Properties

Label 729.3.b.a.728.10
Level $729$
Weight $3$
Character 729.728
Analytic conductor $19.864$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,3,Mod(728,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.728");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 729.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8638112719\)
Analytic rank: \(0\)
Dimension: \(30\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 728.10
Character \(\chi\) \(=\) 729.728
Dual form 729.3.b.a.728.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53349i q^{2} +1.64842 q^{4} -0.0504138i q^{5} +9.85801 q^{7} -8.66177i q^{8} -0.0773090 q^{10} -12.2543i q^{11} +12.2245 q^{13} -15.1171i q^{14} -6.68905 q^{16} +14.7703i q^{17} -12.5317 q^{19} -0.0831031i q^{20} -18.7918 q^{22} -9.23045i q^{23} +24.9975 q^{25} -18.7461i q^{26} +16.2501 q^{28} +44.3623i q^{29} -31.6092 q^{31} -24.3895i q^{32} +22.6500 q^{34} -0.496980i q^{35} +14.3960 q^{37} +19.2172i q^{38} -0.436673 q^{40} -68.9640i q^{41} +40.4256 q^{43} -20.2002i q^{44} -14.1548 q^{46} +1.94368i q^{47} +48.1804 q^{49} -38.3333i q^{50} +20.1511 q^{52} +47.7390i q^{53} -0.617787 q^{55} -85.3879i q^{56} +68.0291 q^{58} -73.7363i q^{59} -5.93231 q^{61} +48.4723i q^{62} -64.1572 q^{64} -0.616285i q^{65} -48.8013 q^{67} +24.3475i q^{68} -0.762113 q^{70} +9.94797i q^{71} +88.4943 q^{73} -22.0761i q^{74} -20.6574 q^{76} -120.803i q^{77} -111.986 q^{79} +0.337221i q^{80} -105.755 q^{82} -19.4647i q^{83} +0.744625 q^{85} -61.9921i q^{86} -106.144 q^{88} -39.1940i q^{89} +120.509 q^{91} -15.2156i q^{92} +2.98061 q^{94} +0.631770i q^{95} -0.386290 q^{97} -73.8841i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 48 q^{4} + 6 q^{10} + 48 q^{16} + 6 q^{19} - 24 q^{22} - 30 q^{25} - 12 q^{28} + 6 q^{37} - 24 q^{40} + 6 q^{46} - 42 q^{49} + 96 q^{52} - 12 q^{55} + 48 q^{58} + 18 q^{61} + 102 q^{64} - 90 q^{67}+ \cdots - 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.53349i − 0.766744i −0.923594 0.383372i \(-0.874763\pi\)
0.923594 0.383372i \(-0.125237\pi\)
\(3\) 0 0
\(4\) 1.64842 0.412104
\(5\) − 0.0504138i − 0.0100828i −0.999987 0.00504138i \(-0.998395\pi\)
0.999987 0.00504138i \(-0.00160473\pi\)
\(6\) 0 0
\(7\) 9.85801 1.40829 0.704144 0.710057i \(-0.251331\pi\)
0.704144 + 0.710057i \(0.251331\pi\)
\(8\) − 8.66177i − 1.08272i
\(9\) 0 0
\(10\) −0.0773090 −0.00773090
\(11\) − 12.2543i − 1.11403i −0.830503 0.557014i \(-0.811947\pi\)
0.830503 0.557014i \(-0.188053\pi\)
\(12\) 0 0
\(13\) 12.2245 0.940347 0.470174 0.882574i \(-0.344191\pi\)
0.470174 + 0.882574i \(0.344191\pi\)
\(14\) − 15.1171i − 1.07980i
\(15\) 0 0
\(16\) −6.68905 −0.418066
\(17\) 14.7703i 0.868839i 0.900711 + 0.434419i \(0.143046\pi\)
−0.900711 + 0.434419i \(0.856954\pi\)
\(18\) 0 0
\(19\) −12.5317 −0.659562 −0.329781 0.944058i \(-0.606975\pi\)
−0.329781 + 0.944058i \(0.606975\pi\)
\(20\) − 0.0831031i − 0.00415515i
\(21\) 0 0
\(22\) −18.7918 −0.854174
\(23\) − 9.23045i − 0.401324i −0.979661 0.200662i \(-0.935691\pi\)
0.979661 0.200662i \(-0.0643093\pi\)
\(24\) 0 0
\(25\) 24.9975 0.999898
\(26\) − 18.7461i − 0.721005i
\(27\) 0 0
\(28\) 16.2501 0.580362
\(29\) 44.3623i 1.52974i 0.644187 + 0.764868i \(0.277196\pi\)
−0.644187 + 0.764868i \(0.722804\pi\)
\(30\) 0 0
\(31\) −31.6092 −1.01965 −0.509826 0.860278i \(-0.670290\pi\)
−0.509826 + 0.860278i \(0.670290\pi\)
\(32\) − 24.3895i − 0.762173i
\(33\) 0 0
\(34\) 22.6500 0.666176
\(35\) − 0.496980i − 0.0141994i
\(36\) 0 0
\(37\) 14.3960 0.389082 0.194541 0.980894i \(-0.437678\pi\)
0.194541 + 0.980894i \(0.437678\pi\)
\(38\) 19.2172i 0.505715i
\(39\) 0 0
\(40\) −0.436673 −0.0109168
\(41\) − 68.9640i − 1.68205i −0.540997 0.841025i \(-0.681953\pi\)
0.540997 0.841025i \(-0.318047\pi\)
\(42\) 0 0
\(43\) 40.4256 0.940130 0.470065 0.882632i \(-0.344230\pi\)
0.470065 + 0.882632i \(0.344230\pi\)
\(44\) − 20.2002i − 0.459096i
\(45\) 0 0
\(46\) −14.1548 −0.307712
\(47\) 1.94368i 0.0413550i 0.999786 + 0.0206775i \(0.00658232\pi\)
−0.999786 + 0.0206775i \(0.993418\pi\)
\(48\) 0 0
\(49\) 48.1804 0.983274
\(50\) − 38.3333i − 0.766666i
\(51\) 0 0
\(52\) 20.1511 0.387521
\(53\) 47.7390i 0.900736i 0.892843 + 0.450368i \(0.148707\pi\)
−0.892843 + 0.450368i \(0.851293\pi\)
\(54\) 0 0
\(55\) −0.617787 −0.0112325
\(56\) − 85.3879i − 1.52478i
\(57\) 0 0
\(58\) 68.0291 1.17291
\(59\) − 73.7363i − 1.24977i −0.780717 0.624884i \(-0.785146\pi\)
0.780717 0.624884i \(-0.214854\pi\)
\(60\) 0 0
\(61\) −5.93231 −0.0972510 −0.0486255 0.998817i \(-0.515484\pi\)
−0.0486255 + 0.998817i \(0.515484\pi\)
\(62\) 48.4723i 0.781811i
\(63\) 0 0
\(64\) −64.1572 −1.00246
\(65\) − 0.616285i − 0.00948130i
\(66\) 0 0
\(67\) −48.8013 −0.728378 −0.364189 0.931325i \(-0.618654\pi\)
−0.364189 + 0.931325i \(0.618654\pi\)
\(68\) 24.3475i 0.358052i
