850131 + 0.526571i \(0.176523\pi\)
\(458\) 0 0
\(459\) −22.7061 −1.05983
\(460\) 0 0
\(461\) −10.8274 −0.504280 −0.252140 0.967691i \(-0.581134\pi\)
−0.252140 + 0.967691i \(0.581134\pi\)
\(462\) 0 0
\(463\) 33.7594 1.56893 0.784466 0.620172i \(-0.212937\pi\)
0.784466 + 0.620172i \(0.212937\pi\)
\(464\) 0 0
\(465\) −1.08773 −0.0504425
\(466\) 0 0
\(467\) 29.6160 1.37047 0.685233 0.728324i \(-0.259700\pi\)
0.685233 + 0.728324i \(0.259700\pi\)
\(468\) 0 0
\(469\) −1.76948 −0.0817069
\(470\) 0 0
\(471\) 1.86613 0.0859868
\(472\) 0 0
\(473\) −49.4896 −2.27553
\(474\) 0 0
\(475\) −37.8972 −1.73884
\(476\) 0 0
\(477\) 25.3882 1.16245
\(478\) 0 0
\(479\) −8.28091 −0.378364 −0.189182 0.981942i \(-0.560584\pi\)
−0.189182 + 0.981942i \(0.560584\pi\)
\(480\) 0 0
\(481\) 21.4358 0.977388
\(482\) 0 0
\(483\) −0.180028 −0.00819156
\(484\) 0 0
\(485\) −29.8898 −1.35722
\(486\) 0 0
\(487\) −12.9498 −0.586814 −0.293407 0.955988i \(-0.594789\pi\)
−0.293407 + 0.955988i \(0.594789\pi\)
\(488\) 0 0
\(489\) 10.3056 0.466037
\(490\) 0 0
\(491\) −34.8081 −1.57087 −0.785434 0.618946i \(-0.787560\pi\)
−0.785434 + 0.618946i \(0.787560\pi\)
\(492\) 0 0
\(493\) 29.2511 1.31740
\(494\) 0 0
\(495\) −42.6891 −1.91873
\(496\) 0 0
\(497\) 1.10562 0.0495936
\(498\) 0 0
\(499\) −1.98014 −0.0886434 −0.0443217 0.999017i \(-0.514113\pi\)
−0.0443217 + 0.999017i \(0.514113\pi\)
\(500\) 0 0
\(501\) −13.6317 −0.609018
\(502\) 0 0
\(503\) 12.2052 0.544203 0.272101 0.962269i \(-0.412281\pi\)
0.272101 + 0.962269i \(0.412281\pi\)
\(504\) 0 0
\(505\) −46.3139 −2.06094
\(506\) 0 0
\(507\) −0.899236 −0.0399365
\(508\) 0 0
\(509\) −5.62094 −0.249144 −0.124572 0.992211i \(-0.539756\pi\)
−0.124572 + 0.992211i \(0.539756\pi\)
\(510\) 0 0
\(511\) 1.22389 0.0541418
\(512\) 0 0
\(513\) 21.3441 0.942366
\(514\) 0 0
\(515\) −49.8259 −2.19559
\(516\) 0 0
\(517\) −49.1676 −2.16239
\(518\) 0 0
\(519\) −7.77751 −0.341395
\(520\) 0 0
\(521\) −33.6681 −1.47503 −0.737513 0.675333i \(-0.764000\pi\)
−0.737513 + 0.675333i \(0.764000\pi\)
\(522\) 0 0
\(523\) −13.3997 −0.585927 −0.292964 0.956124i \(-0.594641\pi\)
−0.292964 + 0.956124i \(0.594641\pi\)
\(524\) 0 0
\(525\) 0.867357 0.0378546
\(526\) 0 0
\(527\) 2.02120 0.0880448
\(528\) 0 0
\(529\) −20.4971 −0.891179
\(530\) 0 0
\(531\) 4.95537 0.215045
\(532\) 0 0
\(533\) 39.4404 1.70835
\(534\) 0 0
\(535\) −66.8816 −2.89154
