Properties

Label 1458.3.b.c.1457.3
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.3
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.34

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} -7.83103i q^{5} -0.901000 q^{7} +2.82843i q^{8} -11.0748 q^{10} +15.4771i q^{11} +0.909007 q^{13} +1.27421i q^{14} +4.00000 q^{16} -12.3174i q^{17} +10.8124 q^{19} +15.6621i q^{20} +21.8880 q^{22} +32.8204i q^{23} -36.3251 q^{25} -1.28553i q^{26} +1.80200 q^{28} +56.5740i q^{29} -49.5425 q^{31} -5.65685i q^{32} -17.4194 q^{34} +7.05576i q^{35} +34.8834 q^{37} -15.2910i q^{38} +22.1495 q^{40} +35.8136i q^{41} +41.5129 q^{43} -30.9542i q^{44} +46.4151 q^{46} -24.7597i q^{47} -48.1882 q^{49} +51.3714i q^{50} -1.81801 q^{52} +50.3340i q^{53} +121.202 q^{55} -2.54841i q^{56} +80.0077 q^{58} +66.7263i q^{59} -24.5276 q^{61} +70.0637i q^{62} -8.00000 q^{64} -7.11846i q^{65} +65.2216 q^{67} +24.6348i q^{68} +9.97835 q^{70} -28.2320i q^{71} +21.5521 q^{73} -49.3326i q^{74} -21.6247 q^{76} -13.9449i q^{77} +28.9712 q^{79} -31.3241i q^{80} +50.6481 q^{82} -0.148857i q^{83} -96.4578 q^{85} -58.7081i q^{86} -43.7759 q^{88} -91.5686i q^{89} -0.819015 q^{91} -65.6408i q^{92} -35.0155 q^{94} -84.6721i q^{95} -100.491 q^{97} +68.1484i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) − 7.83103i − 1.56621i −0.621892 0.783103i \(-0.713636\pi\)
0.621892 0.783103i \(-0.286364\pi\)
\(6\) 0 0
\(7\) −0.901000 −0.128714 −0.0643571 0.997927i \(-0.520500\pi\)
−0.0643571 + 0.997927i \(0.520500\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −11.0748 −1.10748
\(11\) 15.4771i 1.40701i 0.710690 + 0.703505i \(0.248383\pi\)
−0.710690 + 0.703505i \(0.751617\pi\)
\(12\) 0 0
\(13\) 0.909007 0.0699236 0.0349618 0.999389i \(-0.488869\pi\)
0.0349618 + 0.999389i \(0.488869\pi\)
\(14\) 1.27421i 0.0910148i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 12.3174i − 0.724552i −0.932071 0.362276i \(-0.882000\pi\)
0.932071 0.362276i \(-0.118000\pi\)
\(18\) 0 0
\(19\) 10.8124 0.569072 0.284536 0.958665i \(-0.408160\pi\)
0.284536 + 0.958665i \(0.408160\pi\)
\(20\) 15.6621i 0.783103i
\(21\) 0 0
\(22\) 21.8880 0.994907
\(23\) 32.8204i 1.42697i 0.700668 + 0.713487i \(0.252885\pi\)
−0.700668 + 0.713487i \(0.747115\pi\)
\(24\) 0 0
\(25\) −36.3251 −1.45300
\(26\) − 1.28553i − 0.0494435i
\(27\) 0 0
\(28\) 1.80200 0.0643571
\(29\) 56.5740i 1.95083i 0.220381 + 0.975414i \(0.429270\pi\)
−0.220381 + 0.975414i \(0.570730\pi\)
\(30\) 0 0
\(31\) −49.5425 −1.59815 −0.799073 0.601234i \(-0.794676\pi\)
−0.799073 + 0.601234i \(0.794676\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) −17.4194 −0.512335
\(35\) 7.05576i 0.201593i
\(36\) 0 0
\(37\) 34.8834 0.942795 0.471398 0.881921i \(-0.343750\pi\)
0.471398 + 0.881921i \(0.343750\pi\)
\(38\) − 15.2910i − 0.402395i
\(39\) 0 0
\(40\) 22.1495 0.553738
\(41\) 35.8136i 0.873503i 0.899582 + 0.436752i \(0.143871\pi\)
−0.899582 + 0.436752i \(0.856129\pi\)
\(42\) 0 0
\(43\) 41.5129 0.965417 0.482708 0.875781i \(-0.339653\pi\)
0.482708 + 0.875781i \(0.339653\pi\)
\(44\) − 30.9542i − 0.703505i
\(45\) 0 0
\(46\) 46.4151 1.00902
\(47\) − 24.7597i − 0.526802i −0.964686 0.263401i \(-0.915156\pi\)
0.964686 0.263401i \(-0.0848443\pi\)
\(48\) 0 0
\(49\) −48.1882 −0.983433
\(50\) 51.3714i 1.02743i
\(51\) 0 0
\(52\) −1.81801 −0.0349618
\(53\) 50.3340i 0.949699i 0.880067 + 0.474850i \(0.157498\pi\)
−0.880067 + 0.474850i \(0.842502\pi\)
\(54\) 0 0
\(55\) 121.202 2.20367
\(56\) − 2.54841i − 0.0455074i
\(57\) 0 0
\(58\) 80.0077 1.37944
\(59\) 66.7263i 1.13095i 0.824764 + 0.565477i \(0.191308\pi\)
−0.824764 + 0.565477i \(0.808692\pi\)
\(60\) 0 0
\(61\) −24.5276 −0.402093 −0.201046 0.979582i \(-0.564434\pi\)
−0.201046 + 0.979582i \(0.564434\pi\)
\(62\) 70.0637i 1.13006i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 7.11846i − 0.109515i
\(66\) 0 0
\(67\) 65.2216 0.973456 0.486728 0.873554i \(-0.338190\pi\)
0.486728 + 0.873554i \(0.338190\pi\)
\(68\) 24.6348i 0.362276i
\(69\) 0 0
\(70\) 9.97835 0.142548
\(71\) − 28.2320i − 0.397634i −0.980037 0.198817i \(-0.936290\pi\)
0.980037 0.198817i \(-0.0637099\pi\)
\(72\) 0 0
\(73\) 21.5521 0.295234 0.147617 0.989045i \(-0.452840\pi\)
0.147617 + 0.989045i \(0.452840\pi\)
\(74\) − 49.3326i − 0.666657i
\(75\) 0 0
\(76\) −21.6247 −0.284536
\(77\) − 13.9449i − 0.181102i
\(78\) 0 0
\(79\) 28.9712 0.366724 0.183362 0.983045i \(-0.441302\pi\)
0.183362 + 0.983045i \(0.441302\pi\)
\(80\) − 31.3241i − 0.391552i
\(81\) 0 0
\(82\) 50.6481 0.617660
\(83\) − 0.148857i − 0.00179346i −1.00000 0.000896729i \(-0.999715\pi\)
1.00000 0.000896729i \(-0.000285438\pi\)
