Properties

Label 432.4.c.f.431.3
Level $432$
Weight $4$
Character 432.431
Analytic conductor $25.489$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,4,Mod(431,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.431");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 432.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.4888251225\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.3
Root \(0.866025 - 2.06155i\) of defining polynomial
Character \(\chi\) \(=\) 432.431
Dual form 432.4.c.f.431.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.3693i q^{5} -21.4243i q^{7} +15.5885 q^{11} -2.00000 q^{13} +24.7386i q^{17} -85.6971i q^{19} +124.708 q^{23} -28.0000 q^{25} -272.125i q^{29} +278.516i q^{31} +265.004 q^{35} +128.000 q^{37} +296.864i q^{41} +42.8486i q^{43} +592.361 q^{47} -116.000 q^{49} +259.756i q^{53} +192.819i q^{55} +530.008 q^{59} -340.000 q^{61} -24.7386i q^{65} -899.820i q^{67} +966.484 q^{71} +817.000 q^{73} -333.972i q^{77} -214.243i q^{79} +358.535 q^{83} -306.000 q^{85} -915.329i q^{89} +42.8486i q^{91} +1060.02 q^{95} -965.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{13} - 112 q^{25} + 512 q^{37} - 464 q^{49} - 1360 q^{61} + 3268 q^{73} - 1224 q^{85} - 3860 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 12.3693i 1.10635i 0.833067 + 0.553173i \(0.186583\pi\)
−0.833067 + 0.553173i \(0.813417\pi\)
\(6\) 0 0
\(7\) − 21.4243i − 1.15680i −0.815752 0.578401i \(-0.803677\pi\)
0.815752 0.578401i \(-0.196323\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 15.5885 0.427282 0.213641 0.976912i \(-0.431468\pi\)
0.213641 + 0.976912i \(0.431468\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.0426692 −0.0213346 0.999772i \(-0.506792\pi\)
−0.0213346 + 0.999772i \(0.506792\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 24.7386i 0.352941i 0.984306 + 0.176471i \(0.0564680\pi\)
−0.984306 + 0.176471i \(0.943532\pi\)
\(18\) 0 0
\(19\) − 85.6971i − 1.03475i −0.855758 0.517376i \(-0.826909\pi\)
0.855758 0.517376i \(-0.173091\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 124.708 1.13058 0.565290 0.824892i \(-0.308764\pi\)
0.565290 + 0.824892i \(0.308764\pi\)
\(24\) 0 0
\(25\) −28.0000 −0.224000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 272.125i − 1.74249i −0.490844 0.871247i \(-0.663312\pi\)
0.490844 0.871247i \(-0.336688\pi\)
\(30\) 0 0
\(31\) 278.516i 1.61364i 0.590796 + 0.806821i \(0.298814\pi\)
−0.590796 + 0.806821i \(0.701186\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 265.004 1.27982
\(36\) 0 0
\(37\) 128.000 0.568732 0.284366 0.958716i \(-0.408217\pi\)
0.284366 + 0.958716i \(0.408217\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 296.864i 1.13079i 0.824821 + 0.565394i \(0.191276\pi\)
−0.824821 + 0.565394i \(0.808724\pi\)
\(42\) 0 0
\(43\) 42.8486i 0.151962i 0.997109 + 0.0759808i \(0.0242088\pi\)
−0.997109 + 0.0759808i \(0.975791\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 592.361 1.83840 0.919200 0.393791i \(-0.128837\pi\)
0.919200 + 0.393791i \(0.128837\pi\)
\(48\) 0 0
\(49\) −116.000 −0.338192
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 259.756i 0.673211i 0.941646 + 0.336606i \(0.109279\pi\)
−0.941646 + 0.336606i \(0.890721\pi\)
\(54\) 0 0
\(55\) 192.819i 0.472721i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 530.008 1.16951 0.584755 0.811210i \(-0.301191\pi\)
0.584755 + 0.811210i \(0.301191\pi\)
\(60\) 0 0
\(61\) −340.000 −0.713648 −0.356824 0.934172i \(-0.616140\pi\)
−0.356824 + 0.934172i \(0.616140\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 24.7386i − 0.0472069i
\(66\) 0 0
\(67\) − 899.820i − 1.64075i −0.571823 0.820377i \(-0.693764\pi\)
0.571823 0.820377i \(-0.306236\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 966.484 1.61550 0.807751 0.589524i \(-0.200685\pi\)
0.807751 + 0.589524i \(0.200685\pi\)
\(72\) 0 0
\(73\) 817.000 1.30990 0.654949 0.755673i \(-0.272690\pi\)
0.654949 + 0.755673i \(0.272690\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 333.972i − 0.494280i
\(78\) 0 0
