Properties

Label 1458.3.b.c.1457.18
Level $1458$
Weight $3$
Character 1458.1457
Analytic conductor $39.728$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1458,3,Mod(1457,1458)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1458, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1458.1457");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1458 = 2 \cdot 3^{6} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1458.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.7276225437\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1457.18
Character \(\chi\) \(=\) 1458.1457
Dual form 1458.3.b.c.1457.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{2} -2.00000 q^{4} +8.63280i q^{5} -8.33391 q^{7} +2.82843i q^{8} +12.2086 q^{10} +16.8315i q^{11} +3.02312 q^{13} +11.7859i q^{14} +4.00000 q^{16} +9.74101i q^{17} -7.69355 q^{19} -17.2656i q^{20} +23.8033 q^{22} +29.6574i q^{23} -49.5253 q^{25} -4.27534i q^{26} +16.6678 q^{28} -10.7441i q^{29} +11.4949 q^{31} -5.65685i q^{32} +13.7759 q^{34} -71.9450i q^{35} +23.1849 q^{37} +10.8803i q^{38} -24.4173 q^{40} +16.9844i q^{41} +23.6124 q^{43} -33.6629i q^{44} +41.9419 q^{46} +16.6043i q^{47} +20.4540 q^{49} +70.0393i q^{50} -6.04625 q^{52} -75.3383i q^{53} -145.303 q^{55} -23.5718i q^{56} -15.1944 q^{58} -60.2015i q^{59} -34.1626 q^{61} -16.2563i q^{62} -8.00000 q^{64} +26.0980i q^{65} +37.6326 q^{67} -19.4820i q^{68} -101.746 q^{70} +50.8443i q^{71} -98.4906 q^{73} -32.7884i q^{74} +15.3871 q^{76} -140.272i q^{77} -81.1487 q^{79} +34.5312i q^{80} +24.0196 q^{82} -16.1319i q^{83} -84.0922 q^{85} -33.3930i q^{86} -47.6066 q^{88} -16.1844i q^{89} -25.1944 q^{91} -59.3149i q^{92} +23.4820 q^{94} -66.4169i q^{95} -132.692 q^{97} -28.9263i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} + 144 q^{16} - 180 q^{25} + 252 q^{49} - 36 q^{61} - 288 q^{64} + 180 q^{67} - 252 q^{73} + 396 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1458\mathbb{Z}\right)^\times\).

\(n\) \(731\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.41421i − 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 8.63280i 1.72656i 0.504725 + 0.863280i \(0.331594\pi\)
−0.504725 + 0.863280i \(0.668406\pi\)
\(6\) 0 0
\(7\) −8.33391 −1.19056 −0.595279 0.803519i \(-0.702958\pi\)
−0.595279 + 0.803519i \(0.702958\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 12.2086 1.22086
\(11\) 16.8315i 1.53013i 0.643951 + 0.765067i \(0.277294\pi\)
−0.643951 + 0.765067i \(0.722706\pi\)
\(12\) 0 0
\(13\) 3.02312 0.232548 0.116274 0.993217i \(-0.462905\pi\)
0.116274 + 0.993217i \(0.462905\pi\)
\(14\) 11.7859i 0.841852i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 9.74101i 0.573001i 0.958080 + 0.286500i \(0.0924920\pi\)
−0.958080 + 0.286500i \(0.907508\pi\)
\(18\) 0 0
\(19\) −7.69355 −0.404923 −0.202462 0.979290i \(-0.564894\pi\)
−0.202462 + 0.979290i \(0.564894\pi\)
\(20\) − 17.2656i − 0.863280i
\(21\) 0 0
\(22\) 23.8033 1.08197
\(23\) 29.6574i 1.28945i 0.764413 + 0.644727i \(0.223029\pi\)
−0.764413 + 0.644727i \(0.776971\pi\)
\(24\) 0 0
\(25\) −49.5253 −1.98101
\(26\) − 4.27534i − 0.164436i
\(27\) 0 0
\(28\) 16.6678 0.595279
\(29\) − 10.7441i − 0.370486i −0.982693 0.185243i \(-0.940693\pi\)
0.982693 0.185243i \(-0.0593072\pi\)
\(30\) 0 0
\(31\) 11.4949 0.370803 0.185402 0.982663i \(-0.440641\pi\)
0.185402 + 0.982663i \(0.440641\pi\)
\(32\) − 5.65685i − 0.176777i
\(33\) 0 0
\(34\) 13.7759 0.405173
\(35\) − 71.9450i − 2.05557i
\(36\) 0 0
\(37\) 23.1849 0.626619 0.313309 0.949651i \(-0.398562\pi\)
0.313309 + 0.949651i \(0.398562\pi\)
\(38\) 10.8803i 0.286324i
\(39\) 0 0
\(40\) −24.4173 −0.610431
\(41\) 16.9844i 0.414254i 0.978314 + 0.207127i \(0.0664113\pi\)
−0.978314 + 0.207127i \(0.933589\pi\)
\(42\) 0 0
\(43\) 23.6124 0.549125 0.274563 0.961569i \(-0.411467\pi\)
0.274563 + 0.961569i \(0.411467\pi\)
\(44\) − 33.6629i − 0.765067i
\(45\) 0 0
\(46\) 41.9419 0.911781
\(47\) 16.6043i 0.353283i 0.984275 + 0.176642i \(0.0565233\pi\)
−0.984275 + 0.176642i \(0.943477\pi\)
\(48\) 0 0
\(49\) 20.4540 0.417429
\(50\) 70.0393i 1.40079i
\(51\) 0 0
\(52\) −6.04625 −0.116274
\(53\) − 75.3383i − 1.42148i −0.703456 0.710739i \(-0.748361\pi\)
0.703456 0.710739i \(-0.251639\pi\)
\(54\) 0 0
\(55\) −145.303 −2.64187
\(56\) − 23.5718i − 0.420926i
\(57\) 0 0
\(58\) −15.1944 −0.261973
\(59\) − 60.2015i − 1.02036i −0.860066 0.510182i \(-0.829578\pi\)
0.860066 0.510182i \(-0.170422\pi\)
\(60\) 0 0
\(61\) −34.1626 −0.560042 −0.280021 0.959994i \(-0.590341\pi\)
−0.280021 + 0.959994i \(0.590341\pi\)
\(62\) − 16.2563i − 0.262198i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 26.0980i 0.401508i
\(66\) 0 0
\(67\) 37.6326 0.561680 0.280840 0.959755i \(-0.409387\pi\)