\(84\) 0 0
\(85\) −96.4578 −1.13480
\(86\) − 58.7081i − 0.682653i
\(87\) 0 0
\(88\) −43.7759 −0.497453
\(89\) − 91.5686i − 1.02886i −0.857532 0.514431i \(-0.828003\pi\)
0.857532 0.514431i \(-0.171997\pi\)
\(90\) 0 0
\(91\) −0.819015 −0.00900017
\(92\) − 65.6408i − 0.713487i
\(93\) 0 0
\(94\) −35.0155 −0.372505
\(95\) − 84.6721i − 0.891285i
\(96\) 0 0
\(97\) −100.491 −1.03599 −0.517996 0.855383i \(-0.673322\pi\)
−0.517996 + 0.855383i \(0.673322\pi\)
\(98\) 68.1484i 0.695392i
\(99\) 0 0
\(100\) 72.6502 0.726502
\(101\) − 105.600i − 1.04555i −0.852472 0.522773i \(-0.824898\pi\)
0.852472 0.522773i \(-0.175102\pi\)
\(102\) 0 0
\(103\) 86.9818 0.844484 0.422242 0.906483i \(-0.361243\pi\)
0.422242 + 0.906483i \(0.361243\pi\)
\(104\) 2.57106i 0.0247217i
\(105\) 0 0
\(106\) 71.1831 0.671539
\(107\) 24.5062i 0.229030i 0.993422 + 0.114515i \(0.0365313\pi\)
−0.993422 + 0.114515i \(0.963469\pi\)
\(108\) 0 0
\(109\) −33.5716 −0.307996 −0.153998 0.988071i \(-0.549215\pi\)
−0.153998 + 0.988071i \(0.549215\pi\)
\(110\) − 171.405i − 1.55823i
\(111\) 0 0
\(112\) −3.60400 −0.0321786
\(113\) 122.011i 1.07975i 0.841747 + 0.539873i \(0.181528\pi\)
−0.841747 + 0.539873i \(0.818472\pi\)
\(114\) 0 0
\(115\) 257.018 2.23494
\(116\) − 113.148i − 0.975414i
\(117\) 0 0
\(118\) 94.3652 0.799705
\(119\) 11.0980i 0.0932602i
\(120\) 0 0
\(121\) −118.541 −0.979679
\(122\) 34.6873i 0.284322i
\(123\) 0 0
\(124\) 99.0851 0.799073
\(125\) 88.6871i 0.709497i
\(126\) 0 0
\(127\) 104.463 0.822541 0.411271 0.911513i \(-0.365085\pi\)
0.411271 + 0.911513i \(0.365085\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) −10.0670 −0.0774387
\(131\) 0.914037i 0.00697738i 0.999994 + 0.00348869i \(0.00111049\pi\)
−0.999994 + 0.00348869i \(0.998890\pi\)
\(132\) 0 0
\(133\) −9.74195 −0.0732477
\(134\) − 92.2372i − 0.688337i
\(135\) 0 0
\(136\) 34.8388 0.256168
\(137\) 14.0527i 0.102575i 0.998684 + 0.0512874i \(0.0163324\pi\)
−0.998684 + 0.0512874i \(0.983668\pi\)
\(138\) 0 0
\(139\) 186.126 1.33903 0.669516 0.742797i \(-0.266501\pi\)
0.669516 + 0.742797i \(0.266501\pi\)
\(140\) − 14.1115i − 0.100797i
\(141\) 0 0
\(142\) −39.9261 −0.281169
\(143\) 14.0688i 0.0983833i
\(144\) 0 0
\(145\) 443.033 3.05540
\(146\) − 30.4792i − 0.208762i
\(147\) 0 0
\(148\) −69.7669 −0.471398
\(149\) 126.786i 0.850911i 0.904979 + 0.425456i \(0.139886\pi\)
−0.904979 + 0.425456i \(0.860114\pi\)
\(150\) 0 0
\(151\) −137.434 −0.910158 −0.455079 0.890451i \(-0.650389\pi\)
−0.455079 + 0.890451i \(0.650389\pi\)
\(152\) 30.5820i 0.201197i
\(153\) 0 0
\(154\) −19.7210 −0.128059
\(155\) 387.969i 2.50303i
\(156\) 0 0
\(157\) 23.2456 0.148061 0.0740306 0.997256i \(-0.476414\pi\)
0.0740306 + 0.997256i \(0.476414\pi\)
\(158\) − 40.9714i − 0.259313i
\(159\) 0 0
\(160\) −44.2990 −0.276869
\(161\) − 29.5712i − 0.183672i
\(162\) 0 0
\(163\) 157.977 0.969187 0.484593 0.874740i \(-0.338968\pi\)
0.484593 + 0.874740i \(0.338968\pi\)
\(164\) − 71.6272i − 0.436752i
\(165\) 0 0
\(166\) −0.210516 −0.00126817
\(167\) − 94.5113i − 0.565936i −0.959129 0.282968i \(-0.908681\pi\)
0.959129 0.282968i \(-0.0913190\pi\)
\(168\) 0 0
\(169\) −168.174 −0.995111
\(170\) 136.412i 0.802423i
\(171\) 0 0
\(172\) −83.0258 −0.482708
\(173\) 290.466i 1.67899i 0.543365 + 0.839496i \(0.317150\pi\)
−0.543365 + 0.839496i \(0.682850\pi\)
\(174\) 0 0
\(175\) 32.7289 0.187022
\(176\) 61.9085i 0.351753i
\(177\) 0 0
\(178\) −129.498 −0.727515
\(179\) − 11.1409i − 0.0622399i −0.999516 0.0311200i \(-0.990093\pi\)
0.999516 0.0311200i \(-0.00990739\pi\)
\(180\) 0 0
\(181\) 190.553 1.05278 0.526389 0.850244i \(-0.323546\pi\)
0.526389 + 0.850244i \(0.323546\pi\)
\(182\) 1.15826i 0.00636408i
\(183\) 0 0
\(184\) −92.8301 −0.504512
\(185\) − 273.173i − 1.47661i
\(186\) 0 0
\(187\) 190.638 1.01945
\(188\) 49.5194i 0.263401i
\(189\) 0 0
\(190\) −119.744 −0.630233
\(191\) 17.1446i 0.0897623i 0.998992 + 0.0448812i \(0.0142909\pi\)
−0.998992 + 0.0448812i \(0.985709\pi\)
\(192\) 0 0
\(193\) 154.166 0.798789 0.399395 0.916779i \(-0.369220\pi\)
0.399395 + 0.916779i \(0.369220\pi\)
\(194\) 142.116i 0.732557i
\(195\) 0 0
\(196\) 96.3764 0.491716
\(197\) 123.799i 0.628423i 0.949353 + 0.314211i \(0.101740\pi\)
−0.949353 + 0.314211i \(0.898260\pi\)
\(198\) 0 0
\(199\) 234.477 1.17828 0.589139 0.808032i \(-0.299467\pi\)
0.589139 + 0.808032i \(0.299467\pi\)
\(200\) − 102.743i − 0.513714i
\(201\) 0 0
\(202\) −149.341 −0.739313
\(203\) − 50.9732i − 0.251099i
\(204\) 0 0
\(205\) 280.458 1.36809
\(206\) − 123.011i − 0.597140i
\(207\) 0 0
\(208\) 3.63603 0.0174809
\(209\) 167.344i 0.800691i
\(210\) 0 0