\(79\) − 214.243i − 0.305117i −0.988294 0.152558i \(-0.951249\pi\)
0.988294 0.152558i \(-0.0487512\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 358.535 0.474148 0.237074 0.971492i \(-0.423812\pi\)
0.237074 + 0.971492i \(0.423812\pi\)
\(84\) 0 0
\(85\) −306.000 −0.390475
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 915.329i − 1.09017i −0.838382 0.545083i \(-0.816498\pi\)
0.838382 0.545083i \(-0.183502\pi\)
\(90\) 0 0
\(91\) 42.8486i 0.0493599i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1060.02 1.14479
\(96\) 0 0
\(97\) −965.000 −1.01011 −0.505056 0.863086i \(-0.668528\pi\)
−0.505056 + 0.863086i \(0.668528\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 853.483i 0.840839i 0.907330 + 0.420419i \(0.138117\pi\)
−0.907330 + 0.420419i \(0.861883\pi\)
\(102\) 0 0
\(103\) − 128.546i − 0.122971i −0.998108 0.0614854i \(-0.980416\pi\)
0.998108 0.0614854i \(-0.0195838\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −607.950 −0.549278 −0.274639 0.961547i \(-0.588558\pi\)
−0.274639 + 0.961547i \(0.588558\pi\)
\(108\) 0 0
\(109\) 1816.00 1.59579 0.797896 0.602796i \(-0.205947\pi\)
0.797896 + 0.602796i \(0.205947\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 940.068i − 0.782603i −0.920262 0.391302i \(-0.872025\pi\)
0.920262 0.391302i \(-0.127975\pi\)
\(114\) 0 0
\(115\) 1542.55i 1.25081i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 530.008 0.408283
\(120\) 0 0
\(121\) −1088.00 −0.817431
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1199.82i 0.858524i
\(126\) 0 0
\(127\) 792.699i 0.553863i 0.960890 + 0.276932i \(0.0893175\pi\)
−0.960890 + 0.276932i \(0.910682\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1761.50 −1.17483 −0.587414 0.809286i \(-0.699854\pi\)
−0.587414 + 0.809286i \(0.699854\pi\)
\(132\) 0 0
\(133\) −1836.00 −1.19700
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2647.03i 1.65074i 0.564592 + 0.825370i \(0.309033\pi\)
−0.564592 + 0.825370i \(0.690967\pi\)
\(138\) 0 0
\(139\) 1971.03i 1.20274i 0.798970 + 0.601370i \(0.205378\pi\)
−0.798970 + 0.601370i \(0.794622\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −31.1769 −0.0182318
\(144\) 0 0
\(145\) 3366.00 1.92780
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 235.017i − 0.129217i −0.997911 0.0646085i \(-0.979420\pi\)
0.997911 0.0646085i \(-0.0205799\pi\)
\(150\) 0 0
\(151\) − 3020.82i − 1.62802i −0.580850 0.814011i \(-0.697280\pi\)
0.580850 0.814011i \(-0.302720\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3445.05 −1.78525
\(156\) 0 0
\(157\) −484.000 −0.246034 −0.123017 0.992405i \(-0.539257\pi\)
−0.123017 + 0.992405i \(0.539257\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 2671.77i − 1.30786i
\(162\) 0 0
\(163\) − 2013.88i − 0.967727i −0.875144 0.483863i \(-0.839233\pi\)
0.875144 0.483863i \(-0.160767\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −841.777 −0.390052 −0.195026 0.980798i \(-0.562479\pi\)
−0.195026 + 0.980798i \(0.562479\pi\)
\(168\) 0 0
\(169\) −2193.00 −0.998179
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 3871.60i − 1.70146i −0.525606 0.850728i \(-0.676161\pi\)
0.525606 0.850728i \(-0.323839\pi\)
\(174\) 0 0
\(175\) 599.880i 0.259124i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3756.82 −1.56870 −0.784351 0.620317i \(-0.787004\pi\)
−0.784351 + 0.620317i \(0.787004\pi\)
\(180\) 0 0
\(181\) 3400.00 1.39624 0.698122 0.715979i \(-0.254019\pi\)
0.698122 + 0.715979i \(0.254019\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1583.27i 0.629214i
\(186\) 0 0
\(187\) 385.637i 0.150805i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −280.592 −0.106298 −0.0531491 0.998587i \(-0.516926\pi\)
−0.0531491 + 0.998587i \(0.516926\pi\)
\(192\) 0 0
\(193\) −2941.00 −1.09688 −0.548440 0.836190i \(-0.684778\pi\)
−0.548440 + 0.836190i \(0.684778\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2436.76i 0.881277i 0.897685 + 0.440639i \(0.145248\pi\)
−0.897685 + 0.440639i \(0.854752\pi\)
\(198\) 0 0
\(199\) − 3706.40i − 1.32030i −0.751134 0.660150i \(-0.770493\pi\)