\(69\) 0 0
\(70\) −0.762113 −0.0108873
\(71\) 9.94797i 0.140112i 0.997543 + 0.0700561i \(0.0223178\pi\)
−0.997543 + 0.0700561i \(0.977682\pi\)
\(72\) 0 0
\(73\) 88.4943 1.21225 0.606126 0.795369i \(-0.292723\pi\)
0.606126 + 0.795369i \(0.292723\pi\)
\(74\) − 22.0761i − 0.298326i
\(75\) 0 0
\(76\) −20.6574 −0.271808
\(77\) − 120.803i − 1.56887i
\(78\) 0 0
\(79\) −111.986 −1.41755 −0.708775 0.705434i \(-0.750752\pi\)
−0.708775 + 0.705434i \(0.750752\pi\)
\(80\) 0.337221i 0.00421526i
\(81\) 0 0
\(82\) −105.755 −1.28970
\(83\) − 19.4647i − 0.234514i −0.993102 0.117257i \(-0.962590\pi\)
0.993102 0.117257i \(-0.0374102\pi\)
\(84\) 0 0
\(85\) 0.744625 0.00876030
\(86\) − 61.9921i − 0.720839i
\(87\) 0 0
\(88\) −106.144 −1.20618
\(89\) − 39.1940i − 0.440382i −0.975457 0.220191i \(-0.929332\pi\)
0.975457 0.220191i \(-0.0706681\pi\)
\(90\) 0 0
\(91\) 120.509 1.32428
\(92\) − 15.2156i − 0.165387i
\(93\) 0 0
\(94\) 2.98061 0.0317086
\(95\) 0.631770i 0.00665021i
\(96\) 0 0
\(97\) −0.386290 −0.00398237 −0.00199118 0.999998i \(-0.500634\pi\)
−0.00199118 + 0.999998i \(0.500634\pi\)
\(98\) − 73.8841i − 0.753919i
\(99\) 0 0
\(100\) 41.2063 0.412063
\(101\) 47.7119i 0.472395i 0.971705 + 0.236197i \(0.0759012\pi\)
−0.971705 + 0.236197i \(0.924099\pi\)
\(102\) 0 0
\(103\) −18.3308 −0.177969 −0.0889843 0.996033i \(-0.528362\pi\)
−0.0889843 + 0.996033i \(0.528362\pi\)
\(104\) − 105.886i − 1.01813i
\(105\) 0 0
\(106\) 73.2072 0.690634
\(107\) − 68.8842i − 0.643778i −0.946777 0.321889i \(-0.895682\pi\)
0.946777 0.321889i \(-0.104318\pi\)
\(108\) 0 0
\(109\) 9.57392 0.0878341 0.0439171 0.999035i \(-0.486016\pi\)
0.0439171 + 0.999035i \(0.486016\pi\)
\(110\) 0.947368i 0.00861244i
\(111\) 0 0
\(112\) −65.9407 −0.588757
\(113\) 0.505174i 0.00447057i 0.999998 + 0.00223528i \(0.000711513\pi\)
−0.999998 + 0.00223528i \(0.999288\pi\)
\(114\) 0 0
\(115\) −0.465342 −0.00404645
\(116\) 73.1277i 0.630411i
\(117\) 0 0
\(118\) −113.074 −0.958252
\(119\) 145.605i 1.22357i
\(120\) 0 0
\(121\) −29.1682 −0.241059
\(122\) 9.09712i 0.0745665i
\(123\) 0 0
\(124\) −52.1051 −0.420203
\(125\) − 2.52056i − 0.0201645i
\(126\) 0 0
\(127\) −104.552 −0.823246 −0.411623 0.911354i \(-0.635038\pi\)
−0.411623 + 0.911354i \(0.635038\pi\)
\(128\) 0.826147i 0.00645427i
\(129\) 0 0
\(130\) −0.945064 −0.00726973
\(131\) 201.703i 1.53971i 0.638217 + 0.769857i \(0.279672\pi\)
−0.638217 + 0.769857i \(0.720328\pi\)
\(132\) 0 0
\(133\) −123.537 −0.928853
\(134\) 74.8362i 0.558479i
\(135\) 0 0
\(136\) 127.937 0.940710
\(137\) 193.901i 1.41534i 0.706545 + 0.707668i \(0.250253\pi\)
−0.706545 + 0.707668i \(0.749747\pi\)
\(138\) 0 0
\(139\) 28.7336 0.206717 0.103358 0.994644i \(-0.467041\pi\)
0.103358 + 0.994644i \(0.467041\pi\)
\(140\) − 0.819231i − 0.00585165i
\(141\) 0 0
\(142\) 15.2551 0.107430
\(143\) − 149.803i − 1.04757i
\(144\) 0 0
\(145\) 2.23648 0.0154240
\(146\) − 135.705i − 0.929486i
\(147\) 0 0
\(148\) 23.7306 0.160342
\(149\) − 248.832i − 1.67001i −0.550241 0.835006i \(-0.685464\pi\)
0.550241 0.835006i \(-0.314536\pi\)
\(150\) 0 0
\(151\) −146.208 −0.968262 −0.484131 0.874996i \(-0.660864\pi\)
−0.484131 + 0.874996i \(0.660864\pi\)
\(152\) 108.547i 0.714122i
\(153\) 0 0
\(154\) −185.250 −1.20292
\(155\) 1.59354i 0.0102809i
\(156\) 0 0
\(157\) 104.167 0.663482 0.331741 0.943370i \(-0.392364\pi\)
0.331741 + 0.943370i \(0.392364\pi\)
\(158\) 171.730i 1.08690i
\(159\) 0 0
\(160\) −1.22957 −0.00768481
\(161\) − 90.9939i − 0.565179i
\(162\) 0 0
\(163\) 126.261 0.774609 0.387304 0.921952i \(-0.373406\pi\)
0.387304 + 0.921952i \(0.373406\pi\)
\(164\) − 113.681i − 0.693180i
\(165\) 0 0
\(166\) −29.8489 −0.179812
\(167\) 244.586i 1.46458i 0.680991 + 0.732292i \(0.261549\pi\)
−0.680991 + 0.732292i \(0.738451\pi\)
\(168\) 0 0
\(169\) −19.5613 −0.115747
\(170\) − 1.14187i − 0.00671690i
\(171\) 0 0
\(172\) 66.6383 0.387432
\(173\) − 91.9435i − 0.531465i −0.964047 0.265733i \(-0.914386\pi\)
0.964047 0.265733i \(-0.0856138\pi\)
\(174\) 0 0
\(175\) 246.425 1.40814
\(176\) 81.9697i 0.465737i
\(177\) 0 0
\(178\) −60.1035 −0.337660
\(179\) 63.3253i 0.353773i 0.984231 + 0.176886i \(0.0566025\pi\)
−0.984231 + 0.176886i \(0.943398\pi\)
\(180\) 0 0
\(181\) 154.991 0.856305 0.428153 0.903706i \(-0.359165\pi\)
0.428153 + 0.903706i \(0.359165\pi\)
\(182\) − 184.800i − 1.01538i
\(183\) 0 0
\(184\) −79.9521 −0.434522
\(185\) − 0.725758i − 0.00392302i
\(186\) 0 0
\(187\) 180.999 0.967911
\(188\) 3.20400i 0.0170426i
\(189\) 0 0
\(190\) 0.968811 0.00509900
\(191\) 57.3066i 0.300035i 0.988683 + 0.150017i \(0.0479329\pi\)
−0.988683 + 0.150017i \(0.952067\pi\)
\(192\) 0 0
\(193\) −9.18758 −0.0476040 −0.0238020 0.999717i \(-0.507577\pi\)
−0.0238020 + 0.999717i \(0.507577\pi\)
\(194\) 0.592370i 0.00305345i
\(195\) 0 0
