Properties

Label 432.3.bc.c.353.6
Level $432$
Weight $3$
Character 432.353
Analytic conductor $11.771$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,3,Mod(65,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 13]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.65");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.bc (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7711474204\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 353.6
Character \(\chi\) \(=\) 432.353
Dual form 432.3.bc.c.257.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.97067 + 0.418457i) q^{3} +(5.54906 + 6.61311i) q^{5} +(-7.83131 + 2.85036i) q^{7} +(8.64979 + 2.48620i) q^{9} +(10.8191 - 12.8937i) q^{11} +(0.524960 + 2.97720i) q^{13} +(13.7171 + 21.9674i) q^{15} +(8.43596 - 4.87051i) q^{17} +(-3.84677 + 6.66281i) q^{19} +(-24.4570 + 5.19043i) q^{21} +(-10.1434 + 27.8689i) q^{23} +(-8.59998 + 48.7729i) q^{25} +(24.6553 + 11.0052i) q^{27} +(-10.5809 - 1.86569i) q^{29} +(10.8017 + 3.93149i) q^{31} +(37.5353 - 33.7755i) q^{33} +(-62.3062 - 35.9725i) q^{35} +(-11.5925 - 20.0787i) q^{37} +(0.313655 + 9.06395i) q^{39} +(-16.7264 + 2.94931i) q^{41} +(-18.0881 - 15.1778i) q^{43} +(31.5567 + 70.9981i) q^{45} +(5.67901 + 15.6029i) q^{47} +(15.6687 - 13.1476i) q^{49} +(27.0986 - 10.9386i) q^{51} -75.3383i q^{53} +145.303 q^{55} +(-14.2156 + 18.1833i) q^{57} +(38.6968 + 46.1170i) q^{59} +(32.1023 - 11.6843i) q^{61} +(-74.8257 + 5.18485i) q^{63} +(-16.7755 + 19.9923i) q^{65} +(-6.53483 - 37.0609i) q^{67} +(-41.7948 + 78.5447i) q^{69} +(-44.0325 + 25.4222i) q^{71} +(49.2453 - 85.2954i) q^{73} +(-45.9571 + 141.290i) q^{75} +(-47.9758 + 131.813i) q^{77} +(14.0913 - 79.9158i) q^{79} +(68.6376 + 43.0102i) q^{81} +(15.8868 + 2.80127i) q^{83} +(79.0209 + 28.7612i) q^{85} +(-30.6516 - 9.97000i) q^{87} +(14.0161 + 8.09222i) q^{89} +(-12.5972 - 21.8190i) q^{91} +(30.4431 + 16.1992i) q^{93} +(-65.4078 + 11.5332i) q^{95} +(-101.648 - 85.2929i) q^{97} +(125.639 - 84.6291i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} - 12 q^{9} + 18 q^{11} + 18 q^{15} - 228 q^{21} + 180 q^{23} + 18 q^{25} - 54 q^{27} + 144 q^{29} + 90 q^{31} + 324 q^{33} - 486 q^{35} - 102 q^{39} - 90 q^{41} - 90 q^{43} - 378 q^{45}+ \cdots - 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.97067 + 0.418457i 0.990224 + 0.139486i
\(4\) 0 0
\(5\) 5.54906 + 6.61311i 1.10981 + 1.32262i 0.941547 + 0.336880i \(0.109372\pi\)
0.168264 + 0.985742i \(0.446184\pi\)
\(6\) 0 0
\(7\) −7.83131 + 2.85036i −1.11876 + 0.407195i −0.834199 0.551463i \(-0.814070\pi\)
−0.284560 + 0.958658i \(0.591847\pi\)
\(8\) 0 0
\(9\) 8.64979 + 2.48620i 0.961087 + 0.276244i
\(10\) 0 0
\(11\) 10.8191 12.8937i 0.983551 1.17215i −0.00151930 0.999999i \(-0.500484\pi\)
0.985070 0.172152i \(-0.0550719\pi\)
\(12\) 0 0
\(13\) 0.524960 + 2.97720i 0.0403815 + 0.229015i 0.998319 0.0579628i \(-0.0184605\pi\)
−0.957937 + 0.286978i \(0.907349\pi\)
\(14\) 0 0
\(15\) 13.7171 + 21.9674i 0.914475 + 1.46450i
\(16\) 0 0
\(17\) 8.43596 4.87051i 0.496233 0.286500i −0.230924 0.972972i \(-0.574175\pi\)
0.727157 + 0.686472i \(0.240841\pi\)
\(18\) 0 0
\(19\) −3.84677 + 6.66281i −0.202462 + 0.350674i −0.949321 0.314308i \(-0.898228\pi\)
0.746859 + 0.664982i \(0.231561\pi\)
\(20\) 0 0
\(21\) −24.4570 + 5.19043i −1.16462 + 0.247163i
\(22\) 0 0
\(23\) −10.1434 + 27.8689i −0.441019 + 1.21169i 0.497804 + 0.867290i \(0.334140\pi\)
−0.938823 + 0.344400i \(0.888082\pi\)
\(24\) 0 0
\(25\) −8.59998 + 48.7729i −0.343999 + 1.95092i
\(26\) 0 0
\(27\) 24.6553 + 11.0052i 0.913160 + 0.407602i
\(28\) 0 0
\(29\) −10.5809 1.86569i −0.364858 0.0643342i −0.0117860 0.999931i \(-0.503752\pi\)
−0.353072 + 0.935596i \(0.614863\pi\)
\(30\) 0 0
\(31\) 10.8017 + 3.93149i 0.348441 + 0.126822i 0.510311 0.859990i \(-0.329530\pi\)
−0.161870 + 0.986812i \(0.551752\pi\)
\(32\) 0 0
\(33\) 37.5353 33.7755i 1.13743 1.02350i
\(34\) 0 0
\(35\) −62.3062 35.9725i −1.78018 1.02779i
\(36\) 0 0
\(37\) −11.5925 20.0787i −0.313309 0.542668i 0.665767 0.746160i \(-0.268104\pi\)
−0.979077 + 0.203492i \(0.934771\pi\)
\(38\) 0 0
\(39\) 0.313655 + 9.06395i 0.00804244 + 0.232409i
\(40\) 0 0
\(41\) −16.7264 + 2.94931i −0.407960 + 0.0719344i −0.373863 0.927484i \(-0.621967\pi\)
−0.0340976 + 0.999419i \(0.510856\pi\)
\(42\) 0 0
\(43\) −18.0881 15.1778i −0.420655 0.352971i 0.407757 0.913090i \(-0.366311\pi\)
−0.828412 + 0.560119i \(0.810755\pi\)
\(44\) 0 0
\(45\) 31.5567 + 70.9981i 0.701259 + 1.57773i
\(46\) 0 0
\(47\) 5.67901 + 15.6029i 0.120830 + 0.331977i 0.985331 0.170653i \(-0.0545878\pi\)
−0.864501 + 0.502631i \(0.832366\pi\)
\(48\) 0 0
\(49\) 15.6687 13.1476i 0.319769 0.268318i
\(50\) 0 0
\(51\) 27.0986 10.9386i 0.531345 0.214482i
\(52\) 0 0
\(53\) 75.3383i 1.42148i −0.703456 0.710739i \(-0.748361\pi\)
0.703456 0.710739i \(-0.251639\pi\)
\(54\) 0 0
\(55\) 145.303 2.64187
\(56\) 0 0
\(57\) −14.2156 + 18.1833i −0.249397 + 0.319005i
\(58\) 0 0
\(59\) 38.6968 + 46.1170i 0.655878 + 0.781645i 0.986788 0.162017i \(-0.0518001\pi\)
−0.330910 + 0.943662i \(0.607356\pi\)
\(60\) 0 0
\(61\) 32.1023 11.6843i 0.526267 0.191546i −0.0652037 0.997872i \(-0.520770\pi\)
0.591471 + 0.806326i \(0.298547\pi\)
\(62\) 0 0
\(63\) −74.8257 + 5.18485i −1.18771 + 0.0822992i
\(64\) 0 0
\(65\) −16.7755 + 19.9923i −0.258085 + 0.307573i
\(66\) 0 0
\(67\) −6.53483 37.0609i −0.0975348 0.553147i −0.993941 0.109914i \(-0.964942\pi\)
0.896406 0.443233i \(-0.146169\pi\)
\(68\) 0 0
\(69\) −41.7948 + 78.5447i −0.605721 + 1.13833i
\(70\) 0 0
