Properties

Label 432.3.bc.a.209.4
Level $432$
Weight $3$
Character 432.209
Analytic conductor $11.771$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,3,Mod(65,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 13]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.bc (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7711474204\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 209.4
Character \(\chi\) \(=\) 432.209
Dual form 432.3.bc.a.401.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.15873 + 2.08324i) q^{3} +(-0.0496479 + 0.00875427i) q^{5} +(-7.55168 - 6.33661i) q^{7} +(0.320214 + 8.99430i) q^{9} +(-12.0681 - 2.12794i) q^{11} +(-11.4873 - 4.18103i) q^{13} +(-0.125414 - 0.0845305i) q^{15} +(-12.7914 + 7.38513i) q^{17} +(-6.26584 + 10.8527i) q^{19} +(-3.10133 - 29.4110i) q^{21} +(-5.93322 - 7.07093i) q^{23} +(-23.4899 + 8.54963i) q^{25} +(-18.0460 + 20.0833i) q^{27} +(15.1728 + 41.6870i) q^{29} +(24.2140 - 20.3180i) q^{31} +(-21.6188 - 29.7345i) q^{33} +(0.430398 + 0.248490i) q^{35} +(-7.19801 - 12.4673i) q^{37} +(-16.0878 - 32.9565i) q^{39} +(23.5871 - 64.8050i) q^{41} +(-7.01983 + 39.8114i) q^{43} +(-0.0946365 - 0.443745i) q^{45} +(-1.24938 + 1.48895i) q^{47} +(8.36645 + 47.4485i) q^{49} +(-42.9982 - 10.7051i) q^{51} -47.7390i q^{53} +0.617787 q^{55} +(-36.1351 + 10.3749i) q^{57} +(72.6161 - 12.8042i) q^{59} +(-4.54441 - 3.81321i) q^{61} +(54.5752 - 69.9511i) q^{63} +(0.606922 + 0.107017i) q^{65} +(-45.8583 - 16.6910i) q^{67} +(1.92225 - 27.6245i) q^{69} +(8.61519 - 4.97398i) q^{71} +(-44.2472 + 76.6383i) q^{73} +(-68.5193 - 30.4788i) q^{75} +(77.6508 + 92.5406i) q^{77} +(-105.233 + 38.3016i) q^{79} +(-80.7949 + 5.76021i) q^{81} +(6.65732 + 18.2908i) q^{83} +(0.570416 - 0.478636i) q^{85} +(-54.0900 + 121.599i) q^{87} +(-33.9430 - 19.5970i) q^{89} +(60.2547 + 104.364i) q^{91} +(94.5988 + 6.58266i) q^{93} +(0.216078 - 0.593669i) q^{95} +(-0.0670785 + 0.380421i) q^{97} +(15.2749 - 109.226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 6 q^{3} - 15 q^{5} + 6 q^{7} + 6 q^{11} - 6 q^{13} + 9 q^{15} - 9 q^{17} + 3 q^{19} + 132 q^{21} - 120 q^{23} - 15 q^{25} + 90 q^{27} - 168 q^{29} - 39 q^{31} - 207 q^{33} + 252 q^{35} - 3 q^{37}+ \cdots - 513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.15873 + 2.08324i 0.719576 + 0.694414i
\(4\) 0 0
\(5\) −0.0496479 + 0.00875427i −0.00992959 + 0.00175085i −0.178611 0.983920i \(-0.557160\pi\)
0.168681 + 0.985671i \(0.446049\pi\)
\(6\) 0 0
\(7\) −7.55168 6.33661i −1.07881 0.905230i −0.0829894 0.996550i \(-0.526447\pi\)
−0.995822 + 0.0913206i \(0.970891\pi\)
\(8\) 0 0
\(9\) 0.320214 + 8.99430i 0.0355794 + 0.999367i
\(10\) 0 0
\(11\) −12.0681 2.12794i −1.09710 0.193449i −0.404337 0.914610i \(-0.632498\pi\)
−0.692767 + 0.721161i \(0.743609\pi\)
\(12\) 0 0
\(13\) −11.4873 4.18103i −0.883637 0.321618i −0.139961 0.990157i \(-0.544698\pi\)
−0.743677 + 0.668539i \(0.766920\pi\)
\(14\) 0 0
\(15\) −0.125414 0.0845305i −0.00836091 0.00563537i
\(16\) 0 0
\(17\) −12.7914 + 7.38513i −0.752436 + 0.434419i −0.826574 0.562829i \(-0.809713\pi\)
0.0741373 + 0.997248i \(0.476380\pi\)
\(18\) 0 0
\(19\) −6.26584 + 10.8527i −0.329781 + 0.571197i −0.982468 0.186430i \(-0.940308\pi\)
0.652687 + 0.757627i \(0.273642\pi\)
\(20\) 0 0
\(21\) −3.10133 29.4110i −0.147683 1.40052i
\(22\) 0 0
\(23\) −5.93322 7.07093i −0.257966 0.307432i 0.621481 0.783430i \(-0.286531\pi\)
−0.879446 + 0.475998i \(0.842087\pi\)
\(24\) 0 0
\(25\) −23.4899 + 8.54963i −0.939597 + 0.341985i
\(26\) 0 0
\(27\) −18.0460 + 20.0833i −0.668372 + 0.743827i
\(28\) 0 0
\(29\) 15.1728 + 41.6870i 0.523200 + 1.43748i 0.866938 + 0.498416i \(0.166085\pi\)
−0.343738 + 0.939066i \(0.611693\pi\)
\(30\) 0 0
\(31\) 24.2140 20.3180i 0.781098 0.655419i −0.162427 0.986721i \(-0.551932\pi\)
0.943525 + 0.331301i \(0.107488\pi\)
\(32\) 0 0
\(33\) −21.6188 29.7345i −0.655116 0.901045i
\(34\) 0 0
\(35\) 0.430398 + 0.248490i 0.0122971 + 0.00709972i
\(36\) 0 0
\(37\) −7.19801 12.4673i −0.194541 0.336954i 0.752209 0.658924i \(-0.228988\pi\)
−0.946750 + 0.321970i \(0.895655\pi\)
\(38\) 0 0
\(39\) −16.0878 32.9565i −0.412508 0.845038i
\(40\) 0 0
\(41\) 23.5871 64.8050i 0.575295 1.58061i −0.220724 0.975336i \(-0.570842\pi\)
0.796018 0.605273i \(-0.206936\pi\)
\(42\) 0 0
\(43\) −7.01983 + 39.8114i −0.163252 + 0.925847i 0.787597 + 0.616191i \(0.211325\pi\)
−0.950849 + 0.309656i \(0.899786\pi\)
\(44\) 0 0
\(45\) −0.0946365 0.443745i −0.00210303 0.00986101i
\(46\) 0 0
\(47\) −1.24938 + 1.48895i −0.0265825 + 0.0316797i −0.779172 0.626810i \(-0.784360\pi\)
0.752589 + 0.658490i \(0.228805\pi\)
\(48\) 0 0
\(49\) 8.36645 + 47.4485i 0.170744 + 0.968336i
\(50\) 0 0
\(51\) −42.9982 10.7051i −0.843102 0.209904i
\(52\) 0 0
\(53\) 47.7390i 0.900736i −0.892843 0.450368i \(-0.851293\pi\)
0.892843 0.450368i \(-0.148707\pi\)
\(54\) 0 0
\(55\) 0.617787 0.0112325
\(56\) 0 0
\(57\) −36.1351 + 10.3749i −0.633950 + 0.182016i
\(58\) 0 0
\(59\) 72.6161 12.8042i 1.23078 0.217020i 0.479821 0.877367i \(-0.340702\pi\)
0.750961 + 0.660347i \(0.229591\pi\)
\(60\) 0 0
\(61\) −4.54441 3.81321i −0.0744986 0.0625117i 0.604778 0.796394i \(-0.293262\pi\)
−0.679277 + 0.733882i \(0.737706\pi\)
\(62\) 0 0
\(63\) 54.5752 69.9511i 0.866273 1.11034i
\(64\) 0 0
\(65\) 0.606922 + 0.107017i 0.00933726 + 0.00164641i
\(66\) 0 0
\(67\) −45.8583 16.6910i −0.684452 0.249120i −0.0236939 0.999719i \(-0.507543\pi\)
−0.660758 + 0.750599i \(0.729765\pi\)
\(68\) 0 0
\(69\) 1.92225 27.6245i 0.0278587 0.400356i
\(70\) 0 0
\(71\) 8.61519 4.97398i 0.121341 0.0700561i −0.438101 0.898926i \(-0.644349\pi\)
0.559442 + 0.828870i \(0.311016\pi\)
\(72\) 0 0