\(196\) 79.4215 0.405212
\(197\) 82.9506i 0.421069i 0.977586 + 0.210535i \(0.0675204\pi\)
−0.977586 + 0.210535i \(0.932480\pi\)
\(198\) 0 0
\(199\) 36.6216 0.184028 0.0920141 0.995758i \(-0.470670\pi\)
0.0920141 + 0.995758i \(0.470670\pi\)
\(200\) − 216.522i − 1.08261i
\(201\) 0 0
\(202\) 73.1655 0.362206
\(203\) 437.325i 2.15431i
\(204\) 0 0
\(205\) −3.47674 −0.0169597
\(206\) 28.1100i 0.136456i
\(207\) 0 0
\(208\) −81.7704 −0.393127
\(209\) 153.567i 0.734771i
\(210\) 0 0
\(211\) −308.822 −1.46361 −0.731806 0.681513i \(-0.761322\pi\)
−0.731806 + 0.681513i \(0.761322\pi\)
\(212\) 78.6939i 0.371197i
\(213\) 0 0
\(214\) −105.633 −0.493612
\(215\) − 2.03801i − 0.00947911i
\(216\) 0 0
\(217\) −311.604 −1.43596
\(218\) − 14.6815i − 0.0673462i
\(219\) 0 0
\(220\) −1.01837 −0.00462896
\(221\) 180.559i 0.817010i
\(222\) 0 0
\(223\) 309.791 1.38920 0.694598 0.719398i \(-0.255582\pi\)
0.694598 + 0.719398i \(0.255582\pi\)
\(224\) − 240.432i − 1.07336i
\(225\) 0 0
\(226\) 0.774678 0.00342778
\(227\) 166.873i 0.735125i 0.929999 + 0.367562i \(0.119808\pi\)
−0.929999 + 0.367562i \(0.880192\pi\)
\(228\) 0 0
\(229\) −232.472 −1.01516 −0.507581 0.861604i \(-0.669460\pi\)
−0.507581 + 0.861604i \(0.669460\pi\)
\(230\) 0.713596i 0.00310259i
\(231\) 0 0
\(232\) 384.257 1.65628
\(233\) 113.428i 0.486815i 0.969924 + 0.243408i \(0.0782652\pi\)
−0.969924 + 0.243408i \(0.921735\pi\)
\(234\) 0 0
\(235\) 0.0979885 0.000416972 0
\(236\) − 121.548i − 0.515035i
\(237\) 0 0
\(238\) 223.284 0.938168
\(239\) 35.1840i 0.147213i 0.997287 + 0.0736067i \(0.0234510\pi\)
−0.997287 + 0.0736067i \(0.976549\pi\)
\(240\) 0 0
\(241\) 256.223 1.06317 0.531583 0.847006i \(-0.321597\pi\)
0.531583 + 0.847006i \(0.321597\pi\)
\(242\) 44.7290i 0.184831i
\(243\) 0 0
\(244\) −9.77892 −0.0400775
\(245\) − 2.42896i − 0.00991413i
\(246\) 0 0
\(247\) −153.194 −0.620217
\(248\) 273.792i 1.10400i
\(249\) 0 0
\(250\) −3.86525 −0.0154610
\(251\) 391.707i 1.56059i 0.625414 + 0.780293i \(0.284930\pi\)
−0.625414 + 0.780293i \(0.715070\pi\)
\(252\) 0 0
\(253\) −113.113 −0.447086
\(254\) 160.330i 0.631219i
\(255\) 0 0
\(256\) −255.362 −0.997508
\(257\) 285.655i 1.11150i 0.831350 + 0.555749i \(0.187568\pi\)
−0.831350 + 0.555749i \(0.812432\pi\)
\(258\) 0 0
\(259\) 141.916 0.547939
\(260\) − 1.01589i − 0.00390729i
\(261\) 0 0
\(262\) 309.308 1.18057
\(263\) 452.311i 1.71981i 0.510451 + 0.859907i \(0.329478\pi\)
−0.510451 + 0.859907i \(0.670522\pi\)
\(264\) 0 0
\(265\) 2.40671 0.00908192
\(266\) 189.443i 0.712192i
\(267\) 0 0
\(268\) −80.4450 −0.300168
\(269\) 277.616i 1.03203i 0.856580 + 0.516014i \(0.172585\pi\)
−0.856580 + 0.516014i \(0.827415\pi\)
\(270\) 0 0
\(271\) 310.311 1.14506 0.572530 0.819884i \(-0.305962\pi\)
0.572530 + 0.819884i \(0.305962\pi\)
\(272\) − 98.7990i − 0.363231i
\(273\) 0 0
\(274\) 297.345 1.08520
\(275\) − 306.327i − 1.11392i
\(276\) 0 0
\(277\) −344.135 −1.24236 −0.621182 0.783666i \(-0.713347\pi\)
−0.621182 + 0.783666i \(0.713347\pi\)
\(278\) − 44.0626i − 0.158499i
\(279\) 0 0
\(280\) −4.30473 −0.0153740
\(281\) 440.366i 1.56714i 0.621305 + 0.783569i \(0.286603\pi\)
−0.621305 + 0.783569i \(0.713397\pi\)
\(282\) 0 0
\(283\) 14.9232 0.0527322 0.0263661 0.999652i \(-0.491606\pi\)
0.0263661 + 0.999652i \(0.491606\pi\)
\(284\) 16.3984i 0.0577408i
\(285\) 0 0
\(286\) −229.721 −0.803220
\(287\) − 679.848i − 2.36881i
\(288\) 0 0
\(289\) 70.8396 0.245120
\(290\) − 3.42961i − 0.0118262i
\(291\) 0 0
\(292\) 145.876 0.499574
\(293\) 162.024i 0.552984i 0.961016 + 0.276492i \(0.0891719\pi\)
−0.961016 + 0.276492i \(0.910828\pi\)
\(294\) 0 0
\(295\) −3.71733 −0.0126011
\(296\) − 124.695i − 0.421267i
\(297\) 0 0
\(298\) −381.580 −1.28047
\(299\) − 112.838i − 0.377384i
\(300\) 0 0
\(301\) 398.516 1.32397
\(302\) 224.207i 0.742408i
\(303\) 0 0
\(304\) 83.8250 0.275740
\(305\) 0.299070i 0 0.000980559i
\(306\) 0 0
\(307\) −139.049 −0.452929 −0.226465 0.974019i \(-0.572717\pi\)
−0.226465 + 0.974019i \(0.572717\pi\)
\(308\) − 199.134i − 0.646539i
\(309\) 0 0
\(310\) 2.44367 0.00788282
\(311\) 180.481i 0.580326i 0.956977 + 0.290163i \(0.0937096\pi\)
−0.956977 + 0.290163i \(0.906290\pi\)
\(312\) 0 0
\(313\) 579.457 1.85130 0.925650 0.378381i \(-0.123519\pi\)
0.925650 + 0.378381i \(0.123519\pi\)
\(314\) − 159.738i − 0.508721i
\(315\) 0 0
\(316\) −184.601 −0.584179
\(317\) − 505.603i − 1.59496i −0.603343 0.797482i \(-0.706165\pi\)
0.603343 0.797482i \(-0.293835\pi\)
\(318\) 0 0
\(319\) 543.630 1.70417
\(320\) 3.23441i 0.0101075i
\(321\) 0 0
\(322\) −139.538 −0.433348
\(323\) − 185.096i − 0.573053i
\(324\) 0 0
\(325\) 305.582 0.940251
\(326\) − 193.620i − 0.593926i
\(327\) 0 0
\(328\) −597.351 −1.82119
\(329\) 19.1609i 0.0582397i
\(330\) 0 0
\(331\) −226.894 −0.685480 −0.342740 0.939430i \(-0.611355\pi\)
