Properties

Label 6896.2.a.o.1.4
Level $6896$
Weight $2$
Character 6896.1
Self dual yes
Analytic conductor $55.065$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6896,2,Mod(1,6896)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6896, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6896.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6896 = 2^{4} \cdot 431 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6896.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0648372339\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 431)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.35567\) of defining polynomial
Character \(\chi\) \(=\) 6896.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.35567 q^{3} +0.355674 q^{5} -2.19353 q^{7} +2.54920 q^{9} -1.31313 q^{11} -0.219819 q^{13} +0.837853 q^{15} -4.72333 q^{17} +3.76902 q^{19} -5.16724 q^{21} +0.150986 q^{23} -4.87350 q^{25} -1.06193 q^{27} -1.01939 q^{29} +4.64433 q^{31} -3.09331 q^{33} -0.780181 q^{35} -1.24723 q^{37} -0.517822 q^{39} +0.961212 q^{41} +2.70626 q^{43} +0.906685 q^{45} +0.791342 q^{47} -2.18844 q^{49} -11.1266 q^{51} -4.41446 q^{53} -0.467048 q^{55} +8.87858 q^{57} +4.46097 q^{59} -3.10155 q^{61} -5.59174 q^{63} -0.0781839 q^{65} -9.44584 q^{67} +0.355674 q^{69} -2.60980 q^{71} -10.8065 q^{73} -11.4804 q^{75} +2.88039 q^{77} +4.27546 q^{79} -10.1492 q^{81} -5.53916 q^{83} -1.67997 q^{85} -2.40136 q^{87} -14.6037 q^{89} +0.482178 q^{91} +10.9405 q^{93} +1.34054 q^{95} -9.16806 q^{97} -3.34744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 5 q^{5} - 2 q^{7} - 3 q^{9} - q^{11} - 5 q^{13} + 3 q^{15} + 2 q^{17} + 6 q^{19} - 3 q^{21} - 4 q^{23} - 7 q^{25} - 3 q^{27} - 5 q^{29} + 25 q^{31} - 4 q^{33} + q^{35} - q^{37} + 4 q^{39}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.35567 1.36005 0.680025 0.733189i \(-0.261969\pi\)
0.680025 + 0.733189i \(0.261969\pi\)
\(4\) 0 0
\(5\) 0.355674 0.159062 0.0795312 0.996832i \(-0.474658\pi\)
0.0795312 + 0.996832i \(0.474658\pi\)
\(6\) 0 0
\(7\) −2.19353 −0.829075 −0.414538 0.910032i \(-0.636057\pi\)
−0.414538 + 0.910032i \(0.636057\pi\)
\(8\) 0 0
\(9\) 2.54920 0.849734
\(10\) 0 0
\(11\) −1.31313 −0.395925 −0.197962 0.980210i \(-0.563432\pi\)
−0.197962 + 0.980210i \(0.563432\pi\)
\(12\) 0 0
\(13\) −0.219819 −0.0609668 −0.0304834 0.999535i \(-0.509705\pi\)
−0.0304834 + 0.999535i \(0.509705\pi\)
\(14\) 0 0
\(15\) 0.837853 0.216333
\(16\) 0 0
\(17\) −4.72333 −1.14558 −0.572788 0.819703i \(-0.694138\pi\)
−0.572788 + 0.819703i \(0.694138\pi\)
\(18\) 0 0
\(19\) 3.76902 0.864673 0.432336 0.901712i \(-0.357689\pi\)
0.432336 + 0.901712i \(0.357689\pi\)
\(20\) 0 0
\(21\) −5.16724 −1.12758
\(22\) 0 0
\(23\) 0.150986 0.0314828 0.0157414 0.999876i \(-0.494989\pi\)
0.0157414 + 0.999876i \(0.494989\pi\)
\(24\) 0 0
\(25\) −4.87350 −0.974699
\(26\) 0 0
\(27\) −1.06193 −0.204369
\(28\) 0 0
\(29\) −1.01939 −0.189297 −0.0946483 0.995511i \(-0.530173\pi\)
−0.0946483 + 0.995511i \(0.530173\pi\)
\(30\) 0 0
\(31\) 4.64433 0.834146 0.417073 0.908873i \(-0.363056\pi\)
0.417073 + 0.908873i \(0.363056\pi\)
\(32\) 0 0
\(33\) −3.09331 −0.538477
\(34\) 0 0
\(35\) −0.780181 −0.131875
\(36\) 0 0
\(37\) −1.24723 −0.205043 −0.102522 0.994731i \(-0.532691\pi\)
−0.102522 + 0.994731i \(0.532691\pi\)
\(38\) 0 0
\(39\) −0.517822 −0.0829178
\(40\) 0 0
\(41\) 0.961212 0.150116 0.0750581 0.997179i \(-0.476086\pi\)
0.0750581 + 0.997179i \(0.476086\pi\)
\(42\) 0 0
\(43\) 2.70626 0.412701 0.206350 0.978478i \(-0.433841\pi\)
0.206350 + 0.978478i \(0.433841\pi\)
\(44\) 0 0
\(45\) 0.906685 0.135161
\(46\) 0 0
\(47\) 0.791342 0.115429 0.0577146 0.998333i \(-0.481619\pi\)
0.0577146 + 0.998333i \(0.481619\pi\)
\(48\) 0 0
\(49\) −2.18844 −0.312634
\(50\) 0 0
\(51\) −11.1266 −1.55804
\(52\) 0 0
\(53\) −4.41446 −0.606373 −0.303187 0.952931i \(-0.598051\pi\)
−0.303187 + 0.952931i \(0.598051\pi\)
\(54\) 0 0
\(55\) −0.467048 −0.0629767
\(56\) 0 0
\(57\) 8.87858 1.17600
\(58\) 0 0
\(59\) 4.46097 0.580769 0.290385 0.956910i \(-0.406217\pi\)
0.290385 + 0.956910i \(0.406217\pi\)
\(60\) 0 0
\(61\) −3.10155 −0.397112 −0.198556 0.980089i \(-0.563625\pi\)
−0.198556 + 0.980089i \(0.563625\pi\)
\(62\) 0 0
\(63\) −5.59174 −0.704493