\(73\) −44.2472 + 76.6383i −0.606126 + 1.04984i 0.385747 + 0.922605i \(0.373944\pi\)
−0.991873 + 0.127236i \(0.959390\pi\)
\(74\) 0 0
\(75\) −68.5193 30.4788i −0.913591 0.406385i
\(76\) 0 0
\(77\) 77.6508 + 92.5406i 1.00845 + 1.20183i
\(78\) 0 0
\(79\) −105.233 + 38.3016i −1.33206 + 0.484831i −0.907304 0.420476i \(-0.861863\pi\)
−0.424758 + 0.905307i \(0.639641\pi\)
\(80\) 0 0
\(81\) −80.7949 + 5.76021i −0.997468 + 0.0711137i
\(82\) 0 0
\(83\) 6.65732 + 18.2908i 0.0802087 + 0.220371i 0.973315 0.229475i \(-0.0737009\pi\)
−0.893106 + 0.449846i \(0.851479\pi\)
\(84\) 0 0
\(85\) 0.570416 0.478636i 0.00671078 0.00563101i
\(86\) 0 0
\(87\) −54.0900 + 121.599i −0.621724 + 1.39769i
\(88\) 0 0
\(89\) −33.9430 19.5970i −0.381382 0.220191i 0.297037 0.954866i \(-0.404001\pi\)
−0.678419 + 0.734675i \(0.737335\pi\)
\(90\) 0 0
\(91\) 60.2547 + 104.364i 0.662140 + 1.14686i
\(92\) 0 0
\(93\) 94.5988 + 6.58266i 1.01719 + 0.0707813i
\(94\) 0 0
\(95\) 0.216078 0.593669i 0.00227451 0.00624915i
\(96\) 0 0
\(97\) −0.0670785 + 0.380421i −0.000691531 + 0.00392187i −0.985152 0.171687i \(-0.945078\pi\)
0.984460 + 0.175609i \(0.0561894\pi\)
\(98\) 0 0
\(99\) 15.2749 109.226i 0.154292 1.10329i
\(100\) 0 0
\(101\) 30.6686 36.5494i 0.303649 0.361875i −0.592545 0.805538i \(-0.701877\pi\)
0.896194 + 0.443662i \(0.146321\pi\)
\(102\) 0 0
\(103\) 3.18310 + 18.0523i 0.0309039 + 0.175265i 0.996353 0.0853269i \(-0.0271935\pi\)
−0.965449 + 0.260592i \(0.916082\pi\)
\(104\) 0 0
\(105\) 0.411447 + 1.43304i 0.00391854 + 0.0136480i
\(106\) 0 0
\(107\) 68.8842i 0.643778i −0.946777 0.321889i \(-0.895682\pi\)
0.946777 0.321889i \(-0.104318\pi\)
\(108\) 0 0
\(109\) 9.57392 0.0878341 0.0439171 0.999035i \(-0.486016\pi\)
0.0439171 + 0.999035i \(0.486016\pi\)
\(110\) 0 0
\(111\) 10.4339 41.9087i 0.0939989 0.377556i
\(112\) 0 0
\(113\) 0.497499 0.0877225i 0.00440265 0.000776306i −0.171446 0.985193i \(-0.554844\pi\)
0.175849 + 0.984417i \(0.443733\pi\)
\(114\) 0 0
\(115\) 0.356473 + 0.299116i 0.00309976 + 0.00260101i
\(116\) 0 0
\(117\) 33.9270 104.659i 0.289975 0.894521i
\(118\) 0 0
\(119\) 143.393 + 25.2841i 1.20499 + 0.212472i
\(120\) 0 0
\(121\) 27.4091 + 9.97611i 0.226522 + 0.0824472i
\(122\) 0 0
\(123\) 185.922 90.7587i 1.51156 0.737876i
\(124\) 0 0
\(125\) 2.18287 1.26028i 0.0174630 0.0100823i
\(126\) 0 0
\(127\) −52.2761 + 90.5449i −0.411623 + 0.712952i −0.995067 0.0992011i \(-0.968371\pi\)
0.583444 + 0.812153i \(0.301705\pi\)
\(128\) 0 0
\(129\) −98.0907 + 71.3181i −0.760393 + 0.552853i
\(130\) 0 0
\(131\) 129.652 + 154.513i 0.989709 + 1.17949i 0.983757 + 0.179507i \(0.0574502\pi\)
0.00595223 + 0.999982i \(0.498105\pi\)
\(132\) 0 0
\(133\) 116.087 42.2523i 0.872836 0.317686i
\(134\) 0 0
\(135\) 0.720134 1.15508i 0.00533432 0.00855612i
\(136\) 0 0
\(137\) 66.3180 + 182.207i 0.484073 + 1.32998i 0.905972 + 0.423338i \(0.139142\pi\)
−0.421899 + 0.906643i \(0.638636\pi\)
\(138\) 0 0
\(139\) −22.0112 + 18.4696i −0.158354 + 0.132875i −0.718522 0.695504i \(-0.755181\pi\)
0.560168 + 0.828379i \(0.310737\pi\)
\(140\) 0 0
\(141\) −5.79890 + 0.611483i −0.0411269 + 0.00433676i
\(142\) 0 0
\(143\) 129.733 + 74.9015i 0.907225 + 0.523787i
\(144\) 0 0
\(145\) −1.11824 1.93684i −0.00771199 0.0133575i
\(146\) 0 0
\(147\) −80.7857 + 119.858i −0.549563 + 0.815358i
\(148\) 0 0
\(149\) 85.1055 233.825i 0.571178 1.56930i −0.231469 0.972842i \(-0.574353\pi\)
0.802646 0.596455i \(-0.203425\pi\)
\(150\) 0 0
\(151\) 25.3887 143.986i 0.168137 0.953552i −0.777634 0.628717i \(-0.783580\pi\)
0.945771 0.324835i \(-0.105309\pi\)
\(152\) 0 0
\(153\) −70.5201 112.685i −0.460915 0.736503i
\(154\) 0 0
\(155\) −1.02431 + 1.22072i −0.00660844 + 0.00787563i
\(156\) 0 0
\(157\) 18.0884 + 102.584i 0.115213 + 0.653403i 0.986645 + 0.162887i \(0.0520805\pi\)
−0.871432 + 0.490516i \(0.836808\pi\)
\(158\) 0 0
\(159\) 99.4519 103.056i 0.625484 0.648148i
\(160\) 0 0
\(161\) 90.9939i 0.565179i
\(162\) 0 0
\(163\) −126.261 −0.774609 −0.387304 0.921952i \(-0.626594\pi\)
−0.387304 + 0.921952i \(0.626594\pi\)
\(164\) 0 0
\(165\) 1.33363 + 1.28700i 0.00808263 + 0.00779999i
\(166\) 0 0
\(167\) −240.870 + 42.4718i −1.44233 + 0.254322i −0.839420 0.543484i \(-0.817105\pi\)
−0.602914 + 0.797806i \(0.705994\pi\)
\(168\) 0 0
\(169\) −14.9848 12.5738i −0.0886676 0.0744010i
\(170\) 0 0
\(171\) −99.6193 52.8816i −0.582569 0.309249i
\(172\) 0 0
\(173\) 90.5467 + 15.9658i 0.523391 + 0.0922880i 0.429101 0.903257i \(-0.358831\pi\)
0.0942906 + 0.995545i \(0.469942\pi\)
\(174\) 0 0
\(175\) 231.564 + 84.2824i 1.32322 + 0.481614i
\(176\) 0 0
\(177\) 183.433 + 123.636i 1.03634 + 0.698509i
\(178\) 0 0
\(179\) 54.8413 31.6626i 0.306376 0.176886i −0.338928 0.940812i \(-0.610064\pi\)
0.645304 + 0.763926i \(0.276731\pi\)
\(180\) 0 0
\(181\) −77.4956 + 134.226i −0.428153 + 0.741582i −0.996709 0.0810622i \(-0.974169\pi\)
0.568556 + 0.822644i \(0.307502\pi\)
\(182\) 0 0
\(183\) −1.86631 17.6988i −0.0101984 0.0967147i
\(184\) 0 0
\(185\) 0.466509 + 0.555963i 0.00252167 + 0.00300521i
\(186\) 0 0
\(187\) 170.084 61.9054i 0.909539 0.331045i
\(188\) 0 0
\(189\) 263.538 37.3122i 1.39438 0.197419i
\(190\) 0 0
\(191\) −19.6000 53.8506i −0.102618 0.281940i 0.877750 0.479120i \(-0.159044\pi\)
−0.980367 + 0.197179i \(0.936822\pi\)
\(192\) 0 0
\(193\) −7.03809 + 5.90566i −0.0364668 + 0.0305993i −0.660839 0.750528i \(-0.729799\pi\)
0.624372 + 0.781127i \(0.285355\pi\)
\(194\) 0 0
\(195\) 1.08724 + 1.49538i 0.00557558 + 0.00766864i
\(196\) 0 0
\(197\) 71.8373 + 41.4753i 0.364657 + 0.210535i 0.671121 0.741347i \(-0.265813\pi\)
−0.306465 + 0.951882i \(0.599146\pi\)
\(198\) 0 0
\(199\) 18.3108 + 31.7153i 0.0920141 + 0.159373i 0.908359 0.418192i \(-0.137336\pi\)