\(71\) −44.0325 + 25.4222i −0.620175 + 0.358058i −0.776937 0.629578i \(-0.783228\pi\)
0.156762 + 0.987636i \(0.449894\pi\)
\(72\) 0 0
\(73\) 49.2453 85.2954i 0.674593 1.16843i −0.301994 0.953310i \(-0.597652\pi\)
0.976588 0.215120i \(-0.0690144\pi\)
\(74\) 0 0
\(75\) −45.9571 + 141.290i −0.612761 + 1.88386i
\(76\) 0 0
\(77\) −47.9758 + 131.813i −0.623063 + 1.71185i
\(78\) 0 0
\(79\) 14.0913 79.9158i 0.178371 1.01159i −0.755809 0.654792i \(-0.772756\pi\)
0.934180 0.356801i \(-0.116133\pi\)
\(80\) 0 0
\(81\) 68.6376 + 43.0102i 0.847378 + 0.530990i
\(82\) 0 0
\(83\) 15.8868 + 2.80127i 0.191407 + 0.0337503i 0.268530 0.963271i \(-0.413462\pi\)
−0.0771226 + 0.997022i \(0.524573\pi\)
\(84\) 0 0
\(85\) 79.0209 + 28.7612i 0.929657 + 0.338368i
\(86\) 0 0
\(87\) −30.6516 9.97000i −0.352317 0.114598i
\(88\) 0 0
\(89\) 14.0161 + 8.09222i 0.157485 + 0.0909238i 0.576671 0.816976i \(-0.304351\pi\)
−0.419187 + 0.907900i \(0.637685\pi\)
\(90\) 0 0
\(91\) −12.5972 21.8190i −0.138431 0.239769i
\(92\) 0 0
\(93\) 30.4431 + 16.1992i 0.327345 + 0.174185i
\(94\) 0 0
\(95\) −65.4078 + 11.5332i −0.688504 + 0.121402i
\(96\) 0 0
\(97\) −101.648 85.2929i −1.04792 0.879308i −0.0550452 0.998484i \(-0.517530\pi\)
−0.992873 + 0.119176i \(0.961975\pi\)
\(98\) 0 0
\(99\) 125.639 84.6291i 1.26908 0.854839i
\(100\) 0 0
\(101\) −5.20626 14.3041i −0.0515471 0.141625i 0.911247 0.411860i \(-0.135121\pi\)
−0.962794 + 0.270235i \(0.912898\pi\)
\(102\) 0 0
\(103\) 28.9968 24.3312i 0.281522 0.236225i −0.491082 0.871113i \(-0.663398\pi\)
0.772604 + 0.634889i \(0.218954\pi\)
\(104\) 0 0
\(105\) −170.038 132.935i −1.61941 1.26605i
\(106\) 0 0
\(107\) 118.659i 1.10897i −0.832195 0.554483i \(-0.812916\pi\)
0.832195 0.554483i \(-0.187084\pi\)
\(108\) 0 0
\(109\) 206.055 1.89042 0.945208 0.326468i \(-0.105859\pi\)
0.945208 + 0.326468i \(0.105859\pi\)
\(110\) 0 0
\(111\) −26.0353 64.4982i −0.234552 0.581065i
\(112\) 0 0
\(113\) −45.6567 54.4116i −0.404042 0.481519i 0.525206 0.850975i \(-0.323988\pi\)
−0.929248 + 0.369457i \(0.879544\pi\)
\(114\) 0 0
\(115\) −240.586 + 87.5663i −2.09206 + 0.761446i
\(116\) 0 0
\(117\) −2.86111 + 27.0573i −0.0244539 + 0.231259i
\(118\) 0 0
\(119\) −52.1819 + 62.1880i −0.438504 + 0.522588i
\(120\) 0 0
\(121\) −28.1828 159.833i −0.232916 1.32093i
\(122\) 0 0
\(123\) −50.9227 + 1.76216i −0.414006 + 0.0143265i
\(124\) 0 0
\(125\) −183.357 + 105.861i −1.46685 + 0.846888i
\(126\) 0 0
\(127\) 19.1347 33.1422i 0.150667 0.260963i −0.780806 0.624774i \(-0.785191\pi\)
0.931473 + 0.363811i \(0.118525\pi\)
\(128\) 0 0
\(129\) −47.3827 52.6573i −0.367308 0.408196i
\(130\) 0 0
\(131\) 74.5355 204.785i 0.568973 1.56324i −0.237137 0.971476i \(-0.576209\pi\)
0.806110 0.591765i \(-0.201569\pi\)
\(132\) 0 0
\(133\) 11.1339 63.1432i 0.0837132 0.474761i
\(134\) 0 0
\(135\) 64.0349 + 224.117i 0.474333 + 1.66013i
\(136\) 0 0
\(137\) −181.295 31.9672i −1.32332 0.233337i −0.533045 0.846087i \(-0.678952\pi\)
−0.790277 + 0.612749i \(0.790064\pi\)
\(138\) 0 0
\(139\) 228.486 + 83.1623i 1.64379 + 0.598290i 0.987695 0.156391i \(-0.0499860\pi\)
0.656092 + 0.754681i \(0.272208\pi\)
\(140\) 0 0
\(141\) 10.3413 + 48.7276i 0.0733426 + 0.345586i
\(142\) 0 0
\(143\) 44.0665 + 25.4418i 0.308157 + 0.177915i
\(144\) 0 0
\(145\) −46.3758 80.3253i −0.319833 0.553968i
\(146\) 0 0
\(147\) 52.0482 32.5005i 0.354069 0.221092i
\(148\) 0 0
\(149\) 141.886 25.0183i 0.952255 0.167908i 0.324123 0.946015i \(-0.394931\pi\)
0.628132 + 0.778107i \(0.283820\pi\)
\(150\) 0 0
\(151\) 77.8368 + 65.3129i 0.515476 + 0.432535i 0.863051 0.505117i \(-0.168551\pi\)
−0.347575 + 0.937652i \(0.612995\pi\)
\(152\) 0 0
\(153\) 85.0783 21.1554i 0.556068 0.138270i
\(154\) 0 0
\(155\) 33.9398 + 93.2488i 0.218966 + 0.601605i
\(156\) 0 0
\(157\) −237.118 + 198.965i −1.51030 + 1.26730i −0.647143 + 0.762369i \(0.724036\pi\)
−0.863162 + 0.504927i \(0.831519\pi\)
\(158\) 0 0
\(159\) 31.5259 223.805i 0.198276 1.40758i
\(160\) 0 0
\(161\) 247.162i 1.53517i
\(162\) 0 0
\(163\) −160.056 −0.981937 −0.490969 0.871177i \(-0.663357\pi\)
−0.490969 + 0.871177i \(0.663357\pi\)
\(164\) 0 0
\(165\) 431.647 + 60.8030i 2.61604 + 0.368503i
\(166\) 0 0
\(167\) −160.019 190.703i −0.958197 1.14193i −0.989804 0.142434i \(-0.954507\pi\)
0.0316076 0.999500i \(-0.489937\pi\)
\(168\) 0 0
\(169\) 150.220 54.6756i 0.888875 0.323524i
\(170\) 0 0
\(171\) −49.8388 + 48.0680i −0.291455 + 0.281100i
\(172\) 0 0
\(173\) 43.4383 51.7678i 0.251088 0.299236i −0.625747 0.780026i \(-0.715206\pi\)
0.876836 + 0.480790i \(0.159650\pi\)
\(174\) 0 0
\(175\) −71.6714 406.469i −0.409551 2.32268i
\(176\) 0 0
\(177\) 95.6575 + 153.192i 0.540438 + 0.865489i
\(178\) 0 0
\(179\) −203.717 + 117.616i −1.13808 + 0.657073i −0.945955 0.324297i \(-0.894872\pi\)
−0.192128 + 0.981370i \(0.561539\pi\)
\(180\) 0 0
\(181\) −108.916 + 188.647i −0.601744 + 1.04225i 0.390813 + 0.920470i \(0.372194\pi\)
−0.992557 + 0.121781i \(0.961140\pi\)
\(182\) 0 0
\(183\) 100.255 21.2767i 0.547840 0.116266i
\(184\) 0 0
\(185\) 68.4556 188.080i 0.370030 1.01665i
\(186\) 0 0
\(187\) 28.4706 161.465i 0.152249 0.863448i
\(188\) 0 0
\(189\) −224.452 15.9089i −1.18758 0.0841739i
\(190\) 0 0
\(191\) −253.418 44.6844i −1.32679 0.233950i −0.535060 0.844814i \(-0.679711\pi\)
−0.791735 + 0.610864i \(0.790822\pi\)
\(192\) 0 0
\(193\) 72.0472 + 26.2230i 0.373302 + 0.135871i 0.521856 0.853034i \(-0.325240\pi\)
−0.148554 + 0.988904i \(0.547462\pi\)
\(194\) 0 0
\(195\) −58.2004 + 52.3706i −0.298464 + 0.268567i
\(196\) 0 0
\(197\) −211.300 121.994i −1.07259 0.619260i −0.143702 0.989621i \(-0.545901\pi\)