0.751134 0.660150i \(-0.229507\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5830.08 −2.01572
\(204\) 0 0
\(205\) −3672.00 −1.25104
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1335.89i − 0.442130i
\(210\) 0 0
\(211\) − 1713.94i − 0.559207i −0.960116 0.279604i \(-0.909797\pi\)
0.960116 0.279604i \(-0.0902030\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −530.008 −0.168122
\(216\) 0 0
\(217\) 5967.00 1.86667
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 49.4773i − 0.0150597i
\(222\) 0 0
\(223\) 3042.25i 0.913561i 0.889580 + 0.456780i \(0.150997\pi\)
−0.889580 + 0.456780i \(0.849003\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3772.41 −1.10301 −0.551505 0.834171i \(-0.685946\pi\)
−0.551505 + 0.834171i \(0.685946\pi\)
\(228\) 0 0
\(229\) 538.000 0.155249 0.0776245 0.996983i \(-0.475266\pi\)
0.0776245 + 0.996983i \(0.475266\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3834.49i 1.07814i 0.842262 + 0.539068i \(0.181223\pi\)
−0.842262 + 0.539068i \(0.818777\pi\)
\(234\) 0 0
\(235\) 7327.11i 2.03390i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3180.05 0.860670 0.430335 0.902669i \(-0.358396\pi\)
0.430335 + 0.902669i \(0.358396\pi\)
\(240\) 0 0
\(241\) −1658.00 −0.443158 −0.221579 0.975142i \(-0.571121\pi\)
−0.221579 + 0.975142i \(0.571121\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1434.84i − 0.374158i
\(246\) 0 0
\(247\) 171.394i 0.0441521i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4707.71 −1.18386 −0.591929 0.805990i \(-0.701633\pi\)
−0.591929 + 0.805990i \(0.701633\pi\)
\(252\) 0 0
\(253\) 1944.00 0.483076
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6506.26i 1.57918i 0.613634 + 0.789590i \(0.289707\pi\)
−0.613634 + 0.789590i \(0.710293\pi\)
\(258\) 0 0
\(259\) − 2742.31i − 0.657910i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 872.954 0.204672 0.102336 0.994750i \(-0.467368\pi\)
0.102336 + 0.994750i \(0.467368\pi\)
\(264\) 0 0
\(265\) −3213.00 −0.744804
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 3141.81i − 0.712116i −0.934464 0.356058i \(-0.884120\pi\)
0.934464 0.356058i \(-0.115880\pi\)
\(270\) 0 0
\(271\) 5848.83i 1.31104i 0.755179 + 0.655519i \(0.227550\pi\)
−0.755179 + 0.655519i \(0.772450\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −436.477 −0.0957111
\(276\) 0 0
\(277\) −3044.00 −0.660275 −0.330138 0.943933i \(-0.607095\pi\)
−0.330138 + 0.943933i \(0.607095\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 4131.35i − 0.877067i −0.898715 0.438533i \(-0.855498\pi\)
0.898715 0.438533i \(-0.144502\pi\)
\(282\) 0 0
\(283\) − 4713.34i − 0.990032i −0.868884 0.495016i \(-0.835162\pi\)
0.868884 0.495016i \(-0.164838\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6360.09 1.30810
\(288\) 0 0
\(289\) 4301.00 0.875433
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 3290.24i − 0.656033i −0.944672 0.328017i \(-0.893620\pi\)
0.944672 0.328017i \(-0.106380\pi\)
\(294\) 0 0
\(295\) 6555.83i 1.29388i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −249.415 −0.0482410
\(300\) 0 0
\(301\) 918.000 0.175790
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 4205.57i − 0.789541i
\(306\) 0 0
\(307\) − 8612.56i − 1.60112i −0.599250 0.800562i \(-0.704535\pi\)
0.599250 0.800562i \(-0.295465\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4427.12 0.807200 0.403600 0.914936i \(-0.367759\pi\)
0.403600 + 0.914936i \(0.367759\pi\)
\(312\) 0 0
\(313\) −799.000 −0.144288 −0.0721440 0.997394i \(-0.522984\pi\)
−0.0721440 + 0.997394i \(0.522984\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7062.88i 1.25139i 0.780068 + 0.625695i \(0.215185\pi\)
−0.780068 + 0.625695i \(0.784815\pi\)
\(318\) 0 0
\(319\) − 4242.01i − 0.744536i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2120.03 0.365206
\(324\) 0 0
\(325\) 56.0000 0.00955791
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 12690.9i − 2.12667i
\(330\) 0 0
\(331\) − 6984.32i − 1.15980i −0.814689 0.579898i \(-0.803092\pi\)
0.814689 0.579898i \(-0.196908\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11130.2 1.81524
\(336\) 0 0
