Properties

Label 162.6.c.j.109.1
Level $162$
Weight $6$
Character 162.109
Analytic conductor $25.982$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,6,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.9821788097\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 162.109
Dual form 162.6.c.j.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(12.0000 - 20.7846i) q^{5} +(-38.5000 - 66.6840i) q^{7} -64.0000 q^{8} +96.0000 q^{10} +(204.000 + 353.338i) q^{11} +(-44.5000 + 77.0763i) q^{13} +(154.000 - 266.736i) q^{14} +(-128.000 - 221.703i) q^{16} -2088.00 q^{17} -2617.00 q^{19} +(192.000 + 332.554i) q^{20} +(-816.000 + 1413.35i) q^{22} +(876.000 - 1517.28i) q^{23} +(1274.50 + 2207.50i) q^{25} -356.000 q^{26} +1232.00 q^{28} +(-3648.00 - 6318.52i) q^{29} +(-1174.00 + 2033.43i) q^{31} +(512.000 - 886.810i) q^{32} +(-4176.00 - 7233.04i) q^{34} -1848.00 q^{35} -4993.00 q^{37} +(-5234.00 - 9065.55i) q^{38} +(-768.000 + 1330.22i) q^{40} +(-3264.00 + 5653.41i) q^{41} +(3116.00 + 5397.07i) q^{43} -6528.00 q^{44} +7008.00 q^{46} +(-14916.0 - 25835.3i) q^{47} +(5439.00 - 9420.62i) q^{49} +(-5098.00 + 8830.00i) q^{50} +(-712.000 - 1233.22i) q^{52} -22608.0 q^{53} +9792.00 q^{55} +(2464.00 + 4267.77i) q^{56} +(14592.0 - 25274.1i) q^{58} +(9804.00 - 16981.0i) q^{59} +(11022.5 + 19091.5i) q^{61} -9392.00 q^{62} +4096.00 q^{64} +(1068.00 + 1849.83i) q^{65} +(-24065.5 + 41682.7i) q^{67} +(16704.0 - 28932.2i) q^{68} +(-3696.00 - 6401.66i) q^{70} -51120.0 q^{71} +30737.0 q^{73} +(-9986.00 - 17296.3i) q^{74} +(20936.0 - 36262.2i) q^{76} +(15708.0 - 27207.1i) q^{77} +(-19109.5 - 33098.6i) q^{79} -6144.00 q^{80} -26112.0 q^{82} +(4056.00 + 7025.20i) q^{83} +(-25056.0 + 43398.3i) q^{85} +(-12464.0 + 21588.3i) q^{86} +(-13056.0 - 22613.7i) q^{88} +44280.0 q^{89} +6853.00 q^{91} +(14016.0 + 24276.4i) q^{92} +(59664.0 - 103341. i) q^{94} +(-31404.0 + 54393.3i) q^{95} +(68325.5 + 118343. i) q^{97} +43512.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 16 q^{4} + 24 q^{5} - 77 q^{7} - 128 q^{8} + 192 q^{10} + 408 q^{11} - 89 q^{13} + 308 q^{14} - 256 q^{16} - 4176 q^{17} - 5234 q^{19} + 384 q^{20} - 1632 q^{22} + 1752 q^{23} + 2549 q^{25}+ \cdots + 87024 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 + 3.46410i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) 12.0000 20.7846i 0.214663 0.371806i −0.738506 0.674247i \(-0.764468\pi\)
0.953168 + 0.302441i \(0.0978015\pi\)
\(6\) 0 0
