Properties

Label 432.3.bc.c.209.6
Level $432$
Weight $3$
Character 432.209
Analytic conductor $11.771$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,3,Mod(65,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 13]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.bc (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7711474204\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 209.6
Character \(\chi\) \(=\) 432.209
Dual form 432.3.bc.c.401.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.93655 - 0.613727i) q^{3} +(-7.71206 + 1.35984i) q^{5} +(0.690206 + 0.579152i) q^{7} +(8.24668 - 3.60448i) q^{9} +(15.2420 + 2.68757i) q^{11} +(-0.854187 - 0.310899i) q^{13} +(-21.8123 + 8.72635i) q^{15} +(10.6672 - 6.15869i) q^{17} +(5.40619 - 9.36379i) q^{19} +(2.38227 + 1.27711i) q^{21} +(21.0966 + 25.1419i) q^{23} +(34.1344 - 12.4239i) q^{25} +(22.0046 - 15.6460i) q^{27} +(19.3495 + 53.1622i) q^{29} +(37.9518 - 31.8453i) q^{31} +(46.4083 - 1.46222i) q^{33} +(-6.11047 - 3.52788i) q^{35} +(-17.4417 - 30.2099i) q^{37} +(-2.69917 - 0.388733i) q^{39} +(-12.2490 + 33.6538i) q^{41} +(-7.20864 + 40.8822i) q^{43} +(-58.6974 + 39.0122i) q^{45} +(15.9152 - 18.9670i) q^{47} +(-8.36779 - 47.4561i) q^{49} +(27.5449 - 24.6320i) q^{51} -50.3340i q^{53} -121.202 q^{55} +(10.1287 - 30.8152i) q^{57} +(-65.7126 + 11.5869i) q^{59} +(-18.7893 - 15.7661i) q^{61} +(7.77945 + 2.28824i) q^{63} +(7.01032 + 1.23611i) q^{65} +(61.2882 + 22.3071i) q^{67} +(77.3814 + 60.8830i) q^{69} +(-24.4496 + 14.1160i) q^{71} +(-10.7760 + 18.6646i) q^{73} +(92.6126 - 57.4327i) q^{75} +(8.96360 + 10.6824i) q^{77} +(27.2240 - 9.90872i) q^{79} +(55.0154 - 59.4500i) q^{81} +(0.0509121 + 0.139880i) q^{83} +(-73.8910 + 62.0019i) q^{85} +(89.4477 + 144.238i) q^{87} +(-79.3008 - 45.7843i) q^{89} +(-0.409508 - 0.709288i) q^{91} +(91.9031 - 116.807i) q^{93} +(-28.9595 + 79.5657i) q^{95} +(-17.4501 + 98.9646i) q^{97} +(135.383 - 32.7759i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} - 12 q^{9} + 18 q^{11} + 18 q^{15} - 228 q^{21} + 180 q^{23} + 18 q^{25} - 54 q^{27} + 144 q^{29} + 90 q^{31} + 324 q^{33} - 486 q^{35} - 102 q^{39} - 90 q^{41} - 90 q^{43} - 378 q^{45}+ \cdots - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.93655 0.613727i 0.978851 0.204576i
\(4\) 0 0
\(5\) −7.71206 + 1.35984i −1.54241 + 0.271969i −0.879197 0.476459i \(-0.841920\pi\)
−0.663216 + 0.748428i \(0.730809\pi\)
\(6\) 0 0
\(7\) 0.690206 + 0.579152i 0.0986009 + 0.0827360i 0.690756 0.723088i \(-0.257278\pi\)
−0.592155 + 0.805824i \(0.701723\pi\)
\(8\) 0 0
\(9\) 8.24668 3.60448i 0.916298 0.400498i
\(10\) 0 0
\(11\) 15.2420 + 2.68757i 1.38564 + 0.244325i 0.816228 0.577730i \(-0.196062\pi\)
0.569408 + 0.822055i \(0.307173\pi\)
\(12\) 0 0
\(13\) −0.854187 0.310899i −0.0657067 0.0239153i 0.308958 0.951076i \(-0.400020\pi\)
−0.374664 + 0.927160i \(0.622242\pi\)
\(14\) 0 0
\(15\) −21.8123 + 8.72635i −1.45415 + 0.581757i
\(16\) 0 0
\(17\) 10.6672 6.15869i 0.627480 0.362276i −0.152295 0.988335i \(-0.548666\pi\)
0.779776 + 0.626059i \(0.215333\pi\)
\(18\) 0 0
\(19\) 5.40619 9.36379i 0.284536 0.492831i −0.687960 0.725748i \(-0.741494\pi\)
0.972497 + 0.232917i \(0.0748271\pi\)
\(20\) 0 0
\(21\) 2.38227 + 1.27711i 0.113441 + 0.0608148i
\(22\) 0 0
\(23\) 21.0966 + 25.1419i 0.917241 + 1.09313i 0.995364 + 0.0961819i \(0.0306631\pi\)
−0.0781224 + 0.996944i \(0.524892\pi\)
\(24\) 0 0
\(25\) 34.1344 12.4239i 1.36538 0.496956i
\(26\) 0 0
\(27\) 22.0046 15.6460i 0.814987 0.579480i
\(28\) 0 0
\(29\) 19.3495 + 53.1622i 0.667222 + 1.83318i 0.540701 + 0.841215i \(0.318159\pi\)
0.126521 + 0.991964i \(0.459619\pi\)
\(30\) 0 0
\(31\) 37.9518 31.8453i 1.22425 1.02727i 0.225660 0.974206i \(-0.427546\pi\)
0.998591 0.0530624i \(-0.0168982\pi\)
\(32\) 0 0
\(33\) 46.4083 1.46222i 1.40631 0.0443096i
\(34\) 0 0
\(35\) −6.11047 3.52788i −0.174585 0.100797i
\(36\) 0 0
\(37\) −17.4417 30.2099i −0.471398 0.816485i 0.528067 0.849203i \(-0.322917\pi\)
−0.999465 + 0.0327181i \(0.989584\pi\)
\(38\) 0 0
\(39\) −2.69917 0.388733i −0.0692095 0.00996751i
\(40\) 0 0
\(41\) −12.2490 + 33.6538i −0.298756 + 0.820824i 0.695953 + 0.718087i \(0.254982\pi\)
−0.994709 + 0.102737i \(0.967240\pi\)
\(42\) 0 0
\(43\) −7.20864 + 40.8822i −0.167643 + 0.950750i 0.778655 + 0.627453i \(0.215902\pi\)
−0.946298 + 0.323297i \(0.895209\pi\)
\(44\) 0 0
\(45\) −58.6974 + 39.0122i −1.30439 + 0.866938i
\(46\) 0 0
\(47\) 15.9152 18.9670i 0.338622 0.403554i −0.569682 0.821865i \(-0.692933\pi\)
0.908304 + 0.418311i \(0.137378\pi\)
\(48\) 0 0
\(49\) −8.36779 47.4561i −0.170771 0.968492i
\(50\) 0 0
\(51\) 27.5449 24.6320i 0.540097 0.482981i
\(52\) 0 0
\(53\) 50.3340i 0.949699i −0.880067 0.474850i \(-0.842502\pi\)
0.880067 0.474850i \(-0.157498\pi\)
\(54\) 0 0
\(55\) −121.202 −2.20367
\(56\) 0 0
\(57\) 10.1287 30.8152i 0.177697 0.540617i
\(58\) 0 0
\(59\) −65.7126 + 11.5869i −1.11377 + 0.196388i −0.700105 0.714040i \(-0.746863\pi\)
−0.413667 + 0.910428i \(0.635752\pi\)
\(60\) 0 0
\(61\) −18.7893 15.7661i −0.308021 0.258460i 0.475653 0.879633i \(-0.342212\pi\)
−0.783673 + 0.621173i \(0.786656\pi\)
\(62\) 0 0
\(63\) 7.77945 + 2.28824i 0.123483 + 0.0363213i
\(64\) 0 0
\(65\) 7.01032 + 1.23611i 0.107851 + 0.0190170i
\(66\) 0 0
\(67\) 61.2882 + 22.3071i 0.914750 + 0.332942i 0.756148 0.654401i \(-0.227079\pi\)
0.158602 + 0.987343i \(0.449301\pi\)
\(68\) 0 0
\(69\) 77.3814 + 60.8830i 1.12147 + 0.882362i
\(70\) 0 0
\(71\) −24.4496 + 14.1160i −0.344361 + 0.198817i −0.662199 0.749328i \(-0.730377\pi\)
0.317838 + 0.948145i \(0.397043\pi\)
