Properties

Label 431.2.a.e.1.2
Level $431$
Weight $2$
Character 431.1
Self dual yes
Analytic conductor $3.442$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [431,2,Mod(1,431)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(431, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("431.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 431.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.44155232712\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.737640\) of defining polynomial
Character \(\chi\) \(=\) 431.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.737640 q^{2} -2.35567 q^{3} -1.45589 q^{4} +0.355674 q^{5} +1.73764 q^{6} +2.19353 q^{7} +2.54920 q^{8} +2.54920 q^{9} -0.262360 q^{10} +1.31313 q^{11} +3.42960 q^{12} -0.219819 q^{13} -1.61803 q^{14} -0.837853 q^{15} +1.03138 q^{16} -4.72333 q^{17} -1.88039 q^{18} -3.76902 q^{19} -0.517822 q^{20} -5.16724 q^{21} -0.968620 q^{22} -0.150986 q^{23} -6.00509 q^{24} -4.87350 q^{25} +0.162147 q^{26} +1.06193 q^{27} -3.19353 q^{28} -1.01939 q^{29} +0.618034 q^{30} -4.64433 q^{31} -5.85919 q^{32} -3.09331 q^{33} +3.48412 q^{34} +0.780181 q^{35} -3.71135 q^{36} -1.24723 q^{37} +2.78018 q^{38} +0.517822 q^{39} +0.906685 q^{40} +0.961212 q^{41} +3.81156 q^{42} -2.70626 q^{43} -1.91177 q^{44} +0.906685 q^{45} +0.111374 q^{46} -0.791342 q^{47} -2.42960 q^{48} -2.18844 q^{49} +3.59489 q^{50} +11.1266 q^{51} +0.320031 q^{52} -4.41446 q^{53} -0.783326 q^{54} +0.467048 q^{55} +5.59174 q^{56} +8.87858 q^{57} +0.751946 q^{58} -4.46097 q^{59} +1.21982 q^{60} -3.10155 q^{61} +3.42584 q^{62} +5.59174 q^{63} +2.25922 q^{64} -0.0781839 q^{65} +2.28175 q^{66} +9.44584 q^{67} +6.87664 q^{68} +0.355674 q^{69} -0.575493 q^{70} +2.60980 q^{71} +6.49843 q^{72} -10.8065 q^{73} +0.920006 q^{74} +11.4804 q^{75} +5.48727 q^{76} +2.88039 q^{77} -0.381966 q^{78} -4.27546 q^{79} +0.366835 q^{80} -10.1492 q^{81} -0.709029 q^{82} +5.53916 q^{83} +7.52291 q^{84} -1.67997 q^{85} +1.99625 q^{86} +2.40136 q^{87} +3.34744 q^{88} -14.6037 q^{89} -0.668808 q^{90} -0.482178 q^{91} +0.219819 q^{92} +10.9405 q^{93} +0.583726 q^{94} -1.34054 q^{95} +13.8023 q^{96} -9.16806 q^{97} +1.61428 q^{98} +3.34744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 3 q^{3} - q^{4} - 5 q^{5} + 5 q^{6} + 2 q^{7} - 3 q^{8} - 3 q^{9} - 3 q^{10} + q^{11} - 2 q^{12} - 5 q^{13} - 2 q^{14} - 3 q^{15} - 3 q^{16} + 2 q^{17} - 5 q^{18} - 6 q^{19} + 4 q^{20}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.737640 −0.521590 −0.260795 0.965394i \(-0.583985\pi\)
−0.260795 + 0.965394i \(0.583985\pi\)
\(3\) −2.35567 −1.36005 −0.680025 0.733189i \(-0.738031\pi\)
−0.680025 + 0.733189i \(0.738031\pi\)
\(4\) −1.45589 −0.727943
\(5\) 0.355674 0.159062 0.0795312 0.996832i \(-0.474658\pi\)
0.0795312 + 0.996832i \(0.474658\pi\)
\(6\) 1.73764 0.709389
\(7\) 2.19353 0.829075 0.414538 0.910032i \(-0.363943\pi\)
0.414538 + 0.910032i \(0.363943\pi\)
\(8\) 2.54920 0.901279
\(9\) 2.54920 0.849734
\(10\) −0.262360 −0.0829654
\(11\) 1.31313 0.395925 0.197962 0.980210i \(-0.436568\pi\)
0.197962 + 0.980210i \(0.436568\pi\)
\(12\) 3.42960 0.990039
\(13\) −0.219819 −0.0609668 −0.0304834 0.999535i \(-0.509705\pi\)
−0.0304834 + 0.999535i \(0.509705\pi\)
\(14\) −1.61803 −0.432438
\(15\) −0.837853 −0.216333
\(16\) 1.03138 0.257845
\(17\) −4.72333 −1.14558 −0.572788 0.819703i \(-0.694138\pi\)
−0.572788 + 0.819703i \(0.694138\pi\)
\(18\) −1.88039 −0.443213
\(19\) −3.76902 −0.864673 −0.432336 0.901712i \(-0.642311\pi\)
−0.432336 + 0.901712i \(0.642311\pi\)
\(20\) −0.517822 −0.115788
\(21\) −5.16724 −1.12758
\(22\) −0.968620 −0.206511
\(23\) −0.150986 −0.0314828 −0.0157414 0.999876i \(-0.505011\pi\)
−0.0157414 + 0.999876i \(0.505011\pi\)
\(24\) −6.00509 −1.22578
\(25\) −4.87350 −0.974699
\(26\) 0.162147 0.0317997
\(27\) 1.06193 0.204369
\(28\) −3.19353 −0.603520
\(29\) −1.01939 −0.189297 −0.0946483 0.995511i \(-0.530173\pi\)
−0.0946483 + 0.995511i \(0.530173\pi\)
\(30\) 0.618034 0.112837
\(31\) −4.64433 −0.834146 −0.417073 0.908873i \(-0.636944\pi\)
−0.417073 + 0.908873i \(0.636944\pi\)
\(32\) −5.85919 −1.03577
\(33\) −3.09331 −0.538477
\(34\) 3.48412 0.597522
\(35\) 0.780181 0.131875
\(36\) −3.71135 −0.618558
\(37\) −1.24723 −0.205043 −0.102522 0.994731i \(-0.532691\pi\)
−0.102522 + 0.994731i \(0.532691\pi\)
\(38\) 2.78018 0.451005
\(39\) 0.517822 0.0829178
\(40\) 0.906685 0.143360
\(41\) 0.961212 0.150116 0.0750581 0.997179i \(-0.476086\pi\)
0.0750581 + 0.997179i \(0.476086\pi\)
\(42\) 3.81156 0.588137
\(43\) −2.70626 −0.412701 −0.206350 0.978478i \(-0.566159\pi\)
−0.206350 + 0.978478i \(0.566159\pi\)
\(44\) −1.91177 −0.288211
\(45\) 0.906685 0.135161
\(46\) 0.111374 0.0164211
\(47\) −0.791342 −0.115429 −0.0577146 0.998333i \(-0.518381\pi\)
−0.0577146 + 0.998333i \(0.518381\pi\)
\(48\) −2.42960 −0.350682
\(49\) −2.18844 −0.312634
\(50\) 3.59489 0.508394
\(51\) 11.1266 1.55804
\(52\) 0.320031 0.0443804
\(53\) −4.41446 −0.606373 −0.303187 0.952931i \(-0.598051\pi\)
−0.303187 + 0.952931i \(0.598051\pi\)
\(54\) −0.783326 −0.106597
\(55\) 0.467048 0.0629767
\(56\) 5.59174 0.747228
\(57\) 8.87858 1.17600
\(58\) 0.751946 0.0987353
\(59\) −4.46097 −0.580769 −0.290385 0.956910i \(-0.593783\pi\)