−0.928888 + 0.370361i \(0.879234\pi\)
\(198\) 0 0
\(199\) 41.0539 + 71.1075i 0.206301 + 0.357324i 0.950547 0.310582i \(-0.100524\pi\)
−0.744245 + 0.667906i \(0.767191\pi\)
\(200\) 0 0
\(201\) −3.90445 112.830i −0.0194251 0.561344i
\(202\) 0 0
\(203\) 88.1800 15.5485i 0.434384 0.0765936i
\(204\) 0 0
\(205\) −112.320 94.2474i −0.547901 0.459743i
\(206\) 0 0
\(207\) −157.026 + 215.841i −0.758580 + 1.04271i
\(208\) 0 0
\(209\) 44.2895 + 121.684i 0.211911 + 0.582221i
\(210\) 0 0
\(211\) −44.0427 + 36.9562i −0.208733 + 0.175148i −0.741161 0.671328i \(-0.765724\pi\)
0.532427 + 0.846476i \(0.321280\pi\)
\(212\) 0 0
\(213\) −141.444 + 57.0952i −0.664057 + 0.268052i
\(214\) 0 0
\(215\) 203.841i 0.948098i
\(216\) 0 0
\(217\) −95.7975 −0.441463
\(218\) 0 0
\(219\) 181.984 232.778i 0.830978 1.06291i
\(220\) 0 0
\(221\) 18.9290 + 22.5587i 0.0856516 + 0.102076i
\(222\) 0 0
\(223\) 217.997 79.3444i 0.977565 0.355805i 0.196672 0.980469i \(-0.436987\pi\)
0.780893 + 0.624665i \(0.214764\pi\)
\(224\) 0 0
\(225\) −195.647 + 400.494i −0.869542 + 1.77997i
\(226\) 0 0
\(227\) −137.899 + 164.342i −0.607485 + 0.723973i −0.978865 0.204508i \(-0.934440\pi\)
0.371379 + 0.928481i \(0.378885\pi\)
\(228\) 0 0
\(229\) −68.6623 389.403i −0.299835 1.70045i −0.646871 0.762599i \(-0.723923\pi\)
0.347036 0.937852i \(-0.387188\pi\)
\(230\) 0 0
\(231\) −197.678 + 371.496i −0.855750 + 1.60821i
\(232\) 0 0
\(233\) 82.9298 47.8796i 0.355922 0.205492i −0.311368 0.950289i \(-0.600787\pi\)
0.667290 + 0.744798i \(0.267454\pi\)
\(234\) 0 0
\(235\) −71.6708 + 124.138i −0.304982 + 0.528245i
\(236\) 0 0
\(237\) 75.3020 231.507i 0.317730 0.976823i
\(238\) 0 0
\(239\) 30.1617 82.8687i 0.126200 0.346731i −0.860462 0.509514i \(-0.829825\pi\)
0.986662 + 0.162784i \(0.0520473\pi\)
\(240\) 0 0
\(241\) −66.8780 + 379.284i −0.277502 + 1.57379i 0.453399 + 0.891308i \(0.350211\pi\)
−0.730901 + 0.682484i \(0.760900\pi\)
\(242\) 0 0
\(243\) 185.902 + 156.491i 0.765029 + 0.643996i
\(244\) 0 0
\(245\) 173.893 + 30.6620i 0.709767 + 0.125151i
\(246\) 0 0
\(247\) −21.8559 7.95489i −0.0884854 0.0322060i
\(248\) 0 0
\(249\) 46.0223 + 14.9696i 0.184828 + 0.0601189i
\(250\) 0 0
\(251\) 126.850 + 73.2368i 0.505378 + 0.291780i 0.730932 0.682451i \(-0.239086\pi\)
−0.225554 + 0.974231i \(0.572419\pi\)
\(252\) 0 0
\(253\) 249.589 + 432.301i 0.986518 + 1.70870i
\(254\) 0 0
\(255\) 222.710 + 118.507i 0.873371 + 0.464734i
\(256\) 0 0
\(257\) 204.456 36.0511i 0.795548 0.140277i 0.238921 0.971039i \(-0.423206\pi\)
0.556627 + 0.830762i \(0.312095\pi\)
\(258\) 0 0
\(259\) 148.016 + 124.200i 0.571489 + 0.479536i
\(260\) 0 0
\(261\) −86.8838 42.4440i −0.332888 0.162621i
\(262\) 0 0
\(263\) 11.3833 + 31.2753i 0.0432825 + 0.118918i 0.959451 0.281876i \(-0.0909567\pi\)
−0.916168 + 0.400794i \(0.868734\pi\)
\(264\) 0 0
\(265\) 498.221 418.057i 1.88008 1.57757i
\(266\) 0 0
\(267\) 38.2511 + 29.9045i 0.143263 + 0.112002i
\(268\) 0 0
\(269\) 399.099i 1.48364i 0.670599 + 0.741820i \(0.266037\pi\)
−0.670599 + 0.741820i \(0.733963\pi\)
\(270\) 0 0
\(271\) 83.9974 0.309954 0.154977 0.987918i \(-0.450470\pi\)
0.154977 + 0.987918i \(0.450470\pi\)
\(272\) 0 0
\(273\) −28.2919 70.0886i −0.103633 0.256735i
\(274\) 0 0
\(275\) 535.817 + 638.562i 1.94843 + 2.32204i
\(276\) 0 0
\(277\) −168.403 + 61.2936i −0.607953 + 0.221277i −0.627607 0.778530i \(-0.715966\pi\)
0.0196546 + 0.999807i \(0.493743\pi\)
\(278\) 0 0
\(279\) 83.6578 + 60.8617i 0.299849 + 0.218142i
\(280\) 0 0
\(281\) −298.873 + 356.183i −1.06361 + 1.26756i −0.101513 + 0.994834i \(0.532368\pi\)
−0.962093 + 0.272722i \(0.912076\pi\)
\(282\) 0 0
\(283\) −45.4847 257.956i −0.160723 0.911507i −0.953365 0.301819i \(-0.902406\pi\)
0.792642 0.609687i \(-0.208705\pi\)
\(284\) 0 0
\(285\) −199.131 + 6.89088i −0.698707 + 0.0241785i
\(286\) 0 0
\(287\) 122.583 70.7732i 0.427118 0.246596i
\(288\) 0 0
\(289\) −97.0563 + 168.107i −0.335835 + 0.581683i
\(290\) 0 0
\(291\) −266.272 295.913i −0.915023 1.01688i
\(292\) 0 0
\(293\) −33.5970 + 92.3071i −0.114666 + 0.315041i −0.983729 0.179660i \(-0.942500\pi\)
0.869063 + 0.494701i \(0.164722\pi\)
\(294\) 0 0
\(295\) −90.2463 + 511.812i −0.305920 + 1.73496i
\(296\) 0 0
\(297\) 408.645 198.831i 1.37591 0.669464i
\(298\) 0 0
\(299\) −88.2960 15.5690i −0.295304 0.0520701i
\(300\) 0 0
\(301\) 184.916 + 67.3039i 0.614339 + 0.223601i
\(302\) 0 0
\(303\) −9.48045 44.6713i −0.0312886 0.147430i
\(304\) 0 0
\(305\) 255.407 + 147.459i 0.837400 + 0.483473i
\(306\) 0 0
\(307\) 246.426 + 426.822i 0.802690 + 1.39030i 0.917840 + 0.396952i \(0.129932\pi\)
−0.115150 + 0.993348i \(0.536735\pi\)
\(308\) 0 0
\(309\) 96.3214 60.1460i 0.311720 0.194647i
\(310\) 0 0
\(311\) 16.6486 2.93559i 0.0535324 0.00943921i −0.146818 0.989164i \(-0.546903\pi\)
0.200350 + 0.979724i \(0.435792\pi\)
\(312\) 0 0
\(313\) 319.525 + 268.113i 1.02085 + 0.856591i 0.989734 0.142925i \(-0.0456507\pi\)
0.0311120 + 0.999516i \(0.490095\pi\)
\(314\) 0 0
\(315\) −449.500 466.060i −1.42699 1.47956i
\(316\) 0 0
\(317\) 155.193 + 426.388i 0.489567 + 1.34507i 0.901074 + 0.433666i \(0.142780\pi\)
−0.411507 + 0.911407i \(0.634997\pi\)
\(318\) 0 0
\(319\) −138.531 + 116.241i −0.434265 + 0.364392i
\(320\) 0 0
\(321\) 49.6539 352.498i 0.154685 1.09813i
\(322\) 0 0
\(323\) 74.9429i 0.232021i
\(324\) 0 0
\(325\) −149.721 −0.460680
\(326\) 0 0
\(327\) 612.123 + 86.2254i 1.87194 + 0.263686i
\(328\) 0 0
\(329\) −88.9481 106.004i −0.270359 0.322201i
\(330\) 0 0
\(331\) −220.616 + 80.2978i −0.666515 + 0.242591i −0.653046 0.757318i \(-0.726509\pi\)
