Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [729,3,Mod(728,729)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(729, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("729.728");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(19.8638112719\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
728.1 | − | 3.75900i | 0 | −10.1300 | − | 0.534675i | 0 | 2.78504 | 23.0428i | 0 | −2.00984 | ||||||||||||||||
728.2 | − | 3.51633i | 0 | −8.36459 | 4.92652i | 0 | 3.39378 | 15.3473i | 0 | 17.3233 | |||||||||||||||||
728.3 | − | 3.39067i | 0 | −7.49663 | 3.49531i | 0 | −10.8678 | 11.8559i | 0 | 11.8514 | |||||||||||||||||
728.4 | − | 3.32411i | 0 | −7.04970 | − | 6.87815i | 0 | 6.38137 | 10.1375i | 0 | −22.8637 | ||||||||||||||||
728.5 | − | 2.62787i | 0 | −2.90572 | − | 6.25111i | 0 | −8.11762 | − | 2.87564i | 0 | −16.4271 | |||||||||||||||
728.6 | − | 2.61983i | 0 | −2.86351 | − | 0.807612i | 0 | 5.91720 | − | 2.97742i | 0 | −2.11581 | |||||||||||||||
728.7 | − | 2.43656i | 0 | −1.93682 | 9.03835i | 0 | −1.73106 | − | 5.02707i | 0 | 22.0225 | ||||||||||||||||
728.8 | − | 2.35177i | 0 | −1.53083 | − | 5.78250i | 0 | −4.87067 | − | 5.80692i | 0 | −13.5991 | |||||||||||||||
728.9 | − | 1.94017i | 0 | 0.235738 | 4.32253i | 0 | 8.88939 | − | 8.21805i | 0 | 8.38645 | ||||||||||||||||
728.10 | − | 1.53349i | 0 | 1.64842 | − | 0.0504138i | 0 | 9.85801 | − | 8.66177i | 0 | −0.0773090 | |||||||||||||||
728.11 | − | 1.30309i | 0 | 2.30195 | 0.437029i | 0 | −6.08419 | − | 8.21202i | 0 | 0.569489 | ||||||||||||||||
728.12 | − | 1.16096i | 0 | 2.65217 | 5.38300i | 0 | −10.5344 | − | 7.72291i | 0 | 6.24946 | ||||||||||||||||
728.13 | − | 0.581939i | 0 | 3.66135 | − | 7.66608i | 0 | 1.33395 | − | 4.45844i | 0 | −4.46119 | |||||||||||||||
728.14 | − | 0.455989i | 0 | 3.79207 | − | 2.45401i | 0 | −4.32645 | − | 3.55310i | 0 | −1.11900 | |||||||||||||||
728.15 | − | 0.117696i | 0 | 3.98615 | − | 6.19791i | 0 | 7.97344 | − | 0.939939i | 0 | −0.729470 | |||||||||||||||
728.16 | 0.117696i | 0 | 3.98615 | 6.19791i | 0 | 7.97344 | 0.939939i | 0 | −0.729470 | ||||||||||||||||||
728.17 | 0.455989i | 0 | 3.79207 | 2.45401i | 0 | −4.32645 | 3.55310i | 0 | −1.11900 | ||||||||||||||||||
728.18 | 0.581939i | 0 | 3.66135 | 7.66608i | 0 | 1.33395 | 4.45844i | 0 | −4.46119 | ||||||||||||||||||
728.19 | 1.16096i | 0 | 2.65217 | − | 5.38300i | 0 | −10.5344 | 7.72291i | 0 | 6.24946 | |||||||||||||||||
728.20 | 1.30309i | 0 | 2.30195 | − | 0.437029i | 0 | −6.08419 | 8.21202i | 0 | 0.569489 | |||||||||||||||||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.3.b.a | 30 | |
3.b | odd | 2 | 1 | inner | 729.3.b.a | 30 | |
27.e | even | 9 | 1 | 27.3.f.a | ✓ | 30 | |
27.e | even | 9 | 1 | 81.3.f.a | 30 | ||
27.e | even | 9 | 1 | 243.3.f.a | 30 | ||
27.e | even | 9 | 1 | 243.3.f.b | 30 | ||
27.e | even | 9 | 1 | 243.3.f.c | 30 | ||
27.e | even | 9 | 1 | 243.3.f.d | 30 | ||
27.f | odd | 18 | 1 | 27.3.f.a | ✓ | 30 | |
27.f | odd | 18 | 1 | 81.3.f.a | 30 | ||
27.f | odd | 18 | 1 | 243.3.f.a | 30 | ||
27.f | odd | 18 | 1 | 243.3.f.b | 30 | ||
27.f | odd | 18 | 1 | 243.3.f.c | 30 | ||
27.f | odd | 18 | 1 | 243.3.f.d | 30 | ||
108.j | odd | 18 | 1 | 432.3.bc.a | 30 | ||
108.l | even | 18 | 1 | 432.3.bc.a | 30 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.3.f.a | ✓ | 30 | 27.e | even | 9 | 1 | |
27.3.f.a | ✓ | 30 | 27.f | odd | 18 | 1 | |
81.3.f.a | 30 | 27.e | even | 9 | 1 | ||
81.3.f.a | 30 | 27.f | odd | 18 | 1 | ||
243.3.f.a | 30 | 27.e | even | 9 | 1 | ||
243.3.f.a | 30 | 27.f | odd | 18 | 1 | ||
243.3.f.b | 30 | 27.e | even | 9 | 1 | ||
243.3.f.b | 30 | 27.f | odd | 18 | 1 | ||
243.3.f.c | 30 | 27.e | even | 9 | 1 | ||
243.3.f.c | 30 | 27.f | odd | 18 | 1 | ||
243.3.f.d | 30 | 27.e | even | 9 | 1 | ||
243.3.f.d | 30 | 27.f | odd | 18 | 1 | ||
432.3.bc.a | 30 | 108.j | odd | 18 | 1 | ||
432.3.bc.a | 30 | 108.l | even | 18 | 1 | ||
729.3.b.a | 30 | 1.a | even | 1 | 1 | trivial | |
729.3.b.a | 30 | 3.b | odd | 2 | 1 | inner |