Properties

Label 432.6.a.g.1.1
Level $432$
Weight $6$
Character 432.1
Self dual yes
Analytic conductor $69.286$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,6,Mod(1,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 432.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(69.2858101592\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 432.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+24.0000 q^{5} -77.0000 q^{7} -408.000 q^{11} +89.0000 q^{13} +2088.00 q^{17} +2617.00 q^{19} -1752.00 q^{23} -2549.00 q^{25} -7296.00 q^{29} -2348.00 q^{31} -1848.00 q^{35} -4993.00 q^{37} -6528.00 q^{41} +6232.00 q^{43} +29832.0 q^{47} -10878.0 q^{49} +22608.0 q^{53} -9792.00 q^{55} -19608.0 q^{59} -22045.0 q^{61} +2136.00 q^{65} -48131.0 q^{67} -51120.0 q^{71} +30737.0 q^{73} +31416.0 q^{77} -38219.0 q^{79} -8112.00 q^{83} +50112.0 q^{85} -44280.0 q^{89} -6853.00 q^{91} +62808.0 q^{95} -136651. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 24.0000 0.429325 0.214663 0.976688i \(-0.431135\pi\)
0.214663 + 0.976688i \(0.431135\pi\)
\(6\) 0 0
\(7\) −77.0000 −0.593944 −0.296972 0.954886i \(-0.595977\pi\)
−0.296972 + 0.954886i \(0.595977\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −408.000 −1.01667 −0.508333 0.861160i \(-0.669738\pi\)
−0.508333 + 0.861160i \(0.669738\pi\)
\(12\) 0 0
\(13\) 89.0000 0.146060 0.0730301 0.997330i \(-0.476733\pi\)
0.0730301 + 0.997330i \(0.476733\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2088.00 1.75230 0.876149 0.482040i \(-0.160104\pi\)
0.876149 + 0.482040i \(0.160104\pi\)
\(18\) 0 0
\(19\) 2617.00 1.66311 0.831553 0.555446i \(-0.187452\pi\)
0.831553 + 0.555446i \(0.187452\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1752.00 −0.690581 −0.345290 0.938496i \(-0.612220\pi\)
−0.345290 + 0.938496i \(0.612220\pi\)
\(24\) 0 0
\(25\) −2549.00 −0.815680
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7296.00 −1.61098 −0.805489 0.592610i \(-0.798097\pi\)
−0.805489 + 0.592610i \(0.798097\pi\)
\(30\) 0 0
\(31\) −2348.00 −0.438828 −0.219414 0.975632i \(-0.570414\pi\)
−0.219414 + 0.975632i \(0.570414\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1848.00 −0.254995
\(36\) 0 0
\(37\) −4993.00 −0.599594 −0.299797 0.954003i \(-0.596919\pi\)
−0.299797 + 0.954003i \(0.596919\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6528.00 −0.606486 −0.303243 0.952913i \(-0.598069\pi\)
−0.303243 + 0.952913i \(0.598069\pi\)
\(42\) 0 0
\(43\) 6232.00 0.513992 0.256996 0.966412i \(-0.417267\pi\)
0.256996 + 0.966412i \(0.417267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 29832.0 1.96987 0.984935 0.172923i \(-0.0553212\pi\)
0.984935 + 0.172923i \(0.0553212\pi\)
\(48\) 0 0
\(49\) −10878.0 −0.647230
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 22608.0 1.10553 0.552767 0.833336i \(-0.313572\pi\)
0.552767 + 0.833336i \(0.313572\pi\)
\(54\) 0 0
\(55\) −9792.00 −0.436480
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −19608.0 −0.733336 −0.366668 0.930352i \(-0.619502\pi\)
−0.366668 + 0.930352i \(0.619502\pi\)
\(60\) 0 0
\(61\) −22045.0 −0.758552 −0.379276 0.925284i \(-0.623827\pi\)
−0.379276 + 0.925284i \(0.623827\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2136.00 0.0627073
\(66\) 0 0
\(67\) −48131.0 −1.30990 −0.654950 0.755673i \(-0.727310\pi\)
−0.654950 + 0.755673i \(0.727310\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −51120.0 −1.20350 −0.601748 0.798686i \(-0.705529\pi\)
−0.601748 + 0.798686i \(0.705529\pi\)
\(72\) 0 0
\(73\) 30737.0 0.675079 0.337539 0.941311i \(-0.390405\pi\)
0.337539 + 0.941311i \(0.390405\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 31416.0 0.603843
\(78\) 0 0
\(79\) −38219.0 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8112.00 −0.129251 −0.0646253 0.997910i \(-0.520585\pi\)
−0.0646253 + 0.997910i \(0.520585\pi\)
\(84\) 0 0
\(85\) 50112.0 0.752306
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −44280.0 −0.592560 −0.296280 0.955101i \(-0.595746\pi\)