\(337\) −3602.00 −0.582236 −0.291118 0.956687i \(-0.594027\pi\)
−0.291118 + 0.956687i \(0.594027\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4341.63i 0.689479i
\(342\) 0 0
\(343\) − 4863.31i − 0.765581i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −296.181 −0.0458208 −0.0229104 0.999738i \(-0.507293\pi\)
−0.0229104 + 0.999738i \(0.507293\pi\)
\(348\) 0 0
\(349\) 1316.00 0.201845 0.100922 0.994894i \(-0.467821\pi\)
0.100922 + 0.994894i \(0.467821\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7866.89i 1.18615i 0.805146 + 0.593077i \(0.202087\pi\)
−0.805146 + 0.593077i \(0.797913\pi\)
\(354\) 0 0
\(355\) 11954.8i 1.78730i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8636.01 1.26961 0.634806 0.772671i \(-0.281080\pi\)
0.634806 + 0.772671i \(0.281080\pi\)
\(360\) 0 0
\(361\) −485.000 −0.0707100
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10105.7i 1.44920i
\(366\) 0 0
\(367\) − 2635.19i − 0.374811i −0.982283 0.187406i \(-0.939992\pi\)
0.982283 0.187406i \(-0.0600078\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5565.08 0.778772
\(372\) 0 0
\(373\) 9218.00 1.27960 0.639799 0.768542i \(-0.279018\pi\)
0.639799 + 0.768542i \(0.279018\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 544.250i 0.0743509i
\(378\) 0 0
\(379\) 342.789i 0.0464587i 0.999730 + 0.0232294i \(0.00739480\pi\)
−0.999730 + 0.0232294i \(0.992605\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7638.34 1.01906 0.509532 0.860452i \(-0.329819\pi\)
0.509532 + 0.860452i \(0.329819\pi\)
\(384\) 0 0
\(385\) 4131.00 0.546845
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3228.39i 0.420787i 0.977617 + 0.210393i \(0.0674744\pi\)
−0.977617 + 0.210393i \(0.932526\pi\)
\(390\) 0 0
\(391\) 3085.10i 0.399028i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2650.04 0.337564
\(396\) 0 0
\(397\) −10942.0 −1.38328 −0.691641 0.722241i \(-0.743112\pi\)
−0.691641 + 0.722241i \(0.743112\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 2473.86i − 0.308077i −0.988065 0.154038i \(-0.950772\pi\)
0.988065 0.154038i \(-0.0492280\pi\)
\(402\) 0 0
\(403\) − 557.031i − 0.0688529i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1995.32 0.243009
\(408\) 0 0
\(409\) −8399.00 −1.01541 −0.507706 0.861530i \(-0.669507\pi\)
−0.507706 + 0.861530i \(0.669507\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 11355.0i − 1.35289i
\(414\) 0 0
\(415\) 4434.83i 0.524571i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11940.8 1.39223 0.696115 0.717930i \(-0.254910\pi\)
0.696115 + 0.717930i \(0.254910\pi\)
\(420\) 0 0
\(421\) −2684.00 −0.310713 −0.155356 0.987858i \(-0.549653\pi\)
−0.155356 + 0.987858i \(0.549653\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 692.682i − 0.0790588i
\(426\) 0 0
\(427\) 7284.26i 0.825550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3772.41 0.421602 0.210801 0.977529i \(-0.432393\pi\)
0.210801 + 0.977529i \(0.432393\pi\)
\(432\) 0 0
\(433\) 1451.00 0.161041 0.0805203 0.996753i \(-0.474342\pi\)
0.0805203 + 0.996753i \(0.474342\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 10687.1i − 1.16987i
\(438\) 0 0
\(439\) 8034.11i 0.873456i 0.899594 + 0.436728i \(0.143863\pi\)
−0.899594 + 0.436728i \(0.856137\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6328.91 −0.678771 −0.339386 0.940647i \(-0.610219\pi\)
−0.339386 + 0.940647i \(0.610219\pi\)
\(444\) 0 0
\(445\) 11322.0 1.20610
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11132.4i 1.17009i 0.811001 + 0.585044i \(0.198923\pi\)
−0.811001 + 0.585044i \(0.801077\pi\)
\(450\) 0 0
\(451\) 4627.65i 0.483165i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −530.008 −0.0546091
\(456\) 0 0
\(457\) 16297.0 1.66814 0.834072 0.551656i \(-0.186004\pi\)
0.834072 + 0.551656i \(0.186004\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1818.29i 0.183701i 0.995773 + 0.0918505i \(0.0292782\pi\)
−0.995773 + 0.0918505i \(0.970722\pi\)
\(462\) 0 0
\(463\) − 5891.68i − 0.591381i −0.955284 0.295691i \(-0.904450\pi\)