\(536\) 0 0
\(537\) 9.34419 0.403231
\(538\) 0 0
\(539\) 35.5661 1.53194
\(540\) 0 0
\(541\) 37.8128 1.62570 0.812850 0.582474i \(-0.197915\pi\)
0.812850 + 0.582474i \(0.197915\pi\)
\(542\) 0 0
\(543\) −0.119625 −0.00513361
\(544\) 0 0
\(545\) −10.6472 −0.456077
\(546\) 0 0
\(547\) −12.0734 −0.516222 −0.258111 0.966115i \(-0.583100\pi\)
−0.258111 + 0.966115i \(0.583100\pi\)
\(548\) 0 0
\(549\) −21.0530 −0.898520
\(550\) 0 0
\(551\) −27.4965 −1.17139
\(552\) 0 0
\(553\) 1.67724 0.0713237
\(554\) 0 0
\(555\) 17.7044 0.751511
\(556\) 0 0
\(557\) 13.2024 0.559404 0.279702 0.960087i \(-0.409764\pi\)
0.279702 + 0.960087i \(0.409764\pi\)
\(558\) 0 0
\(559\) −33.4724 −1.41573
\(560\) 0 0
\(561\) −21.5936 −0.911682
\(562\) 0 0
\(563\) 6.12913 0.258312 0.129156 0.991624i \(-0.458773\pi\)
0.129156 + 0.991624i \(0.458773\pi\)
\(564\) 0 0
\(565\) 12.1080 0.509387
\(566\) 0 0
\(567\) 0.516248 0.0216804
\(568\) 0 0
\(569\) 39.1804 1.64253 0.821264 0.570548i \(-0.193269\pi\)
0.821264 + 0.570548i \(0.193269\pi\)
\(570\) 0 0
\(571\) 13.9089 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(572\) 0 0
\(573\) −2.12644 −0.0888331
\(574\) 0 0
\(575\) −12.0587 −0.502882
\(576\) 0 0
\(577\) 3.80449 0.158383 0.0791915 0.996859i \(-0.474766\pi\)
0.0791915 + 0.996859i \(0.474766\pi\)
\(578\) 0 0
\(579\) 4.67147 0.194139
\(580\) 0 0
\(581\) −0.798007 −0.0331069
\(582\) 0 0
\(583\) 54.8611 2.27212
\(584\) 0 0
\(585\) −28.8729 −1.19375
\(586\) 0 0
\(587\) 3.45013 0.142402 0.0712011 0.997462i \(-0.477317\pi\)
0.0712011 + 0.997462i \(0.477317\pi\)
\(588\) 0 0
\(589\) −1.89996 −0.0782866
\(590\) 0 0
\(591\) −16.4626 −0.677179
\(592\) 0 0
\(593\) −8.38305 −0.344251 −0.172125 0.985075i \(-0.555063\pi\)
−0.172125 + 0.985075i \(0.555063\pi\)
\(594\) 0 0
\(595\) −2.66894 −0.109416
\(596\) 0 0
\(597\) −16.1304 −0.660171
\(598\) 0 0
\(599\) −5.07230 −0.207248 −0.103624 0.994617i \(-0.533044\pi\)
−0.103624 + 0.994617i \(0.533044\pi\)
\(600\) 0 0
\(601\) −23.0191 −0.938967 −0.469483 0.882941i \(-0.655560\pi\)
−0.469483 + 0.882941i \(0.655560\pi\)
\(602\) 0 0
\(603\) 29.3781 1.19637
\(604\) 0 0
\(605\) −53.1661 −2.16151
\(606\) 0 0
\(607\) 38.6041 1.56689 0.783445 0.621461i \(-0.213460\pi\)
0.783445 + 0.621461i \(0.213460\pi\)
\(608\) 0 0
\(609\) 0.629316 0.0255012
\(610\) 0 0
\(611\) −33.2546 −1.34534
\(612\) 0 0