−0.816344 + 0.577565i \(0.804003\pi\)
\(200\) 0 0
\(201\) −64.2241 131.565i −0.319523 0.654553i
\(202\) 0 0
\(203\) 149.574 410.951i 0.736817 2.02439i
\(204\) 0 0
\(205\) −0.603730 + 3.42392i −0.00294502 + 0.0167021i
\(206\) 0 0
\(207\) 61.6982 55.6294i 0.298059 0.268741i
\(208\) 0 0
\(209\) 98.7110 117.639i 0.472301 0.562867i
\(210\) 0 0
\(211\) 53.6264 + 304.130i 0.254154 + 1.44138i 0.798236 + 0.602345i \(0.205767\pi\)
−0.544083 + 0.839032i \(0.683122\pi\)
\(212\) 0 0
\(213\) 28.9599 + 7.21004i 0.135962 + 0.0338500i
\(214\) 0 0
\(215\) 2.03801i 0.00947911i
\(216\) 0 0
\(217\) −311.604 −1.43596
\(218\) 0 0
\(219\) −255.174 + 73.2638i −1.16518 + 0.334538i
\(220\) 0 0
\(221\) 177.816 31.3538i 0.804598 0.141872i
\(222\) 0 0
\(223\) −237.313 199.130i −1.06419 0.892958i −0.0696724 0.997570i \(-0.522195\pi\)
−0.994513 + 0.104612i \(0.966640\pi\)
\(224\) 0 0
\(225\) −84.4198 208.538i −0.375199 0.926835i
\(226\) 0 0
\(227\) 164.338 + 28.9773i 0.723957 + 0.127653i 0.523471 0.852044i \(-0.324637\pi\)
0.200486 + 0.979697i \(0.435748\pi\)
\(228\) 0 0
\(229\) 218.452 + 79.5101i 0.953939 + 0.347206i 0.771656 0.636040i \(-0.219429\pi\)
0.182284 + 0.983246i \(0.441651\pi\)
\(230\) 0 0
\(231\) −25.1574 + 361.535i −0.108907 + 1.56509i
\(232\) 0 0
\(233\) −98.2315 + 56.7140i −0.421594 + 0.243408i −0.695759 0.718275i \(-0.744932\pi\)
0.274165 + 0.961683i \(0.411599\pi\)
\(234\) 0 0
\(235\) 0.0489943 0.0848606i 0.000208486 0.000361109i
\(236\) 0 0
\(237\) −306.961 136.543i −1.29519 0.576129i
\(238\) 0 0
\(239\) 22.6159 + 26.9525i 0.0946270 + 0.112772i 0.811280 0.584658i \(-0.198771\pi\)
−0.716653 + 0.697430i \(0.754327\pi\)
\(240\) 0 0
\(241\) −240.771 + 87.6335i −0.999050 + 0.363624i −0.789218 0.614113i \(-0.789514\pi\)
−0.209832 + 0.977737i \(0.567292\pi\)
\(242\) 0 0
\(243\) −186.414 155.881i −0.767137 0.641484i
\(244\) 0 0
\(245\) −0.830753 2.28248i −0.00339083 0.00931623i
\(246\) 0 0
\(247\) 117.353 98.4709i 0.475114 0.398668i
\(248\) 0 0
\(249\) −23.7329 + 53.3537i −0.0953127 + 0.214272i
\(250\) 0 0
\(251\) −339.228 195.854i −1.35151 0.780293i −0.363046 0.931771i \(-0.618263\pi\)
−0.988461 + 0.151478i \(0.951597\pi\)
\(252\) 0 0
\(253\) 56.5564 + 97.9585i 0.223543 + 0.387188i
\(254\) 0 0
\(255\) 2.22849 + 0.155069i 0.00873916 + 0.000608115i
\(256\) 0 0
\(257\) −97.6997 + 268.428i −0.380155 + 1.04447i 0.591136 + 0.806572i \(0.298680\pi\)
−0.971291 + 0.237895i \(0.923543\pi\)
\(258\) 0 0
\(259\) −24.6435 + 139.760i −0.0951486 + 0.539614i
\(260\) 0 0
\(261\) −370.087 + 149.818i −1.41796 + 0.574014i
\(262\) 0 0
\(263\) −290.740 + 346.490i −1.10547 + 1.31745i −0.161709 + 0.986838i \(0.551701\pi\)
−0.943766 + 0.330615i \(0.892744\pi\)
\(264\) 0 0
\(265\) 0.417920 + 2.37014i 0.00157706 + 0.00894394i
\(266\) 0 0
\(267\) −32.4484 113.016i −0.121530 0.423281i
\(268\) 0 0
\(269\) 277.616i 1.03203i −0.856580 0.516014i \(-0.827415\pi\)
0.856580 0.516014i \(-0.172585\pi\)
\(270\) 0 0
\(271\) −310.311 −1.14506 −0.572530 0.819884i \(-0.694038\pi\)
−0.572530 + 0.819884i \(0.694038\pi\)
\(272\) 0 0
\(273\) −87.3423 + 350.819i −0.319935 + 1.28505i
\(274\) 0 0
\(275\) 301.673 53.1931i 1.09699 0.193429i
\(276\) 0 0
\(277\) −263.622 221.206i −0.951706 0.798576i 0.0278782 0.999611i \(-0.491125\pi\)
−0.979584 + 0.201035i \(0.935569\pi\)
\(278\) 0 0
\(279\) 190.500 + 211.282i 0.682795 + 0.757284i
\(280\) 0 0
\(281\) −433.676 76.4687i −1.54333 0.272131i −0.663776 0.747931i \(-0.731047\pi\)
−0.879553 + 0.475801i \(0.842158\pi\)
\(282\) 0 0
\(283\) 14.0232 + 5.10404i 0.0495521 + 0.0180355i 0.366677 0.930348i \(-0.380495\pi\)
−0.317125 + 0.948384i \(0.602718\pi\)
\(284\) 0 0
\(285\) 1.70321 0.831428i 0.00597618 0.00291729i
\(286\) 0 0
\(287\) −588.766 + 339.924i −2.05145 + 1.18440i
\(288\) 0 0
\(289\) −35.4198 + 61.3489i −0.122560 + 0.212280i
\(290\) 0 0
\(291\) −0.937313 + 0.681485i −0.00322101 + 0.00234187i
\(292\) 0 0
\(293\) −104.147 124.118i −0.355451 0.423610i 0.558456 0.829534i \(-0.311394\pi\)
−0.913907 + 0.405924i \(0.866950\pi\)
\(294\) 0 0
\(295\) −3.49315 + 1.27140i −0.0118412 + 0.00430984i
\(296\) 0 0
\(297\) 260.518 203.968i 0.877166 0.686760i
\(298\) 0 0
\(299\) 38.5928 + 106.033i 0.129073 + 0.354625i
\(300\) 0 0
\(301\) 305.281 256.161i 1.01422 0.851034i
\(302\) 0 0
\(303\) 142.346 15.0102i 0.469790 0.0495385i
\(304\) 0 0
\(305\) 0.259003 + 0.149535i 0.000849189 + 0.000490279i
\(306\) 0 0
\(307\) −69.5247 120.420i −0.226465 0.392248i 0.730293 0.683134i \(-0.239383\pi\)
−0.956758 + 0.290886i \(0.906050\pi\)
\(308\) 0 0
\(309\) −30.7358 + 45.6011i −0.0994686 + 0.147576i
\(310\) 0 0
\(311\) 61.7283 169.597i 0.198483 0.545328i −0.800023 0.599970i \(-0.795179\pi\)
0.998506 + 0.0546413i \(0.0174015\pi\)
\(312\) 0 0
\(313\) 100.622 570.654i 0.321475 1.82317i −0.211895 0.977292i \(-0.567963\pi\)
0.533370 0.845882i \(-0.320925\pi\)
\(314\) 0 0
\(315\) −2.09718 + 3.95070i −0.00665770 + 0.0125419i
\(316\) 0 0
\(317\) −324.996 + 387.315i −1.02522 + 1.22181i −0.0504239 + 0.998728i \(0.516057\pi\)
−0.974799 + 0.223085i \(0.928387\pi\)
\(318\) 0 0
\(319\) −94.4004 535.371i −0.295926 1.67828i
\(320\) 0 0
\(321\) 143.502 148.702i 0.447048 0.463247i
\(322\) 0 0
\(323\) 185.096i 0.573053i
\(324\) 0 0
\(325\) 305.582 0.940251
\(326\) 0 0
\(327\) 20.6675 + 19.9448i 0.0632033 + 0.0609932i
\(328\) 0 0
\(329\) 18.8698 3.32725i 0.0573549 0.0101132i
\(330\) 0 0
\(331\) 173.811 + 145.845i 0.525108 + 0.440618i 0.866408 0.499336i \(-0.166423\pi\)
−0.341300 + 0.939954i \(0.610867\pi\)
\(332\) 0 0
\(333\) 109.830 68.7333i 0.329820 0.206406i
\(334\) 0 0
\(335\) 2.42289 + 0.427220i 0.00723250 + 0.00127528i
\(336\) 0 0