\(72\) 0 0
\(73\) −10.7760 + 18.6646i −0.147617 + 0.255680i −0.930346 0.366682i \(-0.880494\pi\)
0.782729 + 0.622362i \(0.213827\pi\)
\(74\) 0 0
\(75\) 92.6126 57.4327i 1.23483 0.765769i
\(76\) 0 0
\(77\) 8.96360 + 10.6824i 0.116410 + 0.138732i
\(78\) 0 0
\(79\) 27.2240 9.90872i 0.344608 0.125427i −0.163918 0.986474i \(-0.552413\pi\)
0.508525 + 0.861047i \(0.330191\pi\)
\(80\) 0 0
\(81\) 55.0154 59.4500i 0.679203 0.733951i
\(82\) 0 0
\(83\) 0.0509121 + 0.139880i 0.000613399 + 0.00168530i 0.939999 0.341177i \(-0.110826\pi\)
−0.939386 + 0.342863i \(0.888603\pi\)
\(84\) 0 0
\(85\) −73.8910 + 62.0019i −0.869306 + 0.729434i
\(86\) 0 0
\(87\) 89.4477 + 144.238i 1.02813 + 1.65791i
\(88\) 0 0
\(89\) −79.3008 45.7843i −0.891020 0.514431i −0.0167439 0.999860i \(-0.505330\pi\)
−0.874276 + 0.485429i \(0.838663\pi\)
\(90\) 0 0
\(91\) −0.409508 0.709288i −0.00450008 0.00779437i
\(92\) 0 0
\(93\) 91.9031 116.807i 0.988205 1.25599i
\(94\) 0 0
\(95\) −28.9595 + 79.5657i −0.304837 + 0.837534i
\(96\) 0 0
\(97\) −17.4501 + 98.9646i −0.179898 + 1.02025i 0.752439 + 0.658662i \(0.228877\pi\)
−0.932337 + 0.361591i \(0.882234\pi\)
\(98\) 0 0
\(99\) 135.383 32.7759i 1.36751 0.331070i
\(100\) 0 0
\(101\) −67.8785 + 80.8944i −0.672064 + 0.800935i −0.989063 0.147491i \(-0.952880\pi\)
0.316999 + 0.948426i \(0.397325\pi\)
\(102\) 0 0
\(103\) −15.1042 85.6604i −0.146643 0.831654i −0.966033 0.258418i \(-0.916799\pi\)
0.819390 0.573236i \(-0.194312\pi\)
\(104\) 0 0
\(105\) −20.1089 6.60965i −0.191513 0.0629490i
\(106\) 0 0
\(107\) 24.5062i 0.229030i 0.993422 + 0.114515i \(0.0365313\pi\)
−0.993422 + 0.114515i \(0.963469\pi\)
\(108\) 0 0
\(109\) −33.5716 −0.307996 −0.153998 0.988071i \(-0.549215\pi\)
−0.153998 + 0.988071i \(0.549215\pi\)
\(110\) 0 0
\(111\) −69.7591 78.0086i −0.628461 0.702780i
\(112\) 0 0
\(113\) 120.158 21.1870i 1.06334 0.187496i 0.385503 0.922707i \(-0.374028\pi\)
0.677839 + 0.735211i \(0.262917\pi\)
\(114\) 0 0
\(115\) −196.887 165.208i −1.71206 1.43659i
\(116\) 0 0
\(117\) −8.16484 + 0.515020i −0.0697849 + 0.00440188i
\(118\) 0 0
\(119\) 10.9294 + 1.92714i 0.0918433 + 0.0161945i
\(120\) 0 0
\(121\) 111.392 + 40.5435i 0.920598 + 0.335070i
\(122\) 0 0
\(123\) −15.3155 + 106.344i −0.124517 + 0.864583i
\(124\) 0 0
\(125\) −76.8053 + 44.3435i −0.614442 + 0.354748i
\(126\) 0 0
\(127\) 52.2314 90.4674i 0.411271 0.712342i −0.583758 0.811927i \(-0.698418\pi\)
0.995029 + 0.0995859i \(0.0317518\pi\)
\(128\) 0 0
\(129\) 3.92197 + 124.477i 0.0304029 + 0.964938i
\(130\) 0 0
\(131\) 0.587532 + 0.700193i 0.00448497 + 0.00534498i 0.768282 0.640111i \(-0.221112\pi\)
−0.763797 + 0.645456i \(0.776667\pi\)
\(132\) 0 0
\(133\) 9.15444 3.33194i 0.0688304 0.0250522i
\(134\) 0 0
\(135\) −148.425 + 150.585i −1.09944 + 1.11545i
\(136\) 0 0
\(137\) 4.80632 + 13.2053i 0.0350826 + 0.0963887i 0.955997 0.293376i \(-0.0947787\pi\)
−0.920915 + 0.389764i \(0.872556\pi\)
\(138\) 0 0
\(139\) −142.580 + 119.639i −1.02576 + 0.860714i −0.990340 0.138659i \(-0.955721\pi\)
−0.0354184 + 0.999373i \(0.511276\pi\)
\(140\) 0 0
\(141\) 35.0953 65.4653i 0.248903 0.464293i
\(142\) 0 0
\(143\) −12.1839 7.03440i −0.0852024 0.0491916i
\(144\) 0 0
\(145\) −221.516 383.678i −1.52770 2.64605i
\(146\) 0 0
\(147\) −53.6975 134.222i −0.365289 0.913074i
\(148\) 0 0
\(149\) −43.3633 + 119.140i −0.291029 + 0.799595i 0.704888 + 0.709319i \(0.250997\pi\)
−0.995917 + 0.0902764i \(0.971225\pi\)
\(150\) 0 0
\(151\) 23.8651 135.346i 0.158047 0.896331i −0.797899 0.602791i \(-0.794055\pi\)
0.955947 0.293540i \(-0.0948334\pi\)
\(152\) 0 0
\(153\) 65.7698 89.2383i 0.429868 0.583257i
\(154\) 0 0
\(155\) −249.382 + 297.202i −1.60891 + 1.91743i
\(156\) 0 0
\(157\) 4.03656 + 22.8925i 0.0257106 + 0.145812i 0.994961 0.100266i \(-0.0319693\pi\)
−0.969250 + 0.246078i \(0.920858\pi\)
\(158\) 0 0
\(159\) −30.8914 147.809i −0.194285 0.929614i
\(160\) 0 0
\(161\) 29.5712i 0.183672i
\(162\) 0 0
\(163\) −157.977 −0.969187 −0.484593 0.874740i \(-0.661032\pi\)
−0.484593 + 0.874740i \(0.661032\pi\)
\(164\) 0 0
\(165\) −355.916 + 74.3848i −2.15706 + 0.450817i
\(166\) 0 0
\(167\) 93.0755 16.4117i 0.557338 0.0982737i 0.112118 0.993695i \(-0.464237\pi\)
0.445220 + 0.895421i \(0.353125\pi\)
\(168\) 0 0
\(169\) −128.829 108.100i −0.762299 0.639645i
\(170\) 0 0
\(171\) 10.8315 96.7067i 0.0633420 0.565536i
\(172\) 0 0
\(173\) −286.053 50.4388i −1.65348 0.291554i −0.732388 0.680888i \(-0.761594\pi\)
−0.921097 + 0.389334i \(0.872705\pi\)
\(174\) 0 0
\(175\) 30.7551 + 11.1939i 0.175743 + 0.0639654i
\(176\) 0 0
\(177\) −185.857 + 74.3551i −1.05004 + 0.420085i
\(178\) 0 0
\(179\) −9.64834 + 5.57047i −0.0539013 + 0.0311200i −0.526709 0.850046i \(-0.676574\pi\)
0.472807 + 0.881166i \(0.343241\pi\)
\(180\) 0 0
\(181\) −95.2763 + 165.023i −0.526389 + 0.911732i 0.473139 + 0.880988i \(0.343121\pi\)
−0.999527 + 0.0307438i \(0.990212\pi\)
\(182\) 0 0
\(183\) −64.8517 34.7664i −0.354381 0.189980i
\(184\) 0 0
\(185\) 175.592 + 209.263i 0.949148 + 1.13115i
\(186\) 0 0
\(187\) 179.141 65.2019i 0.957972 0.348673i
\(188\) 0 0
\(189\) 24.2491 + 1.94509i 0.128302 + 0.0102915i
\(190\) 0 0
\(191\) −5.86380 16.1107i −0.0307005 0.0843490i 0.923395 0.383850i \(-0.125402\pi\)
−0.954096 + 0.299501i \(0.903180\pi\)
\(192\) 0 0
\(193\) 118.098 99.0962i 0.611908 0.513452i −0.283340 0.959019i \(-0.591443\pi\)
0.895248 + 0.445568i \(0.146998\pi\)
\(194\) 0 0
\(195\) 21.3448 0.672524i 0.109460 0.00344884i
\(196\) 0 0
\(197\) 107.213 + 61.8996i 0.544230 + 0.314211i 0.746792 0.665058i \(-0.231593\pi\)
−0.202561 + 0.979270i \(0.564927\pi\)