\(613\) −42.6445 −1.72240 −0.861198 0.508269i \(-0.830285\pi\)
−0.861198 + 0.508269i \(0.830285\pi\)
\(614\) 0 0
\(615\) 32.5749 1.31355
\(616\) 0 0
\(617\) 1.54860 0.0623444 0.0311722 0.999514i \(-0.490076\pi\)
0.0311722 + 0.999514i \(0.490076\pi\)
\(618\) 0 0
\(619\) −24.3055 −0.976922 −0.488461 0.872586i \(-0.662442\pi\)
−0.488461 + 0.872586i \(0.662442\pi\)
\(620\) 0 0
\(621\) 6.79157 0.272536
\(622\) 0 0
\(623\) −1.80979 −0.0725078
\(624\) 0 0
\(625\) −5.01339 −0.200536
\(626\) 0 0
\(627\) 20.2983 0.810638
\(628\) 0 0
\(629\) −32.8979 −1.31172
\(630\) 0 0
\(631\) 6.16144 0.245283 0.122641 0.992451i \(-0.460863\pi\)
0.122641 + 0.992451i \(0.460863\pi\)
\(632\) 0 0
\(633\) 6.06405 0.241024
\(634\) 0 0
\(635\) −49.4422 −1.96206
\(636\) 0 0
\(637\) 24.0552 0.953103
\(638\) 0 0
\(639\) −18.3562 −0.726161
\(640\) 0 0
\(641\) 41.4384 1.63672 0.818358 0.574708i \(-0.194884\pi\)
0.818358 + 0.574708i \(0.194884\pi\)
\(642\) 0 0
\(643\) −5.51179 −0.217364 −0.108682 0.994077i \(-0.534663\pi\)
−0.108682 + 0.994077i \(0.534663\pi\)
\(644\) 0 0
\(645\) −27.6458 −1.08855
\(646\) 0 0
\(647\) 2.54222 0.0999451 0.0499726 0.998751i \(-0.484087\pi\)
0.0499726 + 0.998751i \(0.484087\pi\)
\(648\) 0 0
\(649\) 10.7080 0.420326
\(650\) 0 0
\(651\) 0.0434846 0.00170430
\(652\) 0 0
\(653\) 17.0401 0.666832 0.333416 0.942780i \(-0.391799\pi\)
0.333416 + 0.942780i \(0.391799\pi\)
\(654\) 0 0
\(655\) 19.9779 0.780602
\(656\) 0 0
\(657\) −20.3199 −0.792756
\(658\) 0 0
\(659\) −15.3350 −0.597366 −0.298683 0.954352i \(-0.596547\pi\)
−0.298683 + 0.954352i \(0.596547\pi\)
\(660\) 0 0
\(661\) 37.9168 1.47479 0.737396 0.675461i \(-0.236055\pi\)
0.737396 + 0.675461i \(0.236055\pi\)
\(662\) 0 0
\(663\) −14.6049 −0.567206
\(664\) 0 0
\(665\) 2.50885 0.0972891
\(666\) 0 0
\(667\) −8.74924 −0.338772
\(668\) 0 0
\(669\) 21.0287 0.813018
\(670\) 0 0
\(671\) −45.4933 −1.75625
\(672\) 0 0
\(673\) 21.4804 0.828008 0.414004 0.910275i \(-0.364130\pi\)
0.414004 + 0.910275i \(0.364130\pi\)
\(674\) 0 0
\(675\) −32.7211 −1.25944
\(676\) 0 0
\(677\) −35.6115 −1.36866 −0.684330 0.729172i \(-0.739905\pi\)
−0.684330 + 0.729172i \(0.739905\pi\)
\(678\) 0 0
\(679\) 1.19491 0.0458564
\(680\) 0 0
\(681\) 21.4554 0.822173
\(682\) 0 0
\(683\) 29.8857 1.14354 0.571772 0.820412i \(-0.306256\pi\)
0.571772 + 0.820412i \(0.306256\pi\)
\(684\) 0 0
\(685\) −9.59561 −0.366629
\(686\) 0 0