−0.290385 + 0.956910i \(0.593783\pi\)
\(60\) 1.21982 0.157478
\(61\) −3.10155 −0.397112 −0.198556 0.980089i \(-0.563625\pi\)
−0.198556 + 0.980089i \(0.563625\pi\)
\(62\) 3.42584 0.435082
\(63\) 5.59174 0.704493
\(64\) 2.25922 0.282402
\(65\) −0.0781839 −0.00969752
\(66\) 2.28175 0.280864
\(67\) 9.44584 1.15399 0.576997 0.816746i \(-0.304225\pi\)
0.576997 + 0.816746i \(0.304225\pi\)
\(68\) 6.87664 0.833915
\(69\) 0.355674 0.0428182
\(70\) −0.575493 −0.0687846
\(71\) 2.60980 0.309726 0.154863 0.987936i \(-0.450506\pi\)
0.154863 + 0.987936i \(0.450506\pi\)
\(72\) 6.49843 0.765847
\(73\) −10.8065 −1.26480 −0.632401 0.774641i \(-0.717930\pi\)
−0.632401 + 0.774641i \(0.717930\pi\)
\(74\) 0.920006 0.106949
\(75\) 11.4804 1.32564
\(76\) 5.48727 0.629433
\(77\) 2.88039 0.328251
\(78\) −0.381966 −0.0432491
\(79\) −4.27546 −0.481027 −0.240514 0.970646i \(-0.577316\pi\)
−0.240514 + 0.970646i \(0.577316\pi\)
\(80\) 0.366835 0.0410134
\(81\) −10.1492 −1.12769
\(82\) −0.709029 −0.0782992
\(83\) 5.53916 0.608002 0.304001 0.952672i \(-0.401677\pi\)
0.304001 + 0.952672i \(0.401677\pi\)
\(84\) 7.52291 0.820817
\(85\) −1.67997 −0.182218
\(86\) 1.99625 0.215261
\(87\) 2.40136 0.257453
\(88\) 3.34744 0.356838
\(89\) −14.6037 −1.54799 −0.773996 0.633190i \(-0.781745\pi\)
−0.773996 + 0.633190i \(0.781745\pi\)
\(90\) −0.668808 −0.0704985
\(91\) −0.482178 −0.0505460
\(92\) 0.219819 0.0229177
\(93\) 10.9405 1.13448
\(94\) 0.583726 0.0602067
\(95\) −1.34054 −0.137537
\(96\) 13.8023 1.40870
\(97\) −9.16806 −0.930875 −0.465438 0.885081i \(-0.654103\pi\)
−0.465438 + 0.885081i \(0.654103\pi\)
\(98\) 1.61428 0.163067
\(99\) 3.34744 0.336431
\(100\) 7.09526 0.709526
\(101\) 5.98194 0.595225 0.297613 0.954687i \(-0.403810\pi\)
0.297613 + 0.954687i \(0.403810\pi\)
\(102\) −8.20746 −0.812659
\(103\) −10.5400 −1.03854 −0.519268 0.854612i \(-0.673795\pi\)
−0.519268 + 0.854612i \(0.673795\pi\)
\(104\) −0.560362 −0.0549481
\(105\) −1.83785 −0.179356
\(106\) 3.25629 0.316279
\(107\) 10.8015 1.04422 0.522111 0.852877i \(-0.325145\pi\)
0.522111 + 0.852877i \(0.325145\pi\)
\(108\) −1.54606 −0.148769
\(109\) −19.3739 −1.85568 −0.927840 0.372979i \(-0.878336\pi\)
−0.927840 + 0.372979i \(0.878336\pi\)
\(110\) −0.344513 −0.0328481
\(111\) 2.93807 0.278869
\(112\) 2.26236 0.213773
\(113\) 11.7803 1.10820 0.554099 0.832451i \(-0.313063\pi\)
0.554099 + 0.832451i \(0.313063\pi\)
\(114\) −6.54920 −0.613389
\(115\) −0.0537019 −0.00500773
\(116\) 1.48412 0.137797
\(117\) −0.560362 −0.0518055
\(118\) 3.29059 0.302924
\(119\) −10.3608 −0.949770
\(120\) −2.13586 −0.194976
\(121\) −9.27568 −0.843244
\(122\) 2.28783 0.207130
\(123\) −2.26430 −0.204165
\(124\) 6.76161 0.607211
\(125\) −3.51175 −0.314100
\(126\) −4.12469 −0.367457
\(127\) 11.0823 0.983394 0.491697 0.870766i \(-0.336377\pi\)
0.491697 + 0.870766i \(0.336377\pi\)
\(128\) 10.0519 0.888470
\(129\) 6.37507 0.561293
\(130\) 0.0576716 0.00505813
\(131\) 9.41103 0.822245 0.411123 0.911580i \(-0.365137\pi\)
0.411123 + 0.911580i \(0.365137\pi\)
\(132\) 4.50352 0.391981
\(133\) −8.26745 −0.716879
\(134\) −6.96764 −0.601912
\(135\) 0.377703 0.0325075
\(136\) −12.0407 −1.03248
\(137\) 14.4355 1.23331 0.616654 0.787234i \(-0.288488\pi\)
0.616654 + 0.787234i \(0.288488\pi\)
\(138\) −0.262360 −0.0223335
\(139\) −6.29486 −0.533923 −0.266961 0.963707i \(-0.586020\pi\)
−0.266961 + 0.963707i \(0.586020\pi\)
\(140\) −1.13586 −0.0959973
\(141\) 1.86414 0.156989
\(142\) −1.92509 −0.161550
\(143\) −0.288651 −0.0241382
\(144\) 2.62920 0.219100
\(145\) −0.362572 −0.0301100
\(146\) 7.97129 0.659709
\(147\) 5.15525 0.425198
\(148\) 1.81582 0.149260
\(149\) 1.27486 0.104440 0.0522201 0.998636i \(-0.483370\pi\)
0.0522201 + 0.998636i \(0.483370\pi\)
\(150\) −8.46838 −0.691441
\(151\) −13.7654 −1.12021 −0.560106 0.828421i \(-0.689240\pi\)
−0.560106 + 0.828421i \(0.689240\pi\)
\(152\) −9.60799 −0.779311
\(153\) −12.0407 −0.973435
\(154\) −2.12469 −0.171213
\(155\) −1.65187 −0.132681
\(156\) −0.753889 −0.0603595
\(157\) 0.224691 0.0179323 0.00896613 0.999960i \(-0.497146\pi\)
0.00896613 + 0.999960i \(0.497146\pi\)
\(158\) 3.15375 0.250899
\(159\) 10.3990 0.824698
\(160\) −2.08396 −0.164752
\(161\) −0.331192 −0.0261016
\(162\) 7.48644 0.588190
\(163\) 10.7653 0.843201 0.421600 0.906782i \(-0.361469\pi\)
0.421600 + 0.906782i \(0.361469\pi\)
\(164\) −1.39942 −0.109276
\(165\) −1.10021 −0.0856514
\(166\) −4.08591 −0.317128
\(167\) 5.99953 0.464257 0.232129 0.972685i \(-0.425431\pi\)
0.232129 + 0.972685i \(0.425431\pi\)
\(168\) −13.1723 −1.01627
\(169\) −12.9517 −0.996283
\(170\) 1.23921 0.0950433
\(171\) −9.60799 −0.734741
\(172\) 3.94001 0.300423
\(173\) −3.24856 −0.246984 −0.123492 0.992346i \(-0.539409\pi\)
−0.123492 + 0.992346i \(0.539409\pi\)
\(174\) −1.77134 −0.134285
\(175\) −10.6901 −0.808099
\(176\) 1.35434 0.102087
\(177\) 10.5086 0.789875
\(178\) 10.7723 0.807418
\(179\) −4.62709 −0.345845 −0.172923 0.984935i \(-0.555321\pi\)
−0.172923 + 0.984935i \(0.555321\pi\)
\(180\) −1.32003 −0.0983893
\(181\) −9.89238 −0.735295 −0.367647 0.929965i \(-0.619837\pi\)
−0.367647 + 0.929965i \(0.619837\pi\)
\(182\) 0.355674 0.0263643
\(183\) 7.30624 0.540092
\(184\) −0.384894 −0.0283748