\(64\) 0 0
\(65\) −0.0781839 −0.00969752
\(66\) 0 0
\(67\) −9.44584 −1.15399 −0.576997 0.816746i \(-0.695775\pi\)
−0.576997 + 0.816746i \(0.695775\pi\)
\(68\) 0 0
\(69\) 0.355674 0.0428182
\(70\) 0 0
\(71\) −2.60980 −0.309726 −0.154863 0.987936i \(-0.549494\pi\)
−0.154863 + 0.987936i \(0.549494\pi\)
\(72\) 0 0
\(73\) −10.8065 −1.26480 −0.632401 0.774641i \(-0.717930\pi\)
−0.632401 + 0.774641i \(0.717930\pi\)
\(74\) 0 0
\(75\) −11.4804 −1.32564
\(76\) 0 0
\(77\) 2.88039 0.328251
\(78\) 0 0
\(79\) 4.27546 0.481027 0.240514 0.970646i \(-0.422684\pi\)
0.240514 + 0.970646i \(0.422684\pi\)
\(80\) 0 0
\(81\) −10.1492 −1.12769
\(82\) 0 0
\(83\) −5.53916 −0.608002 −0.304001 0.952672i \(-0.598323\pi\)
−0.304001 + 0.952672i \(0.598323\pi\)
\(84\) 0 0
\(85\) −1.67997 −0.182218
\(86\) 0 0
\(87\) −2.40136 −0.257453
\(88\) 0 0
\(89\) −14.6037 −1.54799 −0.773996 0.633190i \(-0.781745\pi\)
−0.773996 + 0.633190i \(0.781745\pi\)
\(90\) 0 0
\(91\) 0.482178 0.0505460
\(92\) 0 0
\(93\) 10.9405 1.13448
\(94\) 0 0
\(95\) 1.34054 0.137537
\(96\) 0 0
\(97\) −9.16806 −0.930875 −0.465438 0.885081i \(-0.654103\pi\)
−0.465438 + 0.885081i \(0.654103\pi\)
\(98\) 0 0
\(99\) −3.34744 −0.336431
\(100\) 0 0
\(101\) 5.98194 0.595225 0.297613 0.954687i \(-0.403810\pi\)
0.297613 + 0.954687i \(0.403810\pi\)
\(102\) 0 0
\(103\) 10.5400 1.03854 0.519268 0.854612i \(-0.326205\pi\)
0.519268 + 0.854612i \(0.326205\pi\)
\(104\) 0 0
\(105\) −1.83785 −0.179356
\(106\) 0 0
\(107\) −10.8015 −1.04422 −0.522111 0.852877i \(-0.674855\pi\)
−0.522111 + 0.852877i \(0.674855\pi\)
\(108\) 0 0
\(109\) −19.3739 −1.85568 −0.927840 0.372979i \(-0.878336\pi\)
−0.927840 + 0.372979i \(0.878336\pi\)
\(110\) 0 0
\(111\) −2.93807 −0.278869
\(112\) 0 0
\(113\) 11.7803 1.10820 0.554099 0.832451i \(-0.313063\pi\)
0.554099 + 0.832451i \(0.313063\pi\)
\(114\) 0 0
\(115\) 0.0537019 0.00500773
\(116\) 0 0
\(117\) −0.560362 −0.0518055
\(118\) 0 0
\(119\) 10.3608 0.949770
\(120\) 0 0
\(121\) −9.27568 −0.843244
\(122\) 0 0
\(123\) 2.26430 0.204165
\(124\) 0 0
\(125\) −3.51175 −0.314100
\(126\) 0 0
\(127\) −11.0823 −0.983394 −0.491697 0.870766i \(-0.663623\pi\)
−0.491697 + 0.870766i \(0.663623\pi\)
\(128\) 0 0
\(129\) 6.37507 0.561293
\(130\) 0 0
\(131\) −9.41103 −0.822245 −0.411123 0.911580i \(-0.634863\pi\)
−0.411123 + 0.911580i \(0.634863\pi\)
\(132\) 0 0
\(133\) −8.26745 −0.716879
\(134\) 0 0
\(135\) −0.377703 −0.0325075
\(136\) 0 0
\(137\) 14.4355 1.23331 0.616654 0.787234i \(-0.288488\pi\)
0.616654 + 0.787234i \(0.288488\pi\)
\(138\) 0 0
\(139\) 6.29486 0.533923 0.266961 0.963707i \(-0.413980\pi\)
0.266961 + 0.963707i \(0.413980\pi\)
\(140\) 0 0
\(141\) 1.86414 0.156989
\(142\) 0 0
\(143\) 0.288651 0.0241382
\(144\) 0 0
\(145\) −0.362572 −0.0301100
\(146\) 0 0
\(147\) −5.15525 −0.425198
\(148\) 0 0
\(149\) 1.27486 0.104440 0.0522201 0.998636i \(-0.483370\pi\)
0.0522201 + 0.998636i \(0.483370\pi\)
\(150\) 0 0
\(151\) 13.7654 1.12021 0.560106 0.828421i \(-0.310760\pi\)
0.560106 + 0.828421i \(0.310760\pi\)
\(152\) 0 0
\(153\) −12.0407 −0.973435
\(154\) 0 0
\(155\) 1.65187 0.132681
\(156\) 0 0
\(157\) 0.224691 0.0179323 0.00896613 0.999960i \(-0.497146\pi\)
0.00896613 + 0.999960i \(0.497146\pi\)
\(158\) 0 0
\(159\) −10.3990 −0.824698
\(160\) 0 0
\(161\) −0.331192 −0.0261016
\(162\) 0 0
\(163\) −10.7653 −0.843201 −0.421600 0.906782i \(-0.638531\pi\)
−0.421600 + 0.906782i \(0.638531\pi\)
\(164\) 0 0
\(165\) −1.10021 −0.0856514
\(166\) 0 0
\(167\) −5.99953 −0.464257 −0.232129 0.972685i \(-0.574569\pi\)
−0.232129 + 0.972685i \(0.574569\pi\)
\(168\) 0 0
\(169\) −12.9517 −0.996283
\(170\) 0 0
\(171\) 9.60799 0.734741
\(172\) 0 0
\(173\) −3.24856 −0.246984 −0.123492 0.992346i \(-0.539409\pi\)
−0.123492 + 0.992346i \(0.539409\pi\)
\(174\) 0 0
\(175\) 10.6901 0.808099
\(176\) 0 0
\(177\) 10.5086 0.789875
\(178\) 0 0
\(179\) 4.62709 0.345845 0.172923 0.984935i \(-0.444679\pi\)
0.172923 + 0.984935i \(0.444679\pi\)
\(180\) 0 0
\(181\) −9.89238 −0.735295 −0.367647 0.929965i \(-0.619837\pi\)
−0.367647 + 0.929965i \(0.619837\pi\)
\(182\) 0 0
\(183\) −7.30624 −0.540092
\(184\) 0 0
\(185\) −0.443607 −0.0326147
\(186\) 0 0
\(187\) 6.20237 0.453562
\(188\) 0 0
\(189\) 2.32938 0.169438