0.280840 + 0.959755i \(0.409387\pi\)
\(68\) − 19.4820i − 0.286500i
\(69\) 0 0
\(70\) −101.746 −1.45351
\(71\) 50.8443i 0.716117i 0.933699 + 0.358058i \(0.116561\pi\)
−0.933699 + 0.358058i \(0.883439\pi\)
\(72\) 0 0
\(73\) −98.4906 −1.34919 −0.674593 0.738189i \(-0.735681\pi\)
−0.674593 + 0.738189i \(0.735681\pi\)
\(74\) − 32.7884i − 0.443087i
\(75\) 0 0
\(76\) 15.3871 0.202462
\(77\) − 140.272i − 1.82171i
\(78\) 0 0
\(79\) −81.1487 −1.02720 −0.513599 0.858030i \(-0.671688\pi\)
−0.513599 + 0.858030i \(0.671688\pi\)
\(80\) 34.5312i 0.431640i
\(81\) 0 0
\(82\) 24.0196 0.292921
\(83\) − 16.1319i − 0.194360i −0.995267 0.0971800i \(-0.969018\pi\)
0.995267 0.0971800i \(-0.0309823\pi\)
\(84\) 0 0
\(85\) −84.0922 −0.989320
\(86\) − 33.3930i − 0.388290i
\(87\) 0 0
\(88\) −47.6066 −0.540984
\(89\) − 16.1844i − 0.181848i −0.995858 0.0909238i \(-0.971018\pi\)
0.995858 0.0909238i \(-0.0289820\pi\)
\(90\) 0 0
\(91\) −25.1944 −0.276862
\(92\) − 59.3149i − 0.644727i
\(93\) 0 0
\(94\) 23.4820 0.249809
\(95\) − 66.4169i − 0.699125i
\(96\) 0 0
\(97\) −132.692 −1.36796 −0.683980 0.729501i \(-0.739753\pi\)
−0.683980 + 0.729501i \(0.739753\pi\)
\(98\) − 28.9263i − 0.295167i
\(99\) 0 0
\(100\) 99.0506 0.990506
\(101\) 15.2221i 0.150714i 0.997157 + 0.0753569i \(0.0240096\pi\)
−0.997157 + 0.0753569i \(0.975990\pi\)
\(102\) 0 0
\(103\) −37.8526 −0.367501 −0.183750 0.982973i \(-0.558824\pi\)
−0.183750 + 0.982973i \(0.558824\pi\)
\(104\) 8.55069i 0.0822181i
\(105\) 0 0
\(106\) −106.544 −1.00514
\(107\) 118.659i 1.10897i 0.832195 + 0.554483i \(0.187084\pi\)
−0.832195 + 0.554483i \(0.812916\pi\)
\(108\) 0 0
\(109\) 206.055 1.89042 0.945208 0.326468i \(-0.105859\pi\)
0.945208 + 0.326468i \(0.105859\pi\)
\(110\) 205.489i 1.86808i
\(111\) 0 0
\(112\) −33.3356 −0.297640
\(113\) − 71.0293i − 0.628578i −0.949327 0.314289i \(-0.898234\pi\)
0.949327 0.314289i \(-0.101766\pi\)
\(114\) 0 0
\(115\) −256.027 −2.22632
\(116\) 21.4882i 0.185243i
\(117\) 0 0
\(118\) −85.1378 −0.721507
\(119\) − 81.1807i − 0.682191i
\(120\) 0 0
\(121\) −162.298 −1.34131
\(122\) 48.3131i 0.396009i
\(123\) 0 0
\(124\) −22.9898 −0.185402
\(125\) − 211.722i − 1.69378i
\(126\) 0 0
\(127\) 38.2694 0.301334 0.150667 0.988585i \(-0.451858\pi\)
0.150667 + 0.988585i \(0.451858\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 36.9082 0.283909
\(131\) − 217.927i − 1.66357i −0.555100 0.831783i \(-0.687320\pi\)
0.555100 0.831783i \(-0.312680\pi\)
\(132\) 0 0
\(133\) 64.1173 0.482085
\(134\) − 53.2205i − 0.397168i
\(135\) 0 0
\(136\) −27.5517 −0.202586
\(137\) − 184.092i − 1.34374i −0.740670 0.671868i \(-0.765492\pi\)
0.740670 0.671868i \(-0.234508\pi\)
\(138\) 0 0
\(139\) 243.150 1.74928 0.874641 0.484771i \(-0.161097\pi\)
0.874641 + 0.484771i \(0.161097\pi\)
\(140\) 143.890i 1.02779i
\(141\) 0 0
\(142\) 71.9047 0.506371
\(143\) 50.8836i 0.355830i
\(144\) 0 0
\(145\) 92.7517 0.639667
\(146\) 139.287i 0.954019i
\(147\) 0 0
\(148\) −46.3698 −0.313309
\(149\) − 144.075i − 0.966945i −0.875360 0.483472i \(-0.839375\pi\)
0.875360 0.483472i \(-0.160625\pi\)
\(150\) 0 0
\(151\) −101.609 −0.672906 −0.336453 0.941700i \(-0.609227\pi\)
−0.336453 + 0.941700i \(0.609227\pi\)
\(152\) − 21.7606i − 0.143162i
\(153\) 0 0
\(154\) −198.374 −1.28815
\(155\) 99.2333i 0.640215i
\(156\) 0 0
\(157\) −309.535 −1.97156 −0.985781 0.168033i \(-0.946258\pi\)
−0.985781 + 0.168033i \(0.946258\pi\)
\(158\) 114.762i 0.726339i
\(159\) 0 0
\(160\) 48.8345 0.305216
\(161\) − 247.162i − 1.53517i
\(162\) 0 0
\(163\) 160.056 0.981937 0.490969 0.871177i \(-0.336643\pi\)
0.490969 + 0.871177i \(0.336643\pi\)
\(164\) − 33.9688i − 0.207127i
\(165\) 0 0
\(166\) −22.8139 −0.137433
\(167\) 248.945i 1.49069i 0.666679 + 0.745345i \(0.267715\pi\)
−0.666679 + 0.745345i \(0.732285\pi\)
\(168\) 0 0
\(169\) −159.861 −0.945921
\(170\) 118.924i 0.699555i
\(171\) 0 0
\(172\) −47.2248 −0.274563
\(173\) − 67.5780i − 0.390624i −0.980741 0.195312i \(-0.937428\pi\)
0.980741 0.195312i \(-0.0625720\pi\)
\(174\) 0 0
\(175\) 412.739 2.35851
\(176\) 67.3259i 0.382533i
\(177\) 0 0
\(178\) −22.8883 −0.128586
\(179\) 235.232i 1.31415i 0.753827 + 0.657073i \(0.228206\pi\)
−0.753827 + 0.657073i \(0.771794\pi\)
\(180\) 0 0
\(181\) 217.831 1.20349 0.601744 0.798689i \(-0.294473\pi\)
0.601744 + 0.798689i \(0.294473\pi\)
\(182\) 35.6303i 0.195771i
\(183\) 0 0
\(184\) −83.8839 −0.455891
\(185\) 200.151i 1.08190i
\(186\) 0 0
\(187\) −163.956 −0.876768
\(188\) − 33.2086i − 0.176642i
\(189\) 0 0
\(190\) −93.9276 −0.494356
\(191\) 257.327i 1.34726i 0.739067 + 0.673631i \(0.235266\pi\)
−0.739067 + 0.673631i \(0.764734\pi\)
\(192\) 0 0
\(193\) −76.6710 −0.397259 −0.198630 0.980075i \(-0.563649\pi\)