\(337\) 90.1787 + 32.8224i 0.267593 + 0.0973957i 0.472332 0.881421i \(-0.343412\pi\)
−0.204739 + 0.978817i \(0.565635\pi\)
\(338\) 0 0
\(339\) 1.25671 + 0.847042i 0.00370712 + 0.00249865i
\(340\) 0 0
\(341\) −335.454 + 193.674i −0.983736 + 0.567960i
\(342\) 0 0
\(343\) −4.03963 + 6.99685i −0.0117774 + 0.0203990i
\(344\) 0 0
\(345\) 0.146397 + 1.38833i 0.000424339 + 0.00402414i
\(346\) 0 0
\(347\) −166.349 198.247i −0.479393 0.571318i 0.471094 0.882083i \(-0.343859\pi\)
−0.950487 + 0.310765i \(0.899415\pi\)
\(348\) 0 0
\(349\) −258.307 + 94.0161i −0.740135 + 0.269387i −0.684448 0.729061i \(-0.739957\pi\)
−0.0556864 + 0.998448i \(0.517735\pi\)
\(350\) 0 0
\(351\) 291.269 155.252i 0.829826 0.442313i
\(352\) 0 0
\(353\) 90.5211 + 248.705i 0.256434 + 0.704545i 0.999380 + 0.0351951i \(0.0112053\pi\)
−0.742947 + 0.669350i \(0.766573\pi\)
\(354\) 0 0
\(355\) −0.384183 + 0.322368i −0.00108221 + 0.000908078i
\(356\) 0 0
\(357\) 256.874 + 353.304i 0.719536 + 0.989648i
\(358\) 0 0
\(359\) −183.469 105.926i −0.511055 0.295058i 0.222212 0.974998i \(-0.428672\pi\)
−0.733267 + 0.679941i \(0.762006\pi\)
\(360\) 0 0
\(361\) 101.979 + 176.632i 0.282489 + 0.489286i
\(362\) 0 0
\(363\) 38.3862 + 78.6355i 0.105747 + 0.216627i
\(364\) 0 0
\(365\) 1.52587 4.19229i 0.00418046 0.0114857i
\(366\) 0 0
\(367\) 112.035 635.384i 0.305273 1.73129i −0.316943 0.948445i \(-0.602656\pi\)
0.622216 0.782846i \(-0.286233\pi\)
\(368\) 0 0
\(369\) 590.428 + 191.398i 1.60008 + 0.518693i
\(370\) 0 0
\(371\) −302.504 + 360.510i −0.815373 + 0.971724i
\(372\) 0 0
\(373\) −122.107 692.506i −0.327366 1.85658i −0.492499 0.870313i \(-0.663917\pi\)
0.165133 0.986271i \(-0.447195\pi\)
\(374\) 0 0
\(375\) 7.33770 + 1.82684i 0.0195672 + 0.00487158i
\(376\) 0 0
\(377\) 542.308i 1.43848i
\(378\) 0 0
\(379\) 352.196 0.929278 0.464639 0.885500i \(-0.346184\pi\)
0.464639 + 0.885500i \(0.346184\pi\)
\(380\) 0 0
\(381\) −301.477 + 86.5581i −0.791278 + 0.227187i
\(382\) 0 0
\(383\) 266.149 46.9293i 0.694906 0.122531i 0.184972 0.982744i \(-0.440781\pi\)
0.509935 + 0.860213i \(0.329670\pi\)
\(384\) 0 0
\(385\) −4.66533 3.91467i −0.0121177 0.0101680i
\(386\) 0 0
\(387\) −360.324 50.3903i −0.931070 0.130207i
\(388\) 0 0
\(389\) 216.727 + 38.2149i 0.557140 + 0.0982388i 0.445126 0.895468i \(-0.353159\pi\)
0.112014 + 0.993707i \(0.464270\pi\)
\(390\) 0 0
\(391\) 128.114 + 46.6297i 0.327657 + 0.119257i
\(392\) 0 0
\(393\) −42.0048 + 603.648i −0.106883 + 1.53600i
\(394\) 0 0
\(395\) 4.88929 2.82283i 0.0123780 0.00714642i
\(396\) 0 0
\(397\) 58.0173 100.489i 0.146139 0.253121i −0.783658 0.621192i \(-0.786649\pi\)
0.929797 + 0.368072i \(0.119982\pi\)
\(398\) 0 0
\(399\) 338.622 + 150.626i 0.848678 + 0.377510i
\(400\) 0 0
\(401\) −122.249 145.690i −0.304860 0.363317i 0.591764 0.806111i \(-0.298432\pi\)
−0.896623 + 0.442794i \(0.853987\pi\)
\(402\) 0 0
\(403\) −363.104 + 132.159i −0.901002 + 0.327938i
\(404\) 0 0
\(405\) 3.96088 0.993283i 0.00977994 0.00245255i
\(406\) 0 0
\(407\) 60.3369 + 165.774i 0.148248 + 0.407308i
\(408\) 0 0
\(409\) −18.2230 + 15.2909i −0.0445550 + 0.0373861i −0.664793 0.747027i \(-0.731480\pi\)
0.620238 + 0.784413i \(0.287036\pi\)
\(410\) 0 0
\(411\) −236.419 + 531.493i −0.575229 + 1.29317i
\(412\) 0 0
\(413\) −629.508 363.447i −1.52423 0.880017i
\(414\) 0 0
\(415\) −0.490645 0.849822i −0.00118228 0.00204776i
\(416\) 0 0
\(417\) −85.9929 5.98381i −0.206218 0.0143497i
\(418\) 0 0
\(419\) −117.310 + 322.307i −0.279977 + 0.769230i 0.717387 + 0.696674i \(0.245338\pi\)
−0.997364 + 0.0725558i \(0.976884\pi\)
\(420\) 0 0
\(421\) −85.7847 + 486.509i −0.203764 + 1.15560i 0.695608 + 0.718421i \(0.255135\pi\)
−0.899372 + 0.437183i \(0.855976\pi\)
\(422\) 0 0
\(423\) −13.7921 10.7605i −0.0326055 0.0254385i
\(424\) 0 0
\(425\) 237.329 282.838i 0.558422 0.665501i
\(426\) 0 0
\(427\) 10.1551 + 57.5923i 0.0237824 + 0.134877i
\(428\) 0 0
\(429\) 124.021 + 431.957i 0.289093 + 1.00689i
\(430\) 0 0
\(431\) 519.074i 1.20435i −0.798365 0.602174i \(-0.794301\pi\)
0.798365 0.602174i \(-0.205699\pi\)
\(432\) 0 0
\(433\) 290.297 0.670433 0.335216 0.942141i \(-0.391191\pi\)
0.335216 + 0.942141i \(0.391191\pi\)
\(434\) 0 0
\(435\) 1.62094 6.51068i 0.00372631 0.0149671i
\(436\) 0 0
\(437\) 113.916 20.0864i 0.260676 0.0459643i
\(438\) 0 0
\(439\) −255.941 214.760i −0.583009 0.489203i 0.302925 0.953015i \(-0.402037\pi\)
−0.885934 + 0.463812i \(0.846481\pi\)
\(440\) 0 0
\(441\) −424.087 + 90.4440i −0.961648 + 0.205088i
\(442\) 0 0
\(443\) 327.502 + 57.7474i 0.739282 + 0.130355i 0.530593 0.847627i \(-0.321969\pi\)
0.208689 + 0.977982i \(0.433080\pi\)
\(444\) 0 0
\(445\) 1.85676 + 0.675805i 0.00417249 + 0.00151866i
\(446\) 0 0
\(447\) 670.834 327.470i 1.50075 0.732596i
\(448\) 0 0
\(449\) −291.154 + 168.098i −0.648449 + 0.374382i −0.787862 0.615852i \(-0.788812\pi\)
0.139413 + 0.990234i \(0.455479\pi\)
\(450\) 0 0
\(451\) −422.553 + 731.884i −0.936925 + 1.62280i
\(452\) 0 0
\(453\) 354.765 257.937i 0.783147 0.569396i
\(454\) 0 0
\(455\) −3.90515 4.65398i −0.00858276 0.0102285i
\(456\) 0 0
\(457\) 746.228 271.605i 1.63288 0.594321i 0.647110 0.762397i \(-0.275977\pi\)
0.985774 + 0.168076i \(0.0537553\pi\)
\(458\) 0 0
\(459\) 82.5164 390.167i 0.179774 0.850036i
\(460\) 0 0
\(461\) 97.6760 + 268.363i 0.211878 + 0.582131i 0.999417 0.0341338i \(-0.0108672\pi\)
−0.787539 + 0.616265i \(0.788645\pi\)
\(462\) 0 0
\(463\) 102.894 86.3380i 0.222232 0.186475i −0.524873 0.851180i \(-0.675887\pi\)
0.747106 + 0.664705i \(0.231443\pi\)
\(464\) 0 0
\(465\) −4.75426 + 0.501328i −0.0102242 + 0.00107813i
\(466\) 0 0
\(467\) 232.832 + 134.426i 0.498570 + 0.287849i 0.728123 0.685447i \(-0.240393\pi\)
−0.229553 + 0.973296i \(0.573726\pi\)