\(211\) −53.2662 −0.252446 −0.126223 0.992002i \(-0.540286\pi\)
−0.126223 + 0.992002i \(0.540286\pi\)
\(212\) − 100.668i − 0.474850i
\(213\) 0 0
\(214\) 34.6569 0.161948
\(215\) − 325.089i − 1.51204i
\(216\) 0 0
\(217\) 44.6378 0.205704
\(218\) 47.4774i 0.217786i
\(219\) 0 0
\(220\) −242.404 −1.10183
\(221\) − 11.1966i − 0.0506633i
\(222\) 0 0
\(223\) −59.9197 −0.268698 −0.134349 0.990934i \(-0.542894\pi\)
−0.134349 + 0.990934i \(0.542894\pi\)
\(224\) 5.09683i 0.0227537i
\(225\) 0 0
\(226\) 172.550 0.763495
\(227\) 63.6721i 0.280494i 0.990117 + 0.140247i \(0.0447896\pi\)
−0.990117 + 0.140247i \(0.955210\pi\)
\(228\) 0 0
\(229\) 214.125 0.935043 0.467522 0.883982i \(-0.345147\pi\)
0.467522 + 0.883982i \(0.345147\pi\)
\(230\) − 363.478i − 1.58034i
\(231\) 0 0
\(232\) −160.015 −0.689722
\(233\) 215.572i 0.925202i 0.886567 + 0.462601i \(0.153084\pi\)
−0.886567 + 0.462601i \(0.846916\pi\)
\(234\) 0 0
\(235\) −193.894 −0.825081
\(236\) − 133.453i − 0.565477i
\(237\) 0 0
\(238\) 15.6949 0.0659449
\(239\) − 41.8403i − 0.175064i −0.996162 0.0875319i \(-0.972102\pi\)
0.996162 0.0875319i \(-0.0278980\pi\)
\(240\) 0 0
\(241\) −448.318 −1.86024 −0.930120 0.367255i \(-0.880297\pi\)
−0.930120 + 0.367255i \(0.880297\pi\)
\(242\) 167.643i 0.692738i
\(243\) 0 0
\(244\) 49.0553 0.201046
\(245\) 377.363i 1.54026i
\(246\) 0 0
\(247\) 9.82852 0.0397916
\(248\) − 140.127i − 0.565030i
\(249\) 0 0
\(250\) 125.422 0.501690
\(251\) − 256.659i − 1.02254i −0.859419 0.511272i \(-0.829174\pi\)
0.859419 0.511272i \(-0.170826\pi\)
\(252\) 0 0
\(253\) −507.965 −2.00777
\(254\) − 147.733i − 0.581624i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 392.701i − 1.52802i −0.645204 0.764010i \(-0.723228\pi\)
0.645204 0.764010i \(-0.276772\pi\)
\(258\) 0 0
\(259\) −31.4300 −0.121351
\(260\) 14.2369i 0.0547574i
\(261\) 0 0
\(262\) 1.29264 0.00493375
\(263\) 122.789i 0.466879i 0.972371 + 0.233439i \(0.0749980\pi\)
−0.972371 + 0.233439i \(0.925002\pi\)
\(264\) 0 0
\(265\) 394.168 1.48742
\(266\) 13.7772i 0.0517940i
\(267\) 0 0
\(268\) −130.443 −0.486728
\(269\) 392.295i 1.45835i 0.684329 + 0.729173i \(0.260095\pi\)
−0.684329 + 0.729173i \(0.739905\pi\)
\(270\) 0 0
\(271\) −43.9569 −0.162203 −0.0811013 0.996706i \(-0.525844\pi\)
−0.0811013 + 0.996706i \(0.525844\pi\)
\(272\) − 49.2695i − 0.181138i
\(273\) 0 0
\(274\) 19.8736 0.0725313
\(275\) − 562.208i − 2.04439i
\(276\) 0 0
\(277\) −330.720 −1.19393 −0.596967 0.802266i \(-0.703628\pi\)
−0.596967 + 0.802266i \(0.703628\pi\)
\(278\) − 263.221i − 0.946839i
\(279\) 0 0
\(280\) −19.9567 −0.0712740
\(281\) 256.143i 0.911541i 0.890097 + 0.455770i \(0.150636\pi\)
−0.890097 + 0.455770i \(0.849364\pi\)
\(282\) 0 0
\(283\) −155.754 −0.550368 −0.275184 0.961392i \(-0.588739\pi\)
−0.275184 + 0.961392i \(0.588739\pi\)
\(284\) 56.4640i 0.198817i
\(285\) 0 0
\(286\) 19.8963 0.0695675
\(287\) − 32.2681i − 0.112432i
\(288\) 0 0
\(289\) 137.282 0.475025
\(290\) − 626.543i − 2.16049i
\(291\) 0 0
\(292\) −43.1042 −0.147617
\(293\) 204.468i 0.697844i 0.937152 + 0.348922i \(0.113452\pi\)
−0.937152 + 0.348922i \(0.886548\pi\)
\(294\) 0 0
\(295\) 522.536 1.77131
\(296\) 98.6652i 0.333328i
\(297\) 0 0
\(298\) 179.302 0.601685
\(299\) 29.8340i 0.0997792i
\(300\) 0 0
\(301\) −37.4031 −0.124263
\(302\) 194.361i 0.643579i
\(303\) 0 0
\(304\) 43.2495 0.142268
\(305\) 192.077i 0.629760i
\(306\) 0 0
\(307\) −569.912 −1.85639 −0.928196 0.372092i \(-0.878641\pi\)
−0.928196 + 0.372092i \(0.878641\pi\)
\(308\) 27.8898i 0.0905512i
\(309\) 0 0
\(310\) 548.671 1.76991
\(311\) 447.063i 1.43750i 0.695268 + 0.718751i \(0.255286\pi\)
−0.695268 + 0.718751i \(0.744714\pi\)
\(312\) 0 0
\(313\) −291.215 −0.930400 −0.465200 0.885206i \(-0.654018\pi\)
−0.465200 + 0.885206i \(0.654018\pi\)
\(314\) − 32.8743i − 0.104695i
\(315\) 0 0
\(316\) −57.9423 −0.183362
\(317\) − 337.389i − 1.06432i −0.846644 0.532160i \(-0.821381\pi\)
0.846644 0.532160i \(-0.178619\pi\)
\(318\) 0 0
\(319\) −875.603 −2.74484
\(320\) 62.6483i 0.195776i
\(321\) 0 0
\(322\) −41.8200 −0.129876
\(323\) − 133.180i − 0.412322i
\(324\) 0 0
\(325\) −33.0197 −0.101599
\(326\) − 223.414i − 0.685318i
\(327\) 0 0
\(328\) −101.296 −0.308830
\(329\) 22.3085i 0.0678070i
\(330\) 0 0
\(331\) 152.413 0.460463 0.230232 0.973136i \(-0.426052\pi\)
0.230232 + 0.973136i \(0.426052\pi\)
\(332\) 0.297714i 0 0.000896729i
\(333\) 0 0
\(334\) −133.659 −0.400177
\(335\) − 510.752i − 1.52463i
\(336\) 0 0
\(337\) −233.503 −0.692888 −0.346444 0.938071i \(-0.612611\pi\)
−0.346444 + 0.938071i \(0.612611\pi\)
\(338\) 237.834i 0.703650i
\(339\) 0 0
\(340\) 192.916 0.567399