\(185\) −0.443607 −0.0326147
\(186\) −8.07017 −0.591733
\(187\) −6.20237 −0.453562
\(188\) 1.15210 0.0840259
\(189\) 2.32938 0.169438
\(190\) 0.988839 0.0717379
\(191\) 8.84323 0.639874 0.319937 0.947439i \(-0.396338\pi\)
0.319937 + 0.947439i \(0.396338\pi\)
\(192\) −5.32197 −0.384080
\(193\) 9.17608 0.660508 0.330254 0.943892i \(-0.392866\pi\)
0.330254 + 0.943892i \(0.392866\pi\)
\(194\) 6.76273 0.485536
\(195\) 0.184176 0.0131891
\(196\) 3.18612 0.227580
\(197\) −0.248564 −0.0177094 −0.00885472 0.999961i \(-0.502819\pi\)
−0.00885472 + 0.999961i \(0.502819\pi\)
\(198\) −2.46921 −0.175479
\(199\) 5.15802 0.365642 0.182821 0.983146i \(-0.441477\pi\)
0.182821 + 0.983146i \(0.441477\pi\)
\(200\) −12.4235 −0.878476
\(201\) −22.2513 −1.56949
\(202\) −4.41252 −0.310464
\(203\) −2.23607 −0.156941
\(204\) −16.1991 −1.13417
\(205\) 0.341879 0.0238778
\(206\) 7.77472 0.541690
\(207\) −0.384894 −0.0267520
\(208\) −0.226717 −0.0157200
\(209\) −4.94923 −0.342345
\(210\) 1.35567 0.0935504
\(211\) 17.5140 1.20571 0.602856 0.797850i \(-0.294029\pi\)
0.602856 + 0.797850i \(0.294029\pi\)
\(212\) 6.42696 0.441405
\(213\) −6.14784 −0.421243
\(214\) −7.96764 −0.544656
\(215\) −0.962547 −0.0656452
\(216\) 2.70709 0.184194
\(217\) −10.1875 −0.691569
\(218\) 14.2909 0.967905
\(219\) 25.4565 1.72019
\(220\) −0.679969 −0.0458435
\(221\) 1.03828 0.0698421
\(222\) −2.16724 −0.145455
\(223\) −18.8858 −1.26469 −0.632344 0.774687i \(-0.717907\pi\)
−0.632344 + 0.774687i \(0.717907\pi\)
\(224\) −12.8523 −0.858730
\(225\) −12.4235 −0.828235
\(226\) −8.68964 −0.578026
\(227\) 4.29688 0.285194 0.142597 0.989781i \(-0.454455\pi\)
0.142597 + 0.989781i \(0.454455\pi\)
\(228\) −12.9262 −0.856059
\(229\) 5.94217 0.392670 0.196335 0.980537i \(-0.437096\pi\)
0.196335 + 0.980537i \(0.437096\pi\)
\(230\) 0.0396127 0.00261198
\(231\) −6.78527 −0.446438
\(232\) −2.59864 −0.170609
\(233\) 2.48037 0.162494 0.0812472 0.996694i \(-0.474110\pi\)
0.0812472 + 0.996694i \(0.474110\pi\)
\(234\) 0.413346 0.0270213
\(235\) −0.281460 −0.0183604
\(236\) 6.49467 0.422767
\(237\) 10.0716 0.654221
\(238\) 7.64252 0.495391
\(239\) −20.0791 −1.29881 −0.649406 0.760442i \(-0.724982\pi\)
−0.649406 + 0.760442i \(0.724982\pi\)
\(240\) −0.864145 −0.0557803
\(241\) 17.7876 1.14580 0.572899 0.819626i \(-0.305819\pi\)
0.572899 + 0.819626i \(0.305819\pi\)
\(242\) 6.84212 0.439828
\(243\) 20.7223 1.32934
\(244\) 4.51550 0.289075
\(245\) −0.778371 −0.0497283
\(246\) 1.67024 0.106491
\(247\) 0.828502 0.0527163
\(248\) −11.8393 −0.751798
\(249\) −13.0485 −0.826912
\(250\) 2.59041 0.163832
\(251\) −7.46524 −0.471202 −0.235601 0.971850i \(-0.575706\pi\)
−0.235601 + 0.971850i \(0.575706\pi\)
\(252\) −8.14094 −0.512831
\(253\) −0.198265 −0.0124648
\(254\) −8.17474 −0.512929
\(255\) 3.95746 0.247826
\(256\) −11.9331 −0.745819
\(257\) −3.16460 −0.197402 −0.0987012 0.995117i \(-0.531469\pi\)
−0.0987012 + 0.995117i \(0.531469\pi\)
\(258\) −4.70251 −0.292765
\(259\) −2.73583 −0.169996
\(260\) 0.113827 0.00705924
\(261\) −2.59864 −0.160852
\(262\) −6.94195 −0.428875
\(263\) −7.20962 −0.444564 −0.222282 0.974982i \(-0.571351\pi\)
−0.222282 + 0.974982i \(0.571351\pi\)
\(264\) −7.88548 −0.485318
\(265\) −1.57011 −0.0964512
\(266\) 6.09840 0.373917
\(267\) 34.4016 2.10535
\(268\) −13.7521 −0.840042
\(269\) 1.81673 0.110768 0.0553840 0.998465i \(-0.482362\pi\)
0.0553840 + 0.998465i \(0.482362\pi\)
\(270\) −0.278609 −0.0169556
\(271\) 15.4315 0.937399 0.468700 0.883358i \(-0.344723\pi\)
0.468700 + 0.883358i \(0.344723\pi\)
\(272\) −4.87155 −0.295381
\(273\) 1.13586 0.0687451
\(274\) −10.6482 −0.643282
\(275\) −6.39955 −0.385907
\(276\) −0.517822 −0.0311692
\(277\) −3.68852 −0.221621 −0.110811 0.993842i \(-0.535345\pi\)
−0.110811 + 0.993842i \(0.535345\pi\)
\(278\) 4.64334 0.278489
\(279\) −11.8393 −0.708802
\(280\) 1.98884 0.118856
\(281\) −28.8380 −1.72033 −0.860165 0.510016i \(-0.829640\pi\)
−0.860165 + 0.510016i \(0.829640\pi\)
\(282\) −1.37507 −0.0818841
\(283\) −19.5214 −1.16043 −0.580214 0.814464i \(-0.697031\pi\)
−0.580214 + 0.814464i \(0.697031\pi\)
\(284\) −3.79958 −0.225463
\(285\) 3.15788 0.187057
\(286\) 0.212921 0.0125903
\(287\) 2.10845 0.124458
\(288\) −14.9363 −0.880127
\(289\) 5.30989 0.312346
\(290\) 0.267448 0.0157051
\(291\) 21.5970 1.26604
\(292\) 15.7330 0.920704
\(293\) 19.2030 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(294\) −3.80272 −0.221779
\(295\) −1.58665 −0.0923786
\(296\) −3.17944 −0.184801
\(297\) 1.39446 0.0809149
\(298\) −0.940385 −0.0544750
\(299\) 0.0331896 0.00191940
\(300\) −16.7141 −0.964990
\(301\) −5.93626 −0.342160
\(302\) 10.1539 0.584292
\(303\) −14.0915 −0.809536
\(304\) −3.88729 −0.222951
\(305\) −1.10314 −0.0631657
\(306\) 8.88173 0.507735
\(307\) 8.44718 0.482106 0.241053 0.970512i \(-0.422507\pi\)
0.241053 + 0.970512i \(0.422507\pi\)
\(308\) −4.19353 −0.238948
\(309\) 24.8288 1.41246
\(310\) 1.21848 0.0692052
\(311\) 24.4490 1.38637 0.693187 0.720758i \(-0.256206\pi\)
0.693187 + 0.720758i \(0.256206\pi\)
\(312\) 1.32003 0.0747321
\(313\) −4.86660 −0.275076 −0.137538 0.990496i \(-0.543919\pi\)
−0.137538 + 0.990496i \(0.543919\pi\)
\(314\) −0.165741 −0.00935329
\(315\) 1.98884 0.112058
\(316\) 6.22459 0.350161