−0.198630 + 0.980075i \(0.563649\pi\)
\(194\) 187.655i 0.967294i
\(195\) 0 0
\(196\) −40.9080 −0.208714
\(197\) 243.988i 1.23852i 0.785186 + 0.619260i \(0.212567\pi\)
−0.785186 + 0.619260i \(0.787433\pi\)
\(198\) 0 0
\(199\) 82.1079 0.412602 0.206301 0.978489i \(-0.433857\pi\)
0.206301 + 0.978489i \(0.433857\pi\)
\(200\) − 140.079i − 0.700393i
\(201\) 0 0
\(202\) 21.5273 0.106571
\(203\) 89.5403i 0.441085i
\(204\) 0 0
\(205\) −146.623 −0.715234
\(206\) 53.5316i 0.259862i
\(207\) 0 0
\(208\) 12.0925 0.0581370
\(209\) − 129.494i − 0.619587i
\(210\) 0 0
\(211\) 57.4937 0.272482 0.136241 0.990676i \(-0.456498\pi\)
0.136241 + 0.990676i \(0.456498\pi\)
\(212\) 150.677i 0.710739i
\(213\) 0 0
\(214\) 167.810 0.784158
\(215\) 203.841i 0.948098i
\(216\) 0 0
\(217\) −95.7975 −0.441463
\(218\) − 291.406i − 1.33673i
\(219\) 0 0
\(220\) 290.606 1.32093
\(221\) 29.4483i 0.133250i
\(222\) 0 0
\(223\) 231.988 1.04030 0.520152 0.854074i \(-0.325875\pi\)
0.520152 + 0.854074i \(0.325875\pi\)
\(224\) 47.1437i 0.210463i
\(225\) 0 0
\(226\) −100.451 −0.444472
\(227\) − 214.533i − 0.945080i −0.881309 0.472540i \(-0.843337\pi\)
0.881309 0.472540i \(-0.156663\pi\)
\(228\) 0 0
\(229\) −395.410 −1.72668 −0.863341 0.504620i \(-0.831633\pi\)
−0.863341 + 0.504620i \(0.831633\pi\)
\(230\) 362.077i 1.57425i
\(231\) 0 0
\(232\) 30.3889 0.130987
\(233\) 95.7591i 0.410983i 0.978659 + 0.205492i \(0.0658794\pi\)
−0.978659 + 0.205492i \(0.934121\pi\)
\(234\) 0 0
\(235\) −143.342 −0.609965
\(236\) 120.403i 0.510182i
\(237\) 0 0
\(238\) −114.807 −0.482382
\(239\) − 88.1870i − 0.368983i −0.982834 0.184492i \(-0.940936\pi\)
0.982834 0.184492i \(-0.0590638\pi\)
\(240\) 0 0
\(241\) −385.135 −1.59807 −0.799035 0.601284i \(-0.794656\pi\)
−0.799035 + 0.601284i \(0.794656\pi\)
\(242\) 229.525i 0.948449i
\(243\) 0 0
\(244\) 68.3251 0.280021
\(245\) 176.575i 0.720716i
\(246\) 0 0
\(247\) −23.2585 −0.0941641
\(248\) 32.5125i 0.131099i
\(249\) 0 0
\(250\) −299.420 −1.19768
\(251\) 146.474i 0.583561i 0.956485 + 0.291780i \(0.0942476\pi\)
−0.956485 + 0.291780i \(0.905752\pi\)
\(252\) 0 0
\(253\) −499.178 −1.97304
\(254\) − 54.1211i − 0.213075i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) − 207.610i − 0.807821i −0.914799 0.403910i \(-0.867651\pi\)
0.914799 0.403910i \(-0.132349\pi\)
\(258\) 0 0
\(259\) −193.221 −0.746026
\(260\) − 52.1961i − 0.200754i
\(261\) 0 0
\(262\) −308.196 −1.17632
\(263\) 33.2825i 0.126550i 0.997996 + 0.0632748i \(0.0201544\pi\)
−0.997996 + 0.0632748i \(0.979846\pi\)
\(264\) 0 0
\(265\) 650.381 2.45427
\(266\) − 90.6756i − 0.340886i
\(267\) 0 0
\(268\) −75.2652 −0.280840
\(269\) 399.099i 1.48364i 0.670599 + 0.741820i \(0.266037\pi\)
−0.670599 + 0.741820i \(0.733963\pi\)
\(270\) 0 0
\(271\) −83.9974 −0.309954 −0.154977 0.987918i \(-0.549530\pi\)
−0.154977 + 0.987918i \(0.549530\pi\)
\(272\) 38.9640i 0.143250i
\(273\) 0 0
\(274\) −260.345 −0.950166
\(275\) − 833.584i − 3.03121i
\(276\) 0 0
\(277\) 179.211 0.646970 0.323485 0.946233i \(-0.395146\pi\)
0.323485 + 0.946233i \(0.395146\pi\)
\(278\) − 343.866i − 1.23693i
\(279\) 0 0
\(280\) 203.491 0.726754
\(281\) 464.964i 1.65468i 0.561704 + 0.827338i \(0.310146\pi\)
−0.561704 + 0.827338i \(0.689854\pi\)
\(282\) 0 0
\(283\) 261.936 0.925568 0.462784 0.886471i \(-0.346851\pi\)
0.462784 + 0.886471i \(0.346851\pi\)
\(284\) − 101.689i − 0.358058i
\(285\) 0 0
\(286\) 71.9603 0.251610
\(287\) − 141.546i − 0.493193i
\(288\) 0 0
\(289\) 194.113 0.671670
\(290\) − 131.171i − 0.452313i
\(291\) 0 0
\(292\) 196.981 0.674593
\(293\) − 98.2311i − 0.335260i −0.985850 0.167630i \(-0.946389\pi\)
0.985850 0.167630i \(-0.0536114\pi\)
\(294\) 0 0
\(295\) 519.708 1.76172
\(296\) 65.5768i 0.221543i
\(297\) 0 0
\(298\) −203.753 −0.683733
\(299\) 89.6581i 0.299860i
\(300\) 0 0
\(301\) −196.784 −0.653766
\(302\) 143.696i 0.475816i
\(303\) 0 0
\(304\) −30.7742 −0.101231
\(305\) − 294.919i − 0.966946i
\(306\) 0 0
\(307\) 492.852 1.60538 0.802690 0.596397i \(-0.203401\pi\)
0.802690 + 0.596397i \(0.203401\pi\)
\(308\) 280.544i 0.910857i
\(309\) 0 0
\(310\) 140.337 0.452700
\(311\) 16.9054i 0.0543582i 0.999631 + 0.0271791i \(0.00865245\pi\)
−0.999631 + 0.0271791i \(0.991348\pi\)
\(312\) 0 0
\(313\) 417.110 1.33262 0.666310 0.745675i \(-0.267873\pi\)
0.666310 + 0.745675i \(0.267873\pi\)
\(314\) 437.749i 1.39411i
\(315\) 0 0
\(316\) 162.297 0.513599
\(317\) − 453.753i − 1.43140i −0.698410 0.715698i \(-0.746109\pi\)
0.698410 0.715698i \(-0.253891\pi\)
\(318\) 0 0
\(319\) 180.839 0.566893
\(320\) − 69.0624i − 0.215820i
\(321\) 0 0
\(322\) −349.540 −1.08553
\(323\) − 74.9429i − 0.232021i
\(324\) 0 0
\(325\) −149.721 −0.460680
\(326\) − 226.353i − 0.694334i