\(341\) − 766.776i − 2.24861i
\(342\) 0 0
\(343\) 87.5666 0.255296
\(344\) 117.416i 0.341326i
\(345\) 0 0
\(346\) 410.781 1.18723
\(347\) 636.694i 1.83485i 0.397904 + 0.917427i \(0.369738\pi\)
−0.397904 + 0.917427i \(0.630262\pi\)
\(348\) 0 0
\(349\) −285.701 −0.818626 −0.409313 0.912394i \(-0.634232\pi\)
−0.409313 + 0.912394i \(0.634232\pi\)
\(350\) − 46.2857i − 0.132245i
\(351\) 0 0
\(352\) 87.5518 0.248727
\(353\) − 327.867i − 0.928801i −0.885625 0.464401i \(-0.846270\pi\)
0.885625 0.464401i \(-0.153730\pi\)
\(354\) 0 0
\(355\) −221.086 −0.622776
\(356\) 183.137i 0.514431i
\(357\) 0 0
\(358\) −15.7557 −0.0440103
\(359\) 559.400i 1.55822i 0.626889 + 0.779109i \(0.284328\pi\)
−0.626889 + 0.779109i \(0.715672\pi\)
\(360\) 0 0
\(361\) −244.093 −0.676157
\(362\) − 269.482i − 0.744426i
\(363\) 0 0
\(364\) 1.63803 0.00450008
\(365\) − 168.775i − 0.462397i
\(366\) 0 0
\(367\) 479.700 1.30709 0.653543 0.756890i \(-0.273282\pi\)
0.653543 + 0.756890i \(0.273282\pi\)
\(368\) 131.282i 0.356744i
\(369\) 0 0
\(370\) −386.325 −1.04412
\(371\) − 45.3510i − 0.122240i
\(372\) 0 0
\(373\) 343.949 0.922116 0.461058 0.887370i \(-0.347470\pi\)
0.461058 + 0.887370i \(0.347470\pi\)
\(374\) − 269.602i − 0.720862i
\(375\) 0 0
\(376\) 70.0310 0.186253
\(377\) 51.4262i 0.136409i
\(378\) 0 0
\(379\) −104.156 −0.274817 −0.137408 0.990514i \(-0.543877\pi\)
−0.137408 + 0.990514i \(0.543877\pi\)
\(380\) 169.344i 0.445642i
\(381\) 0 0
\(382\) 24.2461 0.0634716
\(383\) − 64.8710i − 0.169376i −0.996408 0.0846880i \(-0.973011\pi\)
0.996408 0.0846880i \(-0.0269894\pi\)
\(384\) 0 0
\(385\) −109.203 −0.283644
\(386\) − 218.024i − 0.564829i
\(387\) 0 0
\(388\) 200.982 0.517996
\(389\) − 235.949i − 0.606554i −0.952903 0.303277i \(-0.901919\pi\)
0.952903 0.303277i \(-0.0980807\pi\)
\(390\) 0 0
\(391\) 404.261 1.03392
\(392\) − 136.297i − 0.347696i
\(393\) 0 0
\(394\) 175.079 0.444362
\(395\) − 226.874i − 0.574365i
\(396\) 0 0
\(397\) 5.18698 0.0130654 0.00653272 0.999979i \(-0.497921\pi\)
0.00653272 + 0.999979i \(0.497921\pi\)
\(398\) − 331.601i − 0.833168i
\(399\) 0 0
\(400\) −145.300 −0.363251
\(401\) − 160.833i − 0.401079i −0.979686 0.200539i \(-0.935731\pi\)
0.979686 0.200539i \(-0.0642694\pi\)
\(402\) 0 0
\(403\) −45.0345 −0.111748
\(404\) 211.200i 0.522773i
\(405\) 0 0
\(406\) −72.0870 −0.177554
\(407\) 539.895i 1.32652i
\(408\) 0 0
\(409\) −172.597 −0.421997 −0.210999 0.977486i \(-0.567672\pi\)
−0.210999 + 0.977486i \(0.567672\pi\)
\(410\) − 396.627i − 0.967383i
\(411\) 0 0
\(412\) −173.964 −0.422242
\(413\) − 60.1204i − 0.145570i
\(414\) 0 0
\(415\) −1.16570 −0.00280893
\(416\) − 5.14212i − 0.0123609i
\(417\) 0 0
\(418\) 236.661 0.566174
\(419\) − 286.337i − 0.683382i −0.939812 0.341691i \(-0.889000\pi\)
0.939812 0.341691i \(-0.111000\pi\)
\(420\) 0 0
\(421\) 673.943 1.60081 0.800407 0.599457i \(-0.204617\pi\)
0.800407 + 0.599457i \(0.204617\pi\)
\(422\) 75.3298i 0.178507i
\(423\) 0 0
\(424\) −142.366 −0.335769
\(425\) 447.430i 1.05278i
\(426\) 0 0
\(427\) 22.0994 0.0517551
\(428\) − 49.0123i − 0.114515i
\(429\) 0 0
\(430\) −459.745 −1.06918
\(431\) − 539.138i − 1.25090i −0.780264 0.625450i \(-0.784915\pi\)
0.780264 0.625450i \(-0.215085\pi\)
\(432\) 0 0
\(433\) −802.991 −1.85448 −0.927241 0.374466i \(-0.877826\pi\)
−0.927241 + 0.374466i \(0.877826\pi\)
\(434\) − 63.1274i − 0.145455i
\(435\) 0 0
\(436\) 67.1432 0.153998
\(437\) 354.867i 0.812051i
\(438\) 0 0
\(439\) −78.2242 −0.178187 −0.0890936 0.996023i \(-0.528397\pi\)
−0.0890936 + 0.996023i \(0.528397\pi\)
\(440\) 342.811i 0.779115i
\(441\) 0 0
\(442\) −15.8344 −0.0358243
\(443\) 546.293i 1.23317i 0.787289 + 0.616584i \(0.211484\pi\)
−0.787289 + 0.616584i \(0.788516\pi\)
\(444\) 0 0
\(445\) −717.077 −1.61141
\(446\) 84.7392i 0.189998i
\(447\) 0 0
\(448\) 7.20800 0.0160893
\(449\) 683.977i 1.52333i 0.647968 + 0.761667i \(0.275619\pi\)
−0.647968 + 0.761667i \(0.724381\pi\)
\(450\) 0 0
\(451\) −554.292 −1.22903
\(452\) − 244.022i − 0.539873i
\(453\) 0 0
\(454\) 90.0459 0.198339
\(455\) 6.41374i 0.0140961i
\(456\) 0 0
\(457\) 85.8233 0.187797 0.0938985 0.995582i \(-0.470067\pi\)
0.0938985 + 0.995582i \(0.470067\pi\)
\(458\) − 302.818i − 0.661175i
\(459\) 0 0
\(460\) −514.035 −1.11747
\(461\) 5.69970i 0.0123638i 0.999981 + 0.00618189i \(0.00196777\pi\)
−0.999981 + 0.00618189i \(0.998032\pi\)
\(462\) 0 0
\(463\) −322.522 −0.696592 −0.348296 0.937385i \(-0.613240\pi\)
−0.348296 + 0.937385i \(0.613240\pi\)
\(464\) 226.296i 0.487707i
\(465\) 0 0
\(466\) 304.865 0.654216
\(467\) 37.8579i 0.0810662i 0.999178 + 0.0405331i \(0.0129056\pi\)