0.955284 0.295691i \(-0.0955497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3788.00 0.375348 0.187674 0.982231i \(-0.439905\pi\)
0.187674 + 0.982231i \(0.439905\pi\)
\(468\) 0 0
\(469\) −19278.0 −1.89803
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 667.943i 0.0649304i
\(474\) 0 0
\(475\) 2399.52i 0.231784i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9633.67 0.918943 0.459471 0.888193i \(-0.348039\pi\)
0.459471 + 0.888193i \(0.348039\pi\)
\(480\) 0 0
\(481\) −256.000 −0.0242673
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 11936.4i − 1.11753i
\(486\) 0 0
\(487\) − 12897.4i − 1.20008i −0.799971 0.600039i \(-0.795152\pi\)
0.799971 0.600039i \(-0.204848\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8838.66 −0.812389 −0.406194 0.913787i \(-0.633144\pi\)
−0.406194 + 0.913787i \(0.633144\pi\)
\(492\) 0 0
\(493\) 6732.00 0.614998
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 20706.2i − 1.86882i
\(498\) 0 0
\(499\) − 9383.84i − 0.841840i −0.907098 0.420920i \(-0.861707\pi\)
0.907098 0.420920i \(-0.138293\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17209.7 −1.52553 −0.762764 0.646677i \(-0.776158\pi\)
−0.762764 + 0.646677i \(0.776158\pi\)
\(504\) 0 0
\(505\) −10557.0 −0.930258
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14583.4i 1.26994i 0.772537 + 0.634969i \(0.218987\pi\)
−0.772537 + 0.634969i \(0.781013\pi\)
\(510\) 0 0
\(511\) − 17503.6i − 1.51529i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1590.02 0.136048
\(516\) 0 0
\(517\) 9234.00 0.785514
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17292.3i 1.45411i 0.686581 + 0.727053i \(0.259111\pi\)
−0.686581 + 0.727053i \(0.740889\pi\)
\(522\) 0 0
\(523\) 9126.75i 0.763068i 0.924355 + 0.381534i \(0.124604\pi\)
−0.924355 + 0.381534i \(0.875396\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6890.10 −0.569521
\(528\) 0 0
\(529\) 3385.00 0.278212
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 593.727i − 0.0482499i
\(534\) 0 0
\(535\) − 7519.92i − 0.607691i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1808.26 −0.144503
\(540\) 0 0
\(541\) −15572.0 −1.23751 −0.618755 0.785584i \(-0.712363\pi\)
−0.618755 + 0.785584i \(0.712363\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 22462.7i 1.76550i
\(546\) 0 0
\(547\) 15039.8i 1.17561i 0.809003 + 0.587804i \(0.200007\pi\)
−0.809003 + 0.587804i \(0.799993\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −23320.3 −1.80305
\(552\) 0 0
\(553\) −4590.00 −0.352960
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3401.56i 0.258759i 0.991595 + 0.129380i \(0.0412986\pi\)
−0.991595 + 0.129380i \(0.958701\pi\)
\(558\) 0 0
\(559\) − 85.6971i − 0.00648408i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3070.93 −0.229883 −0.114941 0.993372i \(-0.536668\pi\)
−0.114941 + 0.993372i \(0.536668\pi\)
\(564\) 0 0
\(565\) 11628.0 0.865829
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 1682.23i − 0.123941i −0.998078 0.0619707i \(-0.980261\pi\)
0.998078 0.0619707i \(-0.0197385\pi\)
\(570\) 0 0
\(571\) − 24980.7i − 1.83084i −0.402498 0.915421i \(-0.631858\pi\)
0.402498 0.915421i \(-0.368142\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3491.81 −0.253250
\(576\) 0 0
\(577\) −12346.0 −0.890764 −0.445382 0.895341i \(-0.646932\pi\)
−0.445382 + 0.895341i \(0.646932\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 7681.35i − 0.548496i
\(582\) 0 0
\(583\) 4049.19i 0.287651i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10335.1 −0.726707 −0.363354 0.931651i \(-0.618368\pi\)
−0.363354 + 0.931651i \(0.618368\pi\)
\(588\) 0 0
\(589\) 23868.0 1.66972
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 321.602i − 0.0222709i −0.999938 0.0111354i \(-0.996455\pi\)
0.999938 0.0111354i \(-0.00354459\pi\)
\(594\) 0 0
\(595\) 6555.83i 0.451702i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21480.9 −1.46525 −0.732626 0.680632i \(-0.761705\pi\)
−0.732626 + 0.680632i \(0.761705\pi\)
\(600\) 0 0
\(601\) 17453.0 1.18456 0.592282 0.805731i \(-0.298227\pi\)
0.592282 + 0.805731i \(0.298227\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 13457.8i − 0.904360i