\(198\) 0 0
\(199\) 117.239 + 203.063i 0.589139 + 1.02042i 0.994345 + 0.106193i \(0.0338663\pi\)
−0.405207 + 0.914225i \(0.632800\pi\)
\(200\) 0 0
\(201\) 193.667 + 27.8917i 0.963515 + 0.138765i
\(202\) 0 0
\(203\) −17.4339 + 47.8991i −0.0858811 + 0.235956i
\(204\) 0 0
\(205\) 48.7010 276.197i 0.237566 1.34730i
\(206\) 0 0
\(207\) 264.600 + 131.295i 1.27826 + 0.634275i
\(208\) 0 0
\(209\) 107.567 128.193i 0.514674 0.613365i
\(210\) 0 0
\(211\) 9.24958 + 52.4570i 0.0438369 + 0.248611i 0.998850 0.0479537i \(-0.0152700\pi\)
−0.955013 + 0.296565i \(0.904159\pi\)
\(212\) 0 0
\(213\) −63.1342 + 56.4577i −0.296405 + 0.265060i
\(214\) 0 0
\(215\) 325.089i 1.51204i
\(216\) 0 0
\(217\) 44.6378 0.205704
\(218\) 0 0
\(219\) −20.1894 + 61.4233i −0.0921891 + 0.280472i
\(220\) 0 0
\(221\) −11.0265 + 1.94427i −0.0498936 + 0.00879759i
\(222\) 0 0
\(223\) 45.9011 + 38.5156i 0.205835 + 0.172716i 0.739878 0.672742i \(-0.234883\pi\)
−0.534043 + 0.845457i \(0.679328\pi\)
\(224\) 0 0
\(225\) 236.714 225.493i 1.05206 1.00219i
\(226\) 0 0
\(227\) 62.7048 + 11.0565i 0.276232 + 0.0487072i 0.310048 0.950721i \(-0.399655\pi\)
−0.0338157 + 0.999428i \(0.510766\pi\)
\(228\) 0 0
\(229\) −201.212 73.2350i −0.878653 0.319804i −0.136987 0.990573i \(-0.543742\pi\)
−0.741666 + 0.670769i \(0.765964\pi\)
\(230\) 0 0
\(231\) 32.8782 + 25.8682i 0.142330 + 0.111984i
\(232\) 0 0
\(233\) −186.691 + 107.786i −0.801248 + 0.462601i −0.843907 0.536489i \(-0.819750\pi\)
0.0426593 + 0.999090i \(0.486417\pi\)
\(234\) 0 0
\(235\) −96.9470 + 167.917i −0.412541 + 0.714541i
\(236\) 0 0
\(237\) 73.8634 45.8056i 0.311660 0.193272i
\(238\) 0 0
\(239\) −26.8944 32.0515i −0.112529 0.134107i 0.706840 0.707374i \(-0.250120\pi\)
−0.819369 + 0.573267i \(0.805676\pi\)
\(240\) 0 0
\(241\) 421.281 153.334i 1.74805 0.636240i 0.748418 0.663227i \(-0.230814\pi\)
0.999636 + 0.0269874i \(0.00859139\pi\)
\(242\) 0 0
\(243\) 125.070 208.342i 0.514690 0.857376i
\(244\) 0 0
\(245\) 129.066 + 354.606i 0.526800 + 1.44737i
\(246\) 0 0
\(247\) −7.52908 + 6.31765i −0.0304821 + 0.0255775i
\(248\) 0 0
\(249\) 0.235354 + 0.379518i 0.000945197 + 0.00152417i
\(250\) 0 0
\(251\) 222.273 + 128.329i 0.885549 + 0.511272i 0.872484 0.488643i \(-0.162508\pi\)
0.0130650 + 0.999915i \(0.495841\pi\)
\(252\) 0 0
\(253\) 253.983 + 439.911i 1.00388 + 1.73878i
\(254\) 0 0
\(255\) −178.932 + 227.421i −0.701696 + 0.891846i
\(256\) 0 0
\(257\) 134.312 369.019i 0.522614 1.43587i −0.344986 0.938608i \(-0.612116\pi\)
0.867600 0.497262i \(-0.165661\pi\)
\(258\) 0 0
\(259\) 5.45776 30.9525i 0.0210724 0.119508i
\(260\) 0 0
\(261\) 351.191 + 368.667i 1.34556 + 1.41252i
\(262\) 0 0
\(263\) −78.9273 + 94.0619i −0.300104 + 0.357650i −0.894932 0.446203i \(-0.852776\pi\)
0.594828 + 0.803853i \(0.297220\pi\)
\(264\) 0 0
\(265\) 68.4465 + 388.179i 0.258289 + 1.46483i
\(266\) 0 0
\(267\) −260.970 85.7790i −0.977415 0.321270i
\(268\) 0 0
\(269\) 392.295i 1.45835i −0.684329 0.729173i \(-0.739905\pi\)
0.684329 0.729173i \(-0.260095\pi\)
\(270\) 0 0
\(271\) 43.9569 0.162203 0.0811013 0.996706i \(-0.474156\pi\)
0.0811013 + 0.996706i \(0.474156\pi\)
\(272\) 0 0
\(273\) −1.63785 1.83154i −0.00599945 0.00670892i
\(274\) 0 0
\(275\) 553.666 97.6263i 2.01333 0.355005i
\(276\) 0 0
\(277\) −253.346 212.582i −0.914606 0.767446i 0.0583836 0.998294i \(-0.481405\pi\)
−0.972990 + 0.230849i \(0.925850\pi\)
\(278\) 0 0
\(279\) 198.190 399.415i 0.710359 1.43159i
\(280\) 0 0
\(281\) −252.252 44.4788i −0.897692 0.158287i −0.294282 0.955719i \(-0.595081\pi\)
−0.603410 + 0.797431i \(0.706192\pi\)
\(282\) 0 0
\(283\) −146.361 53.2711i −0.517177 0.188237i 0.0702267 0.997531i \(-0.477628\pi\)
−0.587404 + 0.809294i \(0.699850\pi\)
\(284\) 0 0
\(285\) −36.2096 + 251.422i −0.127051 + 0.882183i
\(286\) 0 0
\(287\) −27.9450 + 16.1340i −0.0973693 + 0.0562162i
\(288\) 0 0
\(289\) −68.6411 + 118.890i −0.237512 + 0.411383i
\(290\) 0 0
\(291\) 9.49400 + 301.324i 0.0326254 + 1.03548i
\(292\) 0 0
\(293\) −131.430 156.632i −0.448566 0.534580i 0.493617 0.869679i \(-0.335674\pi\)
−0.942183 + 0.335100i \(0.891230\pi\)
\(294\) 0 0
\(295\) 491.023 178.718i 1.66448 0.605823i
\(296\) 0 0
\(297\) 377.444 179.336i 1.27086 0.603826i
\(298\) 0 0
\(299\) −10.2038 28.0348i −0.0341265 0.0937618i
\(300\) 0 0
\(301\) −28.6525 + 24.0423i −0.0951909 + 0.0798747i
\(302\) 0 0
\(303\) −149.682 + 279.209i −0.493999 + 0.921483i
\(304\) 0 0
\(305\) 166.343 + 96.0384i 0.545388 + 0.314880i
\(306\) 0 0
\(307\) −284.956 493.559i −0.928196 1.60768i −0.786339 0.617796i \(-0.788026\pi\)
−0.141857 0.989887i \(-0.545307\pi\)
\(308\) 0 0
\(309\) −96.9264 242.276i −0.313678 0.784066i
\(310\) 0 0
\(311\) 152.905 420.102i 0.491654 1.35081i −0.407511 0.913200i \(-0.633603\pi\)
0.899165 0.437609i \(-0.144175\pi\)
\(312\) 0 0
\(313\) −50.5690 + 286.791i −0.161562 + 0.916265i 0.790976 + 0.611847i \(0.209573\pi\)
−0.952538 + 0.304418i \(0.901538\pi\)
\(314\) 0 0
\(315\) −63.1073 7.06823i −0.200340 0.0224388i
\(316\) 0 0
\(317\) −216.870 + 258.455i −0.684131 + 0.815316i −0.990633 0.136554i \(-0.956397\pi\)
0.306501 + 0.951870i \(0.400842\pi\)
\(318\) 0 0
\(319\) 152.047 + 862.300i 0.476636 + 2.70314i
\(320\) 0 0
\(321\) 15.0401 + 71.9636i 0.0468539 + 0.224186i
\(322\) 0 0
\(323\) 133.180i 0.412322i
\(324\) 0 0
\(325\) −33.0197 −0.101599
\(326\) 0 0
\(327\) −98.5848 + 20.6038i −0.301482 + 0.0630085i
\(328\) 0 0
\(329\) 21.9696 3.87383i 0.0667768 0.0117746i
\(330\) 0 0
\(331\) −116.755 97.9694i −0.352735 0.295980i 0.449152 0.893455i \(-0.351726\pi\)
−0.801887 + 0.597475i \(0.796171\pi\)