−0.296280 + 0.955101i \(0.595746\pi\)
\(90\) 0 0
\(91\) −6853.00 −0.0867516
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 62808.0 0.714013
\(96\) 0 0
\(97\) −136651. −1.47463 −0.737316 0.675548i \(-0.763907\pi\)
−0.737316 + 0.675548i \(0.763907\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 23808.0 0.232231 0.116115 0.993236i \(-0.462956\pi\)
0.116115 + 0.993236i \(0.462956\pi\)
\(102\) 0 0
\(103\) −173969. −1.61577 −0.807884 0.589342i \(-0.799387\pi\)
−0.807884 + 0.589342i \(0.799387\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 188856. 1.59467 0.797336 0.603536i \(-0.206242\pi\)
0.797336 + 0.603536i \(0.206242\pi\)
\(108\) 0 0
\(109\) −208654. −1.68213 −0.841067 0.540931i \(-0.818072\pi\)
−0.841067 + 0.540931i \(0.818072\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −155640. −1.14663 −0.573317 0.819333i \(-0.694344\pi\)
−0.573317 + 0.819333i \(0.694344\pi\)
\(114\) 0 0
\(115\) −42048.0 −0.296484
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −160776. −1.04077
\(120\) 0 0
\(121\) 5413.00 0.0336105
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −136176. −0.779517
\(126\) 0 0
\(127\) −111332. −0.612507 −0.306253 0.951950i \(-0.599075\pi\)
−0.306253 + 0.951950i \(0.599075\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −133152. −0.677906 −0.338953 0.940803i \(-0.610073\pi\)
−0.338953 + 0.940803i \(0.610073\pi\)
\(132\) 0 0
\(133\) −201509. −0.987792
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 285816. 1.30102 0.650512 0.759496i \(-0.274554\pi\)
0.650512 + 0.759496i \(0.274554\pi\)
\(138\) 0 0
\(139\) −53009.0 −0.232709 −0.116354 0.993208i \(-0.537121\pi\)
−0.116354 + 0.993208i \(0.537121\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −36312.0 −0.148494
\(144\) 0 0
\(145\) −175104. −0.691634
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 210480. 0.776685 0.388343 0.921515i \(-0.373048\pi\)
0.388343 + 0.921515i \(0.373048\pi\)
\(150\) 0 0
\(151\) 30721.0 0.109646 0.0548230 0.998496i \(-0.482541\pi\)
0.0548230 + 0.998496i \(0.482541\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −56352.0 −0.188400
\(156\) 0 0
\(157\) −453538. −1.46847 −0.734234 0.678896i \(-0.762459\pi\)
−0.734234 + 0.678896i \(0.762459\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 134904. 0.410166
\(162\) 0 0
\(163\) −175241. −0.516615 −0.258307 0.966063i \(-0.583165\pi\)
−0.258307 + 0.966063i \(0.583165\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 56712.0 0.157356 0.0786781 0.996900i \(-0.474930\pi\)
0.0786781 + 0.996900i \(0.474930\pi\)
\(168\) 0 0
\(169\) −363372. −0.978666
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −249216. −0.633083 −0.316542 0.948579i \(-0.602522\pi\)
−0.316542 + 0.948579i \(0.602522\pi\)
\(174\) 0 0
\(175\) 196273. 0.484468
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −177552. −0.414184 −0.207092 0.978322i \(-0.566400\pi\)
−0.207092 + 0.978322i \(0.566400\pi\)
\(180\) 0 0
\(181\) 453053. 1.02790 0.513952 0.857819i \(-0.328181\pi\)
0.513952 + 0.857819i \(0.328181\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −119832. −0.257421
\(186\) 0 0
\(187\) −851904. −1.78150
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 588408. 1.16707 0.583533 0.812090i \(-0.301670\pi\)
0.583533 + 0.812090i \(0.301670\pi\)
\(192\) 0 0
\(193\) 586439. 1.13326 0.566630 0.823972i \(-0.308247\pi\)
0.566630 + 0.823972i \(0.308247\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 374328. 0.687206 0.343603 0.939115i \(-0.388353\pi\)
0.343603 + 0.939115i \(0.388353\pi\)
\(198\) 0 0
\(199\) 303415. 0.543131 0.271565 0.962420i \(-0.412459\pi\)
0.271565 + 0.962420i \(0.412459\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 561792. 0.956831
\(204\) 0 0
\(205\) −156672. −0.260379
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.06774e6 −1.69082
\(210\) 0 0
\(211\) −229445. −0.354791 −0.177395 0.984140i \(-0.556767\pi\)
−0.177395 + 0.984140i \(0.556767\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 149568. 0.220670