\(606\) 0 0
\(607\) 18553.4i 1.24063i 0.784354 + 0.620313i \(0.212995\pi\)
−0.784354 + 0.620313i \(0.787005\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1184.72 −0.0784431
\(612\) 0 0
\(613\) −26674.0 −1.75751 −0.878754 0.477275i \(-0.841625\pi\)
−0.878754 + 0.477275i \(0.841625\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 19246.7i − 1.25582i −0.778286 0.627910i \(-0.783910\pi\)
0.778286 0.627910i \(-0.216090\pi\)
\(618\) 0 0
\(619\) 3470.73i 0.225364i 0.993631 + 0.112682i \(0.0359442\pi\)
−0.993631 + 0.112682i \(0.964056\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19610.3 −1.26111
\(624\) 0 0
\(625\) −18341.0 −1.17382
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3166.55i 0.200729i
\(630\) 0 0
\(631\) 27915.8i 1.76119i 0.473868 + 0.880596i \(0.342857\pi\)
−0.473868 + 0.880596i \(0.657143\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9805.14 −0.612764
\(636\) 0 0
\(637\) 232.000 0.0144304
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 989.545i − 0.0609746i −0.999535 0.0304873i \(-0.990294\pi\)
0.999535 0.0304873i \(-0.00970591\pi\)
\(642\) 0 0
\(643\) 19538.9i 1.19835i 0.800617 + 0.599176i \(0.204505\pi\)
−0.800617 + 0.599176i \(0.795495\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −22759.1 −1.38293 −0.691464 0.722411i \(-0.743034\pi\)
−0.691464 + 0.722411i \(0.743034\pi\)
\(648\) 0 0
\(649\) 8262.00 0.499710
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3302.61i 0.197919i 0.995091 + 0.0989594i \(0.0315514\pi\)
−0.995091 + 0.0989594i \(0.968449\pi\)
\(654\) 0 0
\(655\) − 21788.5i − 1.29977i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26297.7 1.55450 0.777249 0.629193i \(-0.216615\pi\)
0.777249 + 0.629193i \(0.216615\pi\)
\(660\) 0 0
\(661\) 25868.0 1.52216 0.761081 0.648657i \(-0.224669\pi\)
0.761081 + 0.648657i \(0.224669\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 22710.1i − 1.32430i
\(666\) 0 0
\(667\) − 33936.1i − 1.97003i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5300.08 −0.304929
\(672\) 0 0
\(673\) 18263.0 1.04604 0.523021 0.852319i \(-0.324805\pi\)
0.523021 + 0.852319i \(0.324805\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10464.4i 0.594064i 0.954868 + 0.297032i \(0.0959968\pi\)
−0.954868 + 0.297032i \(0.904003\pi\)
\(678\) 0 0
\(679\) 20674.4i 1.16850i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24723.3 −1.38508 −0.692541 0.721379i \(-0.743509\pi\)
−0.692541 + 0.721379i \(0.743509\pi\)
\(684\) 0 0
\(685\) −32742.0 −1.82629
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 519.511i − 0.0287254i
\(690\) 0 0
\(691\) 17567.9i 0.967171i 0.875297 + 0.483585i \(0.160666\pi\)
−0.875297 + 0.483585i \(0.839334\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24380.3 −1.33065
\(696\) 0 0
\(697\) −7344.00 −0.399102
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5726.99i 0.308567i 0.988027 + 0.154284i \(0.0493069\pi\)
−0.988027 + 0.154284i \(0.950693\pi\)
\(702\) 0 0
\(703\) − 10969.2i − 0.588496i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18285.3 0.972685
\(708\) 0 0
\(709\) −6464.00 −0.342399 −0.171199 0.985236i \(-0.554764\pi\)
−0.171199 + 0.985236i \(0.554764\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 34733.0i 1.82435i
\(714\) 0 0
\(715\) − 385.637i − 0.0201706i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10787.2 0.559520 0.279760 0.960070i \(-0.409745\pi\)
0.279760 + 0.960070i \(0.409745\pi\)
\(720\) 0 0
\(721\) −2754.00 −0.142253
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7619.50i 0.390319i
\(726\) 0 0
\(727\) 5720.28i 0.291821i 0.989298 + 0.145910i \(0.0466111\pi\)
−0.989298 + 0.145910i \(0.953389\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1060.02 −0.0536335
\(732\) 0 0
\(733\) 556.000 0.0280168 0.0140084 0.999902i \(-0.495541\pi\)
0.0140084 + 0.999902i \(0.495541\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 14026.8i − 0.701064i
\(738\) 0 0
\(739\) − 24209.4i − 1.20509i −0.798086 0.602543i \(-0.794154\pi\)