\(327\) 0 0
\(328\) −48.0391 −0.146461
\(329\) − 138.379i − 0.420604i
\(330\) 0 0
\(331\) −234.775 −0.709290 −0.354645 0.935001i \(-0.615398\pi\)
−0.354645 + 0.935001i \(0.615398\pi\)
\(332\) 32.2638i 0.0971800i
\(333\) 0 0
\(334\) 352.062 1.05408
\(335\) 324.875i 0.969775i
\(336\) 0 0
\(337\) −317.247 −0.941387 −0.470693 0.882297i \(-0.655996\pi\)
−0.470693 + 0.882297i \(0.655996\pi\)
\(338\) 226.077i 0.668867i
\(339\) 0 0
\(340\) 168.184 0.494660
\(341\) 193.476i 0.567379i
\(342\) 0 0
\(343\) 237.900 0.693585
\(344\) 66.7859i 0.194145i
\(345\) 0 0
\(346\) −95.5697 −0.276213
\(347\) − 44.1393i − 0.127203i −0.997975 0.0636013i \(-0.979741\pi\)
0.997975 0.0636013i \(-0.0202586\pi\)
\(348\) 0 0
\(349\) 330.545 0.947121 0.473560 0.880761i \(-0.342969\pi\)
0.473560 + 0.880761i \(0.342969\pi\)
\(350\) − 583.701i − 1.66772i
\(351\) 0 0
\(352\) 95.2132 0.270492
\(353\) − 473.491i − 1.34133i −0.741758 0.670667i \(-0.766008\pi\)
0.741758 0.670667i \(-0.233992\pi\)
\(354\) 0 0
\(355\) −438.929 −1.23642
\(356\) 32.3689i 0.0909238i
\(357\) 0 0
\(358\) 332.668 0.929241
\(359\) − 436.540i − 1.21599i −0.793941 0.607994i \(-0.791974\pi\)
0.793941 0.607994i \(-0.208026\pi\)
\(360\) 0 0
\(361\) −301.809 −0.836037
\(362\) − 308.060i − 0.850994i
\(363\) 0 0
\(364\) 50.3889 0.138431
\(365\) − 850.250i − 2.32945i
\(366\) 0 0
\(367\) 476.675 1.29884 0.649421 0.760429i \(-0.275011\pi\)
0.649421 + 0.760429i \(0.275011\pi\)
\(368\) 118.630i 0.322363i
\(369\) 0 0
\(370\) 283.056 0.765016
\(371\) 627.863i 1.69235i
\(372\) 0 0
\(373\) −369.120 −0.989599 −0.494799 0.869007i \(-0.664758\pi\)
−0.494799 + 0.869007i \(0.664758\pi\)
\(374\) 231.868i 0.619968i
\(375\) 0 0
\(376\) −46.9641 −0.124904
\(377\) − 32.4807i − 0.0861558i
\(378\) 0 0
\(379\) −216.903 −0.572304 −0.286152 0.958184i \(-0.592376\pi\)
−0.286152 + 0.958184i \(0.592376\pi\)
\(380\) 132.834i 0.349562i
\(381\) 0 0
\(382\) 363.916 0.952659
\(383\) − 539.347i − 1.40822i −0.710092 0.704109i \(-0.751347\pi\)
0.710092 0.704109i \(-0.248653\pi\)
\(384\) 0 0
\(385\) 1210.94 3.14530
\(386\) 108.429i 0.280905i
\(387\) 0 0
\(388\) 265.384 0.683980
\(389\) − 147.663i − 0.379597i −0.981823 0.189799i \(-0.939217\pi\)
0.981823 0.189799i \(-0.0607835\pi\)
\(390\) 0 0
\(391\) −288.893 −0.738858
\(392\) 57.8527i 0.147583i
\(393\) 0 0
\(394\) 345.052 0.875766
\(395\) − 700.541i − 1.77352i
\(396\) 0 0
\(397\) −502.615 −1.26603 −0.633017 0.774138i \(-0.718184\pi\)
−0.633017 + 0.774138i \(0.718184\pi\)
\(398\) − 116.118i − 0.291754i
\(399\) 0 0
\(400\) −198.101 −0.495253
\(401\) 231.445i 0.577170i 0.957454 + 0.288585i \(0.0931847\pi\)
−0.957454 + 0.288585i \(0.906815\pi\)
\(402\) 0 0
\(403\) 34.7505 0.0862296
\(404\) − 30.4442i − 0.0753569i
\(405\) 0 0
\(406\) 126.629 0.311894
\(407\) 390.236i 0.958811i
\(408\) 0 0
\(409\) 450.444 1.10133 0.550665 0.834726i \(-0.314374\pi\)
0.550665 + 0.834726i \(0.314374\pi\)
\(410\) 207.356i 0.505747i
\(411\) 0 0
\(412\) 75.7051 0.183750
\(413\) 501.714i 1.21480i
\(414\) 0 0
\(415\) 139.263 0.335574
\(416\) − 17.1014i − 0.0411091i
\(417\) 0 0
\(418\) −183.132 −0.438114
\(419\) 329.142i 0.785542i 0.919636 + 0.392771i \(0.128484\pi\)
−0.919636 + 0.392771i \(0.871516\pi\)
\(420\) 0 0
\(421\) −204.609 −0.486007 −0.243003 0.970025i \(-0.578133\pi\)
−0.243003 + 0.970025i \(0.578133\pi\)
\(422\) − 81.3083i − 0.192674i
\(423\) 0 0
\(424\) 213.089 0.502568
\(425\) − 482.426i − 1.13512i
\(426\) 0 0
\(427\) 284.708 0.666762
\(428\) − 237.319i − 0.554483i
\(429\) 0 0
\(430\) 288.275 0.670407
\(431\) − 5.85402i − 0.0135824i −0.999977 0.00679120i \(-0.997838\pi\)
0.999977 0.00679120i \(-0.00216172\pi\)
\(432\) 0 0
\(433\) 233.310 0.538821 0.269411 0.963025i \(-0.413171\pi\)
0.269411 + 0.963025i \(0.413171\pi\)
\(434\) 135.478i 0.312162i
\(435\) 0 0
\(436\) −412.111 −0.945208
\(437\) − 228.171i − 0.522130i
\(438\) 0 0
\(439\) −134.791 −0.307040 −0.153520 0.988146i \(-0.549061\pi\)
−0.153520 + 0.988146i \(0.549061\pi\)
\(440\) − 410.978i − 0.934042i
\(441\) 0 0
\(442\) 41.6462 0.0942221
\(443\) − 28.6441i − 0.0646593i −0.999477 0.0323297i \(-0.989707\pi\)
0.999477 0.0323297i \(-0.0102926\pi\)
\(444\) 0 0
\(445\) 139.717 0.313971
\(446\) − 328.080i − 0.735606i
\(447\) 0 0
\(448\) 66.6713 0.148820
\(449\) 496.782i 1.10642i 0.833042 + 0.553210i \(0.186597\pi\)
−0.833042 + 0.553210i \(0.813403\pi\)
\(450\) 0 0
\(451\) −285.872 −0.633863
\(452\) 142.059i 0.314289i
\(453\) 0 0
\(454\) −303.396 −0.668272
\(455\) − 217.499i − 0.478019i
\(456\) 0 0
\(457\) −463.804 −1.01489 −0.507444 0.861685i \(-0.669410\pi\)
−0.507444 + 0.861685i \(0.669410\pi\)
\(458\) 559.195i 1.22095i
\(459\) 0 0
\(460\) 512.054 1.11316