−0.999178 + 0.0405331i \(0.987094\pi\)
\(468\) 0 0
\(469\) −58.7646 −0.125298
\(470\) 274.208i 0.583421i
\(471\) 0 0
\(472\) −188.730 −0.399853
\(473\) 642.500i 1.35835i
\(474\) 0 0
\(475\) −392.760 −0.826864
\(476\) − 22.1959i − 0.0466301i
\(477\) 0 0
\(478\) −59.1711 −0.123789
\(479\) 717.727i 1.49839i 0.662351 + 0.749193i \(0.269559\pi\)
−0.662351 + 0.749193i \(0.730441\pi\)
\(480\) 0 0
\(481\) 31.7093 0.0659236
\(482\) 634.017i 1.31539i
\(483\) 0 0
\(484\) 237.082 0.489840
\(485\) 786.950i 1.62258i
\(486\) 0 0
\(487\) 52.1558 0.107096 0.0535480 0.998565i \(-0.482947\pi\)
0.0535480 + 0.998565i \(0.482947\pi\)
\(488\) − 69.3747i − 0.142161i
\(489\) 0 0
\(490\) 533.672 1.08913
\(491\) 79.0118i 0.160920i 0.996758 + 0.0804600i \(0.0256389\pi\)
−0.996758 + 0.0804600i \(0.974361\pi\)
\(492\) 0 0
\(493\) 696.844 1.41348
\(494\) − 13.8996i − 0.0281369i
\(495\) 0 0
\(496\) −198.170 −0.399537
\(497\) 25.4370i 0.0511811i
\(498\) 0 0
\(499\) −29.7879 −0.0596952 −0.0298476 0.999554i \(-0.509502\pi\)
−0.0298476 + 0.999554i \(0.509502\pi\)
\(500\) − 177.374i − 0.354748i
\(501\) 0 0
\(502\) −362.970 −0.723048
\(503\) 168.679i 0.335345i 0.985843 + 0.167673i \(0.0536252\pi\)
−0.985843 + 0.167673i \(0.946375\pi\)
\(504\) 0 0
\(505\) −826.958 −1.63754
\(506\) 718.372i 1.41971i
\(507\) 0 0
\(508\) −208.925 −0.411271
\(509\) − 348.472i − 0.684621i −0.939587 0.342310i \(-0.888791\pi\)
0.939587 0.342310i \(-0.111209\pi\)
\(510\) 0 0
\(511\) −19.4184 −0.0380008
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −555.364 −1.08047
\(515\) − 681.158i − 1.32264i
\(516\) 0 0
\(517\) 383.209 0.741217
\(518\) 44.4487i 0.0858083i
\(519\) 0 0
\(520\) 20.1341 0.0387193
\(521\) − 110.818i − 0.212702i −0.994329 0.106351i \(-0.966083\pi\)
0.994329 0.106351i \(-0.0339167\pi\)
\(522\) 0 0
\(523\) −560.394 −1.07150 −0.535750 0.844377i \(-0.679971\pi\)
−0.535750 + 0.844377i \(0.679971\pi\)
\(524\) − 1.82807i − 0.00348869i
\(525\) 0 0
\(526\) 173.650 0.330133
\(527\) 610.234i 1.15794i
\(528\) 0 0
\(529\) −548.179 −1.03626
\(530\) − 557.437i − 1.05177i
\(531\) 0 0
\(532\) 19.4839 0.0366239
\(533\) 32.5548i 0.0610785i
\(534\) 0 0
\(535\) 191.909 0.358708
\(536\) 184.474i 0.344169i
\(537\) 0 0
\(538\) 554.789 1.03121
\(539\) − 745.814i − 1.38370i
\(540\) 0 0
\(541\) −313.055 −0.578660 −0.289330 0.957229i \(-0.593433\pi\)
−0.289330 + 0.957229i \(0.593433\pi\)
\(542\) 62.1645i 0.114695i
\(543\) 0 0
\(544\) −69.6776 −0.128084
\(545\) 262.900i 0.482386i
\(546\) 0 0
\(547\) −736.583 −1.34659 −0.673293 0.739375i \(-0.735121\pi\)
−0.673293 + 0.739375i \(0.735121\pi\)
\(548\) − 28.1055i − 0.0512874i
\(549\) 0 0
\(550\) −795.082 −1.44560
\(551\) 611.699i 1.11016i
\(552\) 0 0
\(553\) −26.1030 −0.0472026
\(554\) 467.708i 0.844238i
\(555\) 0 0
\(556\) −372.251 −0.669516
\(557\) 638.093i 1.14559i 0.819699 + 0.572794i \(0.194141\pi\)
−0.819699 + 0.572794i \(0.805859\pi\)
\(558\) 0 0
\(559\) 37.7355 0.0675054
\(560\) 28.2230i 0.0503983i
\(561\) 0 0
\(562\) 362.241 0.644557
\(563\) − 348.761i − 0.619469i −0.950823 0.309734i \(-0.899760\pi\)
0.950823 0.309734i \(-0.100240\pi\)
\(564\) 0 0
\(565\) 955.474 1.69110
\(566\) 220.270i 0.389169i
\(567\) 0 0
\(568\) 79.8521 0.140585
\(569\) 547.210i 0.961705i 0.876802 + 0.480852i \(0.159673\pi\)
−0.876802 + 0.480852i \(0.840327\pi\)
\(570\) 0 0
\(571\) 697.589 1.22170 0.610849 0.791747i \(-0.290828\pi\)
0.610849 + 0.791747i \(0.290828\pi\)
\(572\) − 28.1376i − 0.0491916i
\(573\) 0 0
\(574\) −45.6340 −0.0795017
\(575\) − 1192.20i − 2.07340i
\(576\) 0 0
\(577\) 387.767 0.672040 0.336020 0.941855i \(-0.390919\pi\)
0.336020 + 0.941855i \(0.390919\pi\)
\(578\) − 194.146i − 0.335893i
\(579\) 0 0
\(580\) −886.066 −1.52770
\(581\) 0.134120i 0 0.000230844i
\(582\) 0 0
\(583\) −779.026 −1.33624
\(584\) 60.9585i 0.104381i
\(585\) 0 0
\(586\) 289.162 0.493450
\(587\) − 357.223i − 0.608556i −0.952583 0.304278i \(-0.901585\pi\)
0.952583 0.304278i \(-0.0984152\pi\)
\(588\) 0 0
\(589\) −535.672 −0.909461
\(590\) − 738.977i − 1.25250i
\(591\) 0 0
\(592\) 139.534 0.235699
\(593\) 828.411i 1.39698i 0.715618 + 0.698492i \(0.246145\pi\)
−0.715618 + 0.698492i \(0.753855\pi\)
\(594\) 0 0
\(595\) 86.9085 0.146065
\(596\) − 253.572i − 0.425456i
\(597\) 0 0
\(598\) 42.1916 0.0705545
\(599\) 876.695i 1.46360i 0.681521 + 0.731799i \(0.261319\pi\)
−0.681521 + 0.731799i \(0.738681\pi\)
\(600\) 0 0
\(601\) 819.381 1.36336 0.681682 0.731649i \(-0.261249\pi\)
0.681682 + 0.731649i \(0.261249\pi\)
\(602\) 52.8960i 0.0878672i
\(603\) 0 0
\(604\) 274.868 0.455079
\(605\) 928.300i 1.53438i
\(606\) 0 0