−0.0134681 + 0.999909i \(0.504287\pi\)
\(332\) 0 0
\(333\) −50.3526 202.498i −0.151209 0.608101i
\(334\) 0 0
\(335\) 208.825 248.868i 0.623360 0.742891i
\(336\) 0 0
\(337\) −55.0894 312.428i −0.163470 0.927085i −0.950628 0.310333i \(-0.899559\pi\)
0.787158 0.616752i \(-0.211552\pi\)
\(338\) 0 0
\(339\) −112.862 180.744i −0.332927 0.533169i
\(340\) 0 0
\(341\) 167.555 96.7381i 0.491365 0.283689i
\(342\) 0 0
\(343\) 118.950 206.027i 0.346793 0.600662i
\(344\) 0 0
\(345\) −751.346 + 159.456i −2.17782 + 0.462190i
\(346\) 0 0
\(347\) 15.0965 41.4774i 0.0435059 0.119531i −0.916037 0.401093i \(-0.868630\pi\)
0.959543 + 0.281562i \(0.0908525\pi\)
\(348\) 0 0
\(349\) 57.3986 325.523i 0.164466 0.932732i −0.785148 0.619309i \(-0.787413\pi\)
0.949614 0.313423i \(-0.101476\pi\)
\(350\) 0 0
\(351\) −19.8217 + 79.1810i −0.0564721 + 0.225587i
\(352\) 0 0
\(353\) −466.298 82.2209i −1.32096 0.232920i −0.531673 0.846949i \(-0.678437\pi\)
−0.789283 + 0.614029i \(0.789548\pi\)
\(354\) 0 0
\(355\) −412.458 150.123i −1.16185 0.422880i
\(356\) 0 0
\(357\) −181.038 + 162.904i −0.507111 + 0.456315i
\(358\) 0 0
\(359\) −378.055 218.270i −1.05308 0.607994i −0.129568 0.991571i \(-0.541359\pi\)
−0.923509 + 0.383576i \(0.874692\pi\)
\(360\) 0 0
\(361\) 150.905 + 261.375i 0.418018 + 0.724029i
\(362\) 0 0
\(363\) −16.8388 486.604i −0.0463878 1.34051i
\(364\) 0 0
\(365\) 837.333 147.644i 2.29406 0.404505i
\(366\) 0 0
\(367\) −365.154 306.401i −0.994970 0.834879i −0.00869048 0.999962i \(-0.502766\pi\)
−0.986280 + 0.165083i \(0.947211\pi\)
\(368\) 0 0
\(369\) −152.012 16.0742i −0.411957 0.0435614i
\(370\) 0 0
\(371\) 214.742 + 589.998i 0.578818 + 1.59029i
\(372\) 0 0
\(373\) −282.763 + 237.266i −0.758077 + 0.636102i −0.937625 0.347647i \(-0.886981\pi\)
0.179549 + 0.983749i \(0.442536\pi\)
\(374\) 0 0
\(375\) −588.991 + 237.752i −1.57064 + 0.634004i
\(376\) 0 0
\(377\) 32.4807i 0.0861558i
\(378\) 0 0
\(379\) 216.903 0.572304 0.286152 0.958184i \(-0.407624\pi\)
0.286152 + 0.958184i \(0.407624\pi\)
\(380\) 0 0
\(381\) 70.7115 90.4477i 0.185594 0.237396i
\(382\) 0 0
\(383\) 346.686 + 413.164i 0.905185 + 1.07876i 0.996555 + 0.0829400i \(0.0264310\pi\)
−0.0913699 + 0.995817i \(0.529125\pi\)
\(384\) 0 0
\(385\) −1137.91 + 414.166i −2.95561 + 1.07576i
\(386\) 0 0
\(387\) −118.724 176.255i −0.306780 0.455439i
\(388\) 0 0
\(389\) 94.9161 113.117i 0.244000 0.290788i −0.630120 0.776498i \(-0.716994\pi\)
0.874120 + 0.485710i \(0.161439\pi\)
\(390\) 0 0
\(391\) 50.1658 + 284.504i 0.128301 + 0.727633i
\(392\) 0 0
\(393\) 307.114 577.158i 0.781461 1.46860i
\(394\) 0 0
\(395\) 606.686 350.270i 1.53591 0.886760i
\(396\) 0 0
\(397\) 251.308 435.278i 0.633017 1.09642i −0.353915 0.935278i \(-0.615150\pi\)
0.986932 0.161139i \(-0.0515169\pi\)
\(398\) 0 0
\(399\) 59.4978 182.919i 0.149117 0.458443i
\(400\) 0 0
\(401\) 79.1589 217.487i 0.197404 0.542362i −0.801011 0.598650i \(-0.795704\pi\)
0.998415 + 0.0562876i \(0.0179264\pi\)
\(402\) 0 0
\(403\) −6.03437 + 34.2226i −0.0149736 + 0.0849196i
\(404\) 0 0
\(405\) 96.4433 + 692.574i 0.238132 + 1.71006i
\(406\) 0 0
\(407\) −384.307 67.7638i −0.944244 0.166496i
\(408\) 0 0
\(409\) −423.279 154.061i −1.03491 0.376677i −0.231963 0.972725i \(-0.574515\pi\)
−0.802949 + 0.596048i \(0.796737\pi\)
\(410\) 0 0
\(411\) −525.192 170.828i −1.27784 0.415641i
\(412\) 0 0
\(413\) −434.497 250.857i −1.05205 0.607402i
\(414\) 0 0
\(415\) 69.6317 + 120.606i 0.167787 + 0.290616i
\(416\) 0 0
\(417\) 643.959 + 342.660i 1.54427 + 0.821726i
\(418\) 0 0
\(419\) 324.142 57.1549i 0.773608 0.136408i 0.227111 0.973869i \(-0.427072\pi\)
0.546497 + 0.837461i \(0.315961\pi\)
\(420\) 0 0
\(421\) −156.740 131.520i −0.372303 0.312399i 0.437369 0.899282i \(-0.355910\pi\)
−0.809672 + 0.586883i \(0.800355\pi\)
\(422\) 0 0
\(423\) 10.3302 + 149.081i 0.0244213 + 0.352438i
\(424\) 0 0
\(425\) 165.000 + 453.333i 0.388234 + 1.06666i
\(426\) 0 0
\(427\) −218.099 + 183.006i −0.510770 + 0.428587i
\(428\) 0 0
\(429\) 120.261 + 94.0192i 0.280328 + 0.219159i
\(430\) 0 0
\(431\) 5.85402i 0.0135824i 0.999977 + 0.00679120i \(0.00216172\pi\)
−0.999977 + 0.00679120i \(0.997838\pi\)
\(432\) 0 0
\(433\) 233.310 0.538821 0.269411 0.963025i \(-0.413171\pi\)
0.269411 + 0.963025i \(0.413171\pi\)
\(434\) 0 0
\(435\) −104.155 258.026i −0.239436 0.593164i
\(436\) 0 0
\(437\) −146.665 174.789i −0.335619 0.399975i
\(438\) 0 0
\(439\) −126.662 + 46.1012i −0.288524 + 0.105014i −0.482227 0.876046i \(-0.660172\pi\)
0.193704 + 0.981060i \(0.437950\pi\)
\(440\) 0 0
\(441\) 168.218 74.7683i 0.381447 0.169543i
\(442\) 0 0
\(443\) −18.4121 + 21.9426i −0.0415622 + 0.0495319i −0.786425 0.617686i \(-0.788070\pi\)
0.744863 + 0.667218i \(0.232515\pi\)
\(444\) 0 0
\(445\) 24.2616 + 137.594i 0.0545205 + 0.309201i
\(446\) 0 0
\(447\) 431.966 14.9480i 0.966367 0.0334408i
\(448\) 0 0
\(449\) 430.226 248.391i 0.958188 0.553210i 0.0625728 0.998040i \(-0.480069\pi\)
0.895615 + 0.444831i \(0.146736\pi\)
\(450\) 0 0
\(451\) −142.936 + 247.573i −0.316932 + 0.548942i
\(452\) 0 0
\(453\) 203.897 + 226.594i 0.450104 + 0.500209i
\(454\) 0 0
\(455\) 74.3889 204.382i 0.163492 0.449191i
\(456\) 0 0
\(457\) −80.5387 + 456.758i −0.176234 + 0.999470i 0.760477 + 0.649365i \(0.224965\pi\)
−0.936710 + 0.350105i \(0.886146\pi\)
\(458\) 0 0
\(459\) 261.592 27.2440i 0.569918 0.0593551i
\(460\) 0 0
\(461\) −262.335 46.2568i −0.569057 0.100340i −0.118286 0.992980i \(-0.537740\pi\)
−0.450771 + 0.892640i \(0.648851\pi\)
\(462\) 0 0