\(7\) −38.5000 66.6840i −0.296972 0.514371i 0.678470 0.734628i \(-0.262644\pi\)
−0.975442 + 0.220258i \(0.929310\pi\)
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 96.0000 0.303579
\(11\) 204.000 + 353.338i 0.508333 + 0.880459i 0.999953 + 0.00964920i \(0.00307148\pi\)
−0.491620 + 0.870810i \(0.663595\pi\)
\(12\) 0 0
\(13\) −44.5000 + 77.0763i −0.0730301 + 0.126492i −0.900228 0.435419i \(-0.856600\pi\)
0.827198 + 0.561911i \(0.189934\pi\)
\(14\) 154.000 266.736i 0.209991 0.363715i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) −2088.00 −1.75230 −0.876149 0.482040i \(-0.839896\pi\)
−0.876149 + 0.482040i \(0.839896\pi\)
\(18\) 0 0
\(19\) −2617.00 −1.66311 −0.831553 0.555446i \(-0.812548\pi\)
−0.831553 + 0.555446i \(0.812548\pi\)
\(20\) 192.000 + 332.554i 0.107331 + 0.185903i
\(21\) 0 0
\(22\) −816.000 + 1413.35i −0.359446 + 0.622578i
\(23\) 876.000 1517.28i 0.345290 0.598061i −0.640116 0.768278i \(-0.721114\pi\)
0.985406 + 0.170218i \(0.0544471\pi\)
\(24\) 0 0
\(25\) 1274.50 + 2207.50i 0.407840 + 0.706400i
\(26\) −356.000 −0.103280
\(27\) 0 0
\(28\) 1232.00 0.296972
\(29\) −3648.00 6318.52i −0.805489 1.39515i −0.915960 0.401269i \(-0.868569\pi\)
0.110471 0.993879i \(-0.464764\pi\)
\(30\) 0 0
\(31\) −1174.00 + 2033.43i −0.219414 + 0.380036i −0.954629 0.297798i \(-0.903748\pi\)
0.735215 + 0.677834i \(0.237081\pi\)
\(32\) 512.000 886.810i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −4176.00 7233.04i −0.619531 1.07306i
\(35\) −1848.00 −0.254995
\(36\) 0 0
\(37\) −4993.00 −0.599594 −0.299797 0.954003i \(-0.596919\pi\)
−0.299797 + 0.954003i \(0.596919\pi\)
\(38\) −5234.00 9065.55i −0.587996 1.01844i
\(39\) 0 0
\(40\) −768.000 + 1330.22i −0.0758947 + 0.131453i
\(41\) −3264.00 + 5653.41i −0.303243 + 0.525232i −0.976869 0.213841i \(-0.931403\pi\)
0.673626 + 0.739073i \(0.264736\pi\)
\(42\) 0 0
\(43\) 3116.00 + 5397.07i 0.256996 + 0.445130i 0.965436 0.260641i \(-0.0839340\pi\)
−0.708440 + 0.705771i \(0.750601\pi\)
\(44\) −6528.00 −0.508333
\(45\) 0 0
\(46\) 7008.00 0.488314
\(47\) −14916.0 25835.3i −0.984935 1.70596i −0.642223 0.766518i \(-0.721988\pi\)
−0.342712 0.939441i \(-0.611346\pi\)
\(48\) 0 0
\(49\) 5439.00 9420.62i 0.323615 0.560518i
\(50\) −5098.00 + 8830.00i −0.288386 + 0.499500i
\(51\) 0 0
\(52\) −712.000 1233.22i −0.0365150 0.0632459i
\(53\) −22608.0 −1.10553 −0.552767 0.833336i \(-0.686428\pi\)
−0.552767 + 0.833336i \(0.686428\pi\)
\(54\) 0 0
\(55\) 9792.00 0.436480
\(56\) 2464.00 + 4267.77i 0.104995 + 0.181858i