\(317\) 34.5036 1.93792 0.968959 0.247221i \(-0.0795175\pi\)
0.968959 + 0.247221i \(0.0795175\pi\)
\(318\) −7.67075 −0.430154
\(319\) −1.33860 −0.0749472
\(320\) 0.803545 0.0449195
\(321\) −25.4449 −1.42019
\(322\) 0.244301 0.0136144
\(323\) 17.8023 0.990549
\(324\) 14.7761 0.820892
\(325\) 1.07129 0.0594243
\(326\) −7.94089 −0.439805
\(327\) 45.6385 2.52382
\(328\) 2.45032 0.135296
\(329\) −1.73583 −0.0956994
\(330\) 0.811561 0.0446750
\(331\) −5.74204 −0.315611 −0.157805 0.987470i \(-0.550442\pi\)
−0.157805 + 0.987470i \(0.550442\pi\)
\(332\) −8.06439 −0.442591
\(333\) −3.17944 −0.174232
\(334\) −4.42549 −0.242152
\(335\) 3.35964 0.183557
\(336\) −5.32938 −0.290742
\(337\) −12.3242 −0.671343 −0.335671 0.941979i \(-0.608963\pi\)
−0.335671 + 0.941979i \(0.608963\pi\)
\(338\) 9.55368 0.519652
\(339\) −27.7506 −1.50720
\(340\) 2.44584 0.132645
\(341\) −6.09862 −0.330259
\(342\) 7.08724 0.383234
\(343\) −20.1551 −1.08827
\(344\) −6.89880 −0.371959
\(345\) 0.126504 0.00681076
\(346\) 2.39627 0.128824
\(347\) 11.8379 0.635489 0.317745 0.948176i \(-0.397075\pi\)
0.317745 + 0.948176i \(0.397075\pi\)
\(348\) −3.49611 −0.187411
\(349\) 0.350720 0.0187736 0.00938680 0.999956i \(-0.497012\pi\)
0.00938680 + 0.999956i \(0.497012\pi\)
\(350\) 7.88548 0.421497
\(351\) −0.233433 −0.0124597
\(352\) −7.69390 −0.410086
\(353\) 7.12371 0.379157 0.189578 0.981866i \(-0.439288\pi\)
0.189578 + 0.981866i \(0.439288\pi\)
\(354\) −7.75157 −0.411991
\(355\) 0.928239 0.0492658
\(356\) 21.2614 1.12685
\(357\) 24.4066 1.29173
\(358\) 3.41313 0.180389
\(359\) −19.6384 −1.03647 −0.518237 0.855237i \(-0.673412\pi\)
−0.518237 + 0.855237i \(0.673412\pi\)
\(360\) 2.31132 0.121817
\(361\) −4.79449 −0.252341
\(362\) 7.29702 0.383523
\(363\) 21.8505 1.14685
\(364\) 0.701997 0.0367947
\(365\) −3.84358 −0.201182
\(366\) −5.38937 −0.281707
\(367\) −1.92083 −0.100267 −0.0501333 0.998743i \(-0.515965\pi\)
−0.0501333 + 0.998743i \(0.515965\pi\)
\(368\) −0.155724 −0.00811768
\(369\) 2.45032 0.127559
\(370\) 0.327223 0.0170115
\(371\) −9.68325 −0.502729
\(372\) −15.9282 −0.825836
\(373\) 38.1400 1.97481 0.987406 0.158206i \(-0.0505710\pi\)
0.987406 + 0.158206i \(0.0505710\pi\)
\(374\) 4.57512 0.236574
\(375\) 8.27254 0.427192
\(376\) −2.01729 −0.104034
\(377\) 0.224082 0.0115408
\(378\) −1.71825 −0.0883771
\(379\) 37.7074 1.93690 0.968448 0.249215i \(-0.0801724\pi\)
0.968448 + 0.249215i \(0.0801724\pi\)
\(380\) 1.95168 0.100119
\(381\) −26.1063 −1.33746
\(382\) −6.52313 −0.333752
\(383\) 7.78393 0.397740 0.198870 0.980026i \(-0.436273\pi\)
0.198870 + 0.980026i \(0.436273\pi\)
\(384\) −23.6790 −1.20836
\(385\) 1.02448 0.0522124
\(386\) −6.76864 −0.344515
\(387\) −6.89880 −0.350686
\(388\) 13.3477 0.677625
\(389\) −15.3669 −0.779132 −0.389566 0.920998i \(-0.627375\pi\)
−0.389566 + 0.920998i \(0.627375\pi\)
\(390\) −0.135855 −0.00687931
\(391\) 0.713158 0.0360660
\(392\) −5.57877 −0.281771
\(393\) −22.1693 −1.11829
\(394\) 0.183351 0.00923708
\(395\) −1.52067 −0.0765133
\(396\) −4.87350 −0.244902
\(397\) 8.41124 0.422148 0.211074 0.977470i \(-0.432304\pi\)
0.211074 + 0.977470i \(0.432304\pi\)
\(398\) −3.80476 −0.190715
\(399\) 19.4754 0.974990
\(400\) −5.02643 −0.251321
\(401\) 35.1299 1.75430 0.877152 0.480213i \(-0.159440\pi\)
0.877152 + 0.480213i \(0.159440\pi\)
\(402\) 16.4135 0.818630
\(403\) 1.02091 0.0508552
\(404\) −8.70903 −0.433290
\(405\) −3.60980 −0.179372
\(406\) 1.64941 0.0818590
\(407\) −1.63778 −0.0811816
\(408\) 28.3640 1.40423
\(409\) 30.9050 1.52816 0.764078 0.645124i \(-0.223194\pi\)
0.764078 + 0.645124i \(0.223194\pi\)
\(410\) −0.252183 −0.0124544
\(411\) −34.0054 −1.67736
\(412\) 15.3450 0.755995
\(413\) −9.78527 −0.481502
\(414\) 0.283913 0.0139536
\(415\) 1.97014 0.0967102
\(416\) 1.28796 0.0631474
\(417\) 14.8286 0.726161
\(418\) 3.65075 0.178564
\(419\) 34.1501 1.66834 0.834172 0.551505i \(-0.185946\pi\)
0.834172 + 0.551505i \(0.185946\pi\)
\(420\) 2.67571 0.130561
\(421\) −10.1575 −0.495048 −0.247524 0.968882i \(-0.579617\pi\)
−0.247524 + 0.968882i \(0.579617\pi\)
\(422\) −12.9190 −0.628888
\(423\) −2.01729 −0.0980840
\(424\) −11.2534 −0.546511
\(425\) 23.0192 1.11659
\(426\) 4.53490 0.219716
\(427\) −6.80333 −0.329236
\(428\) −15.7258 −0.760135
\(429\) 0.679969 0.0328292
\(430\) 0.710014 0.0342399
\(431\) −1.00000 −0.0481683
\(432\) 1.09526 0.0526956
\(433\) 5.06771 0.243539 0.121769 0.992558i \(-0.461143\pi\)
0.121769 + 0.992558i \(0.461143\pi\)
\(434\) 7.51468 0.360716
\(435\) 0.854102 0.0409511
\(436\) 28.2062 1.35083
\(437\) 0.569070 0.0272223
\(438\) −18.7778 −0.897236
\(439\) −21.0411 −1.00424 −0.502118 0.864799i \(-0.667446\pi\)
−0.502118 + 0.864799i \(0.667446\pi\)
\(440\) 1.19060 0.0567596
\(441\) −5.57877 −0.265656
\(442\) −0.765876 −0.0364290
\(443\) 16.4981 0.783846 0.391923 0.919998i \(-0.371810\pi\)
0.391923 + 0.919998i \(0.371810\pi\)
\(444\) −4.27749 −0.203001
\(445\) −5.19417 −0.246227
\(446\) 13.9310 0.659650
\(447\) −3.00314 −0.142044
\(448\) 4.95565 0.234132
\(449\) 30.4997 1.43937 0.719684 0.694301i \(-0.244286\pi\)
0.719684 + 0.694301i \(0.244286\pi\)
\(450\) 9.16409 0.431999
\(451\) 1.26220 0.0594347
\(452\) −17.1508 −0.806706
\(453\) 32.4268 1.52354