\(190\) 0 0
\(191\) −8.84323 −0.639874 −0.319937 0.947439i \(-0.603662\pi\)
−0.319937 + 0.947439i \(0.603662\pi\)
\(192\) 0 0
\(193\) 9.17608 0.660508 0.330254 0.943892i \(-0.392866\pi\)
0.330254 + 0.943892i \(0.392866\pi\)
\(194\) 0 0
\(195\) −0.184176 −0.0131891
\(196\) 0 0
\(197\) −0.248564 −0.0177094 −0.00885472 0.999961i \(-0.502819\pi\)
−0.00885472 + 0.999961i \(0.502819\pi\)
\(198\) 0 0
\(199\) −5.15802 −0.365642 −0.182821 0.983146i \(-0.558523\pi\)
−0.182821 + 0.983146i \(0.558523\pi\)
\(200\) 0 0
\(201\) −22.2513 −1.56949
\(202\) 0 0
\(203\) 2.23607 0.156941
\(204\) 0 0
\(205\) 0.341879 0.0238778
\(206\) 0 0
\(207\) 0.384894 0.0267520
\(208\) 0 0
\(209\) −4.94923 −0.342345
\(210\) 0 0
\(211\) −17.5140 −1.20571 −0.602856 0.797850i \(-0.705971\pi\)
−0.602856 + 0.797850i \(0.705971\pi\)
\(212\) 0 0
\(213\) −6.14784 −0.421243
\(214\) 0 0
\(215\) 0.962547 0.0656452
\(216\) 0 0
\(217\) −10.1875 −0.691569
\(218\) 0 0
\(219\) −25.4565 −1.72019
\(220\) 0 0
\(221\) 1.03828 0.0698421
\(222\) 0 0
\(223\) 18.8858 1.26469 0.632344 0.774687i \(-0.282093\pi\)
0.632344 + 0.774687i \(0.282093\pi\)
\(224\) 0 0
\(225\) −12.4235 −0.828235
\(226\) 0 0
\(227\) −4.29688 −0.285194 −0.142597 0.989781i \(-0.545545\pi\)
−0.142597 + 0.989781i \(0.545545\pi\)
\(228\) 0 0
\(229\) 5.94217 0.392670 0.196335 0.980537i \(-0.437096\pi\)
0.196335 + 0.980537i \(0.437096\pi\)
\(230\) 0 0
\(231\) 6.78527 0.446438
\(232\) 0 0
\(233\) 2.48037 0.162494 0.0812472 0.996694i \(-0.474110\pi\)
0.0812472 + 0.996694i \(0.474110\pi\)
\(234\) 0 0
\(235\) 0.281460 0.0183604
\(236\) 0 0
\(237\) 10.0716 0.654221
\(238\) 0 0
\(239\) 20.0791 1.29881 0.649406 0.760442i \(-0.275018\pi\)
0.649406 + 0.760442i \(0.275018\pi\)
\(240\) 0 0
\(241\) 17.7876 1.14580 0.572899 0.819626i \(-0.305819\pi\)
0.572899 + 0.819626i \(0.305819\pi\)
\(242\) 0 0
\(243\) −20.7223 −1.32934
\(244\) 0 0
\(245\) −0.778371 −0.0497283
\(246\) 0 0
\(247\) −0.828502 −0.0527163
\(248\) 0 0
\(249\) −13.0485 −0.826912
\(250\) 0 0
\(251\) 7.46524 0.471202 0.235601 0.971850i \(-0.424294\pi\)
0.235601 + 0.971850i \(0.424294\pi\)
\(252\) 0 0
\(253\) −0.198265 −0.0124648
\(254\) 0 0
\(255\) −3.95746 −0.247826
\(256\) 0 0
\(257\) −3.16460 −0.197402 −0.0987012 0.995117i \(-0.531469\pi\)
−0.0987012 + 0.995117i \(0.531469\pi\)
\(258\) 0 0
\(259\) 2.73583 0.169996
\(260\) 0 0
\(261\) −2.59864 −0.160852
\(262\) 0 0
\(263\) 7.20962 0.444564 0.222282 0.974982i \(-0.428649\pi\)
0.222282 + 0.974982i \(0.428649\pi\)
\(264\) 0 0
\(265\) −1.57011 −0.0964512
\(266\) 0 0
\(267\) −34.4016 −2.10535
\(268\) 0 0
\(269\) 1.81673 0.110768 0.0553840 0.998465i \(-0.482362\pi\)
0.0553840 + 0.998465i \(0.482362\pi\)
\(270\) 0 0
\(271\) −15.4315 −0.937399 −0.468700 0.883358i \(-0.655277\pi\)
−0.468700 + 0.883358i \(0.655277\pi\)
\(272\) 0 0
\(273\) 1.13586 0.0687451
\(274\) 0 0
\(275\) 6.39955 0.385907
\(276\) 0 0
\(277\) −3.68852 −0.221621 −0.110811 0.993842i \(-0.535345\pi\)
−0.110811 + 0.993842i \(0.535345\pi\)
\(278\) 0 0
\(279\) 11.8393 0.708802
\(280\) 0 0
\(281\) −28.8380 −1.72033 −0.860165 0.510016i \(-0.829640\pi\)
−0.860165 + 0.510016i \(0.829640\pi\)
\(282\) 0 0
\(283\) 19.5214 1.16043 0.580214 0.814464i \(-0.302969\pi\)
0.580214 + 0.814464i \(0.302969\pi\)
\(284\) 0 0
\(285\) 3.15788 0.187057
\(286\) 0 0
\(287\) −2.10845 −0.124458
\(288\) 0 0
\(289\) 5.30989 0.312346
\(290\) 0 0
\(291\) −21.5970 −1.26604
\(292\) 0 0
\(293\) 19.2030 1.12185 0.560926 0.827866i \(-0.310445\pi\)
0.560926 + 0.827866i \(0.310445\pi\)
\(294\) 0 0
\(295\) 1.58665 0.0923786
\(296\) 0 0
\(297\) 1.39446 0.0809149
\(298\) 0 0
\(299\) −0.0331896 −0.00191940
\(300\) 0 0
\(301\) −5.93626 −0.342160
\(302\) 0 0
\(303\) 14.0915 0.809536
\(304\) 0 0
\(305\) −1.10314 −0.0631657
\(306\) 0 0
\(307\) −8.44718 −0.482106 −0.241053 0.970512i \(-0.577493\pi\)
−0.241053 + 0.970512i \(0.577493\pi\)
\(308\) 0 0
\(309\) 24.8288 1.41246
\(310\) 0 0
\(311\) −24.4490 −1.38637 −0.693187 0.720758i \(-0.743794\pi\)
−0.693187 + 0.720758i \(0.743794\pi\)
\(312\) 0 0
\(313\) −4.86660 −0.275076 −0.137538 0.990496i \(-0.543919\pi\)
−0.137538 + 0.990496i \(0.543919\pi\)
\(314\) 0 0
\(315\) −1.98884 −0.112058
\(316\) 0 0