\(216\) 0 0
\(217\) 180796. 0.260639
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 185832. 0.255941
\(222\) 0 0
\(223\) −1.06668e6 −1.43638 −0.718192 0.695845i \(-0.755030\pi\)
−0.718192 + 0.695845i \(0.755030\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −267888. −0.345055 −0.172528 0.985005i \(-0.555193\pi\)
−0.172528 + 0.985005i \(0.555193\pi\)
\(228\) 0 0
\(229\) −1.01921e6 −1.28432 −0.642160 0.766571i \(-0.721962\pi\)
−0.642160 + 0.766571i \(0.721962\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 187488. 0.226247 0.113124 0.993581i \(-0.463914\pi\)
0.113124 + 0.993581i \(0.463914\pi\)
\(234\) 0 0
\(235\) 715968. 0.845715
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.04107e6 −1.17892 −0.589462 0.807796i \(-0.700660\pi\)
−0.589462 + 0.807796i \(0.700660\pi\)
\(240\) 0 0
\(241\) 743585. 0.824685 0.412342 0.911029i \(-0.364711\pi\)
0.412342 + 0.911029i \(0.364711\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −261072. −0.277872
\(246\) 0 0
\(247\) 232913. 0.242913
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.66608e6 −1.66921 −0.834606 0.550847i \(-0.814305\pi\)
−0.834606 + 0.550847i \(0.814305\pi\)
\(252\) 0 0
\(253\) 714816. 0.702090
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.20120e6 1.13444 0.567221 0.823565i \(-0.308018\pi\)
0.567221 + 0.823565i \(0.308018\pi\)
\(258\) 0 0
\(259\) 384461. 0.356125
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 163248. 0.145532 0.0727660 0.997349i \(-0.476817\pi\)
0.0727660 + 0.997349i \(0.476817\pi\)
\(264\) 0 0
\(265\) 542592. 0.474634
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −970776. −0.817972 −0.408986 0.912541i \(-0.634117\pi\)
−0.408986 + 0.912541i \(0.634117\pi\)
\(270\) 0 0
\(271\) 828601. 0.685365 0.342683 0.939451i \(-0.388664\pi\)
0.342683 + 0.939451i \(0.388664\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.03999e6 0.829274
\(276\) 0 0
\(277\) −616342. −0.482639 −0.241319 0.970446i \(-0.577580\pi\)
−0.241319 + 0.970446i \(0.577580\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.61638e6 1.97668 0.988338 0.152273i \(-0.0486594\pi\)
0.988338 + 0.152273i \(0.0486594\pi\)
\(282\) 0 0
\(283\) 2.05034e6 1.52180 0.760902 0.648866i \(-0.224757\pi\)
0.760902 + 0.648866i \(0.224757\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 502656. 0.360219
\(288\) 0 0
\(289\) 2.93989e6 2.07055
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.64460e6 −1.11916 −0.559579 0.828777i \(-0.689037\pi\)
−0.559579 + 0.828777i \(0.689037\pi\)
\(294\) 0 0
\(295\) −470592. −0.314840
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −155928. −0.100866
\(300\) 0 0
\(301\) −479864. −0.305283
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −529080. −0.325665
\(306\) 0 0
\(307\) 2.17154e6 1.31499 0.657493 0.753461i \(-0.271617\pi\)
0.657493 + 0.753461i \(0.271617\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 168312. 0.0986766 0.0493383 0.998782i \(-0.484289\pi\)
0.0493383 + 0.998782i \(0.484289\pi\)
\(312\) 0 0
\(313\) −1.38371e6 −0.798333 −0.399166 0.916879i \(-0.630700\pi\)
−0.399166 + 0.916879i \(0.630700\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 485616. 0.271422 0.135711 0.990748i \(-0.456668\pi\)
0.135711 + 0.990748i \(0.456668\pi\)
\(318\) 0 0
\(319\) 2.97677e6 1.63783
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.46430e6 2.91426
\(324\) 0 0
\(325\) −226861. −0.119138
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.29706e6 −1.16999
\(330\) 0 0
\(331\) −1.14210e6 −0.572975 −0.286488 0.958084i \(-0.592488\pi\)
−0.286488 + 0.958084i \(0.592488\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.15514e6 −0.562373
\(336\) 0 0
\(337\) 2.38059e6 1.14185 0.570926 0.821002i \(-0.306584\pi\)
0.570926 + 0.821002i \(0.306584\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 957984. 0.446141
\(342\) 0 0
\(343\) 2.13174e6 0.978363
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.15787e6 −1.40790 −0.703948 0.710251i \(-0.748581\pi\)