\(468\) 0 0
\(469\) 240.542 + 416.631i 0.512883 + 0.888339i
\(470\) 0 0
\(471\) −174.660 + 259.134i −0.370828 + 0.550178i
\(472\) 0 0
\(473\) 169.433 465.512i 0.358209 0.984170i
\(474\) 0 0
\(475\) 54.3970 308.501i 0.114520 0.649476i
\(476\) 0 0
\(477\) 429.379 15.2867i 0.900166 0.0320477i
\(478\) 0 0
\(479\) −61.2759 + 73.0257i −0.127925 + 0.152455i −0.826205 0.563370i \(-0.809505\pi\)
0.698280 + 0.715825i \(0.253949\pi\)
\(480\) 0 0
\(481\) 30.5593 + 173.311i 0.0635330 + 0.360313i
\(482\) 0 0
\(483\) −189.562 + 196.431i −0.392468 + 0.406689i
\(484\) 0 0
\(485\) 0.0194743i 4.01533e-5i
\(486\) 0 0
\(487\) 210.939 0.433139 0.216569 0.976267i \(-0.430513\pi\)
0.216569 + 0.976267i \(0.430513\pi\)
\(488\) 0 0
\(489\) −272.564 263.033i −0.557390 0.537899i
\(490\) 0 0
\(491\) 588.397 103.750i 1.19837 0.211304i 0.461373 0.887206i \(-0.347357\pi\)
0.736992 + 0.675902i \(0.236246\pi\)
\(492\) 0 0
\(493\) −501.945 421.182i −1.01814 0.854325i
\(494\) 0 0
\(495\) 0.197824 + 5.55656i 0.000399645 + 0.0112254i
\(496\) 0 0
\(497\) −96.5773 17.0292i −0.194321 0.0342640i
\(498\) 0 0
\(499\) 865.738 + 315.103i 1.73495 + 0.631469i 0.998963 0.0455319i \(-0.0144983\pi\)
0.735983 + 0.677000i \(0.236720\pi\)
\(500\) 0 0
\(501\) −608.451 410.105i −1.21447 0.818572i
\(502\) 0 0
\(503\) −797.759 + 460.587i −1.58600 + 0.915679i −0.592046 + 0.805904i \(0.701680\pi\)
−0.993956 + 0.109775i \(0.964987\pi\)
\(504\) 0 0
\(505\) −1.20267 + 2.08308i −0.00238152 + 0.00412492i
\(506\) 0 0
\(507\) −6.15399 58.3604i −0.0121381 0.115109i
\(508\) 0 0
\(509\) 266.365 + 317.442i 0.523311 + 0.623658i 0.961360 0.275293i \(-0.0887750\pi\)
−0.438049 + 0.898951i \(0.644331\pi\)
\(510\) 0 0
\(511\) 819.767 298.371i 1.60424 0.583896i
\(512\) 0 0
\(513\) −104.886 321.688i −0.204456 0.627072i
\(514\) 0 0
\(515\) −0.316069 0.868393i −0.000613726 0.00168620i
\(516\) 0 0
\(517\) 18.2460 15.3102i 0.0352921 0.0296136i
\(518\) 0 0
\(519\) 162.205 + 223.096i 0.312534 + 0.429858i
\(520\) 0 0
\(521\) 700.211 + 404.267i 1.34397 + 0.775944i 0.987388 0.158318i \(-0.0506073\pi\)
0.356586 + 0.934262i \(0.383941\pi\)
\(522\) 0 0
\(523\) 75.3714 + 130.547i 0.144114 + 0.249612i 0.929042 0.369975i \(-0.120634\pi\)
−0.784928 + 0.619587i \(0.787300\pi\)
\(524\) 0 0
\(525\) 324.303 + 664.346i 0.617720 + 1.26542i
\(526\) 0 0
\(527\) −159.681 + 438.720i −0.303000 + 0.832485i
\(528\) 0 0
\(529\) 77.0649 437.057i 0.145680 0.826194i
\(530\) 0 0
\(531\) 138.417 + 649.031i 0.260673 + 1.22228i
\(532\) 0 0
\(533\) −541.903 + 645.815i −1.01670 + 1.21166i
\(534\) 0 0
\(535\) 0.603031 + 3.41996i 0.00112716 + 0.00639245i
\(536\) 0 0
\(537\) 184.348 + 45.8966i 0.343293 + 0.0854686i
\(538\) 0 0
\(539\) 590.418i 1.09540i
\(540\) 0 0
\(541\) −764.505 −1.41313 −0.706567 0.707646i \(-0.749757\pi\)
−0.706567 + 0.707646i \(0.749757\pi\)
\(542\) 0 0
\(543\) −446.918 + 128.316i −0.823053 + 0.236310i
\(544\) 0 0
\(545\) −0.475325 + 0.0838127i −0.000872157 + 0.000153785i
\(546\) 0 0
\(547\) −222.538 186.732i −0.406834 0.341374i 0.416294 0.909230i \(-0.363329\pi\)
−0.823128 + 0.567856i \(0.807773\pi\)
\(548\) 0 0
\(549\) 32.8420 42.0949i 0.0598215 0.0766755i
\(550\) 0 0
\(551\) −547.488 96.5370i −0.993627 0.175203i
\(552\) 0 0
\(553\) 1037.39 + 377.578i 1.87593 + 0.682781i
\(554\) 0 0
\(555\) −0.151140 + 2.17202i −0.000272325 + 0.00391356i
\(556\) 0 0
\(557\) −490.922 + 283.434i −0.881368 + 0.508858i −0.871109 0.491089i \(-0.836599\pi\)
−0.0102587 + 0.999947i \(0.503266\pi\)
\(558\) 0 0
\(559\) 247.092 427.975i 0.442024 0.765609i
\(560\) 0 0
\(561\) 496.128 + 220.688i 0.884364 + 0.393384i
\(562\) 0 0
\(563\) −647.051 771.125i −1.14929 1.36967i −0.917901 0.396810i \(-0.870117\pi\)
−0.231390 0.972861i \(-0.574327\pi\)
\(564\) 0 0
\(565\) −0.0239319 + 0.00871049i −4.23573e−5 + 1.54168e-5i
\(566\) 0 0
\(567\) 646.637 + 468.467i 1.14045 + 0.826220i
\(568\) 0 0
\(569\) 47.4246 + 130.298i 0.0833472 + 0.228995i 0.974365 0.224974i \(-0.0722299\pi\)
−0.891017 + 0.453969i \(0.850008\pi\)
\(570\) 0 0
\(571\) 401.032 336.506i 0.702333 0.589327i −0.220103 0.975477i \(-0.570639\pi\)
0.922436 + 0.386149i \(0.126195\pi\)
\(572\) 0 0
\(573\) 69.8727 157.080i 0.121942 0.274137i
\(574\) 0 0
\(575\) 199.825 + 115.369i 0.347521 + 0.200641i
\(576\) 0 0
\(577\) −477.478 827.016i −0.827518 1.43330i −0.899979 0.435933i \(-0.856419\pi\)
0.0724610 0.997371i \(-0.476915\pi\)
\(578\) 0 0
\(579\) −27.4962 1.91333i −0.0474892 0.00330454i
\(580\) 0 0
\(581\) 65.6279 180.311i 0.112957 0.310346i
\(582\) 0 0
\(583\) −101.586 + 576.121i −0.174247 + 0.988201i
\(584\) 0 0
\(585\) −0.768195 + 5.49311i −0.00131315 + 0.00938993i
\(586\) 0 0
\(587\) 480.945 573.168i 0.819327 0.976435i −0.180648 0.983548i \(-0.557820\pi\)
0.999975 + 0.00711237i \(0.00226396\pi\)
\(588\) 0 0
\(589\) 68.7848 + 390.098i 0.116782 + 0.662306i
\(590\) 0 0
\(591\) 68.6742 + 239.188i 0.116200 + 0.404718i
\(592\) 0 0
\(593\) 164.211i 0.276916i 0.990368 + 0.138458i \(0.0442145\pi\)
−0.990368 + 0.138458i \(0.955785\pi\)
\(594\) 0 0
\(595\) −7.34053 −0.0123370
\(596\) 0 0
\(597\) −26.5425 + 106.610i −0.0444597 + 0.178577i
\(598\) 0 0
\(599\) −152.697 + 26.9245i −0.254919 + 0.0449491i −0.299647 0.954050i \(-0.596869\pi\)
0.0447281 + 0.998999i \(0.485758\pi\)
\(600\) 0 0
\(601\) 568.060 + 476.659i 0.945191 + 0.793110i 0.978481 0.206336i \(-0.0661540\pi\)
−0.0332899 + 0.999446i \(0.510598\pi\)
\(602\) 0 0
\(603\) 135.440 417.808i 0.224610 0.692882i
\(604\) 0 0
\(605\) −1.44814 0.255346i −0.00239362 0.000422060i
\(606\) 0 0
\(607\) −781.335 284.383i −1.28721 0.468505i −0.394398 0.918940i \(-0.629047\pi\)
−0.892810 + 0.450434i \(0.851269\pi\)
\(608\) 0 0
\(609\) 1179.00 575.532i 1.93596 0.945045i