\(463\) 224.935 + 81.8697i 0.485821 + 0.176824i 0.573306 0.819341i \(-0.305661\pi\)
−0.0874848 + 0.996166i \(0.527883\pi\)
\(464\) 0 0
\(465\) 61.8033 + 291.214i 0.132910 + 0.626266i
\(466\) 0 0
\(467\) 184.565 + 106.559i 0.395215 + 0.228177i 0.684417 0.729091i \(-0.260057\pi\)
−0.289202 + 0.957268i \(0.593390\pi\)
\(468\) 0 0
\(469\) 156.813 + 271.609i 0.334357 + 0.579123i
\(470\) 0 0
\(471\) −787.658 + 491.838i −1.67231 + 1.04424i
\(472\) 0 0
\(473\) −391.394 + 69.0132i −0.827470 + 0.145905i
\(474\) 0 0
\(475\) −291.882 244.918i −0.614489 0.515617i
\(476\) 0 0
\(477\) 187.306 651.660i 0.392675 1.36616i
\(478\) 0 0
\(479\) −136.882 376.079i −0.285765 0.785134i −0.996647 0.0818220i \(-0.973926\pi\)
0.710882 0.703312i \(-0.248296\pi\)
\(480\) 0 0
\(481\) 53.6927 45.0535i 0.111627 0.0936664i
\(482\) 0 0
\(483\) 103.427 734.238i 0.214134 1.52016i
\(484\) 0 0
\(485\) 1145.51i 2.36187i
\(486\) 0 0
\(487\) 323.676 0.664632 0.332316 0.943168i \(-0.392170\pi\)
0.332316 + 0.943168i \(0.392170\pi\)
\(488\) 0 0
\(489\) −475.473 66.9765i −0.972338 0.136966i
\(490\) 0 0
\(491\) −589.862 702.970i −1.20135 1.43171i −0.873392 0.487018i \(-0.838085\pi\)
−0.327956 0.944693i \(-0.606360\pi\)
\(492\) 0 0
\(493\) −98.3467 + 35.7953i −0.199486 + 0.0726070i
\(494\) 0 0
\(495\) 1256.84 + 361.252i 2.53907 + 0.729801i
\(496\) 0 0
\(497\) 272.369 324.597i 0.548027 0.653113i
\(498\) 0 0
\(499\) 37.5201 + 212.787i 0.0751906 + 0.426427i 0.999045 + 0.0436840i \(0.0139095\pi\)
−0.923855 + 0.382743i \(0.874979\pi\)
\(500\) 0 0
\(501\) −395.562 633.477i −0.789546 1.26443i
\(502\) 0 0
\(503\) −31.3557 + 18.1032i −0.0623373 + 0.0359905i −0.530845 0.847469i \(-0.678125\pi\)
0.468507 + 0.883460i \(0.344792\pi\)
\(504\) 0 0
\(505\) 65.7046 113.804i 0.130108 0.225354i
\(506\) 0 0
\(507\) 469.134 99.5626i 0.925313 0.196376i
\(508\) 0 0
\(509\) −79.8138 + 219.287i −0.156805 + 0.430818i −0.993072 0.117503i \(-0.962511\pi\)
0.836267 + 0.548322i \(0.184733\pi\)
\(510\) 0 0
\(511\) −142.532 + 808.342i −0.278929 + 1.58188i
\(512\) 0 0
\(513\) −168.169 + 121.939i −0.327815 + 0.237698i
\(514\) 0 0
\(515\) 321.809 + 56.7437i 0.624873 + 0.110182i
\(516\) 0 0
\(517\) 262.620 + 95.5860i 0.507970 + 0.184886i
\(518\) 0 0
\(519\) 150.704 135.608i 0.290373 0.261287i
\(520\) 0 0
\(521\) −119.806 69.1700i −0.229954 0.132764i 0.380597 0.924741i \(-0.375719\pi\)
−0.610551 + 0.791977i \(0.709052\pi\)
\(522\) 0 0
\(523\) −98.4346 170.494i −0.188212 0.325992i 0.756442 0.654060i \(-0.226936\pi\)
−0.944654 + 0.328068i \(0.893602\pi\)
\(524\) 0 0
\(525\) −42.8225 1237.48i −0.0815667 2.35710i
\(526\) 0 0
\(527\) 110.271 19.4437i 0.209243 0.0368951i
\(528\) 0 0
\(529\) −268.547 225.338i −0.507651 0.425969i
\(530\) 0 0
\(531\) 220.063 + 495.111i 0.414431 + 0.932412i
\(532\) 0 0
\(533\) −17.5613 48.2494i −0.0329481 0.0905242i
\(534\) 0 0
\(535\) 784.708 658.448i 1.46674 1.23074i
\(536\) 0 0
\(537\) −654.394 + 264.152i −1.21861 + 0.491903i
\(538\) 0 0
\(539\) 344.271i 0.638722i
\(540\) 0 0
\(541\) −136.735 −0.252745 −0.126373 0.991983i \(-0.540334\pi\)
−0.126373 + 0.991983i \(0.540334\pi\)
\(542\) 0 0
\(543\) −402.493 + 514.833i −0.741240 + 0.948127i
\(544\) 0 0
\(545\) 1143.41 + 1362.67i 2.09801 + 2.50031i
\(546\) 0 0
\(547\) −625.697 + 227.735i −1.14387 + 0.416335i −0.843310 0.537428i \(-0.819396\pi\)
−0.300561 + 0.953763i \(0.597174\pi\)
\(548\) 0 0
\(549\) 306.727 21.2539i 0.558702 0.0387138i
\(550\) 0 0
\(551\) 53.1330 63.3214i 0.0964300 0.114921i
\(552\) 0 0
\(553\) 117.436 + 666.011i 0.212361 + 1.20436i
\(554\) 0 0
\(555\) 282.063 530.079i 0.508221 0.955097i
\(556\) 0 0
\(557\) −943.861 + 544.939i −1.69454 + 0.978346i −0.743784 + 0.668420i \(0.766971\pi\)
−0.950761 + 0.309926i \(0.899696\pi\)
\(558\) 0 0
\(559\) 35.6916 61.8197i 0.0638490 0.110590i
\(560\) 0 0
\(561\) 152.143 467.745i 0.271199 0.833770i
\(562\) 0 0
\(563\) −209.400 + 575.323i −0.371937 + 1.02189i 0.602675 + 0.797987i \(0.294102\pi\)
−0.974612 + 0.223901i \(0.928121\pi\)
\(564\) 0 0
\(565\) 106.478 603.866i 0.188457 1.06879i
\(566\) 0 0
\(567\) −660.117 141.184i −1.16423 0.249001i
\(568\) 0 0
\(569\) 491.784 + 86.7148i 0.864295 + 0.152399i 0.588184 0.808727i \(-0.299843\pi\)
0.276111 + 0.961126i \(0.410954\pi\)
\(570\) 0 0
\(571\) −284.552 103.569i −0.498341 0.181381i 0.0806069 0.996746i \(-0.474314\pi\)
−0.578947 + 0.815365i \(0.696536\pi\)
\(572\) 0 0
\(573\) −734.123 238.787i −1.28119 0.416732i
\(574\) 0 0
\(575\) −1272.01 734.397i −2.21220 1.27721i
\(576\) 0 0
\(577\) −18.5614 32.1493i −0.0321688 0.0557181i 0.849493 0.527600i \(-0.176908\pi\)
−0.881662 + 0.471882i \(0.843575\pi\)
\(578\) 0 0
\(579\) 203.055 + 108.049i 0.350700 + 0.186613i
\(580\) 0 0
\(581\) −132.399 + 23.3455i −0.227881 + 0.0401817i
\(582\) 0 0
\(583\) −971.386 815.090i −1.66619 1.39810i
\(584\) 0 0
\(585\) −194.809 + 131.222i −0.333007 + 0.224310i
\(586\) 0 0
\(587\) 299.988 + 824.210i 0.511053 + 1.40411i 0.880141 + 0.474712i \(0.157448\pi\)
−0.369088 + 0.929394i \(0.620330\pi\)
\(588\) 0 0
\(589\) −67.7464 + 56.8459i −0.115019 + 0.0965126i
\(590\) 0 0
\(591\) −576.654 450.825i −0.975726 0.762817i
\(592\) 0 0
\(593\) 284.591i 0.479917i 0.970783 + 0.239958i \(0.0771338\pi\)
−0.970783 + 0.239958i \(0.922866\pi\)
\(594\) 0 0
\(595\) −700.817 −1.17784
\(596\) 0 0
\(597\) 92.2024 + 228.416i 0.154443 + 0.382607i
\(598\) 0 0
\(599\) 211.516 + 252.075i 0.353115 + 0.420827i 0.913138 0.407651i \(-0.133652\pi\)
−0.560022 + 0.828477i \(0.689207\pi\)
\(600\) 0 0
\(601\) −6.64685 + 2.41926i −0.0110597 + 0.00402538i −0.347544 0.937664i \(-0.612984\pi\)