−0.703948 + 0.710251i \(0.748581\pi\)
\(348\) 0 0
\(349\) −1.54337e6 −0.678276 −0.339138 0.940737i \(-0.610135\pi\)
−0.339138 + 0.940737i \(0.610135\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.07701e6 −0.887159 −0.443579 0.896235i \(-0.646292\pi\)
−0.443579 + 0.896235i \(0.646292\pi\)
\(354\) 0 0
\(355\) −1.22688e6 −0.516691
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.46362e6 −1.00888 −0.504439 0.863448i \(-0.668301\pi\)
−0.504439 + 0.863448i \(0.668301\pi\)
\(360\) 0 0
\(361\) 4.37259e6 1.76592
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 737688. 0.289828
\(366\) 0 0
\(367\) −813785. −0.315388 −0.157694 0.987488i \(-0.550406\pi\)
−0.157694 + 0.987488i \(0.550406\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.74082e6 −0.656626
\(372\) 0 0
\(373\) 3.20436e6 1.19253 0.596265 0.802788i \(-0.296651\pi\)
0.596265 + 0.802788i \(0.296651\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −649344. −0.235300
\(378\) 0 0
\(379\) 1.94680e6 0.696182 0.348091 0.937461i \(-0.386830\pi\)
0.348091 + 0.937461i \(0.386830\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.12269e6 1.08776 0.543878 0.839164i \(-0.316955\pi\)
0.543878 + 0.839164i \(0.316955\pi\)
\(384\) 0 0
\(385\) 753984. 0.259245
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.56809e6 1.53060 0.765298 0.643676i \(-0.222592\pi\)
0.765298 + 0.643676i \(0.222592\pi\)
\(390\) 0 0
\(391\) −3.65818e6 −1.21010
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −917256. −0.295800
\(396\) 0 0
\(397\) −3.27733e6 −1.04362 −0.521812 0.853061i \(-0.674744\pi\)
−0.521812 + 0.853061i \(0.674744\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.44027e6 1.68951 0.844753 0.535157i \(-0.179747\pi\)
0.844753 + 0.535157i \(0.179747\pi\)
\(402\) 0 0
\(403\) −208972. −0.0640952
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.03714e6 0.609587
\(408\) 0 0
\(409\) 4.42722e6 1.30865 0.654325 0.756214i \(-0.272953\pi\)
0.654325 + 0.756214i \(0.272953\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.50982e6 0.435561
\(414\) 0 0
\(415\) −194688. −0.0554905
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.59583e6 −0.444071 −0.222035 0.975039i \(-0.571270\pi\)
−0.222035 + 0.975039i \(0.571270\pi\)
\(420\) 0 0
\(421\) −6.04537e6 −1.66233 −0.831165 0.556025i \(-0.812326\pi\)
−0.831165 + 0.556025i \(0.812326\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.32231e6 −1.42932
\(426\) 0 0
\(427\) 1.69746e6 0.450538
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.92220e6 −1.01704 −0.508518 0.861051i \(-0.669807\pi\)
−0.508518 + 0.861051i \(0.669807\pi\)
\(432\) 0 0
\(433\) 4.74163e6 1.21537 0.607685 0.794178i \(-0.292098\pi\)
0.607685 + 0.794178i \(0.292098\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.58498e6 −1.14851
\(438\) 0 0
\(439\) −425588. −0.105397 −0.0526985 0.998610i \(-0.516782\pi\)
−0.0526985 + 0.998610i \(0.516782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.60232e6 0.630016 0.315008 0.949089i \(-0.397993\pi\)
0.315008 + 0.949089i \(0.397993\pi\)
\(444\) 0 0
\(445\) −1.06272e6 −0.254401
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 167256. 0.0391531 0.0195765 0.999808i \(-0.493768\pi\)
0.0195765 + 0.999808i \(0.493768\pi\)
\(450\) 0 0
\(451\) 2.66342e6 0.616594
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −164472. −0.0372446
\(456\) 0 0
\(457\) 1.18146e6 0.264624 0.132312 0.991208i \(-0.457760\pi\)
0.132312 + 0.991208i \(0.457760\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.61660e6 −1.23090 −0.615448 0.788178i \(-0.711025\pi\)
−0.615448 + 0.788178i \(0.711025\pi\)
\(462\) 0 0
\(463\) 1.12567e6 0.244038 0.122019 0.992528i \(-0.461063\pi\)
0.122019 + 0.992528i \(0.461063\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.74732e6 −1.00729 −0.503647 0.863910i \(-0.668009\pi\)
−0.503647 + 0.863910i \(0.668009\pi\)
\(468\) 0 0
\(469\) 3.70609e6 0.778007
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.54266e6 −0.522558