\(610\) 0 0
\(611\) 20.5773 11.8803i 0.0336780 0.0194440i
\(612\) 0 0
\(613\) −197.308 + 341.747i −0.321873 + 0.557500i −0.980874 0.194642i \(-0.937646\pi\)
0.659002 + 0.752141i \(0.270979\pi\)
\(614\) 0 0
\(615\) −8.43614 + 6.13360i −0.0137173 + 0.00997333i
\(616\) 0 0
\(617\) 4.31265 + 5.13962i 0.00698971 + 0.00833001i 0.769528 0.638613i \(-0.220492\pi\)
−0.762538 + 0.646943i \(0.776047\pi\)
\(618\) 0 0
\(619\) −338.641 + 123.255i −0.547078 + 0.199120i −0.600748 0.799439i \(-0.705130\pi\)
0.0536699 + 0.998559i \(0.482908\pi\)
\(620\) 0 0
\(621\) 249.079 + 8.44355i 0.401093 + 0.0135967i
\(622\) 0 0
\(623\) 132.148 + 363.074i 0.212116 + 0.582783i
\(624\) 0 0
\(625\) 478.632 401.620i 0.765811 0.642592i
\(626\) 0 0
\(627\) 458.161 48.3122i 0.730719 0.0770530i
\(628\) 0 0
\(629\) 184.145 + 106.316i 0.292759 + 0.169025i
\(630\) 0 0
\(631\) −394.087 682.578i −0.624543 1.08174i −0.988629 0.150375i \(-0.951952\pi\)
0.364086 0.931365i \(-0.381381\pi\)
\(632\) 0 0
\(633\) −517.812 + 768.252i −0.818029 + 1.21367i
\(634\) 0 0
\(635\) 1.80275 4.95301i 0.00283897 0.00780001i
\(636\) 0 0
\(637\) 102.276 580.034i 0.160558 0.910572i
\(638\) 0 0
\(639\) 47.4962 + 75.8949i 0.0743290 + 0.118771i
\(640\) 0 0
\(641\) 750.028 893.849i 1.17009 1.39446i 0.267722 0.963496i \(-0.413729\pi\)
0.902369 0.430964i \(-0.141826\pi\)
\(642\) 0 0
\(643\) 50.6737 + 287.385i 0.0788083 + 0.446944i 0.998522 + 0.0543538i \(0.0173099\pi\)
−0.919713 + 0.392590i \(0.871579\pi\)
\(644\) 0 0
\(645\) 4.24566 4.39951i 0.00658243 0.00682094i
\(646\) 0 0
\(647\) 547.391i 0.846045i 0.906119 + 0.423023i \(0.139031\pi\)
−0.906119 + 0.423023i \(0.860969\pi\)
\(648\) 0 0
\(649\) −903.588 −1.39228
\(650\) 0 0
\(651\) −672.668 649.146i −1.03328 0.997152i
\(652\) 0 0
\(653\) 430.668 75.9385i 0.659523 0.116292i 0.166138 0.986103i \(-0.446870\pi\)
0.493385 + 0.869811i \(0.335759\pi\)
\(654\) 0 0
\(655\) −7.78960 6.53625i −0.0118925 0.00997901i
\(656\) 0 0
\(657\) −703.477 373.432i −1.07074 0.568389i
\(658\) 0 0
\(659\) 7.11079 + 1.25382i 0.0107903 + 0.00190262i 0.179041 0.983842i \(-0.442701\pi\)
−0.168250 + 0.985744i \(0.553812\pi\)
\(660\) 0 0
\(661\) −830.669 302.339i −1.25669 0.457396i −0.374030 0.927416i \(-0.622024\pi\)
−0.882656 + 0.470020i \(0.844247\pi\)
\(662\) 0 0
\(663\) 449.174 + 302.749i 0.677487 + 0.456636i
\(664\) 0 0
\(665\) −5.39360 + 3.11400i −0.00811068 + 0.00468270i
\(666\) 0 0
\(667\) 204.742 354.624i 0.306960 0.531670i
\(668\) 0 0
\(669\) −97.4602 924.248i −0.145680 1.38154i
\(670\) 0 0
\(671\) 46.7283 + 55.6886i 0.0696398 + 0.0829935i
\(672\) 0 0
\(673\) −445.775 + 162.249i −0.662370 + 0.241083i −0.651259 0.758855i \(-0.725759\pi\)
−0.0111109 + 0.999938i \(0.503537\pi\)
\(674\) 0 0
\(675\) 252.195 626.043i 0.373622 0.927471i
\(676\) 0 0
\(677\) −109.514 300.887i −0.161763 0.444441i 0.832157 0.554540i \(-0.187106\pi\)
−0.993921 + 0.110098i \(0.964883\pi\)
\(678\) 0 0
\(679\) 2.91714 2.44777i 0.00429622 0.00360496i
\(680\) 0 0
\(681\) 294.395 + 404.910i 0.432298 + 0.594581i
\(682\) 0 0
\(683\) 812.276 + 468.967i 1.18928 + 0.686629i 0.958142 0.286293i \(-0.0924231\pi\)
0.231134 + 0.972922i \(0.425756\pi\)
\(684\) 0 0
\(685\) −4.88765 8.46565i −0.00713525 0.0123586i
\(686\) 0 0
\(687\) 305.940 + 626.729i 0.445328 + 0.912269i
\(688\) 0 0
\(689\) −199.598 + 548.392i −0.289693 + 0.795924i
\(690\) 0 0
\(691\) 10.2172 57.9445i 0.0147861 0.0838560i −0.976522 0.215419i \(-0.930888\pi\)
0.991308 + 0.131563i \(0.0419995\pi\)
\(692\) 0 0
\(693\) −807.473 + 728.048i −1.16519 + 1.05057i
\(694\) 0 0
\(695\) 0.931124 1.10967i 0.00133975 0.00159665i
\(696\) 0 0
\(697\) 176.881 + 1003.14i 0.253774 + 1.43923i
\(698\) 0 0
\(699\) −330.204 82.2098i −0.472395 0.117611i
\(700\) 0 0
\(701\) 591.380i 0.843623i −0.906683 0.421812i \(-0.861394\pi\)
0.906683 0.421812i \(-0.138606\pi\)
\(702\) 0 0
\(703\) 180.406 0.256623
\(704\) 0 0
\(705\) 0.282550 0.0811240i 0.000400781 0.000115070i
\(706\) 0 0
\(707\) −463.199 + 81.6744i −0.655161 + 0.115523i
\(708\) 0 0
\(709\) 337.105 + 282.865i 0.475465 + 0.398963i 0.848783 0.528741i \(-0.177336\pi\)
−0.373318 + 0.927703i \(0.621780\pi\)
\(710\) 0 0
\(711\) −378.194 934.232i −0.531918 1.31397i
\(712\) 0 0
\(713\) −287.334 50.6648i −0.402993 0.0710586i
\(714\) 0 0
\(715\) −7.09669 2.58299i −0.00992545 0.00361257i
\(716\) 0 0
\(717\) −7.32712 + 105.297i −0.0102191 + 0.146858i
\(718\) 0 0
\(719\) 499.498 288.385i 0.694712 0.401092i −0.110663 0.993858i \(-0.535297\pi\)
0.805375 + 0.592766i \(0.201964\pi\)
\(720\) 0 0
\(721\) 90.3525 156.495i 0.125315 0.217053i
\(722\) 0 0
\(723\) −702.321 312.407i −0.971398 0.432098i
\(724\) 0 0
\(725\) −712.817 849.502i −0.983195 1.17173i
\(726\) 0 0
\(727\) −562.999 + 204.915i −0.774414 + 0.281863i −0.698841 0.715277i \(-0.746301\pi\)
−0.0755723 + 0.997140i \(0.524078\pi\)
\(728\) 0 0
\(729\) −77.6808 724.849i −0.106558 0.994306i
\(730\) 0 0
\(731\) −204.219 561.087i −0.279369 0.767561i
\(732\) 0 0
\(733\) −424.519 + 356.213i −0.579152 + 0.485966i −0.884669 0.466220i \(-0.845615\pi\)
0.305516 + 0.952187i \(0.401171\pi\)
\(734\) 0 0
\(735\) 2.96158 6.65791i 0.00402936 0.00905838i
\(736\) 0 0
\(737\) 517.906 + 299.013i 0.702723 + 0.405717i
\(738\) 0 0
\(739\) 708.201 + 1226.64i 0.958324 + 1.65987i 0.726572 + 0.687090i \(0.241112\pi\)
0.231752 + 0.972775i \(0.425554\pi\)
\(740\) 0 0
\(741\) 458.472 + 31.9028i 0.618721 + 0.0430537i
\(742\) 0 0
\(743\) −103.170 + 283.457i −0.138856 + 0.381504i −0.989556 0.144147i \(-0.953956\pi\)
0.850700 + 0.525651i \(0.176178\pi\)
\(744\) 0 0
\(745\) −2.17834 + 12.3540i −0.00292395 + 0.0165825i
\(746\) 0 0
\(747\) −162.381 + 65.7349i −0.217378 + 0.0879986i