\(57\) 0 0
\(58\) 14592.0 25274.1i 0.569567 0.986519i
\(59\) 9804.00 16981.0i 0.366668 0.635088i −0.622374 0.782720i \(-0.713832\pi\)
0.989042 + 0.147632i \(0.0471651\pi\)
\(60\) 0 0
\(61\) 11022.5 + 19091.5i 0.379276 + 0.656926i 0.990957 0.134179i \(-0.0428397\pi\)
−0.611681 + 0.791105i \(0.709506\pi\)
\(62\) −9392.00 −0.310298
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 1068.00 + 1849.83i 0.0313536 + 0.0543061i
\(66\) 0 0
\(67\) −24065.5 + 41682.7i −0.654950 + 1.13441i 0.326957 + 0.945039i \(0.393977\pi\)
−0.981906 + 0.189367i \(0.939357\pi\)
\(68\) 16704.0 28932.2i 0.438075 0.758768i
\(69\) 0 0
\(70\) −3696.00 6401.66i −0.0901544 0.156152i
\(71\) −51120.0 −1.20350 −0.601748 0.798686i \(-0.705529\pi\)
−0.601748 + 0.798686i \(0.705529\pi\)
\(72\) 0 0
\(73\) 30737.0 0.675079 0.337539 0.941311i \(-0.390405\pi\)
0.337539 + 0.941311i \(0.390405\pi\)
\(74\) −9986.00 17296.3i −0.211988 0.367175i
\(75\) 0 0
\(76\) 20936.0 36262.2i 0.415776 0.720146i
\(77\) 15708.0 27207.1i 0.301922 0.522943i
\(78\) 0 0
\(79\) −19109.5 33098.6i −0.344494 0.596681i 0.640768 0.767735i \(-0.278616\pi\)
−0.985262 + 0.171054i \(0.945283\pi\)
\(80\) −6144.00 −0.107331
\(81\) 0 0
\(82\) −26112.0 −0.428850
\(83\) 4056.00 + 7025.20i 0.0646253 + 0.111934i 0.896528 0.442988i \(-0.146081\pi\)
−0.831902 + 0.554922i \(0.812748\pi\)
\(84\) 0 0
\(85\) −25056.0 + 43398.3i −0.376153 + 0.651516i
\(86\) −12464.0 + 21588.3i −0.181724 + 0.314754i
\(87\) 0 0
\(88\) −13056.0 22613.7i −0.179723 0.311289i
\(89\) 44280.0 0.592560 0.296280 0.955101i \(-0.404254\pi\)
0.296280 + 0.955101i \(0.404254\pi\)
\(90\) 0 0
\(91\) 6853.00 0.0867516
\(92\) 14016.0 + 24276.4i 0.172645 + 0.299030i
\(93\) 0 0
\(94\) 59664.0 103341.i 0.696454 1.20629i
\(95\) −31404.0 + 54393.3i −0.357006 + 0.618353i
\(96\) 0 0
\(97\) 68325.5 + 118343.i 0.737316 + 1.27707i 0.953700 + 0.300760i \(0.0972403\pi\)
−0.216384 + 0.976308i \(0.569426\pi\)
\(98\) 43512.0 0.457661
\(99\) 0 0
\(100\) −40784.0 −0.407840
\(101\) 11904.0 + 20618.3i 0.116115 + 0.201118i 0.918225 0.396059i \(-0.129622\pi\)
−0.802110 + 0.597177i \(0.796289\pi\)
\(102\) 0 0
\(103\) −86984.5 + 150662.i −0.807884 + 1.39930i 0.106443 + 0.994319i \(0.466054\pi\)
−0.914327 + 0.404977i \(0.867280\pi\)
\(104\) 2848.00 4932.88i 0.0258200 0.0447216i
\(105\) 0 0
\(106\) −45216.0 78316.4i −0.390866 0.676999i
\(107\) 188856. 1.59467 0.797336 0.603536i \(-0.206242\pi\)
0.797336 + 0.603536i \(0.206242\pi\)
\(108\) 0 0