\(474\) 0 0
\(475\) −6.67073e6 −1.35656
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.78072e6 1.94774 0.973872 0.227096i \(-0.0729231\pi\)
0.973872 + 0.227096i \(0.0729231\pi\)
\(480\) 0 0
\(481\) −444377. −0.0875768
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.27962e6 −0.633096
\(486\) 0 0
\(487\) 2.34782e6 0.448582 0.224291 0.974522i \(-0.427993\pi\)
0.224291 + 0.974522i \(0.427993\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.79762e6 0.898095 0.449048 0.893508i \(-0.351763\pi\)
0.449048 + 0.893508i \(0.351763\pi\)
\(492\) 0 0
\(493\) −1.52340e7 −2.82292
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.93624e6 0.714810
\(498\) 0 0
\(499\) −7.03722e6 −1.26517 −0.632586 0.774490i \(-0.718006\pi\)
−0.632586 + 0.774490i \(0.718006\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.98858e6 0.702908 0.351454 0.936205i \(-0.385687\pi\)
0.351454 + 0.936205i \(0.385687\pi\)
\(504\) 0 0
\(505\) 571392. 0.0997024
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.07277e7 1.83533 0.917664 0.397358i \(-0.130073\pi\)
0.917664 + 0.397358i \(0.130073\pi\)
\(510\) 0 0
\(511\) −2.36675e6 −0.400959
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.17526e6 −0.693689
\(516\) 0 0
\(517\) −1.21715e7 −2.00270
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.86332e6 0.946345 0.473172 0.880970i \(-0.343109\pi\)
0.473172 + 0.880970i \(0.343109\pi\)
\(522\) 0 0
\(523\) 2.31968e6 0.370830 0.185415 0.982660i \(-0.440637\pi\)
0.185415 + 0.982660i \(0.440637\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.90262e6 −0.768957
\(528\) 0 0
\(529\) −3.36684e6 −0.523098
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −580992. −0.0885834
\(534\) 0 0
\(535\) 4.53254e6 0.684633
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.43822e6 0.658017
\(540\) 0 0
\(541\) −3.26629e6 −0.479801 −0.239901 0.970797i \(-0.577115\pi\)
−0.239901 + 0.970797i \(0.577115\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.00770e6 −0.722182
\(546\) 0 0
\(547\) −4.31680e6 −0.616870 −0.308435 0.951245i \(-0.599805\pi\)
−0.308435 + 0.951245i \(0.599805\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.90936e7 −2.67923
\(552\) 0 0
\(553\) 2.94286e6 0.409220
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.78052e6 0.789458 0.394729 0.918798i \(-0.370839\pi\)
0.394729 + 0.918798i \(0.370839\pi\)
\(558\) 0 0
\(559\) 554648. 0.0750737
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.95725e6 0.659128 0.329564 0.944133i \(-0.393098\pi\)
0.329564 + 0.944133i \(0.393098\pi\)
\(564\) 0 0
\(565\) −3.73536e6 −0.492279
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.33502e6 0.431834 0.215917 0.976412i \(-0.430726\pi\)
0.215917 + 0.976412i \(0.430726\pi\)
\(570\) 0 0
\(571\) −5.56927e6 −0.714839 −0.357419 0.933944i \(-0.616343\pi\)
−0.357419 + 0.933944i \(0.616343\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.46585e6 0.563293
\(576\) 0 0
\(577\) −226861. −0.0283675 −0.0141837 0.999899i \(-0.504515\pi\)
−0.0141837 + 0.999899i \(0.504515\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 624624. 0.0767677
\(582\) 0 0
\(583\) −9.22406e6 −1.12396
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.95550e6 −0.234240 −0.117120 0.993118i \(-0.537366\pi\)
−0.117120 + 0.993118i \(0.537366\pi\)
\(588\) 0 0
\(589\) −6.14472e6 −0.729816
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −9.83938e6 −1.14903 −0.574514 0.818495i \(-0.694809\pi\)
−0.574514 + 0.818495i \(0.694809\pi\)
\(594\) 0 0
\(595\) −3.85862e6 −0.446828
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.45862e6 −0.507731 −0.253866 0.967240i \(-0.581702\pi\)
−0.253866 + 0.967240i \(0.581702\pi\)
\(600\) 0 0
\(601\) 1.20944e7 1.36583 0.682917 0.730496i \(-0.260711\pi\)
0.682917 + 0.730496i \(0.260711\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 129912. 0.0144298
\(606\) 0 0
\(607\) −3.54029e6 −0.390003 −0.195001 0.980803i \(-0.562471\pi\)