\(461\) − 266.382i − 0.577836i −0.957354 0.288918i \(-0.906705\pi\)
0.957354 0.288918i \(-0.0932954\pi\)
\(462\) 0 0
\(463\) 239.371 0.517000 0.258500 0.966011i \(-0.416772\pi\)
0.258500 + 0.966011i \(0.416772\pi\)
\(464\) − 42.9764i − 0.0926215i
\(465\) 0 0
\(466\) 135.424 0.290609
\(467\) 213.118i 0.456355i 0.973620 + 0.228177i \(0.0732766\pi\)
−0.973620 + 0.228177i \(0.926723\pi\)
\(468\) 0 0
\(469\) −313.626 −0.668713
\(470\) 202.716i 0.431310i
\(471\) 0 0
\(472\) 170.276 0.360753
\(473\) 397.431i 0.840236i
\(474\) 0 0
\(475\) 381.025 0.802158
\(476\) 162.361i 0.341095i
\(477\) 0 0
\(478\) −124.715 −0.260911
\(479\) − 400.215i − 0.835522i −0.908557 0.417761i \(-0.862815\pi\)
0.908557 0.417761i \(-0.137185\pi\)
\(480\) 0 0
\(481\) 70.0908 0.145719
\(482\) 544.663i 1.13001i
\(483\) 0 0
\(484\) 324.597 0.670655
\(485\) − 1145.51i − 2.36187i
\(486\) 0 0
\(487\) −323.676 −0.664632 −0.332316 0.943168i \(-0.607830\pi\)
−0.332316 + 0.943168i \(0.607830\pi\)
\(488\) − 96.6263i − 0.198005i
\(489\) 0 0
\(490\) 249.715 0.509623
\(491\) 917.662i 1.86897i 0.356008 + 0.934483i \(0.384138\pi\)
−0.356008 + 0.934483i \(0.615862\pi\)
\(492\) 0 0
\(493\) 104.658 0.212289
\(494\) 32.8925i 0.0665841i
\(495\) 0 0
\(496\) 45.9796 0.0927009
\(497\) − 423.732i − 0.852579i
\(498\) 0 0
\(499\) −216.070 −0.433005 −0.216503 0.976282i \(-0.569465\pi\)
−0.216503 + 0.976282i \(0.569465\pi\)
\(500\) 423.444i 0.846888i
\(501\) 0 0
\(502\) 207.145 0.412640
\(503\) 36.2064i 0.0719810i 0.999352 + 0.0359905i \(0.0114586\pi\)
−0.999352 + 0.0359905i \(0.988541\pi\)
\(504\) 0 0
\(505\) −131.409 −0.260216
\(506\) 705.945i 1.39515i
\(507\) 0 0
\(508\) −76.5387 −0.150667
\(509\) − 233.360i − 0.458467i −0.973371 0.229234i \(-0.926378\pi\)
0.973371 0.229234i \(-0.0736220\pi\)
\(510\) 0 0
\(511\) 820.812 1.60629
\(512\) − 22.6274i − 0.0441942i
\(513\) 0 0
\(514\) −293.605 −0.571216
\(515\) − 326.774i − 0.634512i
\(516\) 0 0
\(517\) −279.475 −0.540570
\(518\) 273.255i 0.527520i
\(519\) 0 0
\(520\) −73.8164 −0.141955
\(521\) 138.340i 0.265528i 0.991148 + 0.132764i \(0.0423852\pi\)
−0.991148 + 0.132764i \(0.957615\pi\)
\(522\) 0 0
\(523\) −196.869 −0.376423 −0.188212 0.982129i \(-0.560269\pi\)
−0.188212 + 0.982129i \(0.560269\pi\)
\(524\) 435.854i 0.831783i
\(525\) 0 0
\(526\) 47.0686 0.0894840
\(527\) 111.972i 0.212471i
\(528\) 0 0
\(529\) −350.563 −0.662691
\(530\) − 919.778i − 1.73543i
\(531\) 0 0
\(532\) −128.235 −0.241042
\(533\) 51.3459i 0.0963338i
\(534\) 0 0
\(535\) −1024.36 −1.91470
\(536\) 106.441i 0.198584i
\(537\) 0 0
\(538\) 564.412 1.04909
\(539\) 344.271i 0.638722i
\(540\) 0 0
\(541\) −136.735 −0.252745 −0.126373 0.991983i \(-0.540334\pi\)
−0.126373 + 0.991983i \(0.540334\pi\)
\(542\) 118.790i 0.219170i
\(543\) 0 0
\(544\) 55.1035 0.101293
\(545\) 1778.84i 3.26392i
\(546\) 0 0
\(547\) −665.853 −1.21728 −0.608641 0.793446i \(-0.708285\pi\)
−0.608641 + 0.793446i \(0.708285\pi\)
\(548\) 368.184i 0.671868i
\(549\) 0 0
\(550\) −1178.87 −2.14339
\(551\) 82.6602i 0.150019i
\(552\) 0 0
\(553\) 676.285 1.22294
\(554\) − 253.442i − 0.457477i
\(555\) 0 0
\(556\) −486.300 −0.874641
\(557\) − 1089.88i − 1.95669i −0.206977 0.978346i \(-0.566362\pi\)
0.206977 0.978346i \(-0.433638\pi\)
\(558\) 0 0
\(559\) 71.3832 0.127698
\(560\) − 287.780i − 0.513893i
\(561\) 0 0
\(562\) 657.559 1.17003
\(563\) 612.246i 1.08747i 0.839257 + 0.543735i \(0.182990\pi\)
−0.839257 + 0.543735i \(0.817010\pi\)
\(564\) 0 0
\(565\) 613.182 1.08528
\(566\) − 370.433i − 0.654475i
\(567\) 0 0
\(568\) −143.809 −0.253186
\(569\) 499.370i 0.877628i 0.898578 + 0.438814i \(0.144601\pi\)
−0.898578 + 0.438814i \(0.855399\pi\)
\(570\) 0 0
\(571\) −302.814 −0.530323 −0.265161 0.964204i \(-0.585425\pi\)
−0.265161 + 0.964204i \(0.585425\pi\)
\(572\) − 101.767i − 0.177915i
\(573\) 0 0
\(574\) −200.177 −0.348740
\(575\) − 1468.79i − 2.55442i
\(576\) 0 0
\(577\) 37.1228 0.0643377 0.0321688 0.999482i \(-0.489759\pi\)
0.0321688 + 0.999482i \(0.489759\pi\)
\(578\) − 274.517i − 0.474943i
\(579\) 0 0
\(580\) −185.503 −0.319833
\(581\) 134.442i 0.231397i
\(582\) 0 0
\(583\) 1268.05 2.17505
\(584\) − 278.574i − 0.477010i
\(585\) 0 0
\(586\) −138.920 −0.237065
\(587\) 877.106i 1.49422i 0.664701 + 0.747109i \(0.268559\pi\)
−0.664701 + 0.747109i \(0.731441\pi\)
\(588\) 0 0
\(589\) −88.4366 −0.150147
\(590\) − 734.978i − 1.24573i
\(591\) 0 0
\(592\) 92.7396 0.156655
\(593\) 284.591i 0.479917i 0.970783 + 0.239958i \(0.0771338\pi\)
−0.970783 + 0.239958i \(0.922866\pi\)
\(594\) 0 0
\(595\) 700.817 1.17784
\(596\) 288.150i 0.483472i
\(597\) 0 0
\(598\) 126.796 0.212033
\(599\) − 329.061i − 0.549350i −0.961537 0.274675i \(-0.911430\pi\)
0.961537 0.274675i \(-0.0885703\pi\)