\(748\) 0 0
\(749\) −436.492 + 520.191i −0.582767 + 0.694514i
\(750\) 0 0
\(751\) 86.3699 + 489.828i 0.115007 + 0.652235i 0.986747 + 0.162267i \(0.0518805\pi\)
−0.871740 + 0.489968i \(0.837008\pi\)
\(752\) 0 0
\(753\) −324.292 1129.49i −0.430666 1.49998i
\(754\) 0 0
\(755\) 7.37088i 0.00976276i
\(756\) 0 0
\(757\) 1028.94 1.35924 0.679620 0.733565i \(-0.262145\pi\)
0.679620 + 0.733565i \(0.262145\pi\)
\(758\) 0 0
\(759\) −81.9814 + 329.286i −0.108012 + 0.433842i
\(760\) 0 0
\(761\) −37.0662 + 6.53577i −0.0487073 + 0.00858840i −0.197949 0.980212i \(-0.563428\pi\)
0.149241 + 0.988801i \(0.452317\pi\)
\(762\) 0 0
\(763\) −72.2991 60.6662i −0.0947564 0.0795101i
\(764\) 0 0
\(765\) 4.48765 + 4.97723i 0.00586621 + 0.00650618i
\(766\) 0 0
\(767\) −887.696 156.525i −1.15736 0.204074i
\(768\) 0 0
\(769\) −1065.80 387.921i −1.38596 0.504449i −0.461981 0.886890i \(-0.652861\pi\)
−0.923980 + 0.382441i \(0.875084\pi\)
\(770\) 0 0
\(771\) −770.107 + 375.931i −0.998842 + 0.487588i
\(772\) 0 0
\(773\) −441.262 + 254.763i −0.570843 + 0.329577i −0.757486 0.652851i \(-0.773573\pi\)
0.186643 + 0.982428i \(0.440239\pi\)
\(774\) 0 0
\(775\) −395.075 + 684.289i −0.509774 + 0.882954i
\(776\) 0 0
\(777\) −344.353 + 250.366i −0.443182 + 0.322221i
\(778\) 0 0
\(779\) 555.519 + 662.042i 0.713118 + 0.849861i
\(780\) 0 0
\(781\) −114.554 + 41.6941i −0.146676 + 0.0533856i
\(782\) 0 0
\(783\) −1111.02 447.564i −1.41893 0.571601i
\(784\) 0 0
\(785\) −1.79610 4.93474i −0.00228803 0.00628630i
\(786\) 0 0
\(787\) −203.516 + 170.770i −0.258597 + 0.216988i −0.762864 0.646560i \(-0.776207\pi\)
0.504267 + 0.863548i \(0.331763\pi\)
\(788\) 0 0
\(789\) −1349.45 + 142.297i −1.71033 + 0.180351i
\(790\) 0 0
\(791\) −4.31282 2.49001i −0.00545236 0.00314792i
\(792\) 0 0
\(793\) 36.2598 + 62.8038i 0.0457248 + 0.0791977i
\(794\) 0 0
\(795\) −4.03541 + 5.98713i −0.00507598 + 0.00753098i
\(796\) 0 0
\(797\) −153.358 + 421.349i −0.192420 + 0.528668i −0.997958 0.0638752i \(-0.979654\pi\)
0.805538 + 0.592544i \(0.201876\pi\)
\(798\) 0 0
\(799\) 4.98521 28.2725i 0.00623932 0.0353849i
\(800\) 0 0
\(801\) 165.392 311.569i 0.206482 0.388975i
\(802\) 0 0
\(803\) 697.063 830.727i 0.868073 1.03453i
\(804\) 0 0
\(805\) −0.796585 4.51766i −0.000989547 0.00561200i
\(806\) 0 0
\(807\) 578.340 599.296i 0.716654 0.742623i
\(808\) 0 0
\(809\) 357.505i 0.441910i −0.975284 0.220955i \(-0.929083\pi\)
0.975284 0.220955i \(-0.0709174\pi\)
\(810\) 0 0
\(811\) −1269.44 −1.56528 −0.782638 0.622477i \(-0.786126\pi\)
−0.782638 + 0.622477i \(0.786126\pi\)
\(812\) 0 0
\(813\) −669.878 646.453i −0.823958 0.795145i
\(814\) 0 0
\(815\) 6.26861 1.10533i 0.00769155 0.00135623i
\(816\) 0 0
\(817\) −388.078 325.636i −0.475004 0.398576i
\(818\) 0 0
\(819\) −919.389 + 575.368i −1.12257 + 0.702525i
\(820\) 0 0
\(821\) 1142.82 + 201.510i 1.39199 + 0.245445i 0.818846 0.574013i \(-0.194614\pi\)
0.573140 + 0.819458i \(0.305725\pi\)
\(822\) 0 0
\(823\) −776.798 282.731i −0.943862 0.343538i −0.176172 0.984359i \(-0.556371\pi\)
−0.767690 + 0.640822i \(0.778594\pi\)
\(824\) 0 0
\(825\) 762.044 + 513.628i 0.923689 + 0.622579i
\(826\) 0 0
\(827\) −74.5639 + 43.0495i −0.0901619 + 0.0520550i −0.544403 0.838824i \(-0.683244\pi\)
0.454241 + 0.890879i \(0.349910\pi\)
\(828\) 0 0
\(829\) 316.737 548.604i 0.382071 0.661766i −0.609287 0.792949i \(-0.708544\pi\)
0.991358 + 0.131184i \(0.0418778\pi\)
\(830\) 0 0
\(831\) −108.265 1026.71i −0.130283 1.23551i
\(832\) 0 0
\(833\) −457.432 545.146i −0.549138 0.654437i
\(834\) 0 0
\(835\) 11.5869 4.21728i 0.0138765 0.00505063i
\(836\) 0 0
\(837\) −28.9145 + 852.958i −0.0345454 + 1.01907i
\(838\) 0 0
\(839\) 251.928 + 692.167i 0.300272 + 0.824990i 0.994452 + 0.105189i \(0.0335447\pi\)
−0.694180 + 0.719801i \(0.744233\pi\)
\(840\) 0 0
\(841\) −863.345 + 724.433i −1.02657 + 0.861394i
\(842\) 0 0
\(843\) −776.885 1068.53i −0.921572 1.26753i
\(844\) 0 0
\(845\) 0.854040 + 0.493080i 0.00101070 + 0.000583527i
\(846\) 0 0
\(847\) −143.770 249.017i −0.169741 0.293999i
\(848\) 0 0
\(849\) 19.6394 + 40.2320i 0.0231324 + 0.0473876i
\(850\) 0 0
\(851\) −45.4482 + 124.868i −0.0534056 + 0.146731i
\(852\) 0 0
\(853\) −284.876 + 1615.61i −0.333970 + 1.89404i 0.103204 + 0.994660i \(0.467091\pi\)
−0.437174 + 0.899377i \(0.644020\pi\)
\(854\) 0 0
\(855\) 5.40883 + 1.75337i 0.00632612 + 0.00205072i
\(856\) 0 0
\(857\) −219.660 + 261.780i −0.256312 + 0.305461i −0.878821 0.477152i \(-0.841669\pi\)
0.622509 + 0.782613i \(0.286114\pi\)
\(858\) 0 0
\(859\) −53.2766 302.146i −0.0620216 0.351742i −0.999987 0.00501434i \(-0.998404\pi\)
0.937966 0.346728i \(-0.112707\pi\)
\(860\) 0 0
\(861\) −1979.13 492.737i −2.29864 0.572285i
\(862\) 0 0
\(863\) 1546.03i 1.79146i −0.444596 0.895731i \(-0.646653\pi\)
0.444596 0.895731i \(-0.353347\pi\)
\(864\) 0 0
\(865\) −4.63522 −0.00535864
\(866\) 0 0
\(867\) −204.266 + 58.6476i −0.235601 + 0.0676443i
\(868\) 0 0
\(869\) 1351.47 238.300i 1.55520 0.274224i
\(870\) 0 0
\(871\) 457.001 + 383.469i 0.524686 + 0.440263i
\(872\) 0 0
\(873\) −3.44310 0.481508i −0.00394399 0.000551556i
\(874\) 0 0
\(875\) −24.4703 4.31477i −0.0279660 0.00493116i
\(876\) 0 0
\(877\) 254.149 + 92.5028i 0.289794 + 0.105476i 0.482827 0.875716i \(-0.339610\pi\)
−0.193033 + 0.981192i \(0.561832\pi\)
\(878\) 0 0
\(879\) 33.7418 484.900i 0.0383865 0.551650i
\(880\) 0 0
\(881\) −240.352 + 138.767i −0.272817 + 0.157511i −0.630167 0.776460i \(-0.717014\pi\)
0.357350 + 0.933970i \(0.383680\pi\)
\(882\) 0 0
\(883\) −334.464 + 579.308i −0.378781 + 0.656068i −0.990885 0.134709i \(-0.956990\pi\)
0.612104 + 0.790777i \(0.290323\pi\)
\(884\) 0 0
\(885\) −10.1894 4.53246i −0.0115134 0.00512142i