\(454\) −3.16955 −0.148755
\(455\) −0.171498 −0.00803997
\(456\) 22.6333 1.05990
\(457\) 11.8416 0.553929 0.276964 0.960880i \(-0.410672\pi\)
0.276964 + 0.960880i \(0.410672\pi\)
\(458\) −4.38318 −0.204813
\(459\) −5.01587 −0.234121
\(460\) 0.0781839 0.00364534
\(461\) −11.9837 −0.558138 −0.279069 0.960271i \(-0.590026\pi\)
−0.279069 + 0.960271i \(0.590026\pi\)
\(462\) 5.00509 0.232858
\(463\) 4.46877 0.207682 0.103841 0.994594i \(-0.466887\pi\)
0.103841 + 0.994594i \(0.466887\pi\)
\(464\) −1.05138 −0.0488092
\(465\) 3.89126 0.180453
\(466\) −1.82962 −0.0847555
\(467\) −29.9185 −1.38446 −0.692231 0.721676i \(-0.743372\pi\)
−0.692231 + 0.721676i \(0.743372\pi\)
\(468\) 0.815824 0.0377115
\(469\) 20.7197 0.956748
\(470\) 0.207616 0.00957663
\(471\) −0.529298 −0.0243887
\(472\) −11.3719 −0.523435
\(473\) −3.55368 −0.163398
\(474\) −7.42922 −0.341235
\(475\) 18.3683 0.842796
\(476\) 15.0841 0.691378
\(477\) −11.2534 −0.515256
\(478\) 14.8112 0.677448
\(479\) −33.6205 −1.53616 −0.768080 0.640354i \(-0.778788\pi\)
−0.768080 + 0.640354i \(0.778788\pi\)
\(480\) 4.90914 0.224071
\(481\) 0.274164 0.0125008
\(482\) −13.1208 −0.597637
\(483\) 0.780181 0.0354995
\(484\) 13.5043 0.613834
\(485\) −3.26084 −0.148067
\(486\) −15.2856 −0.693371
\(487\) −7.66808 −0.347474 −0.173737 0.984792i \(-0.555584\pi\)
−0.173737 + 0.984792i \(0.555584\pi\)
\(488\) −7.90647 −0.357909
\(489\) −25.3595 −1.14679
\(490\) 0.574158 0.0259378
\(491\) −23.7671 −1.07259 −0.536296 0.844030i \(-0.680177\pi\)
−0.536296 + 0.844030i \(0.680177\pi\)
\(492\) 3.29657 0.148621
\(493\) 4.81494 0.216854
\(494\) −0.611136 −0.0274963
\(495\) 1.19060 0.0535134
\(496\) −4.79006 −0.215080
\(497\) 5.72467 0.256787
\(498\) 9.62507 0.431310
\(499\) 29.6770 1.32853 0.664263 0.747499i \(-0.268746\pi\)
0.664263 + 0.747499i \(0.268746\pi\)
\(500\) 5.11271 0.228647
\(501\) −14.1329 −0.631413
\(502\) 5.50666 0.245774
\(503\) −36.5805 −1.63105 −0.815523 0.578725i \(-0.803550\pi\)
−0.815523 + 0.578725i \(0.803550\pi\)
\(504\) 14.2545 0.634945
\(505\) 2.12762 0.0946780
\(506\) 0.146248 0.00650153
\(507\) 30.5099 1.35499
\(508\) −16.1346 −0.715855
\(509\) −38.2366 −1.69481 −0.847403 0.530951i \(-0.821835\pi\)
−0.847403 + 0.530951i \(0.821835\pi\)
\(510\) −2.91918 −0.129264
\(511\) −23.7043 −1.04862
\(512\) −11.3014 −0.499458
\(513\) −4.00245 −0.176713
\(514\) 2.33434 0.102963
\(515\) −3.74880 −0.165192
\(516\) −9.28138 −0.408590
\(517\) −1.03914 −0.0457012
\(518\) 2.01806 0.0886684
\(519\) 7.65256 0.335910
\(520\) −0.199306 −0.00874017
\(521\) −31.7558 −1.39125 −0.695624 0.718406i \(-0.744872\pi\)
−0.695624 + 0.718406i \(0.744872\pi\)
\(522\) 1.91686 0.0838988
\(523\) 4.30013 0.188031 0.0940157 0.995571i \(-0.470030\pi\)
0.0940157 + 0.995571i \(0.470030\pi\)
\(524\) −13.7014 −0.598548
\(525\) 25.1825 1.09905
\(526\) 5.31810 0.231880
\(527\) 21.9367 0.955578
\(528\) −3.19038 −0.138844
\(529\) −22.9772 −0.999009
\(530\) 1.15818 0.0503080
\(531\) −11.3719 −0.493499
\(532\) 12.0365 0.521847
\(533\) −0.211293 −0.00915210
\(534\) −25.3760 −1.09813
\(535\) 3.84182 0.166096
\(536\) 24.0794 1.04007
\(537\) 10.8999 0.470366
\(538\) −1.34009 −0.0577756
\(539\) −2.87371 −0.123780
\(540\) −0.549893 −0.0236636
\(541\) −25.1363 −1.08069 −0.540347 0.841443i \(-0.681707\pi\)
−0.540347 + 0.841443i \(0.681707\pi\)
\(542\) −11.3829 −0.488938
\(543\) 23.3032 1.00004
\(544\) 27.6749 1.18655
\(545\) −6.89079 −0.295169
\(546\) −0.837853 −0.0358568
\(547\) −12.8712 −0.550333 −0.275167 0.961397i \(-0.588733\pi\)
−0.275167 + 0.961397i \(0.588733\pi\)
\(548\) −21.0165 −0.897779
\(549\) −7.90647 −0.337440
\(550\) 4.72057 0.201286
\(551\) 3.84212 0.163680
\(552\) 0.906685 0.0385911
\(553\) −9.37835 −0.398808
\(554\) 2.72080 0.115596
\(555\) 1.04499 0.0443575
\(556\) 9.16460 0.388666
\(557\) −3.93164 −0.166589 −0.0832945 0.996525i \(-0.526544\pi\)
−0.0832945 + 0.996525i \(0.526544\pi\)
\(558\) 8.73316 0.369704
\(559\) 0.594887 0.0251610
\(560\) 0.804663 0.0340032
\(561\) 14.6108 0.616867
\(562\) 21.2721 0.897308
\(563\) −17.0326 −0.717838 −0.358919 0.933369i \(-0.616855\pi\)
−0.358919 + 0.933369i \(0.616855\pi\)
\(564\) −2.71398 −0.114279
\(565\) 4.18996 0.176273
\(566\) 14.3998 0.605268
\(567\) −22.2625 −0.934937
\(568\) 6.65291 0.279150
\(569\) 18.0132 0.755154 0.377577 0.925978i \(-0.376757\pi\)
0.377577 + 0.925978i \(0.376757\pi\)
\(570\) −2.32938 −0.0975671
\(571\) −30.4440 −1.27404 −0.637020 0.770847i \(-0.719833\pi\)
−0.637020 + 0.770847i \(0.719833\pi\)
\(572\) 0.420244 0.0175713
\(573\) −20.8318 −0.870260
\(574\) −1.55527 −0.0649159
\(575\) 0.735831 0.0306863
\(576\) 5.75919 0.239966
\(577\) 34.3629 1.43055 0.715273 0.698846i \(-0.246303\pi\)
0.715273 + 0.698846i \(0.246303\pi\)
\(578\) −3.91679 −0.162917
\(579\) −21.6158 −0.898324
\(580\) 0.527864 0.0219184
\(581\) 12.1503 0.504079
\(582\) −15.9308 −0.660353
\(583\) −5.79678 −0.240078
\(584\) −27.5479 −1.13994
\(585\) −0.199306 −0.00824031
\(586\) −14.1649 −0.585147
\(587\) −35.3347 −1.45842 −0.729209 0.684291i \(-0.760112\pi\)
−0.729209 + 0.684291i \(0.760112\pi\)
\(588\) −7.50546 −0.309520
\(589\) 17.5046 0.721263
\(590\) 1.17038 0.0481838
\(591\) 0.585536 0.0240857
\(592\) −1.28637 −0.0528694