\(600\) 0 0
\(601\) 7.07343 0.0117694 0.00588472 0.999983i \(-0.498127\pi\)
0.00588472 + 0.999983i \(0.498127\pi\)
\(602\) 278.294i 0.462282i
\(603\) 0 0
\(604\) 203.218 0.336453
\(605\) − 1401.09i − 2.31585i
\(606\) 0 0
\(607\) 483.117 0.795910 0.397955 0.917405i \(-0.369720\pi\)
0.397955 + 0.917405i \(0.369720\pi\)
\(608\) 43.5213i 0.0715810i
\(609\) 0 0
\(610\) −417.078 −0.683734
\(611\) 50.1969i 0.0821553i
\(612\) 0 0
\(613\) 575.865 0.939420 0.469710 0.882821i \(-0.344358\pi\)
0.469710 + 0.882821i \(0.344358\pi\)
\(614\) − 696.997i − 1.13517i
\(615\) 0 0
\(616\) 396.749 0.644073
\(617\) − 701.686i − 1.13725i −0.822595 0.568627i \(-0.807475\pi\)
0.822595 0.568627i \(-0.192525\pi\)
\(618\) 0 0
\(619\) 451.135 0.728813 0.364407 0.931240i \(-0.381272\pi\)
0.364407 + 0.931240i \(0.381272\pi\)
\(620\) − 198.467i − 0.320107i
\(621\) 0 0
\(622\) 23.9079 0.0384371
\(623\) 134.880i 0.216500i
\(624\) 0 0
\(625\) 589.622 0.943396
\(626\) − 589.882i − 0.942304i
\(627\) 0 0
\(628\) 619.071 0.985781
\(629\) 225.844i 0.359053i
\(630\) 0 0
\(631\) −567.433 −0.899260 −0.449630 0.893215i \(-0.648444\pi\)
−0.449630 + 0.893215i \(0.648444\pi\)
\(632\) − 229.523i − 0.363169i
\(633\) 0 0
\(634\) −641.703 −1.01215
\(635\) 330.372i 0.520271i
\(636\) 0 0
\(637\) 61.8350 0.0970722
\(638\) − 255.745i − 0.400854i
\(639\) 0 0
\(640\) −97.6690 −0.152608
\(641\) − 149.037i − 0.232506i −0.993220 0.116253i \(-0.962912\pi\)
0.993220 0.116253i \(-0.0370884\pi\)
\(642\) 0 0
\(643\) −27.2824 −0.0424299 −0.0212150 0.999775i \(-0.506753\pi\)
−0.0212150 + 0.999775i \(0.506753\pi\)
\(644\) 494.325i 0.767585i
\(645\) 0 0
\(646\) −105.985 −0.164064
\(647\) − 263.970i − 0.407991i −0.978972 0.203996i \(-0.934607\pi\)
0.978972 0.203996i \(-0.0653929\pi\)
\(648\) 0 0
\(649\) 1013.28 1.56129
\(650\) 211.738i 0.325750i
\(651\) 0 0
\(652\) −320.111 −0.490969
\(653\) − 837.516i − 1.28257i −0.767304 0.641283i \(-0.778402\pi\)
0.767304 0.641283i \(-0.221598\pi\)
\(654\) 0 0
\(655\) 1881.32 2.87225
\(656\) 67.9376i 0.103563i
\(657\) 0 0
\(658\) −195.697 −0.297412
\(659\) 743.210i 1.12778i 0.825848 + 0.563892i \(0.190697\pi\)
−0.825848 + 0.563892i \(0.809303\pi\)
\(660\) 0 0
\(661\) 268.581 0.406325 0.203163 0.979145i \(-0.434878\pi\)
0.203163 + 0.979145i \(0.434878\pi\)
\(662\) 332.022i 0.501544i
\(663\) 0 0
\(664\) 45.6279 0.0687167
\(665\) 553.512i 0.832349i
\(666\) 0 0
\(667\) 318.642 0.477725
\(668\) − 497.890i − 0.745345i
\(669\) 0 0
\(670\) 459.442 0.685735
\(671\) − 575.006i − 0.856939i
\(672\) 0 0
\(673\) 659.800 0.980386 0.490193 0.871614i \(-0.336926\pi\)
0.490193 + 0.871614i \(0.336926\pi\)
\(674\) 448.656i 0.665661i
\(675\) 0 0
\(676\) 319.721 0.472961
\(677\) 254.990i 0.376647i 0.982107 + 0.188324i \(0.0603054\pi\)
−0.982107 + 0.188324i \(0.939695\pi\)
\(678\) 0 0
\(679\) 1105.84 1.62864
\(680\) − 237.849i − 0.349778i
\(681\) 0 0
\(682\) 273.617 0.401197
\(683\) 434.644i 0.636375i 0.948028 + 0.318187i \(0.103074\pi\)
−0.948028 + 0.318187i \(0.896926\pi\)
\(684\) 0 0
\(685\) 1589.23 2.32004
\(686\) − 336.441i − 0.490439i
\(687\) 0 0
\(688\) 94.4496 0.137281
\(689\) − 227.757i − 0.330562i
\(690\) 0 0
\(691\) −1334.94 −1.93190 −0.965951 0.258725i \(-0.916698\pi\)
−0.965951 + 0.258725i \(0.916698\pi\)
\(692\) 135.156i 0.195312i
\(693\) 0 0
\(694\) −62.4224 −0.0899459
\(695\) 2099.07i 3.02024i
\(696\) 0 0
\(697\) −165.445 −0.237368
\(698\) − 467.461i − 0.669716i
\(699\) 0 0
\(700\) −825.478 −1.17925
\(701\) 1001.61i 1.42883i 0.699722 + 0.714415i \(0.253307\pi\)
−0.699722 + 0.714415i \(0.746693\pi\)
\(702\) 0 0
\(703\) −178.374 −0.253733
\(704\) − 134.652i − 0.191267i
\(705\) 0 0
\(706\) −669.618 −0.948467
\(707\) − 126.859i − 0.179433i
\(708\) 0 0
\(709\) −766.266 −1.08077 −0.540385 0.841418i \(-0.681721\pi\)
−0.540385 + 0.841418i \(0.681721\pi\)
\(710\) 620.739i 0.874280i
\(711\) 0 0
\(712\) 45.7765 0.0642928
\(713\) 340.909i 0.478134i
\(714\) 0 0
\(715\) −439.268 −0.614361
\(716\) − 470.464i − 0.657073i
\(717\) 0 0
\(718\) −617.361 −0.859834
\(719\) 628.844i 0.874609i 0.899313 + 0.437305i \(0.144067\pi\)
−0.899313 + 0.437305i \(0.855933\pi\)
\(720\) 0 0
\(721\) 315.460 0.437531
\(722\) 426.823i 0.591167i
\(723\) 0 0
\(724\) −435.662 −0.601744
\(725\) 532.105i 0.733937i
\(726\) 0 0
\(727\) −668.852 −0.920016 −0.460008 0.887915i \(-0.652153\pi\)
−0.460008 + 0.887915i \(0.652153\pi\)
\(728\) − 71.2606i − 0.0978855i
\(729\) 0 0
\(730\) −1202.44 −1.64717
\(731\) 230.009i 0.314649i
\(732\) 0 0
\(733\) 110.981 0.151407 0.0757034 0.997130i \(-0.475880\pi\)
0.0757034 + 0.997130i \(0.475880\pi\)
\(734\) − 674.120i − 0.918419i
\(735\) 0 0
\(736\) 167.768 0.227945
\(737\) 633.412i 0.859446i
\(738\) 0 0