\(332\) 0 0
\(333\) −252.727 186.263i −0.758941 0.559349i
\(334\) 0 0
\(335\) −502.993 88.6912i −1.50147 0.264750i
\(336\) 0 0
\(337\) 219.421 + 79.8628i 0.651102 + 0.236982i 0.646390 0.763007i \(-0.276278\pi\)
0.00471178 + 0.999989i \(0.498500\pi\)
\(338\) 0 0
\(339\) 339.846 135.961i 1.00250 0.401064i
\(340\) 0 0
\(341\) 664.047 383.388i 1.94735 1.12430i
\(342\) 0 0
\(343\) 43.7833 75.8349i 0.127648 0.221093i
\(344\) 0 0
\(345\) −679.561 364.307i −1.96974 1.05596i
\(346\) 0 0
\(347\) 409.259 + 487.736i 1.17942 + 1.40558i 0.894523 + 0.447022i \(0.147516\pi\)
0.284899 + 0.958558i \(0.408040\pi\)
\(348\) 0 0
\(349\) 268.471 97.7153i 0.769257 0.279987i 0.0725714 0.997363i \(-0.476879\pi\)
0.696686 + 0.717377i \(0.254657\pi\)
\(350\) 0 0
\(351\) −23.6604 + 6.52336i −0.0674085 + 0.0185851i
\(352\) 0 0
\(353\) −112.137 308.094i −0.317669 0.872788i −0.991050 0.133492i \(-0.957381\pi\)
0.673381 0.739296i \(-0.264841\pi\)
\(354\) 0 0
\(355\) 169.361 142.111i 0.477074 0.400313i
\(356\) 0 0
\(357\) 33.2774 1.04849i 0.0932139 0.00293695i
\(358\) 0 0
\(359\) −484.455 279.700i −1.34946 0.779109i −0.361284 0.932456i \(-0.617661\pi\)
−0.988172 + 0.153347i \(0.950995\pi\)
\(360\) 0 0
\(361\) 122.046 + 211.390i 0.338078 + 0.585569i
\(362\) 0 0
\(363\) 351.992 + 50.6936i 0.969675 + 0.139652i
\(364\) 0 0
\(365\) 57.7245 158.597i 0.158149 0.434511i
\(366\) 0 0
\(367\) −83.2991 + 472.413i −0.226973 + 1.28723i 0.631904 + 0.775047i \(0.282274\pi\)
−0.858877 + 0.512182i \(0.828837\pi\)
\(368\) 0 0
\(369\) 20.2911 + 321.683i 0.0549894 + 0.871770i
\(370\) 0 0
\(371\) 29.1510 34.7409i 0.0785743 0.0936411i
\(372\) 0 0
\(373\) 59.7262 + 338.724i 0.160124 + 0.908107i 0.953951 + 0.299964i \(0.0969745\pi\)
−0.793827 + 0.608144i \(0.791914\pi\)
\(374\) 0 0
\(375\) −198.328 + 177.355i −0.528874 + 0.472946i
\(376\) 0 0
\(377\) 51.4262i 0.136409i
\(378\) 0 0
\(379\) 104.156 0.274817 0.137408 0.990514i \(-0.456123\pi\)
0.137408 + 0.990514i \(0.456123\pi\)
\(380\) 0 0
\(381\) 97.8579 297.718i 0.256845 0.781412i
\(382\) 0 0
\(383\) 63.8855 11.2647i 0.166803 0.0294118i −0.0896229 0.995976i \(-0.528566\pi\)
0.256426 + 0.966564i \(0.417455\pi\)
\(384\) 0 0
\(385\) −83.6542 70.1942i −0.217284 0.182323i
\(386\) 0 0
\(387\) 87.9119 + 363.126i 0.227163 + 0.938310i
\(388\) 0 0
\(389\) 232.365 + 40.9722i 0.597339 + 0.105327i 0.464139 0.885762i \(-0.346364\pi\)
0.133200 + 0.991089i \(0.457475\pi\)
\(390\) 0 0
\(391\) 379.882 + 138.266i 0.971564 + 0.353620i
\(392\) 0 0
\(393\) 2.15504 + 1.69557i 0.00548357 + 0.00431443i
\(394\) 0 0
\(395\) −196.479 + 113.437i −0.497415 + 0.287183i
\(396\) 0 0
\(397\) −2.59349 + 4.49206i −0.00653272 + 0.0113150i −0.869273 0.494332i \(-0.835413\pi\)
0.862741 + 0.505647i \(0.168746\pi\)
\(398\) 0 0
\(399\) 24.8376 15.4027i 0.0622496 0.0386034i
\(400\) 0 0
\(401\) 103.381 + 123.205i 0.257808 + 0.307244i 0.879387 0.476108i \(-0.157953\pi\)
−0.621579 + 0.783352i \(0.713508\pi\)
\(402\) 0 0
\(403\) −42.3186 + 15.4027i −0.105009 + 0.0382201i
\(404\) 0 0
\(405\) −343.440 + 533.295i −0.847999 + 1.31678i
\(406\) 0 0
\(407\) −184.655 507.335i −0.453698 1.24652i
\(408\) 0 0
\(409\) −132.217 + 110.943i −0.323269 + 0.271255i −0.789950 0.613171i \(-0.789894\pi\)
0.466682 + 0.884425i \(0.345449\pi\)
\(410\) 0 0
\(411\) 22.2184 + 35.8282i 0.0540594 + 0.0871731i
\(412\) 0 0
\(413\) −52.0658 30.0602i −0.126067 0.0727850i
\(414\) 0 0
\(415\) −0.582852 1.00953i −0.00140446 0.00243260i
\(416\) 0 0
\(417\) −345.269 + 438.832i −0.827984 + 1.05236i
\(418\) 0 0
\(419\) −97.9330 + 269.069i −0.233730 + 0.642169i −1.00000 0.000350278i \(-0.999889\pi\)
0.766270 + 0.642519i \(0.222111\pi\)
\(420\) 0 0
\(421\) 117.029 663.704i 0.277979 1.57649i −0.451360 0.892342i \(-0.649061\pi\)
0.729339 0.684153i \(-0.239828\pi\)
\(422\) 0 0
\(423\) 62.8815 213.781i 0.148656 0.505393i
\(424\) 0 0
\(425\) 287.602 342.751i 0.676711 0.806473i
\(426\) 0 0
\(427\) −3.83752 21.7637i −0.00898717 0.0509688i
\(428\) 0 0
\(429\) −40.0960 13.1793i −0.0934639 0.0307209i
\(430\) 0 0
\(431\) 539.138i 1.25090i −0.780264 0.625450i \(-0.784915\pi\)
0.780264 0.625450i \(-0.215085\pi\)
\(432\) 0 0
\(433\) −802.991 −1.85448 −0.927241 0.374466i \(-0.877826\pi\)
−0.927241 + 0.374466i \(0.877826\pi\)
\(434\) 0 0
\(435\) −885.968 990.739i −2.03671 2.27756i
\(436\) 0 0
\(437\) 349.475 61.6219i 0.799715 0.141011i
\(438\) 0 0
\(439\) 59.9232 + 50.2816i 0.136499 + 0.114537i 0.708481 0.705730i \(-0.249381\pi\)
−0.571982 + 0.820266i \(0.693825\pi\)
\(440\) 0 0
\(441\) −240.061 361.194i −0.544356 0.819033i
\(442\) 0 0
\(443\) 537.994 + 94.8628i 1.21443 + 0.214137i 0.743928 0.668260i \(-0.232961\pi\)
0.470505 + 0.882397i \(0.344072\pi\)
\(444\) 0 0
\(445\) 673.832 + 245.255i 1.51423 + 0.551134i
\(446\) 0 0
\(447\) −54.2194 + 376.473i −0.121296 + 0.842222i
\(448\) 0 0
\(449\) −592.342 + 341.989i −1.31925 + 0.761667i −0.983607 0.180323i \(-0.942286\pi\)
−0.335639 + 0.941991i \(0.608952\pi\)
\(450\) 0 0
\(451\) −277.146 + 480.031i −0.614514 + 1.06437i
\(452\) 0 0
\(453\) −12.9842 412.097i −0.0286627 0.909707i
\(454\) 0 0
\(455\) 4.12267 + 4.91321i 0.00906081 + 0.0107983i
\(456\) 0 0
\(457\) −80.6475 + 29.3533i −0.176472 + 0.0642304i −0.428745 0.903426i \(-0.641044\pi\)
0.252273 + 0.967656i \(0.418822\pi\)
\(458\) 0 0
\(459\) 138.368 302.418i 0.301456 0.658862i
\(460\) 0 0
\(461\) 1.94941 + 5.35597i 0.00422866 + 0.0116181i 0.941789 0.336205i \(-0.109143\pi\)
−0.937560 + 0.347823i \(0.886921\pi\)
\(462\) 0 0
\(463\) 247.066 207.313i 0.533620 0.447760i −0.335729 0.941959i \(-0.608983\pi\)