\(607\) 579.308 0.954379 0.477190 0.878800i \(-0.341655\pi\)
0.477190 + 0.878800i \(0.341655\pi\)
\(608\) − 61.1640i − 0.100599i
\(609\) 0 0
\(610\) 271.638 0.445308
\(611\) − 22.5067i − 0.0368359i
\(612\) 0 0
\(613\) 327.562 0.534359 0.267179 0.963647i \(-0.413908\pi\)
0.267179 + 0.963647i \(0.413908\pi\)
\(614\) 805.978i 1.31267i
\(615\) 0 0
\(616\) 39.4421 0.0640294
\(617\) 1066.42i 1.72840i 0.503148 + 0.864201i \(0.332175\pi\)
−0.503148 + 0.864201i \(0.667825\pi\)
\(618\) 0 0
\(619\) −889.551 −1.43708 −0.718539 0.695487i \(-0.755189\pi\)
−0.718539 + 0.695487i \(0.755189\pi\)
\(620\) − 775.938i − 1.25151i
\(621\) 0 0
\(622\) 632.242 1.01647
\(623\) 82.5033i 0.132429i
\(624\) 0 0
\(625\) −213.616 −0.341785
\(626\) 411.840i 0.657892i
\(627\) 0 0
\(628\) −46.4912 −0.0740306
\(629\) − 429.672i − 0.683104i
\(630\) 0 0
\(631\) 954.681 1.51297 0.756483 0.654014i \(-0.226916\pi\)
0.756483 + 0.654014i \(0.226916\pi\)
\(632\) 81.9428i 0.129656i
\(633\) 0 0
\(634\) −477.140 −0.752587
\(635\) − 818.051i − 1.28827i
\(636\) 0 0
\(637\) −43.8034 −0.0687652
\(638\) 1238.29i 1.94089i
\(639\) 0 0
\(640\) 88.5980 0.138434
\(641\) − 709.946i − 1.10756i −0.832663 0.553780i \(-0.813185\pi\)
0.832663 0.553780i \(-0.186815\pi\)
\(642\) 0 0
\(643\) 49.6295 0.0771842 0.0385921 0.999255i \(-0.487713\pi\)
0.0385921 + 0.999255i \(0.487713\pi\)
\(644\) 59.1424i 0.0918360i
\(645\) 0 0
\(646\) −188.345 −0.291556
\(647\) − 918.622i − 1.41982i −0.704294 0.709909i \(-0.748736\pi\)
0.704294 0.709909i \(-0.251264\pi\)
\(648\) 0 0
\(649\) −1032.73 −1.59126
\(650\) 46.6970i 0.0718415i
\(651\) 0 0
\(652\) −315.955 −0.484593
\(653\) 347.677i 0.532430i 0.963914 + 0.266215i \(0.0857731\pi\)
−0.963914 + 0.266215i \(0.914227\pi\)
\(654\) 0 0
\(655\) 7.15785 0.0109280
\(656\) 143.254i 0.218376i
\(657\) 0 0
\(658\) 31.5490 0.0479468
\(659\) − 1282.98i − 1.94685i −0.228999 0.973427i \(-0.573545\pi\)
0.228999 0.973427i \(-0.426455\pi\)
\(660\) 0 0
\(661\) 134.467 0.203430 0.101715 0.994814i \(-0.467567\pi\)
0.101715 + 0.994814i \(0.467567\pi\)
\(662\) − 215.545i − 0.325597i
\(663\) 0 0
\(664\) 0.421031 0.000634083 0
\(665\) 76.2895i 0.114721i
\(666\) 0 0
\(667\) −1856.78 −2.78378
\(668\) 189.023i 0.282968i
\(669\) 0 0
\(670\) −722.313 −1.07808
\(671\) − 379.617i − 0.565749i
\(672\) 0 0
\(673\) −556.202 −0.826451 −0.413226 0.910629i \(-0.635598\pi\)
−0.413226 + 0.910629i \(0.635598\pi\)
\(674\) 330.223i 0.489946i
\(675\) 0 0
\(676\) 336.347 0.497555
\(677\) − 341.527i − 0.504472i −0.967666 0.252236i \(-0.918834\pi\)
0.967666 0.252236i \(-0.0811659\pi\)
\(678\) 0 0
\(679\) 90.5426 0.133347
\(680\) − 272.824i − 0.401212i
\(681\) 0 0
\(682\) −1084.38 −1.59001
\(683\) 209.738i 0.307084i 0.988142 + 0.153542i \(0.0490680\pi\)
−0.988142 + 0.153542i \(0.950932\pi\)
\(684\) 0 0
\(685\) 110.047 0.160653
\(686\) − 123.838i − 0.180522i
\(687\) 0 0
\(688\) 166.052 0.241354
\(689\) 45.7540i 0.0664064i
\(690\) 0 0
\(691\) −291.333 −0.421611 −0.210805 0.977528i \(-0.567609\pi\)
−0.210805 + 0.977528i \(0.567609\pi\)
\(692\) − 580.931i − 0.839496i
\(693\) 0 0
\(694\) 900.422 1.29744
\(695\) − 1457.56i − 2.09720i
\(696\) 0 0
\(697\) 441.130 0.632898
\(698\) 404.042i 0.578856i
\(699\) 0 0
\(700\) −65.4578 −0.0935111
\(701\) 445.528i 0.635560i 0.948164 + 0.317780i \(0.102937\pi\)
−0.948164 + 0.317780i \(0.897063\pi\)
\(702\) 0 0
\(703\) 377.173 0.536519
\(704\) − 123.817i − 0.175876i
\(705\) 0 0
\(706\) −463.674 −0.656762
\(707\) 95.1457i 0.134577i
\(708\) 0 0
\(709\) −146.607 −0.206780 −0.103390 0.994641i \(-0.532969\pi\)
−0.103390 + 0.994641i \(0.532969\pi\)
\(710\) 312.662i 0.440369i
\(711\) 0 0
\(712\) 258.995 0.363757
\(713\) − 1626.01i − 2.28051i
\(714\) 0 0
\(715\) 110.173 0.154089
\(716\) 22.2819i 0.0311200i
\(717\) 0 0
\(718\) 791.111 1.10183
\(719\) − 511.293i − 0.711117i −0.934654 0.355559i \(-0.884291\pi\)
0.934654 0.355559i \(-0.115709\pi\)
\(720\) 0 0
\(721\) −78.3706 −0.108697
\(722\) 345.199i 0.478115i
\(723\) 0 0
\(724\) −381.105 −0.526389
\(725\) − 2055.06i − 2.83456i
\(726\) 0 0
\(727\) 248.843 0.342287 0.171143 0.985246i \(-0.445254\pi\)
0.171143 + 0.985246i \(0.445254\pi\)
\(728\) − 2.31653i − 0.00318204i
\(729\) 0 0
\(730\) −238.684 −0.326964
\(731\) − 511.330i − 0.699494i
\(732\) 0 0
\(733\) 843.120 1.15023 0.575116 0.818072i \(-0.304957\pi\)
0.575116 + 0.818072i \(0.304957\pi\)
\(734\) − 678.399i − 0.924249i
\(735\) 0 0
\(736\) 185.660 0.252256
\(737\) 1009.44i 1.36966i
\(738\) 0 0
\(739\) −679.277 −0.919184 −0.459592 0.888130i \(-0.652004\pi\)
−0.459592 + 0.888130i \(0.652004\pi\)
\(740\) 546.347i 0.738306i
\(741\) 0 0