\(317\) 34.5036 1.93792 0.968959 0.247221i \(-0.0795175\pi\)
0.968959 + 0.247221i \(0.0795175\pi\)
\(318\) 0 0
\(319\) 1.33860 0.0749472
\(320\) 0 0
\(321\) −25.4449 −1.42019
\(322\) 0 0
\(323\) −17.8023 −0.990549
\(324\) 0 0
\(325\) 1.07129 0.0594243
\(326\) 0 0
\(327\) −45.6385 −2.52382
\(328\) 0 0
\(329\) −1.73583 −0.0956994
\(330\) 0 0
\(331\) 5.74204 0.315611 0.157805 0.987470i \(-0.449558\pi\)
0.157805 + 0.987470i \(0.449558\pi\)
\(332\) 0 0
\(333\) −3.17944 −0.174232
\(334\) 0 0
\(335\) −3.35964 −0.183557
\(336\) 0 0
\(337\) −12.3242 −0.671343 −0.335671 0.941979i \(-0.608963\pi\)
−0.335671 + 0.941979i \(0.608963\pi\)
\(338\) 0 0
\(339\) 27.7506 1.50720
\(340\) 0 0
\(341\) −6.09862 −0.330259
\(342\) 0 0
\(343\) 20.1551 1.08827
\(344\) 0 0
\(345\) 0.126504 0.00681076
\(346\) 0 0
\(347\) −11.8379 −0.635489 −0.317745 0.948176i \(-0.602925\pi\)
−0.317745 + 0.948176i \(0.602925\pi\)
\(348\) 0 0
\(349\) 0.350720 0.0187736 0.00938680 0.999956i \(-0.497012\pi\)
0.00938680 + 0.999956i \(0.497012\pi\)
\(350\) 0 0
\(351\) 0.233433 0.0124597
\(352\) 0 0
\(353\) 7.12371 0.379157 0.189578 0.981866i \(-0.439288\pi\)
0.189578 + 0.981866i \(0.439288\pi\)
\(354\) 0 0
\(355\) −0.928239 −0.0492658
\(356\) 0 0
\(357\) 24.4066 1.29173
\(358\) 0 0
\(359\) 19.6384 1.03647 0.518237 0.855237i \(-0.326588\pi\)
0.518237 + 0.855237i \(0.326588\pi\)
\(360\) 0 0
\(361\) −4.79449 −0.252341
\(362\) 0 0
\(363\) −21.8505 −1.14685
\(364\) 0 0
\(365\) −3.84358 −0.201182
\(366\) 0 0
\(367\) 1.92083 0.100267 0.0501333 0.998743i \(-0.484035\pi\)
0.0501333 + 0.998743i \(0.484035\pi\)
\(368\) 0 0
\(369\) 2.45032 0.127559
\(370\) 0 0
\(371\) 9.68325 0.502729
\(372\) 0 0
\(373\) 38.1400 1.97481 0.987406 0.158206i \(-0.0505710\pi\)
0.987406 + 0.158206i \(0.0505710\pi\)
\(374\) 0 0
\(375\) −8.27254 −0.427192
\(376\) 0 0
\(377\) 0.224082 0.0115408
\(378\) 0 0
\(379\) −37.7074 −1.93690 −0.968448 0.249215i \(-0.919828\pi\)
−0.968448 + 0.249215i \(0.919828\pi\)
\(380\) 0 0
\(381\) −26.1063 −1.33746
\(382\) 0 0
\(383\) −7.78393 −0.397740 −0.198870 0.980026i \(-0.563727\pi\)
−0.198870 + 0.980026i \(0.563727\pi\)
\(384\) 0 0
\(385\) 1.02448 0.0522124
\(386\) 0 0
\(387\) 6.89880 0.350686
\(388\) 0 0
\(389\) −15.3669 −0.779132 −0.389566 0.920998i \(-0.627375\pi\)
−0.389566 + 0.920998i \(0.627375\pi\)
\(390\) 0 0
\(391\) −0.713158 −0.0360660
\(392\) 0 0
\(393\) −22.1693 −1.11829
\(394\) 0 0
\(395\) 1.52067 0.0765133
\(396\) 0 0
\(397\) 8.41124 0.422148 0.211074 0.977470i \(-0.432304\pi\)
0.211074 + 0.977470i \(0.432304\pi\)
\(398\) 0 0
\(399\) −19.4754 −0.974990
\(400\) 0 0
\(401\) 35.1299 1.75430 0.877152 0.480213i \(-0.159440\pi\)
0.877152 + 0.480213i \(0.159440\pi\)
\(402\) 0 0
\(403\) −1.02091 −0.0508552
\(404\) 0 0
\(405\) −3.60980 −0.179372
\(406\) 0 0
\(407\) 1.63778 0.0811816
\(408\) 0 0
\(409\) 30.9050 1.52816 0.764078 0.645124i \(-0.223194\pi\)
0.764078 + 0.645124i \(0.223194\pi\)
\(410\) 0 0
\(411\) 34.0054 1.67736
\(412\) 0 0
\(413\) −9.78527 −0.481502
\(414\) 0 0
\(415\) −1.97014 −0.0967102
\(416\) 0 0
\(417\) 14.8286 0.726161
\(418\) 0 0
\(419\) −34.1501 −1.66834 −0.834172 0.551505i \(-0.814054\pi\)
−0.834172 + 0.551505i \(0.814054\pi\)
\(420\) 0 0
\(421\) −10.1575 −0.495048 −0.247524 0.968882i \(-0.579617\pi\)
−0.247524 + 0.968882i \(0.579617\pi\)
\(422\) 0 0
\(423\) 2.01729 0.0980840
\(424\) 0 0
\(425\) 23.0192 1.11659
\(426\) 0 0
\(427\) 6.80333 0.329236
\(428\) 0 0
\(429\) 0.679969 0.0328292
\(430\) 0 0
\(431\) 1.00000 0.0481683
\(432\) 0 0
\(433\) 5.06771 0.243539 0.121769 0.992558i \(-0.461143\pi\)
0.121769 + 0.992558i \(0.461143\pi\)
\(434\) 0 0
\(435\) −0.854102 −0.0409511
\(436\) 0 0
\(437\) 0.569070 0.0272223
\(438\) 0 0
\(439\) 21.0411 1.00424 0.502118 0.864799i \(-0.332554\pi\)
0.502118 + 0.864799i \(0.332554\pi\)
\(440\) 0 0
\(441\) −5.57877 −0.265656
\(442\) 0 0
\(443\) −16.4981 −0.783846 −0.391923 0.919998i \(-0.628190\pi\)
−0.391923 + 0.919998i \(0.628190\pi\)
\(444\) 0 0
\(445\) −5.19417 −0.246227
\(446\) 0 0
\(447\) 3.00314 0.142044
\(448\) 0 0
\(449\) 30.4997 1.43937 0.719684 0.694301i \(-0.244286\pi\)
0.719684 + 0.694301i \(0.244286\pi\)
\(450\) 0 0
\(451\) −1.26220 −0.0594347
\(452\) 0 0
\(453\) 32.4268 1.52354
\(454\) 0 0