0.869349 + 0.494198i \(0.164538\pi\)
\(464\) 0 0
\(465\) −549.922 + 1025.80i −1.18263 + 2.20602i
\(466\) 0 0
\(467\) −32.7859 18.9290i −0.0702054 0.0405331i 0.464486 0.885580i \(-0.346239\pi\)
−0.534692 + 0.845047i \(0.679572\pi\)
\(468\) 0 0
\(469\) 29.3823 + 50.8917i 0.0626489 + 0.108511i
\(470\) 0 0
\(471\) 25.9033 + 64.7476i 0.0549964 + 0.137468i
\(472\) 0 0
\(473\) −219.748 + 603.753i −0.464584 + 1.27643i
\(474\) 0 0
\(475\) 68.2021 386.793i 0.143583 0.814302i
\(476\) 0 0
\(477\) −181.428 415.089i −0.380353 0.870207i
\(478\) 0 0
\(479\) −461.346 + 549.811i −0.963145 + 1.14783i 0.0258182 + 0.999667i \(0.491781\pi\)
−0.988963 + 0.148164i \(0.952664\pi\)
\(480\) 0 0
\(481\) 5.50626 + 31.2275i 0.0114475 + 0.0649221i
\(482\) 0 0
\(483\) 18.1486 + 86.8373i 0.0375748 + 0.179787i
\(484\) 0 0
\(485\) 786.950i 1.62258i
\(486\) 0 0
\(487\) −52.1558 −0.107096 −0.0535480 0.998565i \(-0.517053\pi\)
−0.0535480 + 0.998565i \(0.517053\pi\)
\(488\) 0 0
\(489\) −463.909 + 96.9550i −0.948689 + 0.198272i
\(490\) 0 0
\(491\) −77.8114 + 13.7202i −0.158475 + 0.0279435i −0.252323 0.967643i \(-0.581194\pi\)
0.0938475 + 0.995587i \(0.470083\pi\)
\(492\) 0 0
\(493\) 533.813 + 447.922i 1.08279 + 0.908565i
\(494\) 0 0
\(495\) −999.513 + 436.870i −2.01922 + 0.882565i
\(496\) 0 0
\(497\) −25.0506 4.41709i −0.0504036 0.00888751i
\(498\) 0 0
\(499\) −27.9915 10.1881i −0.0560952 0.0204170i 0.313820 0.949482i \(-0.398391\pi\)
−0.369915 + 0.929065i \(0.620613\pi\)
\(500\) 0 0
\(501\) 263.249 105.317i 0.525446 0.210213i
\(502\) 0 0
\(503\) 146.080 84.3394i 0.290418 0.167673i −0.347713 0.937601i \(-0.613041\pi\)
0.638130 + 0.769928i \(0.279708\pi\)
\(504\) 0 0
\(505\) 413.479 716.167i 0.818771 1.41815i
\(506\) 0 0
\(507\) −444.656 238.376i −0.877033 0.470169i
\(508\) 0 0
\(509\) 223.993 + 266.945i 0.440066 + 0.524450i 0.939798 0.341730i \(-0.111013\pi\)
−0.499733 + 0.866180i \(0.666568\pi\)
\(510\) 0 0
\(511\) −18.2474 + 6.64149i −0.0357091 + 0.0129971i
\(512\) 0 0
\(513\) −27.5443 290.632i −0.0536925 0.566534i
\(514\) 0 0
\(515\) 232.970 + 640.079i 0.452368 + 1.24287i
\(516\) 0 0
\(517\) 293.555 246.322i 0.567805 0.476445i
\(518\) 0 0
\(519\) −870.965 + 27.4420i −1.67816 + 0.0528748i
\(520\) 0 0
\(521\) −95.9710 55.4089i −0.184205 0.106351i 0.405062 0.914289i \(-0.367250\pi\)
−0.589267 + 0.807938i \(0.700583\pi\)
\(522\) 0 0
\(523\) −280.197 485.316i −0.535750 0.927946i −0.999127 0.0417848i \(-0.986696\pi\)
0.463377 0.886161i \(-0.346638\pi\)
\(524\) 0 0
\(525\) 97.1840 + 13.9964i 0.185112 + 0.0266597i
\(526\) 0 0
\(527\) 208.712 573.433i 0.396039 1.08811i
\(528\) 0 0
\(529\) −95.1903 + 539.851i −0.179944 + 1.02051i
\(530\) 0 0
\(531\) −500.146 + 332.413i −0.941894 + 0.626013i
\(532\) 0 0
\(533\) 20.9258 24.9384i 0.0392605 0.0467888i
\(534\) 0 0
\(535\) −33.3246 188.993i −0.0622889 0.353258i
\(536\) 0 0
\(537\) −24.9141 + 22.2794i −0.0463950 + 0.0414887i
\(538\) 0 0
\(539\) 745.814i 1.38370i
\(540\) 0 0
\(541\) −313.055 −0.578660 −0.289330 0.957229i \(-0.593433\pi\)
−0.289330 + 0.957229i \(0.593433\pi\)
\(542\) 0 0
\(543\) −178.505 + 543.074i −0.328738 + 1.00014i
\(544\) 0 0
\(545\) 258.906 45.6522i 0.475057 0.0837654i
\(546\) 0 0
\(547\) 564.255 + 473.466i 1.03155 + 0.865569i 0.991034 0.133610i \(-0.0426569\pi\)
0.0405113 + 0.999179i \(0.487101\pi\)
\(548\) 0 0
\(549\) −211.778 62.2921i −0.385751 0.113465i
\(550\) 0 0
\(551\) 602.406 + 106.220i 1.09330 + 0.192778i
\(552\) 0 0
\(553\) 24.5288 + 8.92776i 0.0443559 + 0.0161442i
\(554\) 0 0
\(555\) 644.066 + 506.746i 1.16048 + 0.913055i
\(556\) 0 0
\(557\) −552.604 + 319.046i −0.992108 + 0.572794i −0.905904 0.423483i \(-0.860807\pi\)
−0.0862045 + 0.996277i \(0.527474\pi\)
\(558\) 0 0
\(559\) 18.8678 32.6799i 0.0337527 0.0584614i
\(560\) 0 0
\(561\) 486.040 301.412i 0.866381 0.537277i
\(562\) 0 0
\(563\) −224.179 267.166i −0.398187 0.474541i 0.529279 0.848448i \(-0.322462\pi\)
−0.927466 + 0.373907i \(0.878018\pi\)
\(564\) 0 0
\(565\) −897.852 + 326.791i −1.58912 + 0.578392i
\(566\) 0 0
\(567\) 72.4026 9.17048i 0.127694 0.0161737i
\(568\) 0 0
\(569\) 187.157 + 514.209i 0.328922 + 0.903707i 0.988385 + 0.151970i \(0.0485616\pi\)
−0.659463 + 0.751737i \(0.729216\pi\)
\(570\) 0 0
\(571\) −534.384 + 448.402i −0.935874 + 0.785292i −0.976863 0.213868i \(-0.931394\pi\)
0.0409882 + 0.999160i \(0.486949\pi\)
\(572\) 0 0
\(573\) −27.1069 43.7110i −0.0473070 0.0762845i
\(574\) 0 0
\(575\) 1032.48 + 596.102i 1.79562 + 1.03670i
\(576\) 0 0
\(577\) −193.884 335.816i −0.336020 0.582004i 0.647660 0.761929i \(-0.275748\pi\)
−0.983680 + 0.179925i \(0.942414\pi\)
\(578\) 0 0
\(579\) 285.984 363.481i 0.493927 0.627774i
\(580\) 0 0
\(581\) −0.0458718 + 0.126032i −7.89532e−5 + 0.000216922i
\(582\) 0 0
\(583\) 135.276 767.191i 0.232035 1.31594i
\(584\) 0 0
\(585\) 62.2674 15.0748i 0.106440 0.0257688i
\(586\) 0 0
\(587\) 229.618 273.648i 0.391173 0.466181i −0.534135 0.845399i \(-0.679363\pi\)
0.925307 + 0.379218i \(0.123807\pi\)
\(588\) 0 0
\(589\) −93.0185 527.534i −0.157926 0.895644i
\(590\) 0 0
\(591\) 352.827 + 115.972i 0.597000 + 0.196230i
\(592\) 0 0
\(593\) 828.411i 1.39698i −0.715618 0.698492i \(-0.753855\pi\)
0.715618 0.698492i \(-0.246145\pi\)
\(594\) 0 0
\(595\) −86.9085 −0.146065
\(596\) 0 0
\(597\) 468.903 + 524.353i 0.785432 + 0.878314i
\(598\) 0 0
\(599\) −863.376 + 152.237i −1.44136 + 0.254151i −0.839026 0.544091i \(-0.816875\pi\)
−0.602337 + 0.798242i \(0.705763\pi\)
\(600\) 0 0
\(601\) 627.682 + 526.688i 1.04440 + 0.876353i 0.992493 0.122299i \(-0.0390267\pi\)