−0.342740 + 0.939430i \(0.611355\pi\)
\(332\) − 32.0859i − 0.0966444i
\(333\) 0 0
\(334\) 375.069 1.12296
\(335\) 2.46026i 0.00734407i
\(336\) 0 0
\(337\) −95.9662 −0.284766 −0.142383 0.989812i \(-0.545476\pi\)
−0.142383 + 0.989812i \(0.545476\pi\)
\(338\) 29.9970i 0.0887486i
\(339\) 0 0
\(340\) 1.22745 0.00361016
\(341\) 387.349i 1.13592i
\(342\) 0 0
\(343\) −8.07926 −0.0235547
\(344\) − 350.157i − 1.01790i
\(345\) 0 0
\(346\) −140.994 −0.407498
\(347\) − 258.794i − 0.745803i −0.927871 0.372901i \(-0.878363\pi\)
0.927871 0.372901i \(-0.121637\pi\)
\(348\) 0 0
\(349\) 274.885 0.787635 0.393818 0.919189i \(-0.371154\pi\)
0.393818 + 0.919189i \(0.371154\pi\)
\(350\) − 377.890i − 1.07969i
\(351\) 0 0
\(352\) −298.877 −0.849082
\(353\) 264.666i 0.749762i 0.927073 + 0.374881i \(0.122316\pi\)
−0.927073 + 0.374881i \(0.877684\pi\)
\(354\) 0 0
\(355\) 0.501515 0.00141272
\(356\) − 64.6081i − 0.181483i
\(357\) 0 0
\(358\) 97.1085 0.271253
\(359\) 211.851i 0.590115i 0.955479 + 0.295058i \(0.0953389\pi\)
−0.955479 + 0.295058i \(0.904661\pi\)
\(360\) 0 0
\(361\) −203.957 −0.564978
\(362\) − 237.677i − 0.656566i
\(363\) 0 0
\(364\) 198.650 0.545741
\(365\) − 4.46134i − 0.0122228i
\(366\) 0 0
\(367\) −645.185 −1.75800 −0.878999 0.476823i \(-0.841788\pi\)
−0.878999 + 0.476823i \(0.841788\pi\)
\(368\) 61.7429i 0.167780i
\(369\) 0 0
\(370\) −1.11294 −0.00300795
\(371\) 470.612i 1.26850i
\(372\) 0 0
\(373\) −703.189 −1.88523 −0.942613 0.333889i \(-0.891639\pi\)
−0.942613 + 0.333889i \(0.891639\pi\)
\(374\) − 277.560i − 0.742139i
\(375\) 0 0
\(376\) 16.8357 0.0447759
\(377\) 542.308i 1.43848i
\(378\) 0 0
\(379\) −352.196 −0.929278 −0.464639 0.885500i \(-0.653816\pi\)
−0.464639 + 0.885500i \(0.653816\pi\)
\(380\) 1.04142i 0.00274058i
\(381\) 0 0
\(382\) 87.8789 0.230050
\(383\) − 270.255i − 0.705626i −0.935694 0.352813i \(-0.885225\pi\)
0.935694 0.352813i \(-0.114775\pi\)
\(384\) 0 0
\(385\) −6.09015 −0.0158186
\(386\) 14.0890i 0.0365001i
\(387\) 0 0
\(388\) −0.636767 −0.00164115
\(389\) − 220.071i − 0.565735i −0.959159 0.282867i \(-0.908714\pi\)
0.959159 0.282867i \(-0.0912856\pi\)
\(390\) 0 0
\(391\) 136.336 0.348686
\(392\) − 417.328i − 1.06461i
\(393\) 0 0
\(394\) 127.204 0.322852
\(395\) 5.64567i 0.0142928i
\(396\) 0 0
\(397\) −116.035 −0.292278 −0.146139 0.989264i \(-0.546685\pi\)
−0.146139 + 0.989264i \(0.546685\pi\)
\(398\) − 56.1588i − 0.141102i
\(399\) 0 0
\(400\) −167.209 −0.418023
\(401\) 190.185i 0.474277i 0.971476 + 0.237139i \(0.0762096\pi\)
−0.971476 + 0.237139i \(0.923790\pi\)
\(402\) 0 0
\(403\) −386.407 −0.958826
\(404\) 78.6491i 0.194676i
\(405\) 0 0
\(406\) 670.631 1.65180
\(407\) − 176.413i − 0.433448i
\(408\) 0 0
\(409\) −23.7884 −0.0581624 −0.0290812 0.999577i \(-0.509258\pi\)
−0.0290812 + 0.999577i \(0.509258\pi\)
\(410\) 5.33154i 0.0130037i
\(411\) 0 0
\(412\) −30.2168 −0.0733416
\(413\) − 726.894i − 1.76003i
\(414\) 0 0
\(415\) −0.981290 −0.00236455
\(416\) − 298.150i − 0.716707i
\(417\) 0 0
\(418\) 235.493 0.563381
\(419\) − 342.992i − 0.818598i −0.912400 0.409299i \(-0.865773\pi\)
0.912400 0.409299i \(-0.134227\pi\)
\(420\) 0 0
\(421\) −494.015 −1.17343 −0.586716 0.809793i \(-0.699579\pi\)
−0.586716 + 0.809793i \(0.699579\pi\)
\(422\) 473.575i 1.12221i
\(423\) 0 0
\(424\) 413.505 0.975247
\(425\) 369.219i 0.868750i
\(426\) 0 0
\(427\) −58.4808 −0.136957
\(428\) − 113.550i − 0.265304i
\(429\) 0 0
\(430\) −3.12526 −0.00726805
\(431\) − 519.074i − 1.20435i −0.798365 0.602174i \(-0.794301\pi\)
0.798365 0.602174i \(-0.205699\pi\)
\(432\) 0 0
\(433\) 290.297 0.670433 0.335216 0.942141i \(-0.391191\pi\)
0.335216 + 0.942141i \(0.391191\pi\)
\(434\) 477.840i 1.10101i
\(435\) 0 0
\(436\) 15.7818 0.0361968
\(437\) 115.673i 0.264698i
\(438\) 0 0
\(439\) 334.107 0.761065 0.380532 0.924768i \(-0.375741\pi\)
0.380532 + 0.924768i \(0.375741\pi\)
\(440\) 5.35113i 0.0121617i
\(441\) 0 0
\(442\) 276.885 0.626437
\(443\) 332.554i 0.750687i 0.926886 + 0.375343i \(0.122475\pi\)
−0.926886 + 0.375343i \(0.877525\pi\)
\(444\) 0 0
\(445\) −1.97592 −0.00444027
\(446\) − 475.060i − 1.06516i
\(447\) 0 0
\(448\) −632.463 −1.41175
\(449\) 336.195i 0.748764i 0.927274 + 0.374382i \(0.122145\pi\)
−0.927274 + 0.374382i \(0.877855\pi\)
\(450\) 0 0
\(451\) −845.107 −1.87385
\(452\) 0.832738i 0.00184234i
\(453\) 0 0
\(454\) 255.898 0.563652
\(455\) − 6.07534i − 0.0133524i
\(456\) 0 0
\(457\) −794.119 −1.73768 −0.868839 0.495094i \(-0.835134\pi\)
−0.868839 + 0.495094i \(0.835134\pi\)
\(458\) 356.493i 0.778368i
\(459\) 0 0
\(460\) −0.767078 −0.00166756
\(461\) 285.585i 0.619491i 0.950819 + 0.309746i \(0.100244\pi\)
−0.950819 + 0.309746i \(0.899756\pi\)
\(462\) 0 0
\(463\) −134.318 −0.290104 −0.145052 0.989424i \(-0.546335\pi\)
−0.145052 + 0.989424i \(0.546335\pi\)