\(455\) 0.171498 0.00803997
\(456\) 0 0
\(457\) 11.8416 0.553929 0.276964 0.960880i \(-0.410672\pi\)
0.276964 + 0.960880i \(0.410672\pi\)
\(458\) 0 0
\(459\) 5.01587 0.234121
\(460\) 0 0
\(461\) −11.9837 −0.558138 −0.279069 0.960271i \(-0.590026\pi\)
−0.279069 + 0.960271i \(0.590026\pi\)
\(462\) 0 0
\(463\) −4.46877 −0.207682 −0.103841 0.994594i \(-0.533113\pi\)
−0.103841 + 0.994594i \(0.533113\pi\)
\(464\) 0 0
\(465\) 3.89126 0.180453
\(466\) 0 0
\(467\) 29.9185 1.38446 0.692231 0.721676i \(-0.256628\pi\)
0.692231 + 0.721676i \(0.256628\pi\)
\(468\) 0 0
\(469\) 20.7197 0.956748
\(470\) 0 0
\(471\) 0.529298 0.0243887
\(472\) 0 0
\(473\) −3.55368 −0.163398
\(474\) 0 0
\(475\) −18.3683 −0.842796
\(476\) 0 0
\(477\) −11.2534 −0.515256
\(478\) 0 0
\(479\) 33.6205 1.53616 0.768080 0.640354i \(-0.221212\pi\)
0.768080 + 0.640354i \(0.221212\pi\)
\(480\) 0 0
\(481\) 0.274164 0.0125008
\(482\) 0 0
\(483\) −0.780181 −0.0354995
\(484\) 0 0
\(485\) −3.26084 −0.148067
\(486\) 0 0
\(487\) 7.66808 0.347474 0.173737 0.984792i \(-0.444416\pi\)
0.173737 + 0.984792i \(0.444416\pi\)
\(488\) 0 0
\(489\) −25.3595 −1.14679
\(490\) 0 0
\(491\) 23.7671 1.07259 0.536296 0.844030i \(-0.319823\pi\)
0.536296 + 0.844030i \(0.319823\pi\)
\(492\) 0 0
\(493\) 4.81494 0.216854
\(494\) 0 0
\(495\) −1.19060 −0.0535134
\(496\) 0 0
\(497\) 5.72467 0.256787
\(498\) 0 0
\(499\) −29.6770 −1.32853 −0.664263 0.747499i \(-0.731254\pi\)
−0.664263 + 0.747499i \(0.731254\pi\)
\(500\) 0 0
\(501\) −14.1329 −0.631413
\(502\) 0 0
\(503\) 36.5805 1.63105 0.815523 0.578725i \(-0.196450\pi\)
0.815523 + 0.578725i \(0.196450\pi\)
\(504\) 0 0
\(505\) 2.12762 0.0946780
\(506\) 0 0
\(507\) −30.5099 −1.35499
\(508\) 0 0
\(509\) −38.2366 −1.69481 −0.847403 0.530951i \(-0.821835\pi\)
−0.847403 + 0.530951i \(0.821835\pi\)
\(510\) 0 0
\(511\) 23.7043 1.04862
\(512\) 0 0
\(513\) −4.00245 −0.176713
\(514\) 0 0
\(515\) 3.74880 0.165192
\(516\) 0 0
\(517\) −1.03914 −0.0457012
\(518\) 0 0
\(519\) −7.65256 −0.335910
\(520\) 0 0
\(521\) −31.7558 −1.39125 −0.695624 0.718406i \(-0.744872\pi\)
−0.695624 + 0.718406i \(0.744872\pi\)
\(522\) 0 0
\(523\) −4.30013 −0.188031 −0.0940157 0.995571i \(-0.529970\pi\)
−0.0940157 + 0.995571i \(0.529970\pi\)
\(524\) 0 0
\(525\) 25.1825 1.09905
\(526\) 0 0
\(527\) −21.9367 −0.955578
\(528\) 0 0
\(529\) −22.9772 −0.999009
\(530\) 0 0
\(531\) 11.3719 0.493499
\(532\) 0 0
\(533\) −0.211293 −0.00915210
\(534\) 0 0
\(535\) −3.84182 −0.166096
\(536\) 0 0
\(537\) 10.8999 0.470366
\(538\) 0 0
\(539\) 2.87371 0.123780
\(540\) 0 0
\(541\) −25.1363 −1.08069 −0.540347 0.841443i \(-0.681707\pi\)
−0.540347 + 0.841443i \(0.681707\pi\)
\(542\) 0 0
\(543\) −23.3032 −1.00004
\(544\) 0 0
\(545\) −6.89079 −0.295169
\(546\) 0 0
\(547\) 12.8712 0.550333 0.275167 0.961397i \(-0.411267\pi\)
0.275167 + 0.961397i \(0.411267\pi\)
\(548\) 0 0
\(549\) −7.90647 −0.337440
\(550\) 0 0
\(551\) −3.84212 −0.163680
\(552\) 0 0
\(553\) −9.37835 −0.398808
\(554\) 0 0
\(555\) −1.04499 −0.0443575
\(556\) 0 0
\(557\) −3.93164 −0.166589 −0.0832945 0.996525i \(-0.526544\pi\)
−0.0832945 + 0.996525i \(0.526544\pi\)
\(558\) 0 0
\(559\) −0.594887 −0.0251610
\(560\) 0 0
\(561\) 14.6108 0.616867
\(562\) 0 0
\(563\) 17.0326 0.717838 0.358919 0.933369i \(-0.383145\pi\)
0.358919 + 0.933369i \(0.383145\pi\)
\(564\) 0 0
\(565\) 4.18996 0.176273
\(566\) 0 0
\(567\) 22.2625 0.934937
\(568\) 0 0
\(569\) 18.0132 0.755154 0.377577 0.925978i \(-0.376757\pi\)
0.377577 + 0.925978i \(0.376757\pi\)
\(570\) 0 0
\(571\) 30.4440 1.27404 0.637020 0.770847i \(-0.280167\pi\)
0.637020 + 0.770847i \(0.280167\pi\)
\(572\) 0 0
\(573\) −20.8318 −0.870260
\(574\) 0 0
\(575\) −0.735831 −0.0306863
\(576\) 0 0
\(577\) 34.3629 1.43055 0.715273 0.698846i \(-0.246303\pi\)
0.715273 + 0.698846i \(0.246303\pi\)
\(578\) 0 0
\(579\) 21.6158 0.898324
\(580\) 0 0
\(581\) 12.1503 0.504079
\(582\) 0 0
\(583\) 5.79678 0.240078
\(584\) 0 0
\(585\) −0.199306 −0.00824031
\(586\) 0 0
\(587\) 35.3347 1.45842 0.729209 0.684291i \(-0.239888\pi\)
0.729209 + 0.684291i \(0.239888\pi\)
\(588\) 0 0
\(589\) 17.5046 0.721263
\(590\) 0 0
\(591\) −0.585536 −0.0240857
\(592\) 0 0
\(593\) −9.31148 −0.382377 −0.191188 0.981553i \(-0.561234\pi\)