0.0519035 + 0.998652i \(0.483471\pi\)
\(602\) 0 0
\(603\) 585.830 36.9529i 0.971525 0.0612817i
\(604\) 0 0
\(605\) −914.197 161.198i −1.51107 0.266442i
\(606\) 0 0
\(607\) 544.372 + 198.135i 0.896823 + 0.326417i 0.748979 0.662594i \(-0.230544\pi\)
0.147844 + 0.989011i \(0.452767\pi\)
\(608\) 0 0
\(609\) −21.7985 + 151.358i −0.0357938 + 0.248535i
\(610\) 0 0
\(611\) −19.4914 + 11.2534i −0.0319008 + 0.0184180i
\(612\) 0 0
\(613\) −163.781 + 283.677i −0.267179 + 0.462768i −0.968132 0.250439i \(-0.919425\pi\)
0.700953 + 0.713207i \(0.252758\pi\)
\(614\) 0 0
\(615\) −26.4965 840.956i −0.0430837 1.36741i
\(616\) 0 0
\(617\) −685.484 816.928i −1.11099 1.32403i −0.940931 0.338599i \(-0.890047\pi\)
−0.170064 0.985433i \(-0.554397\pi\)
\(618\) 0 0
\(619\) −835.904 + 304.244i −1.35041 + 0.491509i −0.913076 0.407789i \(-0.866300\pi\)
−0.437335 + 0.899299i \(0.644078\pi\)
\(620\) 0 0
\(621\) 857.591 + 223.162i 1.38098 + 0.359360i
\(622\) 0 0
\(623\) −28.2178 77.5278i −0.0452934 0.124443i
\(624\) 0 0
\(625\) −163.639 + 137.309i −0.261822 + 0.219695i
\(626\) 0 0
\(627\) 237.200 442.463i 0.378310 0.705682i
\(628\) 0 0
\(629\) −372.107 214.836i −0.591585 0.341552i
\(630\) 0 0
\(631\) 477.341 + 826.778i 0.756483 + 1.31027i 0.944634 + 0.328126i \(0.106417\pi\)
−0.188151 + 0.982140i \(0.560250\pi\)
\(632\) 0 0
\(633\) 59.3561 + 148.366i 0.0937695 + 0.234385i
\(634\) 0 0
\(635\) −279.790 + 768.717i −0.440614 + 1.21058i
\(636\) 0 0
\(637\) −7.60638 + 43.1379i −0.0119409 + 0.0677205i
\(638\) 0 0
\(639\) −150.747 + 204.538i −0.235911 + 0.320091i
\(640\) 0 0
\(641\) −456.345 + 543.850i −0.711926 + 0.848440i −0.993820 0.111005i \(-0.964593\pi\)
0.281894 + 0.959446i \(0.409037\pi\)
\(642\) 0 0
\(643\) −8.61807 48.8755i −0.0134029 0.0760116i 0.977373 0.211525i \(-0.0678429\pi\)
−0.990776 + 0.135513i \(0.956732\pi\)
\(644\) 0 0
\(645\) −199.516 954.641i −0.309327 1.48006i
\(646\) 0 0
\(647\) 918.622i 1.41982i −0.704294 0.709909i \(-0.748736\pi\)
0.704294 0.709909i \(-0.251264\pi\)
\(648\) 0 0
\(649\) −1032.73 −1.59126
\(650\) 0 0
\(651\) 131.081 27.3954i 0.201354 0.0420821i
\(652\) 0 0
\(653\) 342.395 60.3734i 0.524341 0.0924555i 0.0947886 0.995497i \(-0.469782\pi\)
0.429552 + 0.903042i \(0.358671\pi\)
\(654\) 0 0
\(655\) −5.48323 4.60098i −0.00837135 0.00702440i
\(656\) 0 0
\(657\) −21.5902 + 192.763i −0.0328617 + 0.293399i
\(658\) 0 0
\(659\) −1263.48 222.786i −1.91728 0.338068i −0.918873 0.394554i \(-0.870899\pi\)
−0.998403 + 0.0564864i \(0.982010\pi\)
\(660\) 0 0
\(661\) −126.358 45.9904i −0.191161 0.0695770i 0.244666 0.969608i \(-0.421322\pi\)
−0.435827 + 0.900030i \(0.643544\pi\)
\(662\) 0 0
\(663\) −31.1866 + 12.4767i −0.0470386 + 0.0188185i
\(664\) 0 0
\(665\) −66.0687 + 38.1448i −0.0993514 + 0.0573605i
\(666\) 0 0
\(667\) −928.391 + 1608.02i −1.39189 + 2.41083i
\(668\) 0 0
\(669\) 158.429 + 84.9324i 0.236815 + 0.126954i
\(670\) 0 0
\(671\) −244.013 290.804i −0.363656 0.433389i
\(672\) 0 0
\(673\) 522.659 190.232i 0.776610 0.282663i 0.0768517 0.997043i \(-0.475513\pi\)
0.699758 + 0.714380i \(0.253291\pi\)
\(674\) 0 0
\(675\) 556.731 807.449i 0.824787 1.19622i
\(676\) 0 0
\(677\) −116.809 320.931i −0.172540 0.474049i 0.823039 0.567985i \(-0.192277\pi\)
−0.995578 + 0.0939369i \(0.970055\pi\)
\(678\) 0 0
\(679\) −69.3597 + 58.1997i −0.102150 + 0.0857138i
\(680\) 0 0
\(681\) 190.922 6.01548i 0.280355 0.00883331i
\(682\) 0 0
\(683\) −181.638 104.869i −0.265942 0.153542i 0.361100 0.932527i \(-0.382401\pi\)
−0.627042 + 0.778985i \(0.715735\pi\)
\(684\) 0 0
\(685\) −55.0237 95.3039i −0.0803266 0.139130i
\(686\) 0 0
\(687\) −635.815 91.5695i −0.925494 0.133289i
\(688\) 0 0
\(689\) −15.6488 + 42.9947i −0.0227123 + 0.0624016i
\(690\) 0 0
\(691\) 50.5894 286.907i 0.0732119 0.415205i −0.926071 0.377349i \(-0.876836\pi\)
0.999283 0.0378567i \(-0.0120531\pi\)
\(692\) 0 0
\(693\) 112.424 + 55.7852i 0.162229 + 0.0804981i
\(694\) 0 0
\(695\) 936.899 1116.55i 1.34806 1.60655i
\(696\) 0 0
\(697\) 76.6014 + 434.428i 0.109902 + 0.623283i
\(698\) 0 0
\(699\) −482.076 + 431.096i −0.689665 + 0.616733i
\(700\) 0 0
\(701\) 445.528i 0.635560i −0.948164 0.317780i \(-0.897063\pi\)
0.948164 0.317780i \(-0.102937\pi\)
\(702\) 0 0
\(703\) −377.173 −0.536519
\(704\) 0 0
\(705\) −181.635 + 552.597i −0.257638 + 0.783825i
\(706\) 0 0
\(707\) −93.7003 + 16.5219i −0.132532 + 0.0233690i
\(708\) 0 0
\(709\) −112.307 94.2371i −0.158402 0.132915i 0.560142 0.828397i \(-0.310747\pi\)
−0.718544 + 0.695481i \(0.755191\pi\)
\(710\) 0 0
\(711\) 188.792 179.842i 0.265530 0.252943i
\(712\) 0 0
\(713\) 1601.30 + 282.353i 2.24587 + 0.396007i
\(714\) 0 0
\(715\) 103.529 + 37.6815i 0.144796 + 0.0527014i
\(716\) 0 0
\(717\) −98.6477 77.6151i −0.137584 0.108250i
\(718\) 0 0
\(719\) −442.793 + 255.647i −0.615845 + 0.355559i −0.775250 0.631655i \(-0.782376\pi\)
0.159404 + 0.987213i \(0.449043\pi\)
\(720\) 0 0
\(721\) 39.1853 67.8710i 0.0543486 0.0941345i
\(722\) 0 0
\(723\) 1143.01 708.824i 1.58092 0.980393i
\(724\) 0 0
\(725\) 1320.96 + 1574.26i 1.82202 + 2.17140i
\(726\) 0 0
\(727\) 233.836 85.1092i 0.321644 0.117069i −0.176152 0.984363i \(-0.556365\pi\)
0.497796 + 0.867294i \(0.334143\pi\)
\(728\) 0 0
\(729\) 239.408 688.567i 0.328406 0.944537i
\(730\) 0 0
\(731\) 174.885 + 480.493i 0.239241 + 0.657310i
\(732\) 0 0
\(733\) 645.868 541.947i 0.881129 0.739355i −0.0852818 0.996357i \(-0.527179\pi\)
0.966411 + 0.257002i \(0.0827346\pi\)
\(734\) 0 0
\(735\) 596.640 + 962.107i 0.811755 + 1.30899i
\(736\) 0 0
\(737\) 874.202 + 504.721i 1.18616 + 0.684832i
\(738\) 0 0