0.798086 0.602543i \(-0.205846\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23538.6 −1.16224 −0.581121 0.813817i \(-0.697386\pi\)
−0.581121 + 0.813817i \(0.697386\pi\)
\(744\) 0 0
\(745\) 2907.00 0.142959
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13024.9i 0.635406i
\(750\) 0 0
\(751\) − 5891.68i − 0.286272i −0.989703 0.143136i \(-0.954281\pi\)
0.989703 0.143136i \(-0.0457187\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 37365.5 1.80115
\(756\) 0 0
\(757\) 3886.00 0.186577 0.0932887 0.995639i \(-0.470262\pi\)
0.0932887 + 0.995639i \(0.470262\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 15535.9i − 0.740045i −0.929023 0.370023i \(-0.879350\pi\)
0.929023 0.370023i \(-0.120650\pi\)
\(762\) 0 0
\(763\) − 38906.5i − 1.84602i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1060.02 −0.0499021
\(768\) 0 0
\(769\) −3697.00 −0.173364 −0.0866822 0.996236i \(-0.527626\pi\)
−0.0866822 + 0.996236i \(0.527626\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21695.8i 1.00950i 0.863266 + 0.504750i \(0.168415\pi\)
−0.863266 + 0.504750i \(0.831585\pi\)
\(774\) 0 0
\(775\) − 7798.44i − 0.361456i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25440.4 1.17008
\(780\) 0 0
\(781\) 15066.0 0.690274
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 5986.75i − 0.272199i
\(786\) 0 0
\(787\) − 22367.0i − 1.01308i −0.862216 0.506541i \(-0.830924\pi\)
0.862216 0.506541i \(-0.169076\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20140.3 −0.905318
\(792\) 0 0
\(793\) 680.000 0.0304508
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 26878.5i − 1.19459i −0.802023 0.597294i \(-0.796243\pi\)
0.802023 0.597294i \(-0.203757\pi\)
\(798\) 0 0
\(799\) 14654.2i 0.648847i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12735.8 0.559696
\(804\) 0 0
\(805\) 33048.0 1.44694
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 14521.6i 0.631090i 0.948911 + 0.315545i \(0.102187\pi\)
−0.948911 + 0.315545i \(0.897813\pi\)
\(810\) 0 0
\(811\) 33336.2i 1.44339i 0.692210 + 0.721697i \(0.256637\pi\)
−0.692210 + 0.721697i \(0.743363\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24910.4 1.07064
\(816\) 0 0
\(817\) 3672.00 0.157242
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19123.0i 0.812906i 0.913672 + 0.406453i \(0.133235\pi\)
−0.913672 + 0.406453i \(0.866765\pi\)
\(822\) 0 0
\(823\) 10519.3i 0.445541i 0.974871 + 0.222771i \(0.0715101\pi\)
−0.974871 + 0.222771i \(0.928490\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15619.6 0.656769 0.328384 0.944544i \(-0.393496\pi\)
0.328384 + 0.944544i \(0.393496\pi\)
\(828\) 0 0
\(829\) −11666.0 −0.488754 −0.244377 0.969680i \(-0.578583\pi\)
−0.244377 + 0.969680i \(0.578583\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 2869.68i − 0.119362i
\(834\) 0 0
\(835\) − 10412.2i − 0.431532i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 27092.7 1.11483 0.557417 0.830233i \(-0.311793\pi\)
0.557417 + 0.830233i \(0.311793\pi\)
\(840\) 0 0
\(841\) −49663.0 −2.03629
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 27125.9i − 1.10433i
\(846\) 0 0
\(847\) 23309.6i 0.945606i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15962.6 0.642997
\(852\) 0 0
\(853\) −47014.0 −1.88714 −0.943569 0.331176i \(-0.892555\pi\)
−0.943569 + 0.331176i \(0.892555\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 10563.4i − 0.421049i −0.977589 0.210524i \(-0.932483\pi\)
0.977589 0.210524i \(-0.0675171\pi\)
\(858\) 0 0
\(859\) 12254.7i 0.486757i 0.969931 + 0.243379i \(0.0782558\pi\)
−0.969931 + 0.243379i \(0.921744\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2182.38 0.0860825 0.0430413 0.999073i \(-0.486295\pi\)
0.0430413 + 0.999073i \(0.486295\pi\)
\(864\) 0 0
\(865\) 47889.0 1.88240
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 3339.72i − 0.130371i
\(870\) 0 0
\(871\) 1799.64i 0.0700097i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 25705.4 0.993143
\(876\) 0 0
\(877\) 8318.00 0.320272 0.160136 0.987095i \(-0.448807\pi\)
0.160136 + 0.987095i \(0.448807\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 49502.0i − 1.89304i −0.322651 0.946518i \(-0.604574\pi\)