−0.195001 + 0.980803i \(0.562471\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.65505e6 0.287720
\(612\) 0 0
\(613\) −1.30110e7 −1.39849 −0.699243 0.714884i \(-0.746480\pi\)
−0.699243 + 0.714884i \(0.746480\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.36842e6 −0.356216 −0.178108 0.984011i \(-0.556998\pi\)
−0.178108 + 0.984011i \(0.556998\pi\)
\(618\) 0 0
\(619\) −4.16277e6 −0.436673 −0.218336 0.975874i \(-0.570063\pi\)
−0.218336 + 0.975874i \(0.570063\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.40956e6 0.351948
\(624\) 0 0
\(625\) 4.69740e6 0.481014
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.04254e7 −1.05067
\(630\) 0 0
\(631\) −1.65343e7 −1.65315 −0.826577 0.562823i \(-0.809715\pi\)
−0.826577 + 0.562823i \(0.809715\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.67197e6 −0.262964
\(636\) 0 0
\(637\) −968142. −0.0945345
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.10379e6 0.779010 0.389505 0.921024i \(-0.372646\pi\)
0.389505 + 0.921024i \(0.372646\pi\)
\(642\) 0 0
\(643\) 6.59706e6 0.629250 0.314625 0.949216i \(-0.398121\pi\)
0.314625 + 0.949216i \(0.398121\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.06116e7 0.996603 0.498301 0.867004i \(-0.333957\pi\)
0.498301 + 0.867004i \(0.333957\pi\)
\(648\) 0 0
\(649\) 8.00006e6 0.745558
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.14480e7 −1.05063 −0.525313 0.850909i \(-0.676052\pi\)
−0.525313 + 0.850909i \(0.676052\pi\)
\(654\) 0 0
\(655\) −3.19565e6 −0.291042
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.03409e7 0.927564 0.463782 0.885949i \(-0.346492\pi\)
0.463782 + 0.885949i \(0.346492\pi\)
\(660\) 0 0
\(661\) −3.21066e6 −0.285819 −0.142909 0.989736i \(-0.545646\pi\)
−0.142909 + 0.989736i \(0.545646\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.83622e6 −0.424084
\(666\) 0 0
\(667\) 1.27826e7 1.11251
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.99436e6 0.771195
\(672\) 0 0
\(673\) 7.24765e6 0.616822 0.308411 0.951253i \(-0.400203\pi\)
0.308411 + 0.951253i \(0.400203\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.86630e6 0.240353 0.120176 0.992753i \(-0.461654\pi\)
0.120176 + 0.992753i \(0.461654\pi\)
\(678\) 0 0
\(679\) 1.05221e7 0.875849
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.12852e7 −1.74593 −0.872964 0.487785i \(-0.837805\pi\)
−0.872964 + 0.487785i \(0.837805\pi\)
\(684\) 0 0
\(685\) 6.85958e6 0.558562
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.01211e6 0.161475
\(690\) 0 0
\(691\) −208040. −0.0165749 −0.00828747 0.999966i \(-0.502638\pi\)
−0.00828747 + 0.999966i \(0.502638\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.27222e6 −0.0999077
\(696\) 0 0
\(697\) −1.36305e7 −1.06274
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 952488. 0.0732090 0.0366045 0.999330i \(-0.488346\pi\)
0.0366045 + 0.999330i \(0.488346\pi\)
\(702\) 0 0
\(703\) −1.30667e7 −0.997188
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.83322e6 −0.137932
\(708\) 0 0
\(709\) −8.96432e6 −0.669733 −0.334867 0.942266i \(-0.608691\pi\)
−0.334867 + 0.942266i \(0.608691\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.11370e6 0.303046
\(714\) 0 0
\(715\) −871488. −0.0637524
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.33824e7 −0.965407 −0.482703 0.875784i \(-0.660345\pi\)
−0.482703 + 0.875784i \(0.660345\pi\)
\(720\) 0 0
\(721\) 1.33956e7 0.959676
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.85975e7 1.31404
\(726\) 0 0
\(727\) −6.78844e6 −0.476359 −0.238179 0.971221i \(-0.576551\pi\)
−0.238179 + 0.971221i \(0.576551\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.30124e7 0.900668
\(732\) 0 0
\(733\) 5.21059e6 0.358201 0.179101 0.983831i \(-0.442681\pi\)
0.179101 + 0.983831i \(0.442681\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.96374e7 1.33173
\(738\) 0 0
\(739\) −6.17470e6 −0.415915 −0.207958 0.978138i \(-0.566682\pi\)
−0.207958 + 0.978138i \(0.566682\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 309288. 0.0205537 0.0102769 0.999947i \(-0.496729\pi\)