\(593\) −9.31148 −0.382377 −0.191188 0.981553i \(-0.561234\pi\)
−0.191188 + 0.981553i \(0.561234\pi\)
\(594\) −1.02861 −0.0422044
\(595\) −3.68506 −0.151073
\(596\) −1.85605 −0.0760266
\(597\) −12.1506 −0.497291
\(598\) −0.0244820 −0.00100114
\(599\) 15.9577 0.652013 0.326006 0.945368i \(-0.394297\pi\)
0.326006 + 0.945368i \(0.394297\pi\)
\(600\) 29.2658 1.19477
\(601\) −40.6737 −1.65912 −0.829558 0.558421i \(-0.811407\pi\)
−0.829558 + 0.558421i \(0.811407\pi\)
\(602\) 4.37882 0.178467
\(603\) 24.0794 0.980587
\(604\) 20.0409 0.815451
\(605\) −3.29912 −0.134128
\(606\) 10.3945 0.422246
\(607\) −30.2347 −1.22719 −0.613594 0.789621i \(-0.710277\pi\)
−0.613594 + 0.789621i \(0.710277\pi\)
\(608\) 22.0834 0.895600
\(609\) 5.26745 0.213448
\(610\) 0.813721 0.0329466
\(611\) 0.173952 0.00703734
\(612\) 17.5299 0.708606
\(613\) 13.2408 0.534789 0.267395 0.963587i \(-0.413837\pi\)
0.267395 + 0.963587i \(0.413837\pi\)
\(614\) −6.23098 −0.251462
\(615\) −0.805354 −0.0324750
\(616\) 7.34270 0.295846
\(617\) 4.31606 0.173758 0.0868790 0.996219i \(-0.472311\pi\)
0.0868790 + 0.996219i \(0.472311\pi\)
\(618\) −18.3147 −0.736725
\(619\) −8.65208 −0.347757 −0.173878 0.984767i \(-0.555630\pi\)
−0.173878 + 0.984767i \(0.555630\pi\)
\(620\) 2.40493 0.0965844
\(621\) −0.160337 −0.00643412
\(622\) −18.0345 −0.723119
\(623\) −32.0337 −1.28340
\(624\) 0.534071 0.0213799
\(625\) 23.1184 0.924738
\(626\) 3.58980 0.143477
\(627\) 11.6588 0.465606
\(628\) −0.327124 −0.0130537
\(629\) 5.89108 0.234893
\(630\) −1.46705 −0.0584486
\(631\) 4.03074 0.160461 0.0802305 0.996776i \(-0.474434\pi\)
0.0802305 + 0.996776i \(0.474434\pi\)
\(632\) −10.8990 −0.433540
\(633\) −41.2572 −1.63983
\(634\) −25.4513 −1.01080
\(635\) 3.94168 0.156421
\(636\) −15.1398 −0.600333
\(637\) 0.481060 0.0190603
\(638\) 0.987405 0.0390918
\(639\) 6.65291 0.263185
\(640\) 3.57520 0.141322
\(641\) −42.7002 −1.68656 −0.843279 0.537476i \(-0.819378\pi\)
−0.843279 + 0.537476i \(0.819378\pi\)
\(642\) 18.7692 0.740759
\(643\) −2.51260 −0.0990873 −0.0495436 0.998772i \(-0.515777\pi\)
−0.0495436 + 0.998772i \(0.515777\pi\)
\(644\) 0.482178 0.0190005
\(645\) 2.26745 0.0892807
\(646\) −13.1317 −0.516661
\(647\) −5.08862 −0.200054 −0.100027 0.994985i \(-0.531893\pi\)
−0.100027 + 0.994985i \(0.531893\pi\)
\(648\) −25.8723 −1.01636
\(649\) −5.85786 −0.229941
\(650\) −0.790224 −0.0309951
\(651\) 23.9983 0.940568
\(652\) −15.6730 −0.613802
\(653\) −43.4653 −1.70093 −0.850465 0.526031i \(-0.823679\pi\)
−0.850465 + 0.526031i \(0.823679\pi\)
\(654\) −33.6648 −1.31640
\(655\) 3.34726 0.130788
\(656\) 0.991375 0.0387067
\(657\) −27.5479 −1.07474
\(658\) 1.28042 0.0499159
\(659\) 0.206667 0.00805059 0.00402530 0.999992i \(-0.498719\pi\)
0.00402530 + 0.999992i \(0.498719\pi\)
\(660\) 1.60178 0.0623494
\(661\) 35.9230 1.39724 0.698621 0.715492i \(-0.253797\pi\)
0.698621 + 0.715492i \(0.253797\pi\)
\(662\) 4.23556 0.164620
\(663\) −2.44584 −0.0949887
\(664\) 14.1204 0.547979
\(665\) −2.94052 −0.114028
\(666\) 2.34528 0.0908778
\(667\) 0.153914 0.00595959
\(668\) −8.73463 −0.337953
\(669\) 44.4889 1.72004
\(670\) −2.47821 −0.0957416
\(671\) −4.07275 −0.157227
\(672\) 30.2758 1.16791
\(673\) 35.1183 1.35371 0.676855 0.736116i \(-0.263342\pi\)
0.676855 + 0.736116i \(0.263342\pi\)
\(674\) 9.09084 0.350166
\(675\) −5.17533 −0.199199
\(676\) 18.8562 0.725238
\(677\) −5.23428 −0.201170 −0.100585 0.994928i \(-0.532071\pi\)
−0.100585 + 0.994928i \(0.532071\pi\)
\(678\) 20.4700 0.786144
\(679\) −20.1104 −0.771766
\(680\) −4.28258 −0.164229
\(681\) −10.1221 −0.387878
\(682\) 4.49859 0.172260
\(683\) 20.7013 0.792113 0.396057 0.918226i \(-0.370378\pi\)
0.396057 + 0.918226i \(0.370378\pi\)
\(684\) 13.9881 0.534850
\(685\) 5.13434 0.196173
\(686\) 14.8672 0.567633
\(687\) −13.9978 −0.534050
\(688\) −2.79118 −0.106413
\(689\) 0.970382 0.0369686
\(690\) −0.0933146 −0.00355243
\(691\) 14.7800 0.562258 0.281129 0.959670i \(-0.409291\pi\)
0.281129 + 0.959670i \(0.409291\pi\)
\(692\) 4.72954 0.179790
\(693\) 7.34270 0.278926
\(694\) −8.73208 −0.331465
\(695\) −2.23892 −0.0849270
\(696\) 6.12155 0.232037
\(697\) −4.54013 −0.171970
\(698\) −0.258705 −0.00979213
\(699\) −5.84294 −0.221000
\(700\) 15.5636 0.588250
\(701\) 34.1735 1.29072 0.645358 0.763881i \(-0.276708\pi\)
0.645358 + 0.763881i \(0.276708\pi\)
\(702\) 0.172190 0.00649888
\(703\) 4.70083 0.177295
\(704\) 2.96665 0.111810
\(705\) 0.663028 0.0249711
\(706\) −5.25474 −0.197765
\(707\) 13.1215 0.493487
\(708\) −15.2993 −0.574984
\(709\) 8.21388 0.308479 0.154239 0.988034i \(-0.450707\pi\)
0.154239 + 0.988034i \(0.450707\pi\)
\(710\) −0.684707 −0.0256966
\(711\) −10.8990 −0.408745
\(712\) −37.2278 −1.39517
\(713\) 0.701229 0.0262612
\(714\) −18.0033 −0.673756
\(715\) −0.102666 −0.00383949
\(716\) 6.73652 0.251756
\(717\) 47.2999 1.76645
\(718\) 14.4861 0.540615
\(719\) −33.7298 −1.25791 −0.628954 0.777443i \(-0.716517\pi\)
−0.628954 + 0.777443i \(0.716517\pi\)
\(720\) 0.935137 0.0348505
\(721\) −23.1197 −0.861024
\(722\) 3.53661 0.131619
\(723\) −41.9017 −1.55834
\(724\) 14.4022 0.535253
\(725\) 4.96801 0.184507
\(726\) −16.1178 −0.598188
\(727\) −21.4570 −0.795798 −0.397899 0.917429i \(-0.630260\pi\)