\(739\) 462.595 0.625975 0.312987 0.949757i \(-0.398670\pi\)
0.312987 + 0.949757i \(0.398670\pi\)
\(740\) − 400.301i − 0.540948i
\(741\) 0 0
\(742\) 887.932 1.19667
\(743\) − 966.907i − 1.30136i −0.759354 0.650678i \(-0.774485\pi\)
0.759354 0.650678i \(-0.225515\pi\)
\(744\) 0 0
\(745\) 1243.77 1.66949
\(746\) 522.015i 0.699752i
\(747\) 0 0
\(748\) 327.911 0.438384
\(749\) − 988.897i − 1.32029i
\(750\) 0 0
\(751\) −1051.00 −1.39947 −0.699733 0.714404i \(-0.746698\pi\)
−0.699733 + 0.714404i \(0.746698\pi\)
\(752\) 66.4172i 0.0883208i
\(753\) 0 0
\(754\) −45.9347 −0.0609214
\(755\) − 877.168i − 1.16181i
\(756\) 0 0
\(757\) −266.724 −0.352343 −0.176172 0.984359i \(-0.556371\pi\)
−0.176172 + 0.984359i \(0.556371\pi\)
\(758\) 306.748i 0.404680i
\(759\) 0 0
\(760\) 187.855 0.247178
\(761\) − 0.356877i 0 0.000468958i −1.00000 0.000234479i \(-0.999925\pi\)
1.00000 0.000234479i \(-7.46369e-5\pi\)
\(762\) 0 0
\(763\) −1717.25 −2.25065
\(764\) − 514.654i − 0.673631i
\(765\) 0 0
\(766\) −762.752 −0.995760
\(767\) − 181.997i − 0.237284i
\(768\) 0 0
\(769\) 448.395 0.583089 0.291544 0.956557i \(-0.405831\pi\)
0.291544 + 0.956557i \(0.405831\pi\)
\(770\) − 1712.53i − 2.22406i
\(771\) 0 0
\(772\) 153.342 0.198630
\(773\) 670.666i 0.867614i 0.901006 + 0.433807i \(0.142830\pi\)
−0.901006 + 0.433807i \(0.857170\pi\)
\(774\) 0 0
\(775\) −569.289 −0.734566
\(776\) − 375.310i − 0.483647i
\(777\) 0 0
\(778\) −208.827 −0.268416
\(779\) − 130.670i − 0.167741i
\(780\) 0 0
\(781\) −855.785 −1.09575
\(782\) 408.557i 0.522451i
\(783\) 0 0
\(784\) 81.8160 0.104357
\(785\) − 2672.16i − 3.40402i
\(786\) 0 0
\(787\) −1226.18 −1.55804 −0.779019 0.627000i \(-0.784283\pi\)
−0.779019 + 0.627000i \(0.784283\pi\)
\(788\) − 487.977i − 0.619260i
\(789\) 0 0
\(790\) −990.714 −1.25407
\(791\) 591.952i 0.748358i
\(792\) 0 0
\(793\) −103.278 −0.130237
\(794\) 710.805i 0.895221i
\(795\) 0 0
\(796\) −164.216 −0.206301
\(797\) 397.802i 0.499124i 0.968359 + 0.249562i \(0.0802866\pi\)
−0.968359 + 0.249562i \(0.919713\pi\)
\(798\) 0 0
\(799\) −161.743 −0.202431
\(800\) 280.157i 0.350197i
\(801\) 0 0
\(802\) 327.313 0.408121
\(803\) − 1657.74i − 2.06444i
\(804\) 0 0
\(805\) 2133.70 2.65056
\(806\) − 49.1447i − 0.0609735i
\(807\) 0 0
\(808\) −43.0546 −0.0532853
\(809\) − 438.654i − 0.542218i −0.962549 0.271109i \(-0.912610\pi\)
0.962549 0.271109i \(-0.0873903\pi\)
\(810\) 0 0
\(811\) −1037.62 −1.27943 −0.639716 0.768611i \(-0.720948\pi\)
−0.639716 + 0.768611i \(0.720948\pi\)
\(812\) − 179.081i − 0.220543i
\(813\) 0 0
\(814\) 551.877 0.677982
\(815\) 1381.73i 1.69537i
\(816\) 0 0
\(817\) −181.663 −0.222354
\(818\) − 637.024i − 0.778758i
\(819\) 0 0
\(820\) 293.246 0.357617
\(821\) 1429.95i 1.74172i 0.491530 + 0.870861i \(0.336438\pi\)
−0.491530 + 0.870861i \(0.663562\pi\)
\(822\) 0 0
\(823\) −1415.06 −1.71939 −0.859694 0.510810i \(-0.829346\pi\)
−0.859694 + 0.510810i \(0.829346\pi\)
\(824\) − 107.063i − 0.129931i
\(825\) 0 0
\(826\) 709.531 0.858996
\(827\) 704.209i 0.851523i 0.904836 + 0.425761i \(0.139994\pi\)
−0.904836 + 0.425761i \(0.860006\pi\)
\(828\) 0 0
\(829\) 291.158 0.351216 0.175608 0.984460i \(-0.443811\pi\)
0.175608 + 0.984460i \(0.443811\pi\)
\(830\) − 196.948i − 0.237287i
\(831\) 0 0
\(832\) −24.1850 −0.0290685
\(833\) 199.243i 0.239187i
\(834\) 0 0
\(835\) −2149.09 −2.57377
\(836\) 258.987i 0.309794i
\(837\) 0 0
\(838\) 465.477 0.555462
\(839\) 865.355i 1.03141i 0.856766 + 0.515706i \(0.172470\pi\)
−0.856766 + 0.515706i \(0.827530\pi\)
\(840\) 0 0
\(841\) 725.564 0.862740
\(842\) 289.361i 0.343659i
\(843\) 0 0
\(844\) −114.987 −0.136241
\(845\) − 1380.05i − 1.63319i
\(846\) 0 0
\(847\) 1352.58 1.59691
\(848\) − 301.353i − 0.355369i
\(849\) 0 0
\(850\) −682.254 −0.802652
\(851\) 687.605i 0.807996i
\(852\) 0 0
\(853\) −108.638 −0.127360 −0.0636799 0.997970i \(-0.520284\pi\)
−0.0636799 + 0.997970i \(0.520284\pi\)
\(854\) − 402.637i − 0.471472i
\(855\) 0 0
\(856\) −335.620 −0.392079
\(857\) 1066.28i 1.24420i 0.782937 + 0.622102i \(0.213721\pi\)
−0.782937 + 0.622102i \(0.786279\pi\)
\(858\) 0 0
\(859\) −55.4656 −0.0645700 −0.0322850 0.999479i \(-0.510278\pi\)
−0.0322850 + 0.999479i \(0.510278\pi\)
\(860\) − 407.682i − 0.474049i
\(861\) 0 0
\(862\) −8.27883 −0.00960421
\(863\) 75.8244i 0.0878614i 0.999035 + 0.0439307i \(0.0139881\pi\)
−0.999035 + 0.0439307i \(0.986012\pi\)
\(864\) 0 0
\(865\) 583.388 0.674437
\(866\) − 329.950i − 0.381004i
\(867\) 0 0
\(868\) 191.595 0.220732
\(869\) − 1365.85i − 1.57175i
\(870\) 0 0
\(871\) 113.768 0.130618
\(872\) 582.813i 0.668363i
\(873\) 0 0
\(874\) −322.682 −0.369202
\(875\) 1764.47i 2.01654i
\(876\) 0 0
\(877\) 577.772 0.658805 0.329403 0.944190i \(-0.393153\pi\)