\(687\) 17.1983 0.656155
\(688\) 0 0
\(689\) 37.1055 1.41361
\(690\) 0 0
\(691\) 17.8935 0.680700 0.340350 0.940299i \(-0.389454\pi\)
0.340350 + 0.940299i \(0.389454\pi\)
\(692\) 0 0
\(693\) 1.70659 0.0648281
\(694\) 0 0
\(695\) 45.0176 1.70761
\(696\) 0 0
\(697\) −60.5298 −2.29273
\(698\) 0 0
\(699\) −16.5493 −0.625952
\(700\) 0 0
\(701\) 31.7463 1.19904 0.599520 0.800359i \(-0.295358\pi\)
0.599520 + 0.800359i \(0.295358\pi\)
\(702\) 0 0
\(703\) 30.9246 1.16634
\(704\) 0 0
\(705\) −27.4659 −1.03443
\(706\) 0 0
\(707\) 1.85150 0.0696328
\(708\) 0 0
\(709\) 18.4531 0.693019 0.346510 0.938046i \(-0.387367\pi\)
0.346510 + 0.938046i \(0.387367\pi\)
\(710\) 0 0
\(711\) −27.8468 −1.04434
\(712\) 0 0
\(713\) −0.604557 −0.0226408
\(714\) 0 0
\(715\) −62.3913 −2.33330
\(716\) 0 0
\(717\) −2.95627 −0.110404
\(718\) 0 0
\(719\) −6.75645 −0.251973 −0.125987 0.992032i \(-0.540210\pi\)
−0.125987 + 0.992032i \(0.540210\pi\)
\(720\) 0 0
\(721\) 1.99190 0.0741823
\(722\) 0 0
\(723\) −24.4610 −0.909716
\(724\) 0 0
\(725\) 42.1529 1.56552
\(726\) 0 0
\(727\) −29.9437 −1.11055 −0.555276 0.831666i \(-0.687387\pi\)
−0.555276 + 0.831666i \(0.687387\pi\)
\(728\) 0 0
\(729\) 1.74722 0.0647120
\(730\) 0 0
\(731\) 51.3706 1.90001
\(732\) 0 0
\(733\) 9.61089 0.354986 0.177493 0.984122i \(-0.443201\pi\)
0.177493 + 0.984122i \(0.443201\pi\)
\(734\) 0 0
\(735\) 19.8679 0.732838
\(736\) 0 0
\(737\) 63.4830 2.33843
\(738\) 0 0
\(739\) −9.80839 −0.360808 −0.180404 0.983593i \(-0.557740\pi\)
−0.180404 + 0.983593i \(0.557740\pi\)
\(740\) 0 0
\(741\) 13.7288 0.504341
\(742\) 0 0
\(743\) −39.8812 −1.46310 −0.731550 0.681787i \(-0.761203\pi\)
−0.731550 + 0.681787i \(0.761203\pi\)
\(744\) 0 0
\(745\) 49.3622 1.80849
\(746\) 0 0
\(747\) 13.2491 0.484759
\(748\) 0 0
\(749\) 2.67374 0.0976963
\(750\) 0 0
\(751\) 30.9473 1.12928 0.564641 0.825337i \(-0.309015\pi\)
0.564641 + 0.825337i \(0.309015\pi\)
\(752\) 0 0
\(753\) 8.73717 0.318400
\(754\) 0 0
\(755\) 29.5742 1.07631
\(756\) 0 0
\(757\) −10.8965 −0.396041 −0.198021 0.980198i \(-0.563451\pi\)
−0.198021 + 0.980198i \(0.563451\pi\)
\(758\) 0 0
\(759\) 6.45881 0.234440
\(760\) 0 0
\(761\) −38.0921 −1.38084 −0.690419 0.723410i \(-0.742574\pi\)
−0.690419 + 0.723410i \(0.742574\pi\)
\(762\) 0 0
\(763\) 0.425647 0.0154094
\(764\) 0 0
\(765\) 44.3117 1.60209
\(766\) 0 0
\(767\) 7.24239 0.261508
\(768\) 0 0