−0.397899 + 0.917429i \(0.630260\pi\)
\(728\) −1.22917 −0.0455561
\(729\) −18.3676 −0.680281
\(730\) 2.83518 0.104935
\(731\) 12.7826 0.472781
\(732\) −10.6371 −0.393157
\(733\) −25.9785 −0.959539 −0.479770 0.877395i \(-0.659280\pi\)
−0.479770 + 0.877395i \(0.659280\pi\)
\(734\) 1.41688 0.0522981
\(735\) 1.83359 0.0676330
\(736\) 0.884657 0.0326089
\(737\) 12.4037 0.456894
\(738\) −1.80746 −0.0665334
\(739\) 34.0810 1.25369 0.626845 0.779144i \(-0.284346\pi\)
0.626845 + 0.779144i \(0.284346\pi\)
\(740\) 0.645842 0.0237416
\(741\) −1.95168 −0.0716967
\(742\) 7.14275 0.262219
\(743\) 8.04036 0.294972 0.147486 0.989064i \(-0.452882\pi\)
0.147486 + 0.989064i \(0.452882\pi\)
\(744\) 27.8896 1.02248
\(745\) 0.453433 0.0166125
\(746\) −28.1336 −1.03004
\(747\) 14.1204 0.516640
\(748\) 9.02995 0.330168
\(749\) 23.6934 0.865739
\(750\) −6.10216 −0.222819
\(751\) 36.3502 1.32644 0.663220 0.748425i \(-0.269190\pi\)
0.663220 + 0.748425i \(0.269190\pi\)
\(752\) −0.816174 −0.0297628
\(753\) 17.5857 0.640857
\(754\) −0.165292 −0.00601957
\(755\) −4.89600 −0.178184
\(756\) −3.39132 −0.123341
\(757\) −6.55362 −0.238195 −0.119098 0.992883i \(-0.538000\pi\)
−0.119098 + 0.992883i \(0.538000\pi\)
\(758\) −27.8145 −1.01027
\(759\) 0.467048 0.0169528
\(760\) −3.41732 −0.123959
\(761\) −28.9735 −1.05029 −0.525144 0.851014i \(-0.675988\pi\)
−0.525144 + 0.851014i \(0.675988\pi\)
\(762\) 19.2570 0.697609
\(763\) −42.4971 −1.53850
\(764\) −12.8747 −0.465792
\(765\) −4.28258 −0.154837
\(766\) −5.74174 −0.207458
\(767\) 0.980606 0.0354076
\(768\) 28.1105 1.01435
\(769\) −20.7996 −0.750052 −0.375026 0.927014i \(-0.622366\pi\)
−0.375026 + 0.927014i \(0.622366\pi\)
\(770\) −0.755699 −0.0272335
\(771\) 7.45477 0.268477
\(772\) −13.3593 −0.480813
\(773\) 34.7699 1.25059 0.625293 0.780390i \(-0.284980\pi\)
0.625293 + 0.780390i \(0.284980\pi\)
\(774\) 5.08884 0.182914
\(775\) 22.6341 0.813041
\(776\) −23.3712 −0.838978
\(777\) 6.44473 0.231203
\(778\) 11.3352 0.406388
\(779\) −3.62283 −0.129801
\(780\) −0.268139 −0.00960092
\(781\) 3.42702 0.122628
\(782\) −0.526054 −0.0188117
\(783\) −1.08253 −0.0386865
\(784\) −2.25711 −0.0806111
\(785\) 0.0799166 0.00285235
\(786\) 16.3530 0.583291
\(787\) 18.6268 0.663973 0.331986 0.943284i \(-0.392281\pi\)
0.331986 + 0.943284i \(0.392281\pi\)
\(788\) 0.361881 0.0128915
\(789\) 16.9835 0.604629
\(790\) 1.12171 0.0399086
\(791\) 25.8404 0.918780
\(792\) 8.53330 0.303218
\(793\) 0.681778 0.0242107
\(794\) −6.20447 −0.220188
\(795\) 3.69867 0.131178
\(796\) −7.50949 −0.266167
\(797\) −8.55696 −0.303103 −0.151552 0.988449i \(-0.548427\pi\)
−0.151552 + 0.988449i \(0.548427\pi\)
\(798\) −14.3659 −0.508546
\(799\) 3.73777 0.132233
\(800\) 28.5547 1.00956
\(801\) −37.2278 −1.31538
\(802\) −25.9132 −0.915028
\(803\) −14.1903 −0.500766
\(804\) 32.3954 1.14250
\(805\) −0.117797 −0.00415178
\(806\) −0.753064 −0.0265256
\(807\) −4.27963 −0.150650
\(808\) 15.2492 0.536464
\(809\) 36.5255 1.28417 0.642084 0.766634i \(-0.278070\pi\)
0.642084 + 0.766634i \(0.278070\pi\)
\(810\) 2.66273 0.0935590
\(811\) 0.291636 0.0102407 0.00512037 0.999987i \(-0.498370\pi\)
0.00512037 + 0.999987i \(0.498370\pi\)
\(812\) 3.25546 0.114244
\(813\) −36.3517 −1.27491
\(814\) 1.20809 0.0423436
\(815\) 3.82893 0.134122
\(816\) 11.4758 0.401733
\(817\) 10.2000 0.356851
\(818\) −22.7968 −0.797072
\(819\) −1.22917 −0.0429507
\(820\) −0.497736 −0.0173817
\(821\) −24.0196 −0.838291 −0.419145 0.907919i \(-0.637670\pi\)
−0.419145 + 0.907919i \(0.637670\pi\)
\(822\) 25.0837 0.874895
\(823\) −37.3060 −1.30040 −0.650202 0.759761i \(-0.725316\pi\)
−0.650202 + 0.759761i \(0.725316\pi\)
\(824\) −26.8685 −0.936010
\(825\) 15.0753 0.524853
\(826\) 7.21801 0.251147
\(827\) 2.15858 0.0750610 0.0375305 0.999295i \(-0.488051\pi\)
0.0375305 + 0.999295i \(0.488051\pi\)
\(828\) 0.560362 0.0194739
\(829\) 39.2679 1.36383 0.681915 0.731431i \(-0.261147\pi\)
0.681915 + 0.731431i \(0.261147\pi\)
\(830\) −1.45325 −0.0504431
\(831\) 8.68894 0.301416
\(832\) −0.496618 −0.0172171
\(833\) 10.3367 0.358146
\(834\) −10.9382 −0.378759
\(835\) 2.13388 0.0738459
\(836\) 7.20551 0.249208
\(837\) −4.93197 −0.170474
\(838\) −25.1905 −0.870192
\(839\) 19.4462 0.671358 0.335679 0.941976i \(-0.391034\pi\)
0.335679 + 0.941976i \(0.391034\pi\)
\(840\) −4.68506 −0.161650
\(841\) −27.9608 −0.964167
\(842\) 7.49261 0.258213
\(843\) 67.9329 2.33973
\(844\) −25.4984 −0.877690
\(845\) −4.60658 −0.158471
\(846\) 1.48803 0.0511597
\(847\) −20.3465 −0.699113
\(848\) −4.55299 −0.156350
\(849\) 45.9861 1.57824
\(850\) −16.9799 −0.582404
\(851\) 0.188314 0.00645533
\(852\) 8.95056 0.306641
\(853\) −31.5937 −1.08175 −0.540874 0.841104i \(-0.681906\pi\)
−0.540874 + 0.841104i \(0.681906\pi\)
\(854\) 5.01841 0.171726
\(855\) −3.41732 −0.116870
\(856\) 27.5352 0.941135
\(857\) −38.8076 −1.32564 −0.662822 0.748777i \(-0.730641\pi\)
−0.662822 + 0.748777i \(0.730641\pi\)
\(858\) −0.501572 −0.0171234
\(859\) −30.1896 −1.03005 −0.515027 0.857174i \(-0.672218\pi\)
−0.515027 + 0.857174i \(0.672218\pi\)
\(860\) 1.40136 0.0477860
\(861\) −4.96681 −0.169268
\(862\) 0.737640 0.0251241
\(863\) 11.4522 0.389837 0.194918 0.980819i \(-0.437556\pi\)
0.194918 + 0.980819i \(0.437556\pi\)