0.329403 + 0.944190i \(0.393153\pi\)
\(878\) 190.623i 0.217110i
\(879\) 0 0
\(880\) −581.211 −0.660467
\(881\) 136.922i 0.155416i 0.996976 + 0.0777082i \(0.0247602\pi\)
−0.996976 + 0.0777082i \(0.975240\pi\)
\(882\) 0 0
\(883\) −1269.49 −1.43770 −0.718851 0.695165i \(-0.755332\pi\)
−0.718851 + 0.695165i \(0.755332\pi\)
\(884\) − 58.8966i − 0.0666251i
\(885\) 0 0
\(886\) −40.5089 −0.0457211
\(887\) 644.315i 0.726398i 0.931712 + 0.363199i \(0.118316\pi\)
−0.931712 + 0.363199i \(0.881684\pi\)
\(888\) 0 0
\(889\) −318.933 −0.358755
\(890\) − 197.590i − 0.222011i
\(891\) 0 0
\(892\) −463.975 −0.520152
\(893\) − 127.746i − 0.143053i
\(894\) 0 0
\(895\) −2030.71 −2.26895
\(896\) − 94.2874i − 0.105231i
\(897\) 0 0
\(898\) 702.556 0.782357
\(899\) − 123.502i − 0.137378i
\(900\) 0 0
\(901\) 733.871 0.814508
\(902\) 404.285i 0.448209i
\(903\) 0 0
\(904\) 200.901 0.222236
\(905\) 1880.49i 2.07789i
\(906\) 0 0
\(907\) −611.492 −0.674192 −0.337096 0.941470i \(-0.609445\pi\)
−0.337096 + 0.941470i \(0.609445\pi\)
\(908\) 429.066i 0.472540i
\(909\) 0 0
\(910\) −307.589 −0.338010
\(911\) − 1050.27i − 1.15287i −0.817143 0.576435i \(-0.804443\pi\)
0.817143 0.576435i \(-0.195557\pi\)
\(912\) 0 0
\(913\) 271.523 0.297397
\(914\) 655.918i 0.717634i
\(915\) 0 0
\(916\) 790.821 0.863341
\(917\) 1816.19i 1.98057i
\(918\) 0 0
\(919\) 133.483 0.145248 0.0726238 0.997359i \(-0.476863\pi\)
0.0726238 + 0.997359i \(0.476863\pi\)
\(920\) − 724.153i − 0.787123i
\(921\) 0 0
\(922\) −376.721 −0.408591
\(923\) 153.709i 0.166532i
\(924\) 0 0
\(925\) −1148.24 −1.24134
\(926\) − 338.522i − 0.365574i
\(927\) 0 0
\(928\) −60.7778 −0.0654933
\(929\) − 1111.09i − 1.19600i −0.801496 0.598001i \(-0.795962\pi\)
0.801496 0.598001i \(-0.204038\pi\)
\(930\) 0 0
\(931\) −157.364 −0.169027
\(932\) − 191.518i − 0.205492i
\(933\) 0 0
\(934\) 301.394 0.322691
\(935\) − 1415.40i − 1.51379i
\(936\) 0 0
\(937\) −1725.54 −1.84156 −0.920781 0.390079i \(-0.872448\pi\)
−0.920781 + 0.390079i \(0.872448\pi\)
\(938\) 443.535i 0.472852i
\(939\) 0 0
\(940\) 286.683 0.304982
\(941\) 1360.15i 1.44544i 0.691143 + 0.722718i \(0.257107\pi\)
−0.691143 + 0.722718i \(0.742893\pi\)
\(942\) 0 0
\(943\) −503.714 −0.534161
\(944\) − 240.806i − 0.255091i
\(945\) 0 0
\(946\) 562.053 0.594136
\(947\) 1614.67i 1.70504i 0.522694 + 0.852521i \(0.324927\pi\)
−0.522694 + 0.852521i \(0.675073\pi\)
\(948\) 0 0
\(949\) −297.749 −0.313751
\(950\) − 538.851i − 0.567211i
\(951\) 0 0
\(952\) 229.614 0.241191
\(953\) 209.170i 0.219485i 0.993960 + 0.109743i \(0.0350027\pi\)
−0.993960 + 0.109743i \(0.964997\pi\)
\(954\) 0 0
\(955\) −2221.46 −2.32613
\(956\) 176.374i 0.184492i
\(957\) 0 0
\(958\) −565.989 −0.590803
\(959\) 1534.21i 1.59980i
\(960\) 0 0
\(961\) −828.867 −0.862505
\(962\) − 99.1234i − 0.103039i
\(963\) 0 0
\(964\) 770.270 0.799035
\(965\) − 661.886i − 0.685892i
\(966\) 0 0
\(967\) 877.370 0.907311 0.453655 0.891177i \(-0.350120\pi\)
0.453655 + 0.891177i \(0.350120\pi\)
\(968\) − 459.049i − 0.474225i
\(969\) 0 0
\(970\) −1619.99 −1.67009
\(971\) 686.372i 0.706871i 0.935459 + 0.353435i \(0.114987\pi\)
−0.935459 + 0.353435i \(0.885013\pi\)
\(972\) 0 0
\(973\) −2026.39 −2.08262
\(974\) 457.747i 0.469966i
\(975\) 0 0
\(976\) −136.650 −0.140010
\(977\) 1408.93i 1.44209i 0.692886 + 0.721047i \(0.256339\pi\)
−0.692886 + 0.721047i \(0.743661\pi\)
\(978\) 0 0
\(979\) 272.408 0.278251
\(980\) − 353.151i − 0.360358i
\(981\) 0 0
\(982\) 1297.77 1.32156
\(983\) − 943.816i − 0.960138i −0.877231 0.480069i \(-0.840612\pi\)
0.877231 0.480069i \(-0.159388\pi\)
\(984\) 0 0
\(985\) −2106.30 −2.13838
\(986\) − 148.009i − 0.150111i
\(987\) 0 0
\(988\) 46.5171 0.0470821
\(989\) 700.283i 0.708072i
\(990\) 0 0
\(991\) 848.305 0.856009 0.428005 0.903777i \(-0.359217\pi\)
0.428005 + 0.903777i \(0.359217\pi\)
\(992\) − 65.0250i − 0.0655494i
\(993\) 0 0
\(994\) −599.247 −0.602864
\(995\) 708.821i 0.712383i
\(996\) 0 0
\(997\) −168.711 −0.169218 −0.0846092 0.996414i \(-0.526964\pi\)
−0.0846092 + 0.996414i \(0.526964\pi\)
\(998\) 305.569i 0.306181i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1458.3.b.c.1457.18 36
3.2 odd 2 inner 1458.3.b.c.1457.19 36
27.5 odd 18 162.3.f.a.89.4 36
27.11 odd 18 54.3.f.a.41.1 yes 36
27.16 even 9 162.3.f.a.71.4 36
27.22 even 9 54.3.f.a.29.1 36
108.11 even 18 432.3.bc.c.257.6 36
108.103 odd 18 432.3.bc.c.353.6 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.3.f.a.29.1 36 27.22 even 9
54.3.f.a.41.1 yes 36 27.11 odd 18
162.3.f.a.71.4 36 27.16 even 9
162.3.f.a.89.4 36 27.5 odd 18
432.3.bc.c.257.6 36 108.11 even 18
432.3.bc.c.353.6 36 108.103 odd 18
1458.3.b.c.1457.18 36 1.1 even 1 trivial
1458.3.b.c.1457.19 36 3.2 odd 2 inner