−0.191188 + 0.981553i \(0.561234\pi\)
\(594\) 0 0
\(595\) 3.68506 0.151073
\(596\) 0 0
\(597\) −12.1506 −0.497291
\(598\) 0 0
\(599\) −15.9577 −0.652013 −0.326006 0.945368i \(-0.605703\pi\)
−0.326006 + 0.945368i \(0.605703\pi\)
\(600\) 0 0
\(601\) −40.6737 −1.65912 −0.829558 0.558421i \(-0.811407\pi\)
−0.829558 + 0.558421i \(0.811407\pi\)
\(602\) 0 0
\(603\) −24.0794 −0.980587
\(604\) 0 0
\(605\) −3.29912 −0.134128
\(606\) 0 0
\(607\) 30.2347 1.22719 0.613594 0.789621i \(-0.289723\pi\)
0.613594 + 0.789621i \(0.289723\pi\)
\(608\) 0 0
\(609\) 5.26745 0.213448
\(610\) 0 0
\(611\) −0.173952 −0.00703734
\(612\) 0 0
\(613\) 13.2408 0.534789 0.267395 0.963587i \(-0.413837\pi\)
0.267395 + 0.963587i \(0.413837\pi\)
\(614\) 0 0
\(615\) 0.805354 0.0324750
\(616\) 0 0
\(617\) 4.31606 0.173758 0.0868790 0.996219i \(-0.472311\pi\)
0.0868790 + 0.996219i \(0.472311\pi\)
\(618\) 0 0
\(619\) 8.65208 0.347757 0.173878 0.984767i \(-0.444370\pi\)
0.173878 + 0.984767i \(0.444370\pi\)
\(620\) 0 0
\(621\) −0.160337 −0.00643412
\(622\) 0 0
\(623\) 32.0337 1.28340
\(624\) 0 0
\(625\) 23.1184 0.924738
\(626\) 0 0
\(627\) −11.6588 −0.465606
\(628\) 0 0
\(629\) 5.89108 0.234893
\(630\) 0 0
\(631\) −4.03074 −0.160461 −0.0802305 0.996776i \(-0.525566\pi\)
−0.0802305 + 0.996776i \(0.525566\pi\)
\(632\) 0 0
\(633\) −41.2572 −1.63983
\(634\) 0 0
\(635\) −3.94168 −0.156421
\(636\) 0 0
\(637\) 0.481060 0.0190603
\(638\) 0 0
\(639\) −6.65291 −0.263185
\(640\) 0 0
\(641\) −42.7002 −1.68656 −0.843279 0.537476i \(-0.819378\pi\)
−0.843279 + 0.537476i \(0.819378\pi\)
\(642\) 0 0
\(643\) 2.51260 0.0990873 0.0495436 0.998772i \(-0.484223\pi\)
0.0495436 + 0.998772i \(0.484223\pi\)
\(644\) 0 0
\(645\) 2.26745 0.0892807
\(646\) 0 0
\(647\) 5.08862 0.200054 0.100027 0.994985i \(-0.468107\pi\)
0.100027 + 0.994985i \(0.468107\pi\)
\(648\) 0 0
\(649\) −5.85786 −0.229941
\(650\) 0 0
\(651\) −23.9983 −0.940568
\(652\) 0 0
\(653\) −43.4653 −1.70093 −0.850465 0.526031i \(-0.823679\pi\)
−0.850465 + 0.526031i \(0.823679\pi\)
\(654\) 0 0
\(655\) −3.34726 −0.130788
\(656\) 0 0
\(657\) −27.5479 −1.07474
\(658\) 0 0
\(659\) −0.206667 −0.00805059 −0.00402530 0.999992i \(-0.501281\pi\)
−0.00402530 + 0.999992i \(0.501281\pi\)
\(660\) 0 0
\(661\) 35.9230 1.39724 0.698621 0.715492i \(-0.253797\pi\)
0.698621 + 0.715492i \(0.253797\pi\)
\(662\) 0 0
\(663\) 2.44584 0.0949887
\(664\) 0 0
\(665\) −2.94052 −0.114028
\(666\) 0 0
\(667\) −0.153914 −0.00595959
\(668\) 0 0
\(669\) 44.4889 1.72004
\(670\) 0 0
\(671\) 4.07275 0.157227
\(672\) 0 0
\(673\) 35.1183 1.35371 0.676855 0.736116i \(-0.263342\pi\)
0.676855 + 0.736116i \(0.263342\pi\)
\(674\) 0 0
\(675\) 5.17533 0.199199
\(676\) 0 0
\(677\) −5.23428 −0.201170 −0.100585 0.994928i \(-0.532071\pi\)
−0.100585 + 0.994928i \(0.532071\pi\)
\(678\) 0 0
\(679\) 20.1104 0.771766
\(680\) 0 0
\(681\) −10.1221 −0.387878
\(682\) 0 0
\(683\) −20.7013 −0.792113 −0.396057 0.918226i \(-0.629622\pi\)
−0.396057 + 0.918226i \(0.629622\pi\)
\(684\) 0 0
\(685\) 5.13434 0.196173
\(686\) 0 0
\(687\) 13.9978 0.534050
\(688\) 0 0
\(689\) 0.970382 0.0369686
\(690\) 0 0
\(691\) −14.7800 −0.562258 −0.281129 0.959670i \(-0.590709\pi\)
−0.281129 + 0.959670i \(0.590709\pi\)
\(692\) 0 0
\(693\) 7.34270 0.278926
\(694\) 0 0
\(695\) 2.23892 0.0849270
\(696\) 0 0
\(697\) −4.54013 −0.171970
\(698\) 0 0
\(699\) 5.84294 0.221000
\(700\) 0 0
\(701\) 34.1735 1.29072 0.645358 0.763881i \(-0.276708\pi\)
0.645358 + 0.763881i \(0.276708\pi\)
\(702\) 0 0
\(703\) −4.70083 −0.177295
\(704\) 0 0
\(705\) 0.663028 0.0249711
\(706\) 0 0
\(707\) −13.1215 −0.493487
\(708\) 0 0
\(709\) 8.21388 0.308479 0.154239 0.988034i \(-0.450707\pi\)
0.154239 + 0.988034i \(0.450707\pi\)
\(710\) 0 0
\(711\) 10.8990 0.408745
\(712\) 0 0
\(713\) 0.701229 0.0262612
\(714\) 0 0
\(715\) 0.102666 0.00383949
\(716\) 0 0
\(717\) 47.2999 1.76645
\(718\) 0 0
\(719\) 33.7298 1.25791 0.628954 0.777443i \(-0.283483\pi\)
0.628954 + 0.777443i \(0.283483\pi\)
\(720\) 0 0
\(721\) −23.1197 −0.861024
\(722\) 0 0
\(723\) 41.9017 1.55834
\(724\) 0 0
\(725\) 4.96801 0.184507
\(726\) 0 0
\(727\) 21.4570 0.795798 0.397899 0.917429i \(-0.369740\pi\)
0.397899 + 0.917429i \(0.369740\pi\)
\(728\) 0 0