\(464\) − 296.742i − 0.639530i
\(465\) 0 0
\(466\) 173.940 0.373262
\(467\) − 268.851i − 0.575699i −0.957676 0.287849i \(-0.907060\pi\)
0.957676 0.287849i \(-0.0929402\pi\)
\(468\) 0 0
\(469\) −481.084 −1.02577
\(470\) − 0.150264i 0 0.000319711i
\(471\) 0 0
\(472\) −638.687 −1.35315
\(473\) − 495.388i − 1.04733i
\(474\) 0 0
\(475\) −313.260 −0.659495
\(476\) 240.018i 0.504240i
\(477\) 0 0
\(478\) 53.9542 0.112875
\(479\) 95.3283i 0.199015i 0.995037 + 0.0995076i \(0.0317268\pi\)
−0.995037 + 0.0995076i \(0.968273\pi\)
\(480\) 0 0
\(481\) 175.984 0.365872
\(482\) − 392.915i − 0.815176i
\(483\) 0 0
\(484\) −48.0814 −0.0993417
\(485\) 0.0194743i 0 4.01533e-5i
\(486\) 0 0
\(487\) −210.939 −0.433139 −0.216569 0.976267i \(-0.569487\pi\)
−0.216569 + 0.976267i \(0.569487\pi\)
\(488\) 51.3843i 0.105296i
\(489\) 0 0
\(490\) −3.72478 −0.00760159
\(491\) − 597.474i − 1.21685i −0.793611 0.608426i \(-0.791801\pi\)
0.793611 0.608426i \(-0.208199\pi\)
\(492\) 0 0
\(493\) −655.243 −1.32909
\(494\) 234.920i 0.475547i
\(495\) 0 0
\(496\) 211.435 0.426281
\(497\) 98.0672i 0.197318i
\(498\) 0 0
\(499\) 921.299 1.84629 0.923145 0.384451i \(-0.125609\pi\)
0.923145 + 0.384451i \(0.125609\pi\)
\(500\) − 4.15494i − 0.00830988i
\(501\) 0 0
\(502\) 600.678 1.19657
\(503\) − 921.173i − 1.83136i −0.401910 0.915679i \(-0.631654\pi\)
0.401910 0.915679i \(-0.368346\pi\)
\(504\) 0 0
\(505\) 2.40534 0.00476305
\(506\) 173.457i 0.342800i
\(507\) 0 0
\(508\) −172.346 −0.339263
\(509\) − 414.391i − 0.814127i −0.913400 0.407064i \(-0.866553\pi\)
0.913400 0.407064i \(-0.133447\pi\)
\(510\) 0 0
\(511\) 872.378 1.70720
\(512\) 394.899i 0.771287i
\(513\) 0 0
\(514\) 438.048 0.852234
\(515\) 0.924124i 0.00179442i
\(516\) 0 0
\(517\) 23.8185 0.0460706
\(518\) − 217.627i − 0.420128i
\(519\) 0 0
\(520\) −5.33812 −0.0102656
\(521\) 808.534i 1.55189i 0.630802 + 0.775944i \(0.282726\pi\)
−0.630802 + 0.775944i \(0.717274\pi\)
\(522\) 0 0
\(523\) 150.743 0.288227 0.144114 0.989561i \(-0.453967\pi\)
0.144114 + 0.989561i \(0.453967\pi\)
\(524\) 332.490i 0.634523i
\(525\) 0 0
\(526\) 693.613 1.31866
\(527\) − 466.876i − 0.885912i
\(528\) 0 0
\(529\) 443.799 0.838939
\(530\) − 3.69065i − 0.00696350i
\(531\) 0 0
\(532\) −203.641 −0.382784
\(533\) − 843.051i − 1.58171i
\(534\) 0 0
\(535\) −3.47272 −0.00649106
\(536\) 422.706i 0.788631i
\(537\) 0 0
\(538\) 425.720 0.791301
\(539\) − 590.418i − 1.09540i
\(540\) 0 0
\(541\) −764.505 −1.41313 −0.706567 0.707646i \(-0.749757\pi\)
−0.706567 + 0.707646i \(0.749757\pi\)
\(542\) − 475.858i − 0.877967i
\(543\) 0 0
\(544\) 360.240 0.662205
\(545\) − 0.482658i 0 0.000885611i
\(546\) 0 0
\(547\) 290.503 0.531084 0.265542 0.964099i \(-0.414449\pi\)
0.265542 + 0.964099i \(0.414449\pi\)
\(548\) 319.630i 0.583266i
\(549\) 0 0
\(550\) −469.748 −0.854087
\(551\) − 555.934i − 1.00896i
\(552\) 0 0
\(553\) −1103.96 −1.99632
\(554\) 527.726i 0.952574i
\(555\) 0 0
\(556\) 47.3650 0.0851888
\(557\) 566.868i 1.01772i 0.860850 + 0.508858i \(0.169932\pi\)
−0.860850 + 0.508858i \(0.830068\pi\)
\(558\) 0 0
\(559\) 494.183 0.884049
\(560\) 3.32433i 0.00593630i
\(561\) 0 0
\(562\) 675.295 1.20159
\(563\) − 1006.63i − 1.78798i −0.448088 0.893989i \(-0.647895\pi\)
0.448088 0.893989i \(-0.352105\pi\)
\(564\) 0 0
\(565\) 0.0254678 4.50757e−5 0
\(566\) − 22.8846i − 0.0404321i
\(567\) 0 0
\(568\) 86.1670 0.151703
\(569\) 138.660i 0.243691i 0.992549 + 0.121846i \(0.0388812\pi\)
−0.992549 + 0.121846i \(0.961119\pi\)
\(570\) 0 0
\(571\) −523.510 −0.916831 −0.458415 0.888738i \(-0.651583\pi\)
−0.458415 + 0.888738i \(0.651583\pi\)
\(572\) − 246.938i − 0.431710i
\(573\) 0 0
\(574\) −1042.54 −1.81627
\(575\) − 230.738i − 0.401283i
\(576\) 0 0
\(577\) 954.956 1.65504 0.827518 0.561439i \(-0.189752\pi\)
0.827518 + 0.561439i \(0.189752\pi\)
\(578\) − 108.632i − 0.187944i
\(579\) 0 0
\(580\) 3.68665 0.00635629
\(581\) − 191.883i − 0.330264i
\(582\) 0 0
\(583\) 585.009 1.00345
\(584\) − 766.518i − 1.31253i
\(585\) 0 0
\(586\) 248.462 0.423997
\(587\) − 748.217i − 1.27465i −0.770597 0.637323i \(-0.780042\pi\)
0.770597 0.637323i \(-0.219958\pi\)
\(588\) 0 0
\(589\) 396.116 0.672523
\(590\) 5.70048i 0.00966183i
\(591\) 0 0
\(592\) −96.2957 −0.162662
\(593\) − 164.211i − 0.276916i −0.990368 0.138458i \(-0.955785\pi\)
0.990368 0.138458i \(-0.0442145\pi\)
\(594\) 0 0
\(595\) 7.34053 0.0123370
\(596\) − 410.179i − 0.688219i
\(597\) 0 0
\(598\) −173.035 −0.289356
\(599\) 155.052i 0.258852i 0.991589 + 0.129426i \(0.0413134\pi\)
−0.991589 + 0.129426i \(0.958687\pi\)
\(600\) 0 0
\(601\) 741.550 1.23386 0.616930 0.787018i \(-0.288376\pi\)
0.616930 + 0.787018i \(0.288376\pi\)
\(602\) − 611.119i − 1.01515i
\(603\) 0 0
\(604\) −241.011 −0.399025
\(605\) 1.47048i 0.00243055i
\(606\) 0 0
\(607\) −831.480 −1.36982 −0.684909 0.728629i \(-0.740158\pi\)