0.336484 + 0.941689i \(0.390762\pi\)
\(602\) 0 0
\(603\) 35.6158 336.815i 0.0590643 0.558566i
\(604\) 0 0
\(605\) 900.604 1073.30i 1.48860 1.77405i
\(606\) 0 0
\(607\) −83.8924 475.778i −0.138208 0.783818i −0.972572 0.232603i \(-0.925276\pi\)
0.834363 0.551215i \(-0.185835\pi\)
\(608\) 0 0
\(609\) 268.460 9.28998i 0.440821 0.0152545i
\(610\) 0 0
\(611\) −43.4718 + 25.0984i −0.0711485 + 0.0410776i
\(612\) 0 0
\(613\) −287.932 + 498.713i −0.469710 + 0.813562i −0.999400 0.0346296i \(-0.988975\pi\)
0.529690 + 0.848191i \(0.322308\pi\)
\(614\) 0 0
\(615\) −294.226 326.979i −0.478417 0.531673i
\(616\) 0 0
\(617\) −239.991 + 659.369i −0.388964 + 1.06867i 0.578505 + 0.815679i \(0.303636\pi\)
−0.967469 + 0.252991i \(0.918586\pi\)
\(618\) 0 0
\(619\) −78.3389 + 444.282i −0.126557 + 0.717741i 0.853814 + 0.520579i \(0.174284\pi\)
−0.980371 + 0.197162i \(0.936827\pi\)
\(620\) 0 0
\(621\) −556.793 + 575.485i −0.896608 + 0.926707i
\(622\) 0 0
\(623\) −132.830 23.4216i −0.213211 0.0375949i
\(624\) 0 0
\(625\) −554.064 201.663i −0.886502 0.322660i
\(626\) 0 0
\(627\) 80.6498 + 380.017i 0.128628 + 0.606088i
\(628\) 0 0
\(629\) −195.587 112.922i −0.310949 0.179527i
\(630\) 0 0
\(631\) −283.716 491.411i −0.449630 0.778782i 0.548732 0.835998i \(-0.315111\pi\)
−0.998362 + 0.0572166i \(0.981777\pi\)
\(632\) 0 0
\(633\) −146.301 + 91.3548i −0.231123 + 0.144320i
\(634\) 0 0
\(635\) 325.353 57.3685i 0.512367 0.0903441i
\(636\) 0 0
\(637\) 47.3684 + 39.7468i 0.0743616 + 0.0623968i
\(638\) 0 0
\(639\) −444.076 + 110.423i −0.694954 + 0.172806i
\(640\) 0 0
\(641\) 50.9735 + 140.049i 0.0795219 + 0.218485i 0.973082 0.230459i \(-0.0740227\pi\)
−0.893560 + 0.448943i \(0.851800\pi\)
\(642\) 0 0
\(643\) 20.8996 17.5368i 0.0325032 0.0272734i −0.626391 0.779509i \(-0.715469\pi\)
0.658895 + 0.752235i \(0.271024\pi\)
\(644\) 0 0
\(645\) 85.2988 605.545i 0.132246 0.938830i
\(646\) 0 0
\(647\) 263.970i 0.407991i 0.978972 + 0.203996i \(0.0653929\pi\)
−0.978972 + 0.203996i \(0.934607\pi\)
\(648\) 0 0
\(649\) 1013.28 1.56129
\(650\) 0 0
\(651\) −284.583 40.0871i −0.437147 0.0615778i
\(652\) 0 0
\(653\) −538.345 641.575i −0.824418 0.982503i 0.175580 0.984465i \(-0.443820\pi\)
−0.999998 + 0.00196193i \(0.999375\pi\)
\(654\) 0 0
\(655\) 1767.87 643.450i 2.69903 0.982367i
\(656\) 0 0
\(657\) 638.023 615.353i 0.971115 0.936611i
\(658\) 0 0
\(659\) 477.726 569.332i 0.724926 0.863933i −0.270173 0.962812i \(-0.587081\pi\)
0.995100 + 0.0988784i \(0.0315255\pi\)
\(660\) 0 0
\(661\) 46.6386 + 264.501i 0.0705577 + 0.400152i 0.999548 + 0.0300495i \(0.00956649\pi\)
−0.928991 + 0.370103i \(0.879322\pi\)
\(662\) 0 0
\(663\) 46.7920 + 74.9355i 0.0705762 + 0.113025i
\(664\) 0 0
\(665\) 479.355 276.756i 0.720835 0.416174i
\(666\) 0 0
\(667\) 159.321 275.952i 0.238862 0.413722i
\(668\) 0 0
\(669\) 680.800 144.484i 1.01764 0.215970i
\(670\) 0 0
\(671\) 196.664 540.329i 0.293090 0.805259i
\(672\) 0 0
\(673\) 114.573 649.776i 0.170242 0.965492i −0.773251 0.634100i \(-0.781371\pi\)
0.943493 0.331392i \(-0.107518\pi\)
\(674\) 0 0
\(675\) −748.793 + 1107.87i −1.10932 + 1.64128i
\(676\) 0 0
\(677\) 251.116 + 44.2786i 0.370925 + 0.0654041i 0.356004 0.934485i \(-0.384139\pi\)
0.0149216 + 0.999889i \(0.495250\pi\)
\(678\) 0 0
\(679\) 1039.15 + 378.221i 1.53042 + 0.557026i
\(680\) 0 0
\(681\) −478.423 + 430.501i −0.702531 + 0.632160i
\(682\) 0 0
\(683\) 376.413 + 217.322i 0.551117 + 0.318187i 0.749572 0.661923i \(-0.230259\pi\)
−0.198456 + 0.980110i \(0.563593\pi\)
\(684\) 0 0
\(685\) −794.615 1376.31i −1.16002 2.00922i
\(686\) 0 0
\(687\) −41.0246 1185.52i −0.0597156 1.72565i
\(688\) 0 0
\(689\) 224.297 39.5496i 0.325540 0.0574015i
\(690\) 0 0
\(691\) 1022.63 + 858.086i 1.47992 + 1.24180i 0.906266 + 0.422707i \(0.138920\pi\)
0.573657 + 0.819096i \(0.305524\pi\)
\(692\) 0 0
\(693\) −742.693 + 1020.87i −1.07171 + 1.47312i
\(694\) 0 0
\(695\) 717.924 + 1972.48i 1.03298 + 2.83810i
\(696\) 0 0
\(697\) −126.738 + 106.346i −0.181834 + 0.152577i
\(698\) 0 0
\(699\) 266.393 107.532i 0.381106 0.153837i
\(700\) 0 0
\(701\) 1001.61i 1.42883i 0.699722 + 0.714415i \(0.253307\pi\)
−0.699722 + 0.714415i \(0.746693\pi\)
\(702\) 0 0
\(703\) 178.374 0.253733
\(704\) 0 0
\(705\) −264.857 + 338.781i −0.375683 + 0.480540i
\(706\) 0 0
\(707\) 81.5437 + 97.1800i 0.115338 + 0.137454i
\(708\) 0 0
\(709\) 720.055 262.078i 1.01559 0.369645i 0.220014 0.975497i \(-0.429390\pi\)
0.795578 + 0.605852i \(0.207167\pi\)
\(710\) 0 0
\(711\) 320.574 656.221i 0.450877 0.922955i
\(712\) 0 0
\(713\) −219.132 + 261.152i −0.307339 + 0.366272i
\(714\) 0 0
\(715\) 76.2782 + 432.595i 0.106683 + 0.605028i
\(716\) 0 0
\(717\) 124.278 233.554i 0.173330 0.325738i
\(718\) 0 0
\(719\) −544.595 + 314.422i −0.757434 + 0.437305i −0.828374 0.560176i \(-0.810733\pi\)
0.0709399 + 0.997481i \(0.477400\pi\)
\(720\) 0 0
\(721\) −157.730 + 273.196i −0.218765 + 0.378913i
\(722\) 0 0
\(723\) −357.387 + 1098.74i −0.494311 + 1.51970i
\(724\) 0 0
\(725\) 181.990 500.015i 0.251021 0.689675i
\(726\) 0 0
\(727\) 116.145 658.690i 0.159759 0.906039i −0.794546 0.607204i \(-0.792291\pi\)
0.954305 0.298835i \(-0.0965979\pi\)
\(728\) 0 0
\(729\) 486.769 + 542.676i 0.667722 + 0.744411i
\(730\) 0 0
\(731\) −226.514 39.9406i −0.309869 0.0546383i
\(732\) 0 0
\(733\) −104.288 37.9578i −0.142276 0.0517842i 0.269901 0.962888i \(-0.413009\pi\)
−0.412177 + 0.911104i \(0.635231\pi\)
\(734\) 0 0
\(735\) 503.748 + 163.853i 0.685371 + 0.222930i
\(736\) 0 0
\(737\) −548.551 316.706i −0.744302 0.429723i
\(738\) 0 0