\(109\) −208654. −1.68213 −0.841067 0.540931i \(-0.818072\pi\)
−0.841067 + 0.540931i \(0.818072\pi\)
\(110\) 19584.0 + 33920.5i 0.154319 + 0.267289i
\(111\) 0 0
\(112\) −9856.00 + 17071.1i −0.0742430 + 0.128593i
\(113\) −77820.0 + 134788.i −0.573317 + 0.993015i 0.422905 + 0.906174i \(0.361010\pi\)
−0.996222 + 0.0868407i \(0.972323\pi\)
\(114\) 0 0
\(115\) −21024.0 36414.6i −0.148242 0.256762i
\(116\) 116736. 0.805489
\(117\) 0 0
\(118\) 78432.0 0.518547
\(119\) 80388.0 + 139236.i 0.520384 + 0.901331i
\(120\) 0 0
\(121\) −2706.50 + 4687.80i −0.0168052 + 0.0291075i
\(122\) −44090.0 + 76366.1i −0.268189 + 0.464517i
\(123\) 0 0
\(124\) −18784.0 32534.8i −0.109707 0.190018i
\(125\) 136176. 0.779517
\(126\) 0 0
\(127\) 111332. 0.612507 0.306253 0.951950i \(-0.400925\pi\)
0.306253 + 0.951950i \(0.400925\pi\)
\(128\) 8192.00 + 14189.0i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −4272.00 + 7399.32i −0.0221704 + 0.0384002i
\(131\) 66576.0 115313.i 0.338953 0.587084i −0.645283 0.763944i \(-0.723261\pi\)
0.984236 + 0.176860i \(0.0565939\pi\)
\(132\) 0 0
\(133\) 100754. + 174512.i 0.493896 + 0.855453i
\(134\) −192524. −0.926239
\(135\) 0 0
\(136\) 133632. 0.619531
\(137\) 142908. + 247524.i 0.650512 + 1.12672i 0.982999 + 0.183612i \(0.0587789\pi\)
−0.332487 + 0.943108i \(0.607888\pi\)
\(138\) 0 0
\(139\) −26504.5 + 45907.1i −0.116354 + 0.201532i −0.918320 0.395838i \(-0.870454\pi\)
0.801966 + 0.597370i \(0.203787\pi\)
\(140\) 14784.0 25606.6i 0.0637488 0.110416i
\(141\) 0 0
\(142\) −102240. 177085.i −0.425500 0.736988i
\(143\) −36312.0 −0.148494
\(144\) 0 0
\(145\) −175104. −0.691634
\(146\) 61474.0 + 106476.i 0.238676 + 0.413400i
\(147\) 0 0
\(148\) 39944.0 69185.0i 0.149898 0.259632i
\(149\) 105240. 182281.i 0.388343 0.672629i −0.603884 0.797072i \(-0.706381\pi\)
0.992227 + 0.124443i \(0.0397143\pi\)
\(150\) 0 0
\(151\) 15360.5 + 26605.2i 0.0548230 + 0.0949563i 0.892134 0.451770i \(-0.149207\pi\)
−0.837311 + 0.546726i \(0.815874\pi\)
\(152\) 167488. 0.587996
\(153\) 0 0
\(154\) 125664. 0.426982
\(155\) 28176.0 + 48802.3i 0.0941998 + 0.163159i
\(156\) 0 0
\(157\) 226769. 392775.i 0.734234 1.27173i −0.220824 0.975314i \(-0.570875\pi\)
0.955059 0.296417i \(-0.0957919\pi\)
\(158\) 76438.0 132394.i 0.243594 0.421917i
\(159\) 0 0
\(160\) −12288.0 21283.4i −0.0379473 0.0657267i
\(161\) −134904. −0.410166
\(162\) 0 0
\(163\) 175241. 0.516615 0.258307 0.966063i \(-0.416835\pi\)
0.258307 + 0.966063i \(0.416835\pi\)