\(886\) 0 0
\(887\) 707.659 + 843.355i 0.797811 + 0.950795i 0.999590 0.0286367i \(-0.00911658\pi\)
−0.201779 + 0.979431i \(0.564672\pi\)
\(888\) 0 0
\(889\) 968.520 352.512i 1.08945 0.396527i
\(890\) 0 0
\(891\) 987.302 + 102.412i 1.10808 + 0.114940i
\(892\) 0 0
\(893\) −8.33079 22.8887i −0.00932899 0.0256312i
\(894\) 0 0
\(895\) −2.44557 + 2.05208i −0.00273249 + 0.00229283i
\(896\) 0 0
\(897\) −137.580 + 309.294i −0.153378 + 0.344809i
\(898\) 0 0
\(899\) 1214.39 + 701.129i 1.35082 + 0.779899i
\(900\) 0 0
\(901\) 352.559 + 610.650i 0.391297 + 0.677747i
\(902\) 0 0
\(903\) 1192.66 + 82.9915i 1.32078 + 0.0919065i
\(904\) 0 0
\(905\) 2.67244 7.34248i 0.00295298 0.00811324i
\(906\) 0 0
\(907\) −159.627 + 905.289i −0.175994 + 0.998114i 0.760995 + 0.648757i \(0.224711\pi\)
−0.936990 + 0.349357i \(0.886400\pi\)
\(908\) 0 0
\(909\) 338.557 + 264.139i 0.372450 + 0.290582i
\(910\) 0 0
\(911\) −109.112 + 130.035i −0.119772 + 0.142739i −0.822599 0.568623i \(-0.807476\pi\)
0.702827 + 0.711361i \(0.251921\pi\)
\(912\) 0 0
\(913\) −41.4197 234.903i −0.0453666 0.257287i
\(914\) 0 0
\(915\) 0.247598 + 0.862371i 0.000270599 + 0.000942482i
\(916\) 0 0
\(917\) 1988.39i 2.16836i
\(918\) 0 0
\(919\) −120.333 −0.130939 −0.0654697 0.997855i \(-0.520855\pi\)
−0.0654697 + 0.997855i \(0.520855\pi\)
\(920\) 0 0
\(921\) 100.780 404.791i 0.109424 0.439513i
\(922\) 0 0
\(923\) −119.762 + 21.1172i −0.129752 + 0.0228789i
\(924\) 0 0
\(925\) 275.672 + 231.316i 0.298023 + 0.250071i
\(926\) 0 0
\(927\) −161.348 + 34.4104i −0.174054 + 0.0371202i
\(928\) 0 0
\(929\) 989.307 + 174.442i 1.06492 + 0.187773i 0.678537 0.734566i \(-0.262614\pi\)
0.386379 + 0.922340i \(0.373726\pi\)
\(930\) 0 0
\(931\) −567.369 206.505i −0.609419 0.221810i
\(932\) 0 0
\(933\) 486.566 237.519i 0.521507 0.254576i
\(934\) 0 0
\(935\) −7.90237 + 4.56244i −0.00845173 + 0.00487961i
\(936\) 0 0
\(937\) −374.211 + 648.153i −0.399372 + 0.691732i −0.993649 0.112528i \(-0.964105\pi\)
0.594277 + 0.804261i \(0.297438\pi\)
\(938\) 0 0
\(939\) 1406.02 1022.27i 1.49736 1.08868i
\(940\) 0 0
\(941\) 952.151 + 1134.73i 1.01185 + 1.20588i 0.978461 + 0.206434i \(0.0661858\pi\)
0.0333896 + 0.999442i \(0.489370\pi\)
\(942\) 0 0
\(943\) −598.179 + 217.719i −0.634336 + 0.230879i
\(944\) 0 0
\(945\) −12.7575 + 4.15956i −0.0135000 + 0.00440165i
\(946\) 0 0
\(947\) −160.976 442.278i −0.169985 0.467030i 0.825223 0.564807i \(-0.191049\pi\)
−0.995208 + 0.0977764i \(0.968827\pi\)
\(948\) 0 0
\(949\) 828.707 695.368i 0.873242 0.732737i
\(950\) 0 0
\(951\) −1508.45 + 159.063i −1.58617 + 0.167259i
\(952\) 0 0
\(953\) 733.980 + 423.764i 0.770179 + 0.444663i 0.832938 0.553366i \(-0.186657\pi\)
−0.0627596 + 0.998029i \(0.519990\pi\)
\(954\) 0 0
\(955\) 1.44452 + 2.50199i 0.00151259 + 0.00261988i
\(956\) 0 0
\(957\) 911.522 1352.38i 0.952479 1.41314i
\(958\) 0 0
\(959\) 653.764 1796.20i 0.681715 1.87300i
\(960\) 0 0
\(961\) 6.62309 37.5614i 0.00689187 0.0390857i
\(962\) 0 0
\(963\) 619.565 22.0577i 0.643370 0.0229052i
\(964\) 0 0
\(965\) 0.297727 0.354817i 0.000308525 0.000367686i
\(966\) 0 0
\(967\) 17.9690 + 101.907i 0.0185822 + 0.105385i 0.992688 0.120707i \(-0.0385162\pi\)
−0.974106 + 0.226092i \(0.927405\pi\)
\(968\) 0 0
\(969\) 385.600 399.572i 0.397936 0.412355i
\(970\) 0 0
\(971\) 171.424i 0.176543i 0.996096 + 0.0882717i \(0.0281344\pi\)
−0.996096 + 0.0882717i \(0.971866\pi\)
\(972\) 0 0
\(973\) 283.256 0.291116
\(974\) 0 0
\(975\) 659.668 + 636.600i 0.676582 + 0.652923i
\(976\) 0 0
\(977\) −1695.45 + 298.954i −1.73536 + 0.305991i −0.949816 0.312809i \(-0.898730\pi\)
−0.785548 + 0.618801i \(0.787619\pi\)
\(978\) 0 0
\(979\) 367.928 + 308.728i 0.375820 + 0.315350i
\(980\) 0 0
\(981\) 3.06571 + 86.1107i 0.00312508 + 0.0877785i
\(982\) 0 0
\(983\) 1292.07 + 227.827i 1.31442 + 0.231767i 0.786532 0.617550i \(-0.211874\pi\)
0.527884 + 0.849317i \(0.322986\pi\)
\(984\) 0 0
\(985\) −3.92966 1.43028i −0.00398950 0.00145206i
\(986\) 0 0
\(987\) 47.6661 + 32.1276i 0.0482940 + 0.0325508i
\(988\) 0 0
\(989\) 323.154 186.573i 0.326748 0.188648i
\(990\) 0 0
\(991\) 964.265 1670.16i 0.973022 1.68532i 0.286707 0.958018i \(-0.407439\pi\)
0.686314 0.727305i \(-0.259227\pi\)
\(992\) 0 0
\(993\) 71.3809 + 676.929i 0.0718841 + 0.681700i
\(994\) 0 0
\(995\) −1.18674 1.41430i −0.00119270 0.00142141i
\(996\) 0 0
\(997\) −1167.31 + 424.866i −1.17082 + 0.426144i −0.852952 0.521990i \(-0.825190\pi\)
−0.317870 + 0.948134i \(0.602968\pi\)
\(998\) 0 0
\(999\) 380.281 + 80.4257i 0.380662 + 0.0805062i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.3.bc.a.209.4 30
4.3 odd 2 27.3.f.a.20.2 30
12.11 even 2 81.3.f.a.62.4 30
27.23 odd 18 inner 432.3.bc.a.401.4 30
36.7 odd 6 243.3.f.c.107.2 30
36.11 even 6 243.3.f.b.107.4 30
36.23 even 6 243.3.f.a.26.2 30
36.31 odd 6 243.3.f.d.26.4 30
108.23 even 18 27.3.f.a.23.2 yes 30
108.31 odd 18 81.3.f.a.17.4 30
108.59 even 18 243.3.f.d.215.4 30
108.67 odd 18 243.3.f.b.134.4 30
108.79 odd 18 729.3.b.a.728.21 30
108.83 even 18 729.3.b.a.728.10 30
108.95 even 18 243.3.f.c.134.2 30
108.103 odd 18 243.3.f.a.215.2 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.20.2 30 4.3 odd 2
27.3.f.a.23.2 yes 30 108.23 even 18
81.3.f.a.17.4 30 108.31 odd 18
81.3.f.a.62.4 30 12.11 even 2
243.3.f.a.26.2 30 36.23 even 6
243.3.f.a.215.2 30 108.103 odd 18
243.3.f.b.107.4 30 36.11 even 6
243.3.f.b.134.4 30 108.67 odd 18
243.3.f.c.107.2 30 36.7 odd 6
243.3.f.c.134.2 30 108.95 even 18
243.3.f.d.26.4 30 36.31 odd 6
243.3.f.d.215.4 30 108.59 even 18
432.3.bc.a.209.4 30 1.1 even 1 trivial
432.3.bc.a.401.4 30 27.23 odd 18 inner
729.3.b.a.728.10 30 108.83 even 18
729.3.b.a.728.21 30 108.79 odd 18