−0.684909 + 0.728629i \(0.740158\pi\)
\(608\) 305.642i 0.502700i
\(609\) 0 0
\(610\) 0.458621 0.000751837 0
\(611\) 23.7606i 0.0388880i
\(612\) 0 0
\(613\) 394.616 0.643745 0.321873 0.946783i \(-0.395688\pi\)
0.321873 + 0.946783i \(0.395688\pi\)
\(614\) 213.230i 0.347281i
\(615\) 0 0
\(616\) −1046.37 −1.69865
\(617\) − 6.70929i − 0.0108741i −0.999985 0.00543703i \(-0.998269\pi\)
0.999985 0.00543703i \(-0.00173067\pi\)
\(618\) 0 0
\(619\) −360.374 −0.582188 −0.291094 0.956694i \(-0.594019\pi\)
−0.291094 + 0.956694i \(0.594019\pi\)
\(620\) 2.62682i 0.00423681i
\(621\) 0 0
\(622\) 276.766 0.444961
\(623\) − 386.375i − 0.620185i
\(624\) 0 0
\(625\) 624.809 0.999695
\(626\) − 888.590i − 1.41947i
\(627\) 0 0
\(628\) 171.710 0.273424
\(629\) 212.633i 0.338049i
\(630\) 0 0
\(631\) −788.173 −1.24909 −0.624543 0.780991i \(-0.714715\pi\)
−0.624543 + 0.780991i \(0.714715\pi\)
\(632\) 970.002i 1.53481i
\(633\) 0 0
\(634\) −775.336 −1.22293
\(635\) 5.27088i 0.00830060i
\(636\) 0 0
\(637\) 588.982 0.924619
\(638\) − 833.649i − 1.30666i
\(639\) 0 0
\(640\) 0.0416492 6.50769e−5 0
\(641\) 1166.84i 1.82034i 0.414236 + 0.910169i \(0.364049\pi\)
−0.414236 + 0.910169i \(0.635951\pi\)
\(642\) 0 0
\(643\) −291.818 −0.453839 −0.226920 0.973914i \(-0.572865\pi\)
−0.226920 + 0.973914i \(0.572865\pi\)
\(644\) − 149.996i − 0.232913i
\(645\) 0 0
\(646\) −283.842 −0.439384
\(647\) 547.391i 0.846045i 0.906119 + 0.423023i \(0.139031\pi\)
−0.906119 + 0.423023i \(0.860969\pi\)
\(648\) 0 0
\(649\) −903.588 −1.39228
\(650\) − 468.606i − 0.720932i
\(651\) 0 0
\(652\) 208.131 0.319220
\(653\) 437.312i 0.669697i 0.942272 + 0.334849i \(0.108685\pi\)
−0.942272 + 0.334849i \(0.891315\pi\)
\(654\) 0 0
\(655\) 10.1686 0.0155246
\(656\) 461.304i 0.703207i
\(657\) 0 0
\(658\) 29.3829 0.0446549
\(659\) 7.22049i 0.0109567i 0.999985 + 0.00547837i \(0.00174383\pi\)
−0.999985 + 0.00547837i \(0.998256\pi\)
\(660\) 0 0
\(661\) 883.980 1.33734 0.668669 0.743560i \(-0.266864\pi\)
0.668669 + 0.743560i \(0.266864\pi\)
\(662\) 347.939i 0.525587i
\(663\) 0 0
\(664\) −168.599 −0.253914
\(665\) 6.22800i 0.00936541i
\(666\) 0 0
\(667\) 409.484 0.613919
\(668\) 403.179i 0.603562i
\(669\) 0 0
\(670\) 3.77278 0.00563102
\(671\) 72.6964i 0.108340i
\(672\) 0 0
\(673\) 474.384 0.704880 0.352440 0.935834i \(-0.385352\pi\)
0.352440 + 0.935834i \(0.385352\pi\)
\(674\) 147.163i 0.218343i
\(675\) 0 0
\(676\) −32.2452 −0.0477000
\(677\) − 320.197i − 0.472965i −0.971636 0.236482i \(-0.924005\pi\)
0.971636 0.236482i \(-0.0759945\pi\)
\(678\) 0 0
\(679\) −3.80805 −0.00560832
\(680\) − 6.44978i − 0.00948497i
\(681\) 0 0
\(682\) 593.995 0.870960
\(683\) − 937.935i − 1.37326i −0.727008 0.686629i \(-0.759090\pi\)
0.727008 0.686629i \(-0.240910\pi\)
\(684\) 0 0
\(685\) 9.77529 0.0142705
\(686\) 12.3894i 0.0180604i
\(687\) 0 0
\(688\) −270.409 −0.393036
\(689\) 583.586i 0.847005i
\(690\) 0 0
\(691\) −58.8384 −0.0851496 −0.0425748 0.999093i \(-0.513556\pi\)
−0.0425748 + 0.999093i \(0.513556\pi\)
\(692\) − 151.561i − 0.219019i
\(693\) 0 0
\(694\) −396.857 −0.571839
\(695\) − 1.44857i − 0.00208428i
\(696\) 0 0
\(697\) 1018.62 1.46143
\(698\) − 421.532i − 0.603914i
\(699\) 0 0
\(700\) 406.212 0.580303
\(701\) 591.380i 0.843623i 0.906683 + 0.421812i \(0.138606\pi\)
−0.906683 + 0.421812i \(0.861394\pi\)
\(702\) 0 0
\(703\) −180.406 −0.256623
\(704\) 786.203i 1.11677i
\(705\) 0 0
\(706\) 405.862 0.574875
\(707\) 470.344i 0.665268i
\(708\) 0 0
\(709\) 440.059 0.620676 0.310338 0.950626i \(-0.399558\pi\)
0.310338 + 0.950626i \(0.399558\pi\)
\(710\) − 0.769067i − 0.00108319i
\(711\) 0 0
\(712\) −339.490 −0.476811
\(713\) 291.767i 0.409210i
\(714\) 0 0
\(715\) −7.55214 −0.0105624
\(716\) 104.387i 0.145791i
\(717\) 0 0
\(718\) 324.871 0.452467
\(719\) 576.771i 0.802185i 0.916038 + 0.401092i \(0.131369\pi\)
−0.916038 + 0.401092i \(0.868631\pi\)
\(720\) 0 0
\(721\) −180.705 −0.250631
\(722\) 312.766i 0.433193i
\(723\) 0 0
\(724\) 255.490 0.352887
\(725\) 1108.95i 1.52958i
\(726\) 0 0
\(727\) −599.131 −0.824114 −0.412057 0.911158i \(-0.635189\pi\)
−0.412057 + 0.911158i \(0.635189\pi\)
\(728\) − 1043.83i − 1.43383i
\(729\) 0 0
\(730\) −6.84140 −0.00937179
\(731\) 597.096i 0.816821i
\(732\) 0 0
\(733\) −554.170 −0.756030 −0.378015 0.925800i \(-0.623393\pi\)
−0.378015 + 0.925800i \(0.623393\pi\)
\(734\) 989.383i 1.34793i
\(735\) 0 0
\(736\) −225.126 −0.305878
\(737\) 598.027i 0.811434i
\(738\) 0 0
\(739\) 1416.40 1.91665 0.958324 0.285685i \(-0.0922210\pi\)
0.958324 + 0.285685i \(0.0922210\pi\)
\(740\) − 1.19635i − 0.00161669i
\(741\) 0 0
\(742\) 721.677 0.972611
\(743\) − 301.649i − 0.405988i −0.979180 0.202994i \(-0.934933\pi\)
0.979180 0.202994i \(-0.0650671\pi\)
\(744\) 0 0
\(745\) −12.5446 −0.0168383