\(742\) −64.1360 −0.0864366
\(743\) − 629.416i − 0.847128i −0.905866 0.423564i \(-0.860779\pi\)
0.905866 0.423564i \(-0.139221\pi\)
\(744\) 0 0
\(745\) 992.864 1.33270
\(746\) − 486.418i − 0.652035i
\(747\) 0 0
\(748\) −381.275 −0.509726
\(749\) − 22.0801i − 0.0294794i
\(750\) 0 0
\(751\) 713.489 0.950052 0.475026 0.879972i \(-0.342439\pi\)
0.475026 + 0.879972i \(0.342439\pi\)
\(752\) − 99.0388i − 0.131701i
\(753\) 0 0
\(754\) 72.7276 0.0964557
\(755\) 1076.25i 1.42550i
\(756\) 0 0
\(757\) 1327.86 1.75411 0.877055 0.480390i \(-0.159505\pi\)
0.877055 + 0.480390i \(0.159505\pi\)
\(758\) 147.298i 0.194325i
\(759\) 0 0
\(760\) 239.489 0.315117
\(761\) − 942.331i − 1.23828i −0.785281 0.619140i \(-0.787481\pi\)
0.785281 0.619140i \(-0.212519\pi\)
\(762\) 0 0
\(763\) 30.2480 0.0396435
\(764\) − 34.2892i − 0.0448812i
\(765\) 0 0
\(766\) −91.7415 −0.119767
\(767\) 60.6547i 0.0790804i
\(768\) 0 0
\(769\) 1063.98 1.38359 0.691793 0.722096i \(-0.256821\pi\)
0.691793 + 0.722096i \(0.256821\pi\)
\(770\) 154.436i 0.200566i
\(771\) 0 0
\(772\) −308.333 −0.399395
\(773\) − 289.008i − 0.373879i −0.982371 0.186939i \(-0.940143\pi\)
0.982371 0.186939i \(-0.0598568\pi\)
\(774\) 0 0
\(775\) 1799.64 2.32211
\(776\) − 284.232i − 0.366279i
\(777\) 0 0
\(778\) −333.683 −0.428898
\(779\) 387.230i 0.497086i
\(780\) 0 0
\(781\) 436.950 0.559475
\(782\) − 571.712i − 0.731090i
\(783\) 0 0
\(784\) −192.753 −0.245858
\(785\) − 182.037i − 0.231895i
\(786\) 0 0
\(787\) −669.765 −0.851036 −0.425518 0.904950i \(-0.639908\pi\)
−0.425518 + 0.904950i \(0.639908\pi\)
\(788\) − 247.599i − 0.314211i
\(789\) 0 0
\(790\) −320.849 −0.406137
\(791\) − 109.932i − 0.138979i
\(792\) 0 0
\(793\) −22.2958 −0.0281158
\(794\) − 7.33550i − 0.00923867i
\(795\) 0 0
\(796\) −468.955 −0.589139
\(797\) − 281.788i − 0.353561i −0.984250 0.176781i \(-0.943432\pi\)
0.984250 0.176781i \(-0.0565683\pi\)
\(798\) 0 0
\(799\) −304.975 −0.381696
\(800\) 205.486i 0.256857i
\(801\) 0 0
\(802\) −227.452 −0.283605
\(803\) 333.564i 0.415397i
\(804\) 0 0
\(805\) −231.573 −0.287668
\(806\) 63.6884i 0.0790179i
\(807\) 0 0
\(808\) 298.682 0.369656
\(809\) − 747.542i − 0.924032i −0.886872 0.462016i \(-0.847126\pi\)
0.886872 0.462016i \(-0.152874\pi\)
\(810\) 0 0
\(811\) −1416.36 −1.74644 −0.873218 0.487330i \(-0.837971\pi\)
−0.873218 + 0.487330i \(0.837971\pi\)
\(812\) 101.946i 0.125550i
\(813\) 0 0
\(814\) 763.527 0.937994
\(815\) − 1237.13i − 1.51795i
\(816\) 0 0
\(817\) 448.853 0.549392
\(818\) 244.089i 0.298397i
\(819\) 0 0
\(820\) −560.915 −0.684043
\(821\) − 92.9879i − 0.113262i −0.998395 0.0566309i \(-0.981964\pi\)
0.998395 0.0566309i \(-0.0180358\pi\)
\(822\) 0 0
\(823\) −37.5271 −0.0455980 −0.0227990 0.999740i \(-0.507258\pi\)
−0.0227990 + 0.999740i \(0.507258\pi\)
\(824\) 246.022i 0.298570i
\(825\) 0 0
\(826\) −85.0231 −0.102933
\(827\) − 1314.39i − 1.58935i −0.607038 0.794673i \(-0.707642\pi\)
0.607038 0.794673i \(-0.292358\pi\)
\(828\) 0 0
\(829\) 55.4345 0.0668691 0.0334346 0.999441i \(-0.489355\pi\)
0.0334346 + 0.999441i \(0.489355\pi\)
\(830\) 1.64855i 0.00198621i
\(831\) 0 0
\(832\) −7.27206 −0.00874045
\(833\) 593.552i 0.712548i
\(834\) 0 0
\(835\) −740.121 −0.886373
\(836\) − 334.689i − 0.400345i
\(837\) 0 0
\(838\) −404.942 −0.483224
\(839\) − 563.657i − 0.671820i −0.941894 0.335910i \(-0.890956\pi\)
0.941894 0.335910i \(-0.109044\pi\)
\(840\) 0 0
\(841\) −2359.62 −2.80573
\(842\) − 953.099i − 1.13195i
\(843\) 0 0
\(844\) 106.532 0.126223
\(845\) 1316.97i 1.55855i
\(846\) 0 0
\(847\) 106.806 0.126099
\(848\) 201.336i 0.237425i
\(849\) 0 0
\(850\) 632.761 0.744425
\(851\) 1144.89i 1.34534i
\(852\) 0 0
\(853\) 474.801 0.556625 0.278313 0.960491i \(-0.410225\pi\)
0.278313 + 0.960491i \(0.410225\pi\)
\(854\) − 31.2533i − 0.0365964i
\(855\) 0 0
\(856\) −69.3139 −0.0809742
\(857\) − 744.299i − 0.868494i −0.900794 0.434247i \(-0.857015\pi\)
0.900794 0.434247i \(-0.142985\pi\)
\(858\) 0 0
\(859\) 417.865 0.486455 0.243228 0.969969i \(-0.421794\pi\)
0.243228 + 0.969969i \(0.421794\pi\)
\(860\) 650.178i 0.756021i
\(861\) 0 0
\(862\) −762.457 −0.884521
\(863\) 816.761i 0.946420i 0.880950 + 0.473210i \(0.156905\pi\)
−0.880950 + 0.473210i \(0.843095\pi\)
\(864\) 0 0
\(865\) 2274.65 2.62965
\(866\) 1135.60i 1.31132i
\(867\) 0 0
\(868\) −89.2756 −0.102852
\(869\) 448.390i 0.515984i
\(870\) 0 0
\(871\) 59.2868 0.0680676
\(872\) − 94.9548i − 0.108893i
\(873\) 0 0
\(874\) 501.857 0.574207
\(875\) − 79.9071i − 0.0913224i
\(876\) 0 0
\(877\) −551.919 −0.629327 −0.314663 0.949203i \(-0.601892\pi\)
−0.314663 + 0.949203i \(0.601892\pi\)