0.0102769 + 0.999947i \(0.496729\pi\)
\(744\) 0 0
\(745\) 5.05152e6 0.333451
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.45419e7 −0.947146
\(750\) 0 0
\(751\) 9.42649e6 0.609888 0.304944 0.952370i \(-0.401362\pi\)
0.304944 + 0.952370i \(0.401362\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 737304. 0.0470738
\(756\) 0 0
\(757\) −3.03790e7 −1.92679 −0.963393 0.268095i \(-0.913606\pi\)
−0.963393 + 0.268095i \(0.913606\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.28934e7 0.807057 0.403528 0.914967i \(-0.367784\pi\)
0.403528 + 0.914967i \(0.367784\pi\)
\(762\) 0 0
\(763\) 1.60664e7 0.999093
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.74511e6 −0.107111
\(768\) 0 0
\(769\) 2.42712e6 0.148005 0.0740023 0.997258i \(-0.476423\pi\)
0.0740023 + 0.997258i \(0.476423\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.14496e7 0.689193 0.344597 0.938751i \(-0.388016\pi\)
0.344597 + 0.938751i \(0.388016\pi\)
\(774\) 0 0
\(775\) 5.98505e6 0.357943
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.70838e7 −1.00865
\(780\) 0 0
\(781\) 2.08570e7 1.22355
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.08849e7 −0.630450
\(786\) 0 0
\(787\) −3.22920e6 −0.185848 −0.0929240 0.995673i \(-0.529621\pi\)
−0.0929240 + 0.995673i \(0.529621\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.19843e7 0.681037
\(792\) 0 0
\(793\) −1.96200e6 −0.110794
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.14248e7 −1.19473 −0.597367 0.801968i \(-0.703786\pi\)
−0.597367 + 0.801968i \(0.703786\pi\)
\(798\) 0 0
\(799\) 6.22892e7 3.45180
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.25407e7 −0.686330
\(804\) 0 0
\(805\) 3.23770e6 0.176095
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.55614e7 0.835942 0.417971 0.908460i \(-0.362741\pi\)
0.417971 + 0.908460i \(0.362741\pi\)
\(810\) 0 0
\(811\) 1.91972e7 1.02491 0.512454 0.858715i \(-0.328737\pi\)
0.512454 + 0.858715i \(0.328737\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.20578e6 −0.221796
\(816\) 0 0
\(817\) 1.63091e7 0.854823
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.36303e7 −1.22352 −0.611760 0.791044i \(-0.709538\pi\)
−0.611760 + 0.791044i \(0.709538\pi\)
\(822\) 0 0
\(823\) 1.67796e6 0.0863540 0.0431770 0.999067i \(-0.486252\pi\)
0.0431770 + 0.999067i \(0.486252\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.39053e7 0.706995 0.353497 0.935436i \(-0.384992\pi\)
0.353497 + 0.935436i \(0.384992\pi\)
\(828\) 0 0
\(829\) −1.33464e7 −0.674493 −0.337247 0.941416i \(-0.609496\pi\)
−0.337247 + 0.941416i \(0.609496\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.27133e7 −1.13414
\(834\) 0 0
\(835\) 1.36109e6 0.0675569
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.95225e7 1.44793 0.723967 0.689834i \(-0.242317\pi\)
0.723967 + 0.689834i \(0.242317\pi\)
\(840\) 0 0
\(841\) 3.27205e7 1.59525
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.72093e6 −0.420166
\(846\) 0 0
\(847\) −416801. −0.0199627
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.74774e6 0.414068
\(852\) 0 0
\(853\) 1.23083e7 0.579195 0.289597 0.957149i \(-0.406479\pi\)
0.289597 + 0.957149i \(0.406479\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.65890e7 −0.771559 −0.385780 0.922591i \(-0.626067\pi\)
−0.385780 + 0.922591i \(0.626067\pi\)
\(858\) 0 0
\(859\) −1.31286e7 −0.607066 −0.303533 0.952821i \(-0.598166\pi\)
−0.303533 + 0.952821i \(0.598166\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.09802e7 −0.958918 −0.479459 0.877564i \(-0.659167\pi\)
−0.479459 + 0.877564i \(0.659167\pi\)
\(864\) 0 0
\(865\) −5.98118e6 −0.271798
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.55934e7 0.700471
\(870\) 0 0
\(871\) −4.28366e6 −0.191324
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.04856e7 0.462990
\(876\) 0 0
\(877\) 4.73882e6 0.208052 0.104026 0.994575i \(-0.466828\pi\)
0.104026 + 0.994575i \(0.466828\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.09880e7 −1.34510 −0.672549 0.740053i \(-0.734801\pi\)