\(746\) 1078.33i 1.44548i
\(747\) 0 0
\(748\) 298.362 0.398880
\(749\) − 679.061i − 0.906624i
\(750\) 0 0
\(751\) −497.385 −0.662296 −0.331148 0.943579i \(-0.607436\pi\)
−0.331148 + 0.943579i \(0.607436\pi\)
\(752\) − 13.0014i − 0.0172891i
\(753\) 0 0
\(754\) 831.622 1.10295
\(755\) 7.37088i 0.00976276i
\(756\) 0 0
\(757\) 1028.94 1.35924 0.679620 0.733565i \(-0.262145\pi\)
0.679620 + 0.733565i \(0.262145\pi\)
\(758\) 540.089i 0.712518i
\(759\) 0 0
\(760\) 5.47225 0.00720033
\(761\) − 37.6380i − 0.0494586i −0.999694 0.0247293i \(-0.992128\pi\)
0.999694 0.0247293i \(-0.00787239\pi\)
\(762\) 0 0
\(763\) 94.3798 0.123696
\(764\) 94.4652i 0.123646i
\(765\) 0 0
\(766\) −414.432 −0.541034
\(767\) − 901.391i − 1.17522i
\(768\) 0 0
\(769\) 1134.21 1.47491 0.737455 0.675397i \(-0.236028\pi\)
0.737455 + 0.675397i \(0.236028\pi\)
\(770\) 9.33917i 0.0121288i
\(771\) 0 0
\(772\) −15.1450 −0.0196178
\(773\) 509.525i 0.659153i 0.944129 + 0.329577i \(0.106906\pi\)
−0.944129 + 0.329577i \(0.893094\pi\)
\(774\) 0 0
\(775\) −790.149 −1.01955
\(776\) 3.34595i 0.00431180i
\(777\) 0 0
\(778\) −337.476 −0.433774
\(779\) 864.234i 1.10942i
\(780\) 0 0
\(781\) 121.905 0.156089
\(782\) − 209.070i − 0.267352i
\(783\) 0 0
\(784\) −322.281 −0.411073
\(785\) − 5.25145i − 0.00668974i
\(786\) 0 0
\(787\) 265.671 0.337574 0.168787 0.985653i \(-0.446015\pi\)
0.168787 + 0.985653i \(0.446015\pi\)
\(788\) 136.737i 0.173524i
\(789\) 0 0
\(790\) 8.65756 0.0109589
\(791\) 4.98001i 0.00629584i
\(792\) 0 0
\(793\) −72.5196 −0.0914497
\(794\) 177.937i 0.224103i
\(795\) 0 0
\(796\) 60.3677 0.0758389
\(797\) 448.390i 0.562597i 0.959620 + 0.281299i \(0.0907651\pi\)
−0.959620 + 0.281299i \(0.909235\pi\)
\(798\) 0 0
\(799\) −28.7087 −0.0359308
\(800\) − 609.676i − 0.762095i
\(801\) 0 0
\(802\) 291.647 0.363649
\(803\) − 1084.44i − 1.35048i
\(804\) 0 0
\(805\) −4.58735 −0.00569857
\(806\) 592.550i 0.735174i
\(807\) 0 0
\(808\) 413.269 0.511472
\(809\) 357.505i 0.441910i 0.975284 + 0.220955i \(0.0709174\pi\)
−0.975284 + 0.220955i \(0.929083\pi\)
\(810\) 0 0
\(811\) 1269.44 1.56528 0.782638 0.622477i \(-0.213874\pi\)
0.782638 + 0.622477i \(0.213874\pi\)
\(812\) 720.893i 0.887800i
\(813\) 0 0
\(814\) −270.527 −0.332343
\(815\) − 6.36532i − 0.00781020i
\(816\) 0 0
\(817\) −506.600 −0.620074
\(818\) 36.4793i 0.0445957i
\(819\) 0 0
\(820\) −5.73112 −0.00698917
\(821\) − 1160.45i − 1.41346i −0.707483 0.706730i \(-0.750170\pi\)
0.707483 0.706730i \(-0.249830\pi\)
\(822\) 0 0
\(823\) −826.651 −1.00444 −0.502218 0.864741i \(-0.667483\pi\)
−0.502218 + 0.864741i \(0.667483\pi\)
\(824\) 158.777i 0.192690i
\(825\) 0 0
\(826\) −1114.68 −1.34949
\(827\) − 86.0989i − 0.104110i −0.998644 0.0520550i \(-0.983423\pi\)
0.998644 0.0520550i \(-0.0165771\pi\)
\(828\) 0 0
\(829\) −633.473 −0.764141 −0.382071 0.924133i \(-0.624789\pi\)
−0.382071 + 0.924133i \(0.624789\pi\)
\(830\) 1.50480i 0.00181301i
\(831\) 0 0
\(832\) −784.291 −0.942657
\(833\) 711.637i 0.854307i
\(834\) 0 0
\(835\) 12.3305 0.0147671
\(836\) 253.143i 0.302802i
\(837\) 0 0
\(838\) −525.974 −0.627654
\(839\) − 736.588i − 0.877936i −0.898503 0.438968i \(-0.855344\pi\)
0.898503 0.438968i \(-0.144656\pi\)
\(840\) 0 0
\(841\) −1127.02 −1.34009
\(842\) 757.565i 0.899721i
\(843\) 0 0
\(844\) −509.068 −0.603161
\(845\) 0.986161i 0.00116705i
\(846\) 0 0
\(847\) −287.540 −0.339481
\(848\) − 319.329i − 0.376567i
\(849\) 0 0
\(850\) 566.192 0.666109
\(851\) − 132.882i − 0.156148i
\(852\) 0 0
\(853\) −1640.54 −1.92326 −0.961628 0.274357i \(-0.911535\pi\)
−0.961628 + 0.274357i \(0.911535\pi\)
\(854\) 89.6795i 0.105011i
\(855\) 0 0
\(856\) −596.659 −0.697032
\(857\) − 341.730i − 0.398751i −0.979923 0.199376i \(-0.936109\pi\)
0.979923 0.199376i \(-0.0638914\pi\)
\(858\) 0 0
\(859\) 306.808 0.357168 0.178584 0.983925i \(-0.442848\pi\)
0.178584 + 0.983925i \(0.442848\pi\)
\(860\) − 3.35949i − 0.00390638i
\(861\) 0 0
\(862\) −795.994 −0.923427
\(863\) − 1546.03i − 1.79146i −0.444596 0.895731i \(-0.646653\pi\)
0.444596 0.895731i \(-0.353347\pi\)
\(864\) 0 0
\(865\) −4.63522 −0.00535864
\(866\) − 445.167i − 0.514050i
\(867\) 0 0
\(868\) −513.653 −0.591766
\(869\) 1372.32i 1.57919i
\(870\) 0 0
\(871\) −596.573 −0.684928
\(872\) − 82.9271i − 0.0950999i
\(873\) 0 0
\(874\) 177.383 0.202955
\(875\) − 24.8478i − 0.0283974i
\(876\) 0 0
\(877\) −270.460 −0.308392 −0.154196 0.988040i \(-0.549279\pi\)
−0.154196 + 0.988040i \(0.549279\pi\)
\(878\) − 512.349i − 0.583541i
\(879\) 0 0
\(880\) 4.13241 0.00469592
\(881\) 277.534i 0.315022i 0.987517 + 0.157511i \(0.0503469\pi\)
−0.987517 + 0.157511i \(0.949653\pi\)
\(882\) 0 0
\(883\) −668.927 −0.757562 −0.378781 0.925486i \(-0.623657\pi\)
−0.378781 + 0.925486i \(0.623657\pi\)
\(884\) 297.637i 0.336693i
\(885\) 0 0
\(886\) 509.968 0.575584