\(739\) −339.638 588.271i −0.459592 0.796036i 0.539347 0.842083i \(-0.318671\pi\)
−0.998939 + 0.0460469i \(0.985338\pi\)
\(740\) 0 0
\(741\) −18.2322 + 23.1729i −0.0246049 + 0.0312725i
\(742\) 0 0
\(743\) −215.273 + 591.458i −0.289735 + 0.796040i 0.706368 + 0.707845i \(0.250332\pi\)
−0.996103 + 0.0881957i \(0.971890\pi\)
\(744\) 0 0
\(745\) 172.409 977.780i 0.231421 1.31246i
\(746\) 0 0
\(747\) 0.924050 + 0.970033i 0.00123701 + 0.00129857i
\(748\) 0 0
\(749\) −14.1928 + 16.9143i −0.0189490 + 0.0225825i
\(750\) 0 0
\(751\) −123.896 702.649i −0.164975 0.935618i −0.949090 0.315004i \(-0.897994\pi\)
0.784116 0.620615i \(-0.213117\pi\)
\(752\) 0 0
\(753\) 731.475 + 240.431i 0.971414 + 0.319297i
\(754\) 0 0
\(755\) 1076.25i 1.42550i
\(756\) 0 0
\(757\) 1327.86 1.75411 0.877055 0.480390i \(-0.159505\pi\)
0.877055 + 0.480390i \(0.159505\pi\)
\(758\) 0 0
\(759\) 1015.82 + 1135.95i 1.33836 + 1.49663i
\(760\) 0 0
\(761\) −928.015 + 163.634i −1.21947 + 0.215025i −0.746096 0.665838i \(-0.768074\pi\)
−0.473371 + 0.880863i \(0.656963\pi\)
\(762\) 0 0
\(763\) −23.1713 19.4430i −0.0303687 0.0254824i
\(764\) 0 0
\(765\) −385.870 + 777.648i −0.504406 + 1.01653i
\(766\) 0 0
\(767\) 59.7332 + 10.5326i 0.0778790 + 0.0137322i
\(768\) 0 0
\(769\) −999.812 363.902i −1.30015 0.473214i −0.403102 0.915155i \(-0.632068\pi\)
−0.897044 + 0.441941i \(0.854290\pi\)
\(770\) 0 0
\(771\) 167.937 1166.07i 0.217817 1.51242i
\(772\) 0 0
\(773\) 250.289 144.504i 0.323789 0.186939i −0.329291 0.944228i \(-0.606810\pi\)
0.653080 + 0.757289i \(0.273477\pi\)
\(774\) 0 0
\(775\) 899.818 1558.53i 1.16106 2.01101i
\(776\) 0 0
\(777\) −2.96938 94.2431i −0.00382159 0.121291i
\(778\) 0 0
\(779\) 248.907 + 296.636i 0.319521 + 0.380790i
\(780\) 0 0
\(781\) −410.598 + 149.446i −0.525734 + 0.191352i
\(782\) 0 0
\(783\) 1257.55 + 867.074i 1.60607 + 1.10737i
\(784\) 0 0
\(785\) −62.2604 171.059i −0.0793126 0.217910i
\(786\) 0 0
\(787\) 513.070 430.517i 0.651931 0.547035i −0.255725 0.966750i \(-0.582314\pi\)
0.907656 + 0.419714i \(0.137870\pi\)
\(788\) 0 0
\(789\) −174.046 + 324.657i −0.220590 + 0.411480i
\(790\) 0 0
\(791\) 95.2040 + 54.9661i 0.120359 + 0.0694893i
\(792\) 0 0
\(793\) 11.1479 + 19.3087i 0.0140579 + 0.0243490i
\(794\) 0 0
\(795\) 439.233 + 1097.90i 0.552494 + 1.38101i
\(796\) 0 0
\(797\) 96.3773 264.795i 0.120925 0.332239i −0.864430 0.502753i \(-0.832321\pi\)
0.985355 + 0.170514i \(0.0545428\pi\)
\(798\) 0 0
\(799\) 52.9583 300.342i 0.0662807 0.375897i
\(800\) 0 0
\(801\) −818.997 91.7304i −1.02247 0.114520i
\(802\) 0 0
\(803\) −214.411 + 255.525i −0.267012 + 0.318213i
\(804\) 0 0
\(805\) −40.2122 228.055i −0.0499531 0.283298i
\(806\) 0 0
\(807\) −240.762 1152.00i −0.298342 1.42750i
\(808\) 0 0
\(809\) 747.542i 0.924032i 0.886872 + 0.462016i \(0.152874\pi\)
−0.886872 + 0.462016i \(0.847126\pi\)
\(810\) 0 0
\(811\) 1416.36 1.74644 0.873218 0.487330i \(-0.162029\pi\)
0.873218 + 0.487330i \(0.162029\pi\)
\(812\) 0 0
\(813\) 129.082 26.9775i 0.158772 0.0331827i
\(814\) 0 0
\(815\) 1218.33 214.825i 1.49489 0.263589i
\(816\) 0 0
\(817\) 343.841 + 288.517i 0.420859 + 0.353142i
\(818\) 0 0
\(819\) −5.93369 4.37321i −0.00724505 0.00533969i
\(820\) 0 0
\(821\) 91.5752 + 16.1472i 0.111541 + 0.0196677i 0.229140 0.973393i \(-0.426409\pi\)
−0.117599 + 0.993061i \(0.537520\pi\)
\(822\) 0 0
\(823\) −35.2640 12.8350i −0.0428481 0.0155954i 0.320507 0.947246i \(-0.396147\pi\)
−0.363355 + 0.931651i \(0.618369\pi\)
\(824\) 0 0
\(825\) 1565.95 626.485i 1.89813 0.759375i
\(826\) 0 0
\(827\) −1138.29 + 657.194i −1.37641 + 0.794673i −0.991726 0.128374i \(-0.959024\pi\)
−0.384688 + 0.923047i \(0.625691\pi\)
\(828\) 0 0
\(829\) −27.7172 + 48.0077i −0.0334346 + 0.0579103i −0.882258 0.470765i \(-0.843978\pi\)
0.848824 + 0.528676i \(0.177311\pi\)
\(830\) 0 0
\(831\) −874.431 468.774i −1.05226 0.564109i
\(832\) 0 0
\(833\) −381.528 454.688i −0.458017 0.545843i
\(834\) 0 0
\(835\) −695.486 + 253.136i −0.832918 + 0.303157i
\(836\) 0 0
\(837\) 336.865 1294.54i 0.402467 1.54664i
\(838\) 0 0
\(839\) 192.782 + 529.664i 0.229776 + 0.631305i 0.999979 0.00649448i \(-0.00206727\pi\)
−0.770203 + 0.637799i \(0.779845\pi\)
\(840\) 0 0
\(841\) −1807.57 + 1516.73i −2.14931 + 1.80349i
\(842\) 0 0
\(843\) −768.048 + 24.1993i −0.911089 + 0.0287062i
\(844\) 0 0
\(845\) 1140.53 + 658.487i 1.34974 + 0.779274i
\(846\) 0 0
\(847\) 53.4028 + 92.4964i 0.0630494 + 0.109205i
\(848\) 0 0
\(849\) −462.491 66.6076i −0.544748 0.0784542i
\(850\) 0 0
\(851\) 391.575 1075.84i 0.460135 1.26421i
\(852\) 0 0
\(853\) 82.4484 467.588i 0.0966570 0.548169i −0.897570 0.440872i \(-0.854669\pi\)
0.994227 0.107297i \(-0.0342196\pi\)
\(854\) 0 0
\(855\) 47.9730 + 760.537i 0.0561088 + 0.889517i
\(856\) 0 0
\(857\) −478.426 + 570.166i −0.558257 + 0.665305i −0.969177 0.246367i \(-0.920763\pi\)
0.410920 + 0.911672i \(0.365208\pi\)
\(858\) 0 0
\(859\) −72.5615 411.517i −0.0844721 0.479065i −0.997469 0.0710990i \(-0.977349\pi\)
0.912997 0.407966i \(-0.133762\pi\)
\(860\) 0 0
\(861\) −72.1600 + 64.5290i −0.0838095 + 0.0749466i
\(862\) 0 0
\(863\) 816.761i 0.946420i 0.880950 + 0.473210i \(0.156905\pi\)
−0.880950 + 0.473210i \(0.843095\pi\)
\(864\) 0 0
\(865\) 2274.65 2.62965
\(866\) 0 0
\(867\) −128.602 + 391.253i −0.148330 + 0.451272i
\(868\) 0 0
\(869\) 441.578 77.8621i 0.508145 0.0895997i
\(870\) 0 0
\(871\) −45.4164 38.1089i −0.0521428 0.0437530i
\(872\) 0 0
\(873\) 212.810 + 879.028i 0.243769 + 1.00690i
\(874\) 0 0
\(875\) −78.6931 13.8757i −0.0899350 0.0158580i
\(876\) 0 0
\(877\) 518.635 + 188.768i 0.591374 + 0.215242i 0.620333 0.784338i \(-0.286997\pi\)