\(739\) 231.298 + 400.619i 0.312987 + 0.542110i 0.979008 0.203824i \(-0.0653369\pi\)
−0.666020 + 0.745934i \(0.732004\pi\)
\(740\) 0 0
\(741\) −61.5979 32.7771i −0.0831280 0.0442336i
\(742\) 0 0
\(743\) −952.218 + 167.902i −1.28159 + 0.225978i −0.772653 0.634829i \(-0.781071\pi\)
−0.508932 + 0.860807i \(0.669960\pi\)
\(744\) 0 0
\(745\) 952.783 + 799.480i 1.27890 + 1.07313i
\(746\) 0 0
\(747\) 130.453 + 63.7282i 0.174636 + 0.0853121i
\(748\) 0 0
\(749\) 338.223 + 929.259i 0.451566 + 1.24067i
\(750\) 0 0
\(751\) 805.112 675.569i 1.07205 0.899560i 0.0768166 0.997045i \(-0.475524\pi\)
0.995237 + 0.0974855i \(0.0310800\pi\)
\(752\) 0 0
\(753\) 346.183 + 270.644i 0.459739 + 0.359421i
\(754\) 0 0
\(755\) 877.168i 1.16181i
\(756\) 0 0
\(757\) −266.724 −0.352343 −0.176172 0.984359i \(-0.556371\pi\)
−0.176172 + 0.984359i \(0.556371\pi\)
\(758\) 0 0
\(759\) 560.548 + 1388.67i 0.738535 + 1.82960i
\(760\) 0 0
\(761\) −0.229396 0.273383i −0.000301440 0.000359242i 0.765894 0.642967i \(-0.222297\pi\)
−0.766195 + 0.642608i \(0.777852\pi\)
\(762\) 0 0
\(763\) −1613.68 + 587.333i −2.11492 + 0.769768i
\(764\) 0 0
\(765\) 612.007 + 445.240i 0.800010 + 0.582013i
\(766\) 0 0
\(767\) −116.985 + 139.418i −0.152523 + 0.181770i
\(768\) 0 0
\(769\) 77.8630 + 441.583i 0.101252 + 0.574230i 0.992651 + 0.121011i \(0.0386136\pi\)
−0.891399 + 0.453220i \(0.850275\pi\)
\(770\) 0 0
\(771\) 622.457 21.5399i 0.807338 0.0279377i
\(772\) 0 0
\(773\) 580.814 335.333i 0.751376 0.433807i −0.0748149 0.997197i \(-0.523837\pi\)
0.826191 + 0.563390i \(0.190503\pi\)
\(774\) 0 0
\(775\) −284.644 + 493.018i −0.367283 + 0.636153i
\(776\) 0 0
\(777\) 387.734 + 430.896i 0.499014 + 0.554563i
\(778\) 0 0
\(779\) 44.6918 122.790i 0.0573708 0.157625i
\(780\) 0 0
\(781\) −148.605 + 842.783i −0.190276 + 1.07911i
\(782\) 0 0
\(783\) −240.342 162.444i −0.306951 0.207464i
\(784\) 0 0
\(785\) −2631.56 464.015i −3.35231 0.591102i
\(786\) 0 0
\(787\) −1152.23 419.377i −1.46408 0.532881i −0.517592 0.855627i \(-0.673172\pi\)
−0.946485 + 0.322747i \(0.895394\pi\)
\(788\) 0 0
\(789\) 20.7286 + 97.6722i 0.0262720 + 0.123792i
\(790\) 0 0
\(791\) 512.645 + 295.976i 0.648097 + 0.374179i
\(792\) 0 0
\(793\) 51.6388 + 89.4411i 0.0651183 + 0.112788i
\(794\) 0 0
\(795\) 1654.99 1033.43i 2.08175 1.29991i
\(796\) 0 0
\(797\) −391.758 + 69.0776i −0.491541 + 0.0866720i −0.413924 0.910311i \(-0.635842\pi\)
−0.0776168 + 0.996983i \(0.524731\pi\)
\(798\) 0 0
\(799\) 123.902 + 103.966i 0.155071 + 0.130120i
\(800\) 0 0
\(801\) 101.118 + 104.843i 0.126239 + 0.130890i
\(802\) 0 0
\(803\) −566.981 1557.77i −0.706079 1.93994i
\(804\) 0 0
\(805\) 1634.51 1371.52i 2.03045 1.70375i
\(806\) 0 0
\(807\) −167.006 + 1185.59i −0.206947 + 1.46914i
\(808\) 0 0
\(809\) 438.654i 0.542218i −0.962549 0.271109i \(-0.912610\pi\)
0.962549 0.271109i \(-0.0873903\pi\)
\(810\) 0 0
\(811\) 1037.62 1.27943 0.639716 0.768611i \(-0.279052\pi\)
0.639716 + 0.768611i \(0.279052\pi\)
\(812\) 0 0
\(813\) 249.529 + 35.1493i 0.306924 + 0.0432341i
\(814\) 0 0
\(815\) −888.159 1058.47i −1.08977 1.29873i
\(816\) 0 0
\(817\) 170.707 62.1324i 0.208944 0.0760495i
\(818\) 0 0
\(819\) −54.7168 220.049i −0.0668093 0.268680i
\(820\) 0 0
\(821\) −919.156 + 1095.41i −1.11956 + 1.33424i −0.183245 + 0.983067i \(0.558660\pi\)
−0.936312 + 0.351168i \(0.885784\pi\)
\(822\) 0 0
\(823\) 245.722 + 1393.56i 0.298568 + 1.69327i 0.652334 + 0.757932i \(0.273790\pi\)
−0.353765 + 0.935334i \(0.615099\pi\)
\(824\) 0 0
\(825\) 1324.53 + 2121.18i 1.60549 + 2.57112i
\(826\) 0 0
\(827\) −609.863 + 352.105i −0.737440 + 0.425761i −0.821138 0.570730i \(-0.806660\pi\)
0.0836977 + 0.996491i \(0.473327\pi\)
\(828\) 0 0
\(829\) −145.579 + 252.151i −0.175608 + 0.304162i −0.940372 0.340149i \(-0.889523\pi\)
0.764763 + 0.644311i \(0.222856\pi\)
\(830\) 0 0
\(831\) −525.918 + 111.614i −0.632874 + 0.134313i
\(832\) 0 0
\(833\) 68.1450 187.227i 0.0818067 0.224762i
\(834\) 0 0
\(835\) 373.186 2116.44i 0.446930 2.53466i
\(836\) 0 0
\(837\) 223.052 + 215.807i 0.266490 + 0.257834i
\(838\) 0 0
\(839\) −852.208 150.267i −1.01574 0.179103i −0.359096 0.933301i \(-0.616915\pi\)
−0.656647 + 0.754198i \(0.728026\pi\)
\(840\) 0 0
\(841\) −681.808 248.158i −0.810710 0.295074i
\(842\) 0 0
\(843\) −1036.90 + 933.038i −1.23001 + 1.10681i
\(844\) 0 0
\(845\) 1195.16 + 690.023i 1.41438 + 0.816595i
\(846\) 0 0
\(847\) 676.290 + 1171.37i 0.798454 + 1.38296i
\(848\) 0 0
\(849\) −27.1764 785.337i −0.0320098 0.925014i
\(850\) 0 0
\(851\) 677.158 119.401i 0.795721 0.140307i
\(852\) 0 0
\(853\) −83.2215 69.8311i −0.0975633 0.0818653i 0.592701 0.805422i \(-0.298061\pi\)
−0.690265 + 0.723557i \(0.742506\pi\)
\(854\) 0 0
\(855\) −594.438 62.8574i −0.695249 0.0735175i
\(856\) 0 0
\(857\) −364.690 1001.98i −0.425543 1.16917i −0.948491 0.316804i \(-0.897390\pi\)
0.522948 0.852364i \(-0.324832\pi\)
\(858\) 0 0
\(859\) 42.4891 35.6526i 0.0494635 0.0415048i −0.617721 0.786398i \(-0.711944\pi\)
0.667184 + 0.744893i \(0.267499\pi\)
\(860\) 0 0
\(861\) 393.769 158.948i 0.457339 0.184609i
\(862\) 0 0
\(863\) 75.8244i 0.0878614i −0.999035 0.0439307i \(-0.986012\pi\)
0.999035 0.0439307i \(-0.0139881\pi\)
\(864\) 0 0
\(865\) 583.388 0.674437
\(866\) 0 0
\(867\) −358.668 + 458.775i −0.413689 + 0.529153i
\(868\) 0 0
\(869\) −877.953 1046.30i −1.01030 1.20403i
\(870\) 0 0
\(871\) 106.907 38.9109i 0.122740 0.0446739i
\(872\) 0 0
\(873\) −667.179 990.482i −0.764237 1.13457i
\(874\) 0 0
\(875\) 1134.18 1351.66i 1.29621 1.54476i
\(876\) 0 0