\(864\) −6.22208 −0.211679
\(865\) −1.15543 −0.0392858
\(866\) −3.73815 −0.127028
\(867\) −12.5084 −0.424807
\(868\) 14.8318 0.503423
\(869\) −5.61425 −0.190451
\(870\) −0.630020 −0.0213597
\(871\) −2.07637 −0.0703553
\(872\) −49.3879 −1.67248
\(873\) −23.3712 −0.790996
\(874\) −0.419769 −0.0141989
\(875\) −7.70312 −0.260413
\(876\) −37.0618 −1.25220
\(877\) −37.2682 −1.25846 −0.629229 0.777220i \(-0.716629\pi\)
−0.629229 + 0.777220i \(0.716629\pi\)
\(878\) 15.5207 0.523800
\(879\) −45.2360 −1.52577
\(880\) 0.481704 0.0162382
\(881\) −7.29814 −0.245880 −0.122940 0.992414i \(-0.539232\pi\)
−0.122940 + 0.992414i \(0.539232\pi\)
\(882\) 4.11513 0.138564
\(883\) −19.7549 −0.664805 −0.332402 0.943138i \(-0.607859\pi\)
−0.332402 + 0.943138i \(0.607859\pi\)
\(884\) −1.51161 −0.0508411
\(885\) 3.73764 0.125639
\(886\) −12.1696 −0.408847
\(887\) 48.7214 1.63591 0.817953 0.575285i \(-0.195109\pi\)
0.817953 + 0.575285i \(0.195109\pi\)
\(888\) 7.48972 0.251339
\(889\) 24.3093 0.815308
\(890\) 3.83143 0.128430
\(891\) −13.3272 −0.446479
\(892\) 27.4956 0.920622
\(893\) 2.98258 0.0998084
\(894\) 2.21524 0.0740887
\(895\) −1.64574 −0.0550109
\(896\) 22.0491 0.736609
\(897\) −0.0781839 −0.00261048
\(898\) −22.4978 −0.750761
\(899\) 4.73440 0.157901
\(900\) 18.0872 0.602908
\(901\) 20.8510 0.694647
\(902\) −0.931050 −0.0310006
\(903\) 13.9839 0.465355
\(904\) 30.0304 0.998796
\(905\) −3.51847 −0.116958
\(906\) −23.9193 −0.794666
\(907\) 7.89607 0.262185 0.131092 0.991370i \(-0.458152\pi\)
0.131092 + 0.991370i \(0.458152\pi\)
\(908\) −6.25578 −0.207605
\(909\) 15.2492 0.505783
\(910\) 0.126504 0.00419357
\(911\) 41.9892 1.39117 0.695583 0.718446i \(-0.255146\pi\)
0.695583 + 0.718446i \(0.255146\pi\)
\(912\) 9.15719 0.303225
\(913\) 7.27365 0.240723
\(914\) −8.73487 −0.288924
\(915\) 2.59864 0.0859084
\(916\) −8.65112 −0.285841
\(917\) 20.6433 0.681703
\(918\) 3.69991 0.122115
\(919\) 47.6809 1.57285 0.786424 0.617687i \(-0.211930\pi\)
0.786424 + 0.617687i \(0.211930\pi\)
\(920\) −0.136897 −0.00451336
\(921\) −19.8988 −0.655688
\(922\) 8.83968 0.291119
\(923\) −0.573683 −0.0188830
\(924\) 9.87858 0.324982
\(925\) 6.07837 0.199855
\(926\) −3.29635 −0.108325
\(927\) −26.8685 −0.882479
\(928\) 5.97282 0.196067
\(929\) 9.33964 0.306424 0.153212 0.988193i \(-0.451038\pi\)
0.153212 + 0.988193i \(0.451038\pi\)
\(930\) −2.87035 −0.0941225
\(931\) 8.24827 0.270326
\(932\) −3.61114 −0.118287
\(933\) −57.5938 −1.88554
\(934\) 22.0691 0.722122
\(935\) −2.20602 −0.0721447
\(936\) −1.42848 −0.0466912
\(937\) 34.6393 1.13162 0.565809 0.824536i \(-0.308564\pi\)
0.565809 + 0.824536i \(0.308564\pi\)
\(938\) −15.2837 −0.499030
\(939\) 11.4641 0.374117
\(940\) 0.409774 0.0133654
\(941\) 48.6872 1.58716 0.793579 0.608467i \(-0.208215\pi\)
0.793579 + 0.608467i \(0.208215\pi\)
\(942\) 0.390431 0.0127209
\(943\) −0.145130 −0.00472608
\(944\) −4.60096 −0.149748
\(945\) 0.828502 0.0269512
\(946\) 2.62134 0.0852271
\(947\) −35.0995 −1.14058 −0.570290 0.821444i \(-0.693169\pi\)
−0.570290 + 0.821444i \(0.693169\pi\)
\(948\) −14.6631 −0.476236
\(949\) 2.37547 0.0771109
\(950\) −13.5492 −0.439594
\(951\) −81.2794 −2.63566
\(952\) −26.4117 −0.856007
\(953\) 41.5286 1.34524 0.672622 0.739986i \(-0.265168\pi\)
0.672622 + 0.739986i \(0.265168\pi\)
\(954\) 8.30093 0.268753
\(955\) 3.14531 0.101780
\(956\) 29.2330 0.945461
\(957\) 3.15331 0.101932
\(958\) 24.7998 0.801246
\(959\) 31.6647 1.02251
\(960\) −1.89289 −0.0610928
\(961\) −9.43024 −0.304201
\(962\) −0.202235 −0.00652031
\(963\) 27.5352 0.887311
\(964\) −25.8967 −0.834076
\(965\) 3.26369 0.105062
\(966\) −0.575493 −0.0185162
\(967\) 25.9307 0.833875 0.416937 0.908935i \(-0.363103\pi\)
0.416937 + 0.908935i \(0.363103\pi\)
\(968\) −23.6456 −0.759998
\(969\) −41.9365 −1.34720
\(970\) 2.40533 0.0772305
\(971\) −34.0711 −1.09339 −0.546697 0.837331i \(-0.684115\pi\)
−0.546697 + 0.837331i \(0.684115\pi\)
\(972\) −30.1694 −0.967684
\(973\) −13.8079 −0.442662
\(974\) 5.65629 0.181239
\(975\) −2.52360 −0.0808199
\(976\) −3.19887 −0.102393
\(977\) 57.9989 1.85555 0.927775 0.373139i \(-0.121719\pi\)
0.927775 + 0.373139i \(0.121719\pi\)
\(978\) 18.7062 0.598157
\(979\) −19.1766 −0.612888
\(980\) 1.13322 0.0361994
\(981\) −49.3879 −1.57683
\(982\) 17.5315 0.559454
\(983\) −34.3211 −1.09467 −0.547337 0.836912i \(-0.684359\pi\)
−0.547337 + 0.836912i \(0.684359\pi\)
\(984\) −5.77216 −0.184010
\(985\) −0.0884078 −0.00281691
\(986\) −3.55169 −0.113109
\(987\) 4.08905 0.130156
\(988\) −1.20620 −0.0383745
\(989\) 0.408608 0.0129930
\(990\) −0.878234 −0.0279121
\(991\) 49.4157 1.56974 0.784870 0.619660i \(-0.212730\pi\)
0.784870 + 0.619660i \(0.212730\pi\)
\(992\) 27.2120 0.863981
\(993\) 13.5264 0.429246
\(994\) −4.22275 −0.133937
\(995\) 1.83457 0.0581599
\(996\) 18.9971 0.601945
\(997\) −18.9248 −0.599354 −0.299677 0.954041i \(-0.596879\pi\)
−0.299677 + 0.954041i \(0.596879\pi\)
\(998\) −21.8910 −0.692946
\(999\) −1.32448 −0.0419046
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 431.2.a.e.1.2 4
3.2 odd 2 3879.2.a.m.1.3 4
4.3 odd 2 6896.2.a.o.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.e.1.2 4 1.1 even 1 trivial
3879.2.a.m.1.3 4 3.2 odd 2
6896.2.a.o.1.4 4 4.3 odd 2