\(878\) 110.626i 0.125997i
\(879\) 0 0
\(880\) 484.807 0.550917
\(881\) 1409.72i 1.60013i 0.599910 + 0.800067i \(0.295203\pi\)
−0.599910 + 0.800067i \(0.704797\pi\)
\(882\) 0 0
\(883\) 1609.41 1.82266 0.911328 0.411680i \(-0.135058\pi\)
0.911328 + 0.411680i \(0.135058\pi\)
\(884\) 22.3932i 0.0253316i
\(885\) 0 0
\(886\) 772.575 0.871981
\(887\) 1184.61i 1.33552i 0.744376 + 0.667761i \(0.232747\pi\)
−0.744376 + 0.667761i \(0.767253\pi\)
\(888\) 0 0
\(889\) −94.1209 −0.105873
\(890\) 1014.10i 1.13944i
\(891\) 0 0
\(892\) 119.839 0.134349
\(893\) − 267.711i − 0.299789i
\(894\) 0 0
\(895\) −87.2451 −0.0974806
\(896\) − 10.1937i − 0.0113768i
\(897\) 0 0
\(898\) 967.290 1.07716
\(899\) − 2802.82i − 3.11771i
\(900\) 0 0
\(901\) 619.984 0.688106
\(902\) 783.887i 0.869054i
\(903\) 0 0
\(904\) −345.100 −0.381748
\(905\) − 1492.22i − 1.64887i
\(906\) 0 0
\(907\) 397.992 0.438801 0.219400 0.975635i \(-0.429590\pi\)
0.219400 + 0.975635i \(0.429590\pi\)
\(908\) − 127.344i − 0.140247i
\(909\) 0 0
\(910\) 9.07039 0.00996746
\(911\) 811.418i 0.890690i 0.895359 + 0.445345i \(0.146919\pi\)
−0.895359 + 0.445345i \(0.853081\pi\)
\(912\) 0 0
\(913\) 2.30388 0.00252342
\(914\) − 121.372i − 0.132793i
\(915\) 0 0
\(916\) −428.250 −0.467522
\(917\) − 0.823547i 0 0.000898089i
\(918\) 0 0
\(919\) 1571.44 1.70994 0.854972 0.518674i \(-0.173574\pi\)
0.854972 + 0.518674i \(0.173574\pi\)
\(920\) 726.956i 0.790169i
\(921\) 0 0
\(922\) 8.06059 0.00874251
\(923\) − 25.6631i − 0.0278040i
\(924\) 0 0
\(925\) −1267.14 −1.36988
\(926\) 456.115i 0.492565i
\(927\) 0 0
\(928\) 320.031 0.344861
\(929\) 517.657i 0.557219i 0.960404 + 0.278610i \(0.0898736\pi\)
−0.960404 + 0.278610i \(0.910126\pi\)
\(930\) 0 0
\(931\) −521.029 −0.559644
\(932\) − 431.144i − 0.462601i
\(933\) 0 0
\(934\) 53.5392 0.0573225
\(935\) − 1492.89i − 1.59667i
\(936\) 0 0
\(937\) 343.474 0.366568 0.183284 0.983060i \(-0.441327\pi\)
0.183284 + 0.983060i \(0.441327\pi\)
\(938\) 83.1057i 0.0885989i
\(939\) 0 0
\(940\) 387.788 0.412541
\(941\) 837.765i 0.890293i 0.895458 + 0.445146i \(0.146848\pi\)
−0.895458 + 0.445146i \(0.853152\pi\)
\(942\) 0 0
\(943\) −1175.42 −1.24647
\(944\) 266.905i 0.282738i
\(945\) 0 0
\(946\) 908.633 0.960500
\(947\) 1444.18i 1.52501i 0.646984 + 0.762504i \(0.276030\pi\)
−0.646984 + 0.762504i \(0.723970\pi\)
\(948\) 0 0
\(949\) 19.5910 0.0206438
\(950\) 555.447i 0.584681i
\(951\) 0 0
\(952\) −31.3898 −0.0329725
\(953\) 1307.20i 1.37167i 0.727757 + 0.685835i \(0.240563\pi\)
−0.727757 + 0.685835i \(0.759437\pi\)
\(954\) 0 0
\(955\) 134.260 0.140586
\(956\) 83.6805i 0.0875319i
\(957\) 0 0
\(958\) 1015.02 1.05952
\(959\) − 12.6615i − 0.0132028i
\(960\) 0 0
\(961\) 1493.46 1.55407
\(962\) − 44.8437i − 0.0466151i
\(963\) 0 0
\(964\) 896.636 0.930120
\(965\) − 1207.28i − 1.25107i
\(966\) 0 0
\(967\) 677.964 0.701101 0.350550 0.936544i \(-0.385995\pi\)
0.350550 + 0.936544i \(0.385995\pi\)
\(968\) − 335.285i − 0.346369i
\(969\) 0 0
\(970\) 1112.92 1.14734
\(971\) − 172.492i − 0.177644i −0.996048 0.0888219i \(-0.971690\pi\)
0.996048 0.0888219i \(-0.0283102\pi\)
\(972\) 0 0
\(973\) −167.699 −0.172353
\(974\) − 73.7594i − 0.0757284i
\(975\) 0 0
\(976\) −98.1106 −0.100523
\(977\) − 1647.98i − 1.68677i −0.537308 0.843386i \(-0.680559\pi\)
0.537308 0.843386i \(-0.319441\pi\)
\(978\) 0 0
\(979\) 1417.22 1.44762
\(980\) − 754.727i − 0.770129i
\(981\) 0 0
\(982\) 111.740 0.113788
\(983\) − 775.987i − 0.789407i −0.918809 0.394703i \(-0.870847\pi\)
0.918809 0.394703i \(-0.129153\pi\)
\(984\) 0 0
\(985\) 969.476 0.984240
\(986\) − 985.486i − 0.999478i
\(987\) 0 0
\(988\) −19.6570 −0.0198958
\(989\) 1362.47i 1.37762i
\(990\) 0 0
\(991\) 383.377 0.386858 0.193429 0.981114i \(-0.438039\pi\)
0.193429 + 0.981114i \(0.438039\pi\)
\(992\) 280.255i 0.282515i
\(993\) 0 0
\(994\) 35.9734 0.0361905
\(995\) − 1836.20i − 1.84543i
\(996\) 0 0
\(997\) 1548.91 1.55357 0.776787 0.629764i \(-0.216848\pi\)
0.776787 + 0.629764i \(0.216848\pi\)
\(998\) 42.1265i 0.0422109i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.3 36
3.2 odd 2 inner 1458.3.b.c.1457.34 36
27.2 odd 18 162.3.f.a.17.6 36
27.13 even 9 162.3.f.a.143.6 36
27.14 odd 18 54.3.f.a.47.1 yes 36
27.25 even 9 54.3.f.a.23.1 36
108.79 odd 18 432.3.bc.c.401.6 36
108.95 even 18 432.3.bc.c.209.6 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.23.1 36 27.25 even 9
54.3.f.a.47.1 yes 36 27.14 odd 18
162.3.f.a.17.6 36 27.2 odd 18
162.3.f.a.143.6 36 27.13 even 9
432.3.bc.c.209.6 36 108.95 even 18
432.3.bc.c.401.6 36 108.79 odd 18
1458.3.b.c.1457.3 36 1.1 even 1 trivial
1458.3.b.c.1457.34 36 3.2 odd 2 inner