\(877\) 100.329 + 568.994i 0.114400 + 0.648796i 0.987045 + 0.160441i \(0.0512918\pi\)
−0.872645 + 0.488355i \(0.837597\pi\)
\(878\) 0 0
\(879\) −138.432 + 260.155i −0.157488 + 0.295967i
\(880\) 0 0
\(881\) 118.578 68.4609i 0.134594 0.0777082i −0.431191 0.902261i \(-0.641906\pi\)
0.565785 + 0.824553i \(0.308573\pi\)
\(882\) 0 0
\(883\) −634.745 + 1099.41i −0.718851 + 1.24509i 0.242605 + 0.970125i \(0.421998\pi\)
−0.961455 + 0.274961i \(0.911335\pi\)
\(884\) 0 0
\(885\) −482.264 + 1482.66i −0.544931 + 1.67533i
\(886\) 0 0
\(887\) −220.369 + 605.458i −0.248443 + 0.682591i 0.751301 + 0.659960i \(0.229427\pi\)
−0.999744 + 0.0226314i \(0.992796\pi\)
\(888\) 0 0
\(889\) −55.3822 + 314.088i −0.0622972 + 0.353305i
\(890\) 0 0
\(891\) 1297.15 419.660i 1.45584 0.470999i
\(892\) 0 0
\(893\) −125.805 22.1829i −0.140879 0.0248408i
\(894\) 0 0
\(895\) −1908.25 694.545i −2.13212 0.776027i
\(896\) 0 0
\(897\) −255.784 83.1984i −0.285154 0.0927518i
\(898\) 0 0
\(899\) −106.956 61.7512i −0.118972 0.0686888i
\(900\) 0 0
\(901\) −366.936 635.551i −0.407254 0.705384i
\(902\) 0 0
\(903\) 521.161 + 277.317i 0.577144 + 0.307107i
\(904\) 0 0
\(905\) −1851.93 + 326.544i −2.04633 + 0.360823i
\(906\) 0 0
\(907\) 468.430 + 393.059i 0.516461 + 0.433362i 0.863396 0.504527i \(-0.168333\pi\)
−0.346935 + 0.937889i \(0.612778\pi\)
\(908\) 0 0
\(909\) −9.47026 136.671i −0.0104183 0.150353i
\(910\) 0 0
\(911\) −359.212 986.926i −0.394305 1.08334i −0.965016 0.262193i \(-0.915554\pi\)
0.570711 0.821151i \(-0.306668\pi\)
\(912\) 0 0
\(913\) 207.999 174.532i 0.227819 0.191163i
\(914\) 0 0
\(915\) 697.025 + 544.930i 0.761776 + 0.595552i
\(916\) 0 0
\(917\) 1816.19i 1.98057i
\(918\) 0 0
\(919\) −133.483 −0.145248 −0.0726238 0.997359i \(-0.523137\pi\)
−0.0726238 + 0.997359i \(0.523137\pi\)
\(920\) 0 0
\(921\) 553.444 + 1371.07i 0.600916 + 1.48867i
\(922\) 0 0
\(923\) −98.8020 117.748i −0.107044 0.127571i
\(924\) 0 0
\(925\) 1078.99 392.721i 1.16648 0.424563i
\(926\) 0 0
\(927\) 311.308 138.368i 0.335823 0.149264i
\(928\) 0 0
\(929\) 714.192 851.141i 0.768775 0.916190i −0.229594 0.973287i \(-0.573740\pi\)
0.998369 + 0.0570965i \(0.0181843\pi\)
\(930\) 0 0
\(931\) 27.3259 + 154.973i 0.0293512 + 0.166459i
\(932\) 0 0
\(933\) 50.6859 1.75397i 0.0543257 0.00187992i
\(934\) 0 0
\(935\) 1225.77 707.698i 1.31098 0.756896i
\(936\) 0 0
\(937\) 862.772 1494.36i 0.920781 1.59484i 0.122572 0.992460i \(-0.460886\pi\)
0.798209 0.602380i \(-0.205781\pi\)
\(938\) 0 0
\(939\) 837.009 + 930.183i 0.891384 + 0.990611i
\(940\) 0 0
\(941\) 465.200 1278.13i 0.494368 1.35827i −0.402278 0.915517i \(-0.631782\pi\)
0.896646 0.442748i \(-0.145996\pi\)
\(942\) 0 0
\(943\) 87.4689 496.061i 0.0927560 0.526046i
\(944\) 0 0
\(945\) −1140.29 1572.61i −1.20666 1.66414i
\(946\) 0 0
\(947\) −1590.14 280.385i −1.67914 0.296077i −0.748804 0.662792i \(-0.769372\pi\)
−0.930334 + 0.366714i \(0.880483\pi\)
\(948\) 0 0
\(949\) 279.793 + 101.836i 0.294829 + 0.107309i
\(950\) 0 0
\(951\) 282.601 + 1331.60i 0.297162 + 1.40021i
\(952\) 0 0
\(953\) −181.146 104.585i −0.190080 0.109743i 0.401940 0.915666i \(-0.368336\pi\)
−0.592020 + 0.805923i \(0.701669\pi\)
\(954\) 0 0
\(955\) −1110.73 1923.84i −1.16307 2.01449i
\(956\) 0 0
\(957\) −460.171 + 287.345i −0.480848 + 0.300256i
\(958\) 0 0
\(959\) 1510.90 266.412i 1.57549 0.277802i
\(960\) 0 0
\(961\) −634.949 532.786i −0.660717 0.554407i
\(962\) 0 0
\(963\) 295.011 1026.38i 0.306346 1.06581i
\(964\) 0 0
\(965\) 226.378 + 621.969i 0.234589 + 0.644528i
\(966\) 0 0
\(967\) −672.104 + 563.962i −0.695041 + 0.583208i −0.920358 0.391077i \(-0.872103\pi\)
0.225317 + 0.974285i \(0.427658\pi\)
\(968\) 0 0
\(969\) −31.3604 + 222.631i −0.0323637 + 0.229753i
\(970\) 0 0
\(971\) 686.372i 0.706871i −0.935459 0.353435i \(-0.885013\pi\)
0.935459 0.353435i \(-0.114987\pi\)
\(972\) 0 0
\(973\) −2026.39 −2.08262
\(974\) 0 0
\(975\) −444.772 62.6519i −0.456177 0.0642583i
\(976\) 0 0
\(977\) 905.640 + 1079.30i 0.926960 + 1.10471i 0.994262 + 0.106975i \(0.0341166\pi\)
−0.0673015 + 0.997733i \(0.521439\pi\)
\(978\) 0 0
\(979\) 255.980 93.1690i 0.261471 0.0951675i
\(980\) 0 0
\(981\) 1782.34 + 512.295i 1.81686 + 0.522217i
\(982\) 0 0
\(983\) −606.673 + 723.005i −0.617165 + 0.735508i −0.980580 0.196119i \(-0.937166\pi\)
0.363415 + 0.931627i \(0.381611\pi\)
\(984\) 0 0
\(985\) −365.756 2074.30i −0.371326 2.10589i
\(986\) 0 0
\(987\) −219.877 352.125i −0.222774 0.356763i
\(988\) 0 0
\(989\) 606.463 350.142i 0.613208 0.354036i
\(990\) 0 0
\(991\) 424.153 734.654i 0.428005 0.741326i −0.568691 0.822551i \(-0.692550\pi\)
0.996696 + 0.0812254i \(0.0258834\pi\)
\(992\) 0 0
\(993\) −688.980 + 146.220i −0.693837 + 0.147251i
\(994\) 0 0
\(995\) −242.431 + 666.074i −0.243649 + 0.669421i
\(996\) 0 0
\(997\) −29.2963 + 166.148i −0.0293845 + 0.166648i −0.995969 0.0897017i \(-0.971409\pi\)
0.966584 + 0.256349i \(0.0825198\pi\)
\(998\) 0 0
\(999\) −64.8444 622.625i −0.0649093 0.623248i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.3.bc.c.353.6 36
4.3 odd 2 54.3.f.a.29.1 36
12.11 even 2 162.3.f.a.89.4 36
27.14 odd 18 inner 432.3.bc.c.257.6 36
108.11 even 18 1458.3.b.c.1457.19 36
108.43 odd 18 1458.3.b.c.1457.18 36
108.67 odd 18 162.3.f.a.71.4 36
108.95 even 18 54.3.f.a.41.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.29.1 36 4.3 odd 2
54.3.f.a.41.1 yes 36 108.95 even 18
162.3.f.a.71.4 36 108.67 odd 18
162.3.f.a.89.4 36 12.11 even 2
432.3.bc.c.257.6 36 27.14 odd 18 inner
432.3.bc.c.353.6 36 1.1 even 1 trivial
1458.3.b.c.1457.18 36 108.43 odd 18
1458.3.b.c.1457.19 36 108.11 even 18