0.322651 0.946518i \(-0.395426\pi\)
\(882\) 0 0
\(883\) 20653.0i 0.787122i 0.919298 + 0.393561i \(0.128757\pi\)
−0.919298 + 0.393561i \(0.871243\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24473.9 −0.926440 −0.463220 0.886243i \(-0.653306\pi\)
−0.463220 + 0.886243i \(0.653306\pi\)
\(888\) 0 0
\(889\) 16983.0 0.640710
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 50763.7i − 1.90229i
\(894\) 0 0
\(895\) − 46469.3i − 1.73553i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 75791.1 2.81176
\(900\) 0 0
\(901\) −6426.00 −0.237604
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 42055.7i 1.54473i
\(906\) 0 0
\(907\) 50561.3i 1.85100i 0.378742 + 0.925502i \(0.376357\pi\)
−0.378742 + 0.925502i \(0.623643\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20795.0 0.756278 0.378139 0.925749i \(-0.376564\pi\)
0.378139 + 0.925749i \(0.376564\pi\)
\(912\) 0 0
\(913\) 5589.00 0.202595
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 37738.8i 1.35905i
\(918\) 0 0
\(919\) − 8933.93i − 0.320678i −0.987062 0.160339i \(-0.948741\pi\)
0.987062 0.160339i \(-0.0512587\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1932.97 −0.0689322
\(924\) 0 0
\(925\) −3584.00 −0.127396
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30230.6i 1.06764i 0.845599 + 0.533818i \(0.179243\pi\)
−0.845599 + 0.533818i \(0.820757\pi\)
\(930\) 0 0
\(931\) 9940.87i 0.349945i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4770.07 −0.166843
\(936\) 0 0
\(937\) 14681.0 0.511854 0.255927 0.966696i \(-0.417619\pi\)
0.255927 + 0.966696i \(0.417619\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 15424.5i 0.534352i 0.963648 + 0.267176i \(0.0860906\pi\)
−0.963648 + 0.267176i \(0.913909\pi\)
\(942\) 0 0
\(943\) 37021.2i 1.27845i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25798.9 0.885271 0.442635 0.896702i \(-0.354044\pi\)
0.442635 + 0.896702i \(0.354044\pi\)
\(948\) 0 0
\(949\) −1634.00 −0.0558924
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47992.9i 1.63132i 0.578534 + 0.815658i \(0.303625\pi\)
−0.578534 + 0.815658i \(0.696375\pi\)
\(954\) 0 0
\(955\) − 3470.73i − 0.117602i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 56710.8 1.90958
\(960\) 0 0
\(961\) −47780.0 −1.60384
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 36378.2i − 1.21353i
\(966\) 0 0
\(967\) − 21017.2i − 0.698933i −0.936949 0.349467i \(-0.886363\pi\)
0.936949 0.349467i \(-0.113637\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −25861.3 −0.854714 −0.427357 0.904083i \(-0.640555\pi\)
−0.427357 + 0.904083i \(0.640555\pi\)
\(972\) 0 0
\(973\) 42228.0 1.39133
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34510.4i 1.13008i 0.825065 + 0.565039i \(0.191139\pi\)
−0.825065 + 0.565039i \(0.808861\pi\)
\(978\) 0 0
\(979\) − 14268.6i − 0.465808i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −37256.4 −1.20885 −0.604423 0.796664i \(-0.706596\pi\)
−0.604423 + 0.796664i \(0.706596\pi\)
\(984\) 0 0
\(985\) −30141.0 −0.974997
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5343.54i 0.171805i
\(990\) 0 0
\(991\) − 18060.7i − 0.578927i −0.957189 0.289463i \(-0.906523\pi\)
0.957189 0.289463i \(-0.0934768\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 45845.7 1.46071
\(996\) 0 0
\(997\) 4250.00 0.135004 0.0675019 0.997719i \(-0.478497\pi\)
0.0675019 + 0.997719i \(0.478497\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.4.c.f.431.3 yes 4
3.2 odd 2 inner 432.4.c.f.431.1 4
4.3 odd 2 inner 432.4.c.f.431.4 yes 4
8.3 odd 2 1728.4.c.g.1727.2 4
8.5 even 2 1728.4.c.g.1727.1 4
12.11 even 2 inner 432.4.c.f.431.2 yes 4
24.5 odd 2 1728.4.c.g.1727.3 4
24.11 even 2 1728.4.c.g.1727.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
432.4.c.f.431.1 4 3.2 odd 2 inner
432.4.c.f.431.2 yes 4 12.11 even 2 inner
432.4.c.f.431.3 yes 4 1.1 even 1 trivial
432.4.c.f.431.4 yes 4 4.3 odd 2 inner
1728.4.c.g.1727.1 4 8.5 even 2
1728.4.c.g.1727.2 4 8.3 odd 2
1728.4.c.g.1727.3 4 24.5 odd 2
1728.4.c.g.1727.4 4 24.11 even 2