\(769\) 18.5966 0.670609 0.335304 0.942110i \(-0.391161\pi\)
0.335304 + 0.942110i \(0.391161\pi\)
\(770\) 0 0
\(771\) −0.878498 −0.0316383
\(772\) 0 0
\(773\) 17.8334 0.641421 0.320711 0.947177i \(-0.396078\pi\)
0.320711 + 0.947177i \(0.396078\pi\)
\(774\) 0 0
\(775\) 2.91269 0.104627
\(776\) 0 0
\(777\) −0.707773 −0.0253912
\(778\) 0 0
\(779\) 56.8991 2.03862
\(780\) 0 0
\(781\) −39.6658 −1.41935
\(782\) 0 0
\(783\) −23.7410 −0.848433
\(784\) 0 0
\(785\) −8.27502 −0.295348
\(786\) 0 0
\(787\) 55.7464 1.98715 0.993573 0.113198i \(-0.0361093\pi\)
0.993573 + 0.113198i \(0.0361093\pi\)
\(788\) 0 0
\(789\) 21.1650 0.753495
\(790\) 0 0
\(791\) −0.484043 −0.0172106
\(792\) 0 0
\(793\) −30.7695 −1.09266
\(794\) 0 0
\(795\) 30.6464 1.08692
\(796\) 0 0
\(797\) 17.6090 0.623744 0.311872 0.950124i \(-0.399044\pi\)
0.311872 + 0.950124i \(0.399044\pi\)
\(798\) 0 0
\(799\) 51.0364 1.80554
\(800\) 0 0
\(801\) 30.0475 1.06168
\(802\) 0 0
\(803\) −43.9092 −1.54952
\(804\) 0 0
\(805\) 0.798302 0.0281365
\(806\) 0 0
\(807\) 0.801198 0.0282035
\(808\) 0 0
\(809\) 32.0038 1.12519 0.562597 0.826731i \(-0.309802\pi\)
0.562597 + 0.826731i \(0.309802\pi\)
\(810\) 0 0
\(811\) −36.6445 −1.28676 −0.643380 0.765547i \(-0.722469\pi\)
−0.643380 + 0.765547i \(0.722469\pi\)
\(812\) 0 0
\(813\) −1.32034 −0.0463064
\(814\) 0 0
\(815\) −45.6985 −1.60075
\(816\) 0 0
\(817\) −48.2893 −1.68943
\(818\) 0 0
\(819\) 1.15426 0.0403331
\(820\) 0 0
\(821\) −2.44510 −0.0853347 −0.0426673 0.999089i \(-0.513586\pi\)
−0.0426673 + 0.999089i \(0.513586\pi\)
\(822\) 0 0
\(823\) −43.4422 −1.51430 −0.757150 0.653241i \(-0.773409\pi\)
−0.757150 + 0.653241i \(0.773409\pi\)
\(824\) 0 0
\(825\) −31.1179 −1.08339
\(826\) 0 0
\(827\) 23.5761 0.819820 0.409910 0.912126i \(-0.365560\pi\)
0.409910 + 0.912126i \(0.365560\pi\)
\(828\) 0 0
\(829\) −5.41698 −0.188139 −0.0940697 0.995566i \(-0.529988\pi\)
−0.0940697 + 0.995566i \(0.529988\pi\)
\(830\) 0 0
\(831\) 22.6469 0.785612
\(832\) 0 0
\(833\) −36.9179 −1.27913
\(834\) 0 0
\(835\) 60.4472 2.09186
\(836\) 0 0
\(837\) −1.64046 −0.0567026
\(838\) 0 0
\(839\) −35.1327 −1.21291 −0.606457 0.795116i \(-0.707410\pi\)
−0.606457 + 0.795116i \(0.707410\pi\)
\(840\) 0 0
\(841\) 1.58429 0.0546307
\(842\) 0 0
\(843\) −20.1965 −0.695605
\(844\) 0 0
\(845\) 3.98750 0.137174
\(846\) 0 0
\(847\) 2.12543 0.0730308
\(848\) 0 0