\(729\) −18.3676 −0.680281
\(730\) 0 0
\(731\) −12.7826 −0.472781
\(732\) 0 0
\(733\) −25.9785 −0.959539 −0.479770 0.877395i \(-0.659280\pi\)
−0.479770 + 0.877395i \(0.659280\pi\)
\(734\) 0 0
\(735\) −1.83359 −0.0676330
\(736\) 0 0
\(737\) 12.4037 0.456894
\(738\) 0 0
\(739\) −34.0810 −1.25369 −0.626845 0.779144i \(-0.715654\pi\)
−0.626845 + 0.779144i \(0.715654\pi\)
\(740\) 0 0
\(741\) −1.95168 −0.0716967
\(742\) 0 0
\(743\) −8.04036 −0.294972 −0.147486 0.989064i \(-0.547118\pi\)
−0.147486 + 0.989064i \(0.547118\pi\)
\(744\) 0 0
\(745\) 0.453433 0.0166125
\(746\) 0 0
\(747\) −14.1204 −0.516640
\(748\) 0 0
\(749\) 23.6934 0.865739
\(750\) 0 0
\(751\) −36.3502 −1.32644 −0.663220 0.748425i \(-0.730810\pi\)
−0.663220 + 0.748425i \(0.730810\pi\)
\(752\) 0 0
\(753\) 17.5857 0.640857
\(754\) 0 0
\(755\) 4.89600 0.178184
\(756\) 0 0
\(757\) −6.55362 −0.238195 −0.119098 0.992883i \(-0.538000\pi\)
−0.119098 + 0.992883i \(0.538000\pi\)
\(758\) 0 0
\(759\) −0.467048 −0.0169528
\(760\) 0 0
\(761\) −28.9735 −1.05029 −0.525144 0.851014i \(-0.675988\pi\)
−0.525144 + 0.851014i \(0.675988\pi\)
\(762\) 0 0
\(763\) 42.4971 1.53850
\(764\) 0 0
\(765\) −4.28258 −0.154837
\(766\) 0 0
\(767\) −0.980606 −0.0354076
\(768\) 0 0
\(769\) −20.7996 −0.750052 −0.375026 0.927014i \(-0.622366\pi\)
−0.375026 + 0.927014i \(0.622366\pi\)
\(770\) 0 0
\(771\) −7.45477 −0.268477
\(772\) 0 0
\(773\) 34.7699 1.25059 0.625293 0.780390i \(-0.284980\pi\)
0.625293 + 0.780390i \(0.284980\pi\)
\(774\) 0 0
\(775\) −22.6341 −0.813041
\(776\) 0 0
\(777\) 6.44473 0.231203
\(778\) 0 0
\(779\) 3.62283 0.129801
\(780\) 0 0
\(781\) 3.42702 0.122628
\(782\) 0 0
\(783\) 1.08253 0.0386865
\(784\) 0 0
\(785\) 0.0799166 0.00285235
\(786\) 0 0
\(787\) −18.6268 −0.663973 −0.331986 0.943284i \(-0.607719\pi\)
−0.331986 + 0.943284i \(0.607719\pi\)
\(788\) 0 0
\(789\) 16.9835 0.604629
\(790\) 0 0
\(791\) −25.8404 −0.918780
\(792\) 0 0
\(793\) 0.681778 0.0242107
\(794\) 0 0
\(795\) −3.69867 −0.131178
\(796\) 0 0
\(797\) −8.55696 −0.303103 −0.151552 0.988449i \(-0.548427\pi\)
−0.151552 + 0.988449i \(0.548427\pi\)
\(798\) 0 0
\(799\) −3.73777 −0.132233
\(800\) 0 0
\(801\) −37.2278 −1.31538
\(802\) 0 0
\(803\) 14.1903 0.500766
\(804\) 0 0
\(805\) −0.117797 −0.00415178
\(806\) 0 0
\(807\) 4.27963 0.150650
\(808\) 0 0
\(809\) 36.5255 1.28417 0.642084 0.766634i \(-0.278070\pi\)
0.642084 + 0.766634i \(0.278070\pi\)
\(810\) 0 0
\(811\) −0.291636 −0.0102407 −0.00512037 0.999987i \(-0.501630\pi\)
−0.00512037 + 0.999987i \(0.501630\pi\)
\(812\) 0 0
\(813\) −36.3517 −1.27491
\(814\) 0 0
\(815\) −3.82893 −0.134122
\(816\) 0 0
\(817\) 10.2000 0.356851
\(818\) 0 0
\(819\) 1.22917 0.0429507
\(820\) 0 0
\(821\) −24.0196 −0.838291 −0.419145 0.907919i \(-0.637670\pi\)
−0.419145 + 0.907919i \(0.637670\pi\)
\(822\) 0 0
\(823\) 37.3060 1.30040 0.650202 0.759761i \(-0.274684\pi\)
0.650202 + 0.759761i \(0.274684\pi\)
\(824\) 0 0
\(825\) 15.0753 0.524853
\(826\) 0 0
\(827\) −2.15858 −0.0750610 −0.0375305 0.999295i \(-0.511949\pi\)
−0.0375305 + 0.999295i \(0.511949\pi\)
\(828\) 0 0
\(829\) 39.2679 1.36383 0.681915 0.731431i \(-0.261147\pi\)
0.681915 + 0.731431i \(0.261147\pi\)
\(830\) 0 0
\(831\) −8.68894 −0.301416
\(832\) 0 0
\(833\) 10.3367 0.358146
\(834\) 0 0
\(835\) −2.13388 −0.0738459
\(836\) 0 0
\(837\) −4.93197 −0.170474
\(838\) 0 0
\(839\) −19.4462 −0.671358 −0.335679 0.941976i \(-0.608966\pi\)
−0.335679 + 0.941976i \(0.608966\pi\)
\(840\) 0 0
\(841\) −27.9608 −0.964167
\(842\) 0 0
\(843\) −67.9329 −2.33973
\(844\) 0 0
\(845\) −4.60658 −0.158471
\(846\) 0 0
\(847\) 20.3465 0.699113
\(848\) 0 0
\(849\) 45.9861 1.57824
\(850\) 0 0
\(851\) −0.188314 −0.00645533
\(852\) 0 0
\(853\) −31.5937 −1.08175 −0.540874 0.841104i \(-0.681906\pi\)
−0.540874 + 0.841104i \(0.681906\pi\)
\(854\) 0 0
\(855\) 3.41732 0.116870
\(856\) 0 0
\(857\) −38.8076 −1.32564 −0.662822 0.748777i \(-0.730641\pi\)
−0.662822 + 0.748777i \(0.730641\pi\)
\(858\) 0 0
\(859\) 30.1896 1.03005 0.515027 0.857174i \(-0.327782\pi\)
0.515027 + 0.857174i \(0.327782\pi\)
\(860\) 0 0
\(861\) −4.96681 −0.169268
\(862\) 0 0
\(863\) −11.4522 −0.389837 −0.194918 0.980819i \(-0.562444\pi\)
−0.194918 + 0.980819i \(0.562444\pi\)
\(864\) 0 0