−0.0289599 + 0.999581i \(0.509220\pi\)
\(878\) 0 0
\(879\) −482.080 379.296i −0.548441 0.431508i
\(880\) 0 0
\(881\) −1220.85 + 704.859i −1.38576 + 0.800067i −0.992834 0.119504i \(-0.961870\pi\)
−0.392923 + 0.919571i \(0.628536\pi\)
\(882\) 0 0
\(883\) 804.703 1393.79i 0.911328 1.57847i 0.0991386 0.995074i \(-0.468391\pi\)
0.812190 0.583393i \(-0.198275\pi\)
\(884\) 0 0
\(885\) 1332.23 826.168i 1.50535 0.933523i
\(886\) 0 0
\(887\) 761.451 + 907.462i 0.858457 + 1.02307i 0.999453 + 0.0330591i \(0.0105250\pi\)
−0.140996 + 0.990010i \(0.545031\pi\)
\(888\) 0 0
\(889\) 88.4447 32.1913i 0.0994879 0.0362106i
\(890\) 0 0
\(891\) 998.321 758.278i 1.12045 0.851042i
\(892\) 0 0
\(893\) −91.5626 251.566i −0.102534 0.281709i
\(894\) 0 0
\(895\) 66.8336 56.0801i 0.0746745 0.0626593i
\(896\) 0 0
\(897\) −47.1697 76.0632i −0.0525861 0.0847973i
\(898\) 0 0
\(899\) 2427.31 + 1401.41i 2.70001 + 1.55885i
\(900\) 0 0
\(901\) −309.992 536.922i −0.344053 0.595917i
\(902\) 0 0
\(903\) −69.3841 + 88.1862i −0.0768373 + 0.0976591i
\(904\) 0 0
\(905\) 510.371 1402.23i 0.563946 1.54943i
\(906\) 0 0
\(907\) −69.1106 + 391.946i −0.0761969 + 0.432134i 0.922714 + 0.385484i \(0.125966\pi\)
−0.998911 + 0.0466499i \(0.985145\pi\)
\(908\) 0 0
\(909\) −268.190 + 911.777i −0.295038 + 1.00305i
\(910\) 0 0
\(911\) −521.570 + 621.583i −0.572524 + 0.682308i −0.972147 0.234372i \(-0.924697\pi\)
0.399623 + 0.916680i \(0.369141\pi\)
\(912\) 0 0
\(913\) 0.400064 + 2.26888i 0.000438186 + 0.00248508i
\(914\) 0 0
\(915\) 547.417 + 179.932i 0.598270 + 0.196647i
\(916\) 0 0
\(917\) 0.823547i 0.000898089i
\(918\) 0 0
\(919\) −1571.44 −1.70994 −0.854972 0.518674i \(-0.826426\pi\)
−0.854972 + 0.518674i \(0.826426\pi\)
\(920\) 0 0
\(921\) −1139.70 1274.48i −1.23746 1.38380i
\(922\) 0 0
\(923\) 25.2732 4.45635i 0.0273816 0.00482811i
\(924\) 0 0
\(925\) −970.688 814.504i −1.04939 0.880545i
\(926\) 0 0
\(927\) −433.321 651.971i −0.467444 0.703312i
\(928\) 0 0
\(929\) −509.792 89.8902i −0.548754 0.0967601i −0.107605 0.994194i \(-0.534318\pi\)
−0.441149 + 0.897434i \(0.645429\pi\)
\(930\) 0 0
\(931\) −489.607 178.202i −0.525894 0.191410i
\(932\) 0 0
\(933\) 191.184 1327.49i 0.204914 1.42282i
\(934\) 0 0
\(935\) −1292.88 + 746.445i −1.38276 + 0.798336i
\(936\) 0 0
\(937\) −171.737 + 297.457i −0.183284 + 0.317457i −0.942997 0.332801i \(-0.892006\pi\)
0.759713 + 0.650259i \(0.225339\pi\)
\(938\) 0 0
\(939\) 27.5128 + 873.212i 0.0293001 + 0.929938i
\(940\) 0 0
\(941\) −538.505 641.766i −0.572269 0.682004i 0.399826 0.916591i \(-0.369071\pi\)
−0.972095 + 0.234587i \(0.924626\pi\)
\(942\) 0 0
\(943\) −1104.53 + 402.017i −1.17130 + 0.426317i
\(944\) 0 0
\(945\) −189.656 + 17.9744i −0.200694 + 0.0190205i
\(946\) 0 0
\(947\) −493.939 1357.09i −0.521583 1.43304i −0.868757 0.495238i \(-0.835081\pi\)
0.347174 0.937801i \(-0.387141\pi\)
\(948\) 0 0
\(949\) 15.0076 12.5928i 0.0158141 0.0132696i
\(950\) 0 0
\(951\) −478.228 + 892.066i −0.502869 + 0.938029i
\(952\) 0 0
\(953\) 1132.07 + 653.600i 1.18790 + 0.685835i 0.957829 0.287339i \(-0.0927707\pi\)
0.230072 + 0.973174i \(0.426104\pi\)
\(954\) 0 0
\(955\) 67.1300 + 116.273i 0.0702932 + 0.121751i
\(956\) 0 0
\(957\) 975.710 + 2438.87i 1.01955 + 2.54846i
\(958\) 0 0
\(959\) −4.33049 + 11.8979i −0.00451564 + 0.0124066i
\(960\) 0 0
\(961\) 259.337 1470.77i 0.269862 1.53046i
\(962\) 0 0
\(963\) 88.3320 + 202.094i 0.0917259 + 0.209859i
\(964\) 0 0
\(965\) −776.025 + 924.831i −0.804171 + 0.958374i
\(966\) 0 0
\(967\) −117.727 667.665i −0.121745 0.690450i −0.983188 0.182596i \(-0.941550\pi\)
0.861443 0.507854i \(-0.169561\pi\)
\(968\) 0 0
\(969\) −81.7362 391.090i −0.0843511 0.403602i
\(970\) 0 0
\(971\) 172.492i 0.177644i −0.996048 0.0888219i \(-0.971690\pi\)
0.996048 0.0888219i \(-0.0283102\pi\)
\(972\) 0 0
\(973\) −167.699 −0.172353
\(974\) 0 0
\(975\) −96.9642 + 20.2651i −0.0994505 + 0.0207847i
\(976\) 0 0
\(977\) −1622.94 + 286.168i −1.66115 + 0.292905i −0.923876 0.382692i \(-0.874997\pi\)
−0.737271 + 0.675597i \(0.763886\pi\)
\(978\) 0 0
\(979\) −1085.65 910.971i −1.10894 0.930511i
\(980\) 0 0
\(981\) −276.854 + 121.008i −0.282216 + 0.123352i
\(982\) 0 0
\(983\) −764.198 134.749i −0.777414 0.137079i −0.229157 0.973389i \(-0.573597\pi\)
−0.548256 + 0.836310i \(0.684708\pi\)
\(984\) 0 0
\(985\) −911.010 331.580i −0.924883 0.336630i
\(986\) 0 0
\(987\) 62.1374 24.8590i 0.0629558 0.0251865i
\(988\) 0 0
\(989\) −1179.93 + 681.235i −1.19306 + 0.688812i
\(990\) 0 0
\(991\) 191.688 332.014i 0.193429 0.335029i −0.752955 0.658072i \(-0.771372\pi\)
0.946384 + 0.323043i \(0.104706\pi\)
\(992\) 0 0
\(993\) −402.985 216.036i −0.405826 0.217559i
\(994\) 0 0
\(995\) −1180.29 1406.61i −1.18622 1.41368i
\(996\) 0 0
\(997\) −1455.50 + 529.759i −1.45988 + 0.531353i −0.945333 0.326108i \(-0.894263\pi\)
−0.514549 + 0.857461i \(0.672041\pi\)
\(998\) 0 0
\(999\) −856.462 391.866i −0.857319 0.392259i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.3.bc.c.209.6 36
4.3 odd 2 54.3.f.a.47.1 yes 36
12.11 even 2 162.3.f.a.143.6 36
27.23 odd 18 inner 432.3.bc.c.401.6 36
108.23 even 18 54.3.f.a.23.1 36
108.31 odd 18 162.3.f.a.17.6 36
108.79 odd 18 1458.3.b.c.1457.34 36
108.83 even 18 1458.3.b.c.1457.3 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.23.1 36 108.23 even 18
54.3.f.a.47.1 yes 36 4.3 odd 2
162.3.f.a.17.6 36 108.31 odd 18
162.3.f.a.143.6 36 12.11 even 2
432.3.bc.c.209.6 36 1.1 even 1 trivial
432.3.bc.c.401.6 36 27.23 odd 18 inner
1458.3.b.c.1457.3 36 108.83 even 18
1458.3.b.c.1457.34 36 108.79 odd 18