\(849\) −4.68217 −0.160692
\(850\) 0 0
\(851\) 9.84002 0.337311
\(852\) 0 0
\(853\) −50.2052 −1.71899 −0.859497 0.511141i \(-0.829223\pi\)
−0.859497 + 0.511141i \(0.829223\pi\)
\(854\) 0 0
\(855\) −41.6538 −1.42453
\(856\) 0 0
\(857\) 11.6711 0.398677 0.199339 0.979931i \(-0.436121\pi\)
0.199339 + 0.979931i \(0.436121\pi\)
\(858\) 0 0
\(859\) 4.54823 0.155184 0.0775918 0.996985i \(-0.475277\pi\)
0.0775918 + 0.996985i \(0.475277\pi\)
\(860\) 0 0
\(861\) −1.30225 −0.0443807
\(862\) 0 0
\(863\) 28.6408 0.974945 0.487473 0.873138i \(-0.337919\pi\)
0.487473 + 0.873138i \(0.337919\pi\)
\(864\) 0 0
\(865\) 34.4880 1.17263
\(866\) 0 0
\(867\) 8.79396 0.298659
\(868\) 0 0
\(869\) −60.1740 −2.04126
\(870\) 0 0
\(871\) 42.9369 1.45486
\(872\) 0 0
\(873\) −19.8388 −0.671440
\(874\) 0 0
\(875\) −1.32314 −0.0447304
\(876\) 0 0
\(877\) 19.0303 0.642606 0.321303 0.946976i \(-0.395879\pi\)
0.321303 + 0.946976i \(0.395879\pi\)
\(878\) 0 0
\(879\) 15.0551 0.507796
\(880\) 0 0
\(881\) −2.53478 −0.0853990 −0.0426995 0.999088i \(-0.513596\pi\)
−0.0426995 + 0.999088i \(0.513596\pi\)
\(882\) 0 0
\(883\) 40.7580 1.37162 0.685809 0.727782i \(-0.259449\pi\)
0.685809 + 0.727782i \(0.259449\pi\)
\(884\) 0 0
\(885\) 5.98169 0.201072
\(886\) 0 0
\(887\) 42.7811 1.43645 0.718224 0.695812i \(-0.244955\pi\)
0.718224 + 0.695812i \(0.244955\pi\)
\(888\) 0 0
\(889\) 1.97656 0.0662918
\(890\) 0 0
\(891\) −18.5213 −0.620486
\(892\) 0 0
\(893\) −47.9751 −1.60543
\(894\) 0 0
\(895\) −41.4351 −1.38502
\(896\) 0 0
\(897\) 4.36844 0.145858
\(898\) 0 0
\(899\) 2.11332 0.0704832
\(900\) 0 0
\(901\) −56.9464 −1.89716
\(902\) 0 0
\(903\) 1.10520 0.0367788
\(904\) 0 0
\(905\) 0.530457 0.0176330
\(906\) 0 0
\(907\) −39.5376 −1.31282 −0.656412 0.754402i \(-0.727927\pi\)
−0.656412 + 0.754402i \(0.727927\pi\)
\(908\) 0 0
\(909\) −30.7399 −1.01958
\(910\) 0 0
\(911\) −54.0502 −1.79076 −0.895382 0.445299i \(-0.853097\pi\)
−0.895382 + 0.445299i \(0.853097\pi\)
\(912\) 0 0
\(913\) 28.6298 0.947509
\(914\) 0 0
\(915\) −25.4134 −0.840140
\(916\) 0 0
\(917\) −0.798661 −0.0263741
\(918\) 0 0
\(919\) 51.9582 1.71394 0.856971 0.515365i \(-0.172344\pi\)
0.856971 + 0.515365i \(0.172344\pi\)
\(920\) 0 0
\(921\) −6.71404 −0.221235
\(922\) 0 0
\(923\) −26.8281 −0.883057
\(924\) 0 0
\(925\) −47.4082 −1.55877
\(926\) 0 0
\(927\) −33.0710 −1.08619
\(928\) 0 0