\(164\) −52224.0 90454.6i −0.151621 0.262616i
\(165\) 0 0
\(166\) −16224.0 + 28100.8i −0.0456970 + 0.0791495i
\(167\) −28356.0 + 49114.0i −0.0786781 + 0.136274i −0.902680 0.430313i \(-0.858403\pi\)
0.824002 + 0.566587i \(0.191737\pi\)
\(168\) 0 0
\(169\) 181686. + 314689.i 0.489333 + 0.847550i
\(170\) −200448. −0.531961
\(171\) 0 0
\(172\) −99712.0 −0.256996
\(173\) −124608. 215827.i −0.316542 0.548266i 0.663222 0.748422i \(-0.269188\pi\)
−0.979764 + 0.200156i \(0.935855\pi\)
\(174\) 0 0
\(175\) 98136.5 169977.i 0.242234 0.419562i
\(176\) 52224.0 90454.6i 0.127083 0.220115i
\(177\) 0 0
\(178\) 88560.0 + 153390.i 0.209502 + 0.362868i
\(179\) −177552. −0.414184 −0.207092 0.978322i \(-0.566400\pi\)
−0.207092 + 0.978322i \(0.566400\pi\)
\(180\) 0 0
\(181\) 453053. 1.02790 0.513952 0.857819i \(-0.328181\pi\)
0.513952 + 0.857819i \(0.328181\pi\)
\(182\) 13706.0 + 23739.5i 0.0306713 + 0.0531243i
\(183\) 0 0
\(184\) −56064.0 + 97105.7i −0.122079 + 0.211446i
\(185\) −59916.0 + 103778.i −0.128710 + 0.222933i
\(186\) 0 0
\(187\) −425952. 737771.i −0.890752 1.54283i
\(188\) 477312. 0.984935
\(189\) 0 0
\(190\) −251232. −0.504883
\(191\) −294204. 509576.i −0.583533 1.01071i −0.995057 0.0993092i \(-0.968337\pi\)
0.411524 0.911399i \(-0.364997\pi\)
\(192\) 0 0
\(193\) −293220. + 507871.i −0.566630 + 0.981432i 0.430266 + 0.902702i \(0.358420\pi\)
−0.996896 + 0.0787298i \(0.974914\pi\)
\(194\) −273302. + 473373.i −0.521361 + 0.903024i
\(195\) 0 0
\(196\) 87024.0 + 150730.i 0.161808 + 0.280259i
\(197\) −374328. −0.687206 −0.343603 0.939115i \(-0.611647\pi\)
−0.343603 + 0.939115i \(0.611647\pi\)
\(198\) 0 0
\(199\) −303415. −0.543131 −0.271565 0.962420i \(-0.587541\pi\)
−0.271565 + 0.962420i \(0.587541\pi\)
\(200\) −81568.0 141280.i −0.144193 0.249750i
\(201\) 0 0
\(202\) −47616.0 + 82473.3i −0.0821059 + 0.142212i
\(203\) −280896. + 486526.i −0.478416 + 0.828640i
\(204\) 0 0
\(205\) 78336.0 + 135682.i 0.130190 + 0.225495i
\(206\) −695876. −1.14252
\(207\) 0 0
\(208\) 22784.0 0.0365150
\(209\) −533868. 924687.i −0.845412 1.46430i
\(210\) 0 0
\(211\) −114722. + 198705.i −0.177395 + 0.307258i −0.940988 0.338441i \(-0.890100\pi\)
0.763592 + 0.645699i \(0.223434\pi\)
\(212\) 180864. 313266.i 0.276384 0.478711i
\(213\) 0 0
\(214\) 377712. + 654216.i 0.563802 + 0.976533i
\(215\) 149568. 0.220670
\(216\) 0 0
\(217\) 180796. 0.260639
\(218\) −417308. 722799.i −0.594724 1.03009i
\(219\) 0 0
\(220\) −78336.0 + 135682.i −0.109120 + 0.189002i