−0.672549 + 0.740053i \(0.734801\pi\)
\(882\) 0 0
\(883\) 1.94710e6 0.0840402 0.0420201 0.999117i \(-0.486621\pi\)
0.0420201 + 0.999117i \(0.486621\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.85254e7 0.790601 0.395301 0.918552i \(-0.370640\pi\)
0.395301 + 0.918552i \(0.370640\pi\)
\(888\) 0 0
\(889\) 8.57256e6 0.363795
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.80703e7 3.27610
\(894\) 0 0
\(895\) −4.26125e6 −0.177819
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.71310e7 0.706942
\(900\) 0 0
\(901\) 4.72055e7 1.93723
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.08733e7 0.441305
\(906\) 0 0
\(907\) 3.61233e7 1.45804 0.729019 0.684493i \(-0.239977\pi\)
0.729019 + 0.684493i \(0.239977\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.03119e7 −1.21009 −0.605044 0.796192i \(-0.706845\pi\)
−0.605044 + 0.796192i \(0.706845\pi\)
\(912\) 0 0
\(913\) 3.30970e6 0.131405
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.02527e7 0.402638
\(918\) 0 0
\(919\) −1.82688e7 −0.713545 −0.356772 0.934191i \(-0.616123\pi\)
−0.356772 + 0.934191i \(0.616123\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.54968e6 −0.175783
\(924\) 0 0
\(925\) 1.27272e7 0.489077
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.19896e6 −0.349703 −0.174852 0.984595i \(-0.555945\pi\)
−0.174852 + 0.984595i \(0.555945\pi\)
\(930\) 0 0
\(931\) −2.84677e7 −1.07641
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.04457e7 −0.764844
\(936\) 0 0
\(937\) −6.01912e6 −0.223967 −0.111983 0.993710i \(-0.535720\pi\)
−0.111983 + 0.993710i \(0.535720\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.23615e7 −1.19139 −0.595696 0.803210i \(-0.703124\pi\)
−0.595696 + 0.803210i \(0.703124\pi\)
\(942\) 0 0
\(943\) 1.14371e7 0.418827
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.36309e7 −1.21861 −0.609303 0.792937i \(-0.708551\pi\)
−0.609303 + 0.792937i \(0.708551\pi\)
\(948\) 0 0
\(949\) 2.73559e6 0.0986021
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.17482e7 −0.775697 −0.387848 0.921723i \(-0.626782\pi\)
−0.387848 + 0.921723i \(0.626782\pi\)
\(954\) 0 0
\(955\) 1.41218e7 0.501050
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.20078e7 −0.772735
\(960\) 0 0
\(961\) −2.31160e7 −0.807430
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.40745e7 0.486537
\(966\) 0 0
\(967\) 3.28153e7 1.12852 0.564262 0.825596i \(-0.309161\pi\)
0.564262 + 0.825596i \(0.309161\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.98137e6 0.0674399 0.0337200 0.999431i \(-0.489265\pi\)
0.0337200 + 0.999431i \(0.489265\pi\)
\(972\) 0 0
\(973\) 4.08169e6 0.138216
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.85128e7 1.29083 0.645414 0.763833i \(-0.276685\pi\)
0.645414 + 0.763833i \(0.276685\pi\)
\(978\) 0 0
\(979\) 1.80662e7 0.602436
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.15858e7 −1.04258 −0.521288 0.853381i \(-0.674548\pi\)
−0.521288 + 0.853381i \(0.674548\pi\)
\(984\) 0 0
\(985\) 8.98387e6 0.295035
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.09185e7 −0.354953
\(990\) 0 0
\(991\) −5.92538e7 −1.91660 −0.958302 0.285758i \(-0.907755\pi\)
−0.958302 + 0.285758i \(0.907755\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.28196e6 0.233180
\(996\) 0 0
\(997\) 4.67726e7 1.49023 0.745115 0.666936i \(-0.232394\pi\)
0.745115 + 0.666936i \(0.232394\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.6.a.g.1.1 1
3.2 odd 2 432.6.a.d.1.1 1
4.3 odd 2 54.6.a.e.1.1 yes 1
12.11 even 2 54.6.a.b.1.1 1
36.7 odd 6 162.6.c.c.109.1 2
36.11 even 6 162.6.c.j.109.1 2
36.23 even 6 162.6.c.j.55.1 2
36.31 odd 6 162.6.c.c.55.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.6.a.b.1.1 1 12.11 even 2
54.6.a.e.1.1 yes 1 4.3 odd 2
162.6.c.c.55.1 2 36.31 odd 6
162.6.c.c.109.1 2 36.7 odd 6
162.6.c.j.55.1 2 36.23 even 6
162.6.c.j.109.1 2 36.11 even 6
432.6.a.d.1.1 1 3.2 odd 2
432.6.a.g.1.1 1 1.1 even 1 trivial