\(929\) 52.5137 1.72292 0.861460 0.507826i \(-0.169551\pi\)
0.861460 + 0.507826i \(0.169551\pi\)
\(930\) 0 0
\(931\) 34.7035 1.13736
\(932\) 0 0
\(933\) −1.37469 −0.0450053
\(934\) 0 0
\(935\) 95.7528 3.13145
\(936\) 0 0
\(937\) 37.4481 1.22338 0.611688 0.791099i \(-0.290491\pi\)
0.611688 + 0.791099i \(0.290491\pi\)
\(938\) 0 0
\(939\) 20.4182 0.666323
\(940\) 0 0
\(941\) −39.0492 −1.27297 −0.636484 0.771290i \(-0.719612\pi\)
−0.636484 + 0.771290i \(0.719612\pi\)
\(942\) 0 0
\(943\) 18.1050 0.589578
\(944\) 0 0
\(945\) 2.16619 0.0704660
\(946\) 0 0
\(947\) −7.07707 −0.229974 −0.114987 0.993367i \(-0.536683\pi\)
−0.114987 + 0.993367i \(0.536683\pi\)
\(948\) 0 0
\(949\) −29.6981 −0.964041
\(950\) 0 0
\(951\) −7.37761 −0.239235
\(952\) 0 0
\(953\) −25.8353 −0.836888 −0.418444 0.908243i \(-0.637424\pi\)
−0.418444 + 0.908243i \(0.637424\pi\)
\(954\) 0 0
\(955\) 9.42929 0.305125
\(956\) 0 0
\(957\) −22.5778 −0.729835
\(958\) 0 0
\(959\) 0.383606 0.0123873
\(960\) 0 0
\(961\) −30.8540 −0.995289
\(962\) 0 0
\(963\) −44.3914 −1.43049
\(964\) 0 0
\(965\) −20.7148 −0.666832
\(966\) 0 0
\(967\) 30.4711 0.979885 0.489942 0.871755i \(-0.337018\pi\)
0.489942 + 0.871755i \(0.337018\pi\)
\(968\) 0 0
\(969\) −21.0699 −0.676861
\(970\) 0 0
\(971\) 46.7058 1.49886 0.749429 0.662084i \(-0.230328\pi\)
0.749429 + 0.662084i \(0.230328\pi\)
\(972\) 0 0
\(973\) −1.79968 −0.0576950
\(974\) 0 0
\(975\) −21.0467 −0.674033
\(976\) 0 0
\(977\) 32.5862 1.04253 0.521263 0.853396i \(-0.325461\pi\)
0.521263 + 0.853396i \(0.325461\pi\)
\(978\) 0 0
\(979\) 64.9294 2.07515
\(980\) 0 0
\(981\) −7.06689 −0.225629
\(982\) 0 0
\(983\) −11.1617 −0.356002 −0.178001 0.984030i \(-0.556963\pi\)
−0.178001 + 0.984030i \(0.556963\pi\)
\(984\) 0 0
\(985\) 73.0002 2.32598
\(986\) 0 0
\(987\) 1.09801 0.0349500
\(988\) 0 0
\(989\) −15.3654 −0.488590
\(990\) 0 0
\(991\) 11.2149 0.356253 0.178127 0.984008i \(-0.442996\pi\)
0.178127 + 0.984008i \(0.442996\pi\)
\(992\) 0 0
\(993\) 20.9640 0.665272
\(994\) 0 0
\(995\) 71.5271 2.26756
\(996\) 0 0
\(997\) −27.1338 −0.859336 −0.429668 0.902987i \(-0.641369\pi\)
−0.429668 + 0.902987i \(0.641369\pi\)
\(998\) 0 0
\(999\) 26.7008 0.844775
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.n.1.12 18
4.3 odd 2 2152.2.a.d.1.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2152.2.a.d.1.7 18 4.3 odd 2
4304.2.a.n.1.12 18 1.1 even 1 trivial