\(221\) 92916.0 160935.i 0.127970 0.221651i
\(222\) 0 0
\(223\) −533338. 923769.i −0.718192 1.24394i −0.961716 0.274050i \(-0.911637\pi\)
0.243524 0.969895i \(-0.421697\pi\)
\(224\) −78848.0 −0.104995
\(225\) 0 0
\(226\) −622560. −0.810793
\(227\) 133944. + 231998.i 0.172528 + 0.298827i 0.939303 0.343089i \(-0.111473\pi\)
−0.766775 + 0.641916i \(0.778140\pi\)
\(228\) 0 0
\(229\) 509603. 882658.i 0.642160 1.11225i −0.342790 0.939412i \(-0.611372\pi\)
0.984950 0.172842i \(-0.0552949\pi\)
\(230\) 84096.0 145659.i 0.104823 0.181558i
\(231\) 0 0
\(232\) 233472. + 404385.i 0.284784 + 0.493260i
\(233\) −187488. −0.226247 −0.113124 0.993581i \(-0.536086\pi\)
−0.113124 + 0.993581i \(0.536086\pi\)
\(234\) 0 0
\(235\) −715968. −0.845715
\(236\) 156864. + 271696.i 0.183334 + 0.317544i
\(237\) 0 0
\(238\) −321552. + 556944.i −0.367967 + 0.637337i
\(239\) 520536. 901595.i 0.589462 1.02098i −0.404841 0.914387i \(-0.632673\pi\)
0.994303 0.106591i \(-0.0339937\pi\)
\(240\) 0 0
\(241\) −371792. 643963.i −0.412342 0.714198i 0.582803 0.812613i \(-0.301956\pi\)
−0.995145 + 0.0984155i \(0.968623\pi\)
\(242\) −21652.0 −0.0237662
\(243\) 0 0
\(244\) −352720. −0.379276
\(245\) −130536. 226095.i −0.138936 0.240644i
\(246\) 0 0
\(247\) 116456. 201709.i 0.121457 0.210369i
\(248\) 75136.0 130139.i 0.0775745 0.134363i
\(249\) 0 0
\(250\) 272352. + 471728.i 0.275601 + 0.477355i
\(251\) −1.66608e6 −1.66921 −0.834606 0.550847i \(-0.814305\pi\)
−0.834606 + 0.550847i \(0.814305\pi\)
\(252\) 0 0
\(253\) 714816. 0.702090
\(254\) 222664. + 385665.i 0.216554 + 0.375082i
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) 600600. 1.04027e6i 0.567221 0.982456i −0.429618 0.903011i \(-0.641352\pi\)
0.996839 0.0794453i \(-0.0253149\pi\)
\(258\) 0 0
\(259\) 192230. + 332953.i 0.178063 + 0.308414i
\(260\) −34176.0 −0.0313536
\(261\) 0 0
\(262\) 532608. 0.479352
\(263\) −81624.0 141377.i −0.0727660 0.126034i 0.827347 0.561692i \(-0.189849\pi\)
−0.900113 + 0.435657i \(0.856516\pi\)
\(264\) 0 0
\(265\) −271296. + 469898.i −0.237317 + 0.411045i
\(266\) −403018. + 698048.i −0.349237 + 0.604896i
\(267\) 0 0
\(268\) −385048. 666923.i −0.327475 0.567203i
\(269\) 970776. 0.817972 0.408986 0.912541i \(-0.365883\pi\)
0.408986 + 0.912541i \(0.365883\pi\)
\(270\) 0 0
\(271\) −828601. −0.685365 −0.342683 0.939451i \(-0.611336\pi\)
−0.342683 + 0.939451i \(0.611336\pi\)
\(272\) 267264. + 462915.i 0.219037 + 0.379384i
\(273\) 0 0
\(274\) −571632. + 990096.i −0.459981 + 0.796711i