\(887\) 1100.92i 1.24117i 0.784138 + 0.620587i \(0.213106\pi\)
−0.784138 + 0.620587i \(0.786894\pi\)
\(888\) 0 0
\(889\) −1030.68 −1.15937
\(890\) 3.03005i 0.00340455i
\(891\) 0 0
\(892\) 510.664 0.572494
\(893\) − 24.3576i − 0.0272762i
\(894\) 0 0
\(895\) 3.19247 0.00356701
\(896\) 8.14416i 0.00908947i
\(897\) 0 0
\(898\) 515.551 0.574110
\(899\) − 1402.26i − 1.55980i
\(900\) 0 0
\(901\) −705.118 −0.782594
\(902\) 1295.96i 1.43676i
\(903\) 0 0
\(904\) 4.37570 0.00484038
\(905\) − 7.81370i − 0.00863393i
\(906\) 0 0
\(907\) 919.255 1.01351 0.506756 0.862090i \(-0.330845\pi\)
0.506756 + 0.862090i \(0.330845\pi\)
\(908\) 275.077i 0.302948i
\(909\) 0 0
\(910\) −9.31646 −0.0102379
\(911\) 169.748i 0.186332i 0.995651 + 0.0931659i \(0.0296987\pi\)
−0.995651 + 0.0931659i \(0.970301\pi\)
\(912\) 0 0
\(913\) −238.526 −0.261256
\(914\) 1217.77i 1.33235i
\(915\) 0 0
\(916\) −383.211 −0.418352
\(917\) 1988.39i 2.16836i
\(918\) 0 0
\(919\) 120.333 0.130939 0.0654697 0.997855i \(-0.479145\pi\)
0.0654697 + 0.997855i \(0.479145\pi\)
\(920\) 4.03069i 0.00438118i
\(921\) 0 0
\(922\) 437.942 0.474991
\(923\) 121.609i 0.131754i
\(924\) 0 0
\(925\) 359.864 0.389042
\(926\) 205.975i 0.222435i
\(927\) 0 0
\(928\) 1081.98 1.16592
\(929\) − 1004.57i − 1.08134i −0.841233 0.540672i \(-0.818170\pi\)
0.841233 0.540672i \(-0.181830\pi\)
\(930\) 0 0
\(931\) −603.782 −0.648530
\(932\) 186.977i 0.200619i
\(933\) 0 0
\(934\) −412.280 −0.441413
\(935\) − 9.12487i − 0.00975922i
\(936\) 0 0
\(937\) 748.423 0.798743 0.399372 0.916789i \(-0.369228\pi\)
0.399372 + 0.916789i \(0.369228\pi\)
\(938\) 737.736i 0.786499i
\(939\) 0 0
\(940\) 0.161526 0.000171836 0
\(941\) − 1481.28i − 1.57416i −0.616851 0.787080i \(-0.711592\pi\)
0.616851 0.787080i \(-0.288408\pi\)
\(942\) 0 0
\(943\) −636.569 −0.675046
\(944\) 493.226i 0.522485i
\(945\) 0 0
\(946\) −759.671 −0.803035
\(947\) 470.662i 0.497003i 0.968631 + 0.248502i \(0.0799381\pi\)
−0.968631 + 0.248502i \(0.920062\pi\)
\(948\) 0 0
\(949\) 1081.80 1.13994
\(950\) 480.380i 0.505663i
\(951\) 0 0
\(952\) 1261.20 1.32479
\(953\) 847.528i 0.889326i 0.895698 + 0.444663i \(0.146677\pi\)
−0.895698 + 0.444663i \(0.853323\pi\)
\(954\) 0 0
\(955\) 2.88905 0.00302518
\(956\) 57.9980i 0.0606673i
\(957\) 0 0
\(958\) 146.185 0.152594
\(959\) 1911.48i 1.99320i
\(960\) 0 0
\(961\) 38.1409 0.0396887
\(962\) − 269.870i − 0.280530i
\(963\) 0 0
\(964\) 422.363 0.438136
\(965\) 0.463181i 0 0.000479980i
\(966\) 0 0
\(967\) −103.479 −0.107011 −0.0535053 0.998568i \(-0.517039\pi\)
−0.0535053 + 0.998568i \(0.517039\pi\)
\(968\) 252.648i 0.261000i
\(969\) 0 0
\(970\) 0.0298637 3.07873e−5 0
\(971\) 171.424i 0.176543i 0.996096 + 0.0882717i \(0.0281344\pi\)
−0.996096 + 0.0882717i \(0.971866\pi\)
\(972\) 0 0
\(973\) 283.256 0.291116
\(974\) 323.472i 0.332106i
\(975\) 0 0
\(976\) 39.6815 0.0406573
\(977\) − 1721.61i − 1.76213i −0.472991 0.881067i \(-0.656826\pi\)
0.472991 0.881067i \(-0.343174\pi\)
\(978\) 0 0
\(979\) −480.296 −0.490598
\(980\) − 4.00394i − 0.00408565i
\(981\) 0 0
\(982\) −916.219 −0.933013
\(983\) 1312.00i 1.33469i 0.744747 + 0.667346i \(0.232570\pi\)
−0.744747 + 0.667346i \(0.767430\pi\)
\(984\) 0 0
\(985\) 4.18186 0.00424554
\(986\) 1004.81i 1.01907i
\(987\) 0 0
\(988\) −252.527 −0.255594
\(989\) − 373.146i − 0.377297i
\(990\) 0 0
\(991\) 1928.53 1.94604 0.973022 0.230713i \(-0.0741059\pi\)
0.973022 + 0.230713i \(0.0741059\pi\)
\(992\) 770.933i 0.777150i
\(993\) 0 0
\(994\) 150.385 0.151293
\(995\) − 1.84624i − 0.00185551i
\(996\) 0 0
\(997\) 1242.23 1.24596 0.622982 0.782237i \(-0.285921\pi\)
0.622982 + 0.782237i \(0.285921\pi\)
\(998\) − 1412.80i − 1.41563i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.3.b.a.728.10 30
3.2 odd 2 inner 729.3.b.a.728.21 30
27.2 odd 18 81.3.f.a.17.4 30
27.4 even 9 243.3.f.b.107.4 30
27.5 odd 18 243.3.f.d.26.4 30
27.7 even 9 243.3.f.c.134.2 30
27.11 odd 18 243.3.f.a.215.2 30
27.13 even 9 81.3.f.a.62.4 30
27.14 odd 18 27.3.f.a.20.2 30
27.16 even 9 243.3.f.d.215.4 30
27.20 odd 18 243.3.f.b.134.4 30
27.22 even 9 243.3.f.a.26.2 30
27.23 odd 18 243.3.f.c.107.2 30
27.25 even 9 27.3.f.a.23.2 yes 30
108.79 odd 18 432.3.bc.a.401.4 30
108.95 even 18 432.3.bc.a.209.4 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.20.2 30 27.14 odd 18
27.3.f.a.23.2 yes 30 27.25 even 9
81.3.f.a.17.4 30 27.2 odd 18
81.3.f.a.62.4 30 27.13 even 9
243.3.f.a.26.2 30 27.22 even 9
243.3.f.a.215.2 30 27.11 odd 18
243.3.f.b.107.4 30 27.4 even 9
243.3.f.b.134.4 30 27.20 odd 18
243.3.f.c.107.2 30 27.23 odd 18
243.3.f.c.134.2 30 27.7 even 9
243.3.f.d.26.4 30 27.5 odd 18
243.3.f.d.215.4 30 27.16 even 9
432.3.bc.a.209.4 30 108.95 even 18
432.3.bc.a.401.4 30 108.79 odd 18
729.3.b.a.728.10 30 1.1 even 1 trivial
729.3.b.a.728.21 30 3.2 odd 2 inner