\(865\) −1.15543 −0.0392858
\(866\) 0 0
\(867\) 12.5084 0.424807
\(868\) 0 0
\(869\) −5.61425 −0.190451
\(870\) 0 0
\(871\) 2.07637 0.0703553
\(872\) 0 0
\(873\) −23.3712 −0.790996
\(874\) 0 0
\(875\) 7.70312 0.260413
\(876\) 0 0
\(877\) −37.2682 −1.25846 −0.629229 0.777220i \(-0.716629\pi\)
−0.629229 + 0.777220i \(0.716629\pi\)
\(878\) 0 0
\(879\) 45.2360 1.52577
\(880\) 0 0
\(881\) −7.29814 −0.245880 −0.122940 0.992414i \(-0.539232\pi\)
−0.122940 + 0.992414i \(0.539232\pi\)
\(882\) 0 0
\(883\) 19.7549 0.664805 0.332402 0.943138i \(-0.392141\pi\)
0.332402 + 0.943138i \(0.392141\pi\)
\(884\) 0 0
\(885\) 3.73764 0.125639
\(886\) 0 0
\(887\) −48.7214 −1.63591 −0.817953 0.575285i \(-0.804891\pi\)
−0.817953 + 0.575285i \(0.804891\pi\)
\(888\) 0 0
\(889\) 24.3093 0.815308
\(890\) 0 0
\(891\) 13.3272 0.446479
\(892\) 0 0
\(893\) 2.98258 0.0998084
\(894\) 0 0
\(895\) 1.64574 0.0550109
\(896\) 0 0
\(897\) −0.0781839 −0.00261048
\(898\) 0 0
\(899\) −4.73440 −0.157901
\(900\) 0 0
\(901\) 20.8510 0.694647
\(902\) 0 0
\(903\) −13.9839 −0.465355
\(904\) 0 0
\(905\) −3.51847 −0.116958
\(906\) 0 0
\(907\) −7.89607 −0.262185 −0.131092 0.991370i \(-0.541848\pi\)
−0.131092 + 0.991370i \(0.541848\pi\)
\(908\) 0 0
\(909\) 15.2492 0.505783
\(910\) 0 0
\(911\) −41.9892 −1.39117 −0.695583 0.718446i \(-0.744854\pi\)
−0.695583 + 0.718446i \(0.744854\pi\)
\(912\) 0 0
\(913\) 7.27365 0.240723
\(914\) 0 0
\(915\) −2.59864 −0.0859084
\(916\) 0 0
\(917\) 20.6433 0.681703
\(918\) 0 0
\(919\) −47.6809 −1.57285 −0.786424 0.617687i \(-0.788070\pi\)
−0.786424 + 0.617687i \(0.788070\pi\)
\(920\) 0 0
\(921\) −19.8988 −0.655688
\(922\) 0 0
\(923\) 0.573683 0.0188830
\(924\) 0 0
\(925\) 6.07837 0.199855
\(926\) 0 0
\(927\) 26.8685 0.882479
\(928\) 0 0
\(929\) 9.33964 0.306424 0.153212 0.988193i \(-0.451038\pi\)
0.153212 + 0.988193i \(0.451038\pi\)
\(930\) 0 0
\(931\) −8.24827 −0.270326
\(932\) 0 0
\(933\) −57.5938 −1.88554
\(934\) 0 0
\(935\) 2.20602 0.0721447
\(936\) 0 0
\(937\) 34.6393 1.13162 0.565809 0.824536i \(-0.308564\pi\)
0.565809 + 0.824536i \(0.308564\pi\)
\(938\) 0 0
\(939\) −11.4641 −0.374117
\(940\) 0 0
\(941\) 48.6872 1.58716 0.793579 0.608467i \(-0.208215\pi\)
0.793579 + 0.608467i \(0.208215\pi\)
\(942\) 0 0
\(943\) 0.145130 0.00472608
\(944\) 0 0
\(945\) 0.828502 0.0269512
\(946\) 0 0
\(947\) 35.0995 1.14058 0.570290 0.821444i \(-0.306831\pi\)
0.570290 + 0.821444i \(0.306831\pi\)
\(948\) 0 0
\(949\) 2.37547 0.0771109
\(950\) 0 0
\(951\) 81.2794 2.63566
\(952\) 0 0
\(953\) 41.5286 1.34524 0.672622 0.739986i \(-0.265168\pi\)
0.672622 + 0.739986i \(0.265168\pi\)
\(954\) 0 0
\(955\) −3.14531 −0.101780
\(956\) 0 0
\(957\) 3.15331 0.101932
\(958\) 0 0
\(959\) −31.6647 −1.02251
\(960\) 0 0
\(961\) −9.43024 −0.304201
\(962\) 0 0
\(963\) −27.5352 −0.887311
\(964\) 0 0
\(965\) 3.26369 0.105062
\(966\) 0 0
\(967\) −25.9307 −0.833875 −0.416937 0.908935i \(-0.636897\pi\)
−0.416937 + 0.908935i \(0.636897\pi\)
\(968\) 0 0
\(969\) −41.9365 −1.34720
\(970\) 0 0
\(971\) 34.0711 1.09339 0.546697 0.837331i \(-0.315885\pi\)
0.546697 + 0.837331i \(0.315885\pi\)
\(972\) 0 0
\(973\) −13.8079 −0.442662
\(974\) 0 0
\(975\) 2.52360 0.0808199
\(976\) 0 0
\(977\) 57.9989 1.85555 0.927775 0.373139i \(-0.121719\pi\)
0.927775 + 0.373139i \(0.121719\pi\)
\(978\) 0 0
\(979\) 19.1766 0.612888
\(980\) 0 0
\(981\) −49.3879 −1.57683
\(982\) 0 0
\(983\) 34.3211 1.09467 0.547337 0.836912i \(-0.315641\pi\)
0.547337 + 0.836912i \(0.315641\pi\)
\(984\) 0 0
\(985\) −0.0884078 −0.00281691
\(986\) 0 0
\(987\) −4.08905 −0.130156
\(988\) 0 0
\(989\) 0.408608 0.0129930
\(990\) 0 0
\(991\) −49.4157 −1.56974 −0.784870 0.619660i \(-0.787270\pi\)
−0.784870 + 0.619660i \(0.787270\pi\)
\(992\) 0 0
\(993\) 13.5264 0.429246
\(994\) 0 0
\(995\) −1.83457 −0.0581599
\(996\) 0 0
\(997\) −18.9248 −0.599354 −0.299677 0.954041i \(-0.596879\pi\)
−0.299677 + 0.954041i \(0.596879\pi\)
\(998\) 0 0
\(999\) 1.32448 0.0419046
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6896.2.a.o.1.4 4
4.3 odd 2 431.2.a.e.1.2 4
12.11 even 2 3879.2.a.m.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
431.2.a.e.1.2 4 4.3 odd 2
3879.2.a.m.1.3 4 12.11 even 2
6896.2.a.o.1.4 4 1.1 even 1 trivial