\(275\) −519996. + 900659.i −0.414637 + 0.718173i
\(276\) 0 0
\(277\) 308171. + 533768.i 0.241319 + 0.417978i 0.961090 0.276234i \(-0.0890865\pi\)
−0.719771 + 0.694212i \(0.755753\pi\)
\(278\) −212036. −0.164550
\(279\) 0 0
\(280\) 118272. 0.0901544
\(281\) 1.30819e6 + 2.26586e6i 0.988338 + 1.71185i 0.626042 + 0.779790i \(0.284674\pi\)
0.362297 + 0.932063i \(0.381993\pi\)
\(282\) 0 0
\(283\) 1.02517e6 1.77564e6i 0.760902 1.31792i −0.181484 0.983394i \(-0.558090\pi\)
0.942386 0.334528i \(-0.108577\pi\)
\(284\) 408960. 708339.i 0.300874 0.521129i
\(285\) 0 0
\(286\) −72624.0 125788.i −0.0525007 0.0909339i
\(287\) 502656. 0.360219
\(288\) 0 0
\(289\) 2.93989e6 2.07055
\(290\) −350208. 606578.i −0.244529 0.423537i
\(291\) 0 0
\(292\) −245896. + 425904.i −0.168770 + 0.292318i
\(293\) −822300. + 1.42427e6i −0.559579 + 0.969219i 0.437953 + 0.898998i \(0.355704\pi\)
−0.997531 + 0.0702209i \(0.977630\pi\)
\(294\) 0 0
\(295\) −235296. 407545.i −0.157420 0.272659i
\(296\) 319552. 0.211988
\(297\) 0 0
\(298\) 841920. 0.549200
\(299\) 77964.0 + 135038.i 0.0504332 + 0.0873528i
\(300\) 0 0
\(301\) 239932. 415574.i 0.152641 0.264382i
\(302\) −61442.0 + 106421.i −0.0387657 + 0.0671442i
\(303\) 0 0
\(304\) 334976. + 580195.i 0.207888 + 0.360073i
\(305\) 529080. 0.325665
\(306\) 0 0
\(307\) −2.17154e6 −1.31499 −0.657493 0.753461i \(-0.728383\pi\)
−0.657493 + 0.753461i \(0.728383\pi\)
\(308\) 251328. + 435313.i 0.150961 + 0.261472i
\(309\) 0 0
\(310\) −112704. + 195209.i −0.0666093 + 0.115371i
\(311\) −84156.0 + 145762.i −0.0493383 + 0.0854564i −0.889640 0.456663i \(-0.849045\pi\)
0.840302 + 0.542119i \(0.182378\pi\)
\(312\) 0 0
\(313\) 691854. + 1.19833e6i 0.399166 + 0.691376i 0.993623 0.112751i \(-0.0359663\pi\)
−0.594457 + 0.804127i \(0.702633\pi\)
\(314\) 1.81415e6 1.03836
\(315\) 0 0
\(316\) 611504. 0.344494
\(317\) 242808. + 420556.i 0.135711 + 0.235058i 0.925869 0.377845i \(-0.123335\pi\)
−0.790158 + 0.612903i \(0.790001\pi\)
\(318\) 0 0
\(319\) 1.48838e6 2.57796e6i 0.818914 1.41840i
\(320\) 49152.0 85133.8i 0.0268328 0.0464758i
\(321\) 0 0
\(322\) −269808. 467321.i −0.145016 0.251175i
\(323\) 5.46430e6 2.91426
\(324\) 0 0
\(325\) −226861. −0.119138
\(326\) 350482. + 607053.i 0.182651 + 0.316361i
\(327\) 0 0
\(328\) 208896. 361818.i 0.107213 0.185698i
\(329\) −1.14853e6 + 1.98932e6i −0.584997 + 1.01324i
\(330\) 0 0
\(331\) −571052. 989092.i −0.286488 0.496211i 0.686481 0.727148i \(-0.259154\pi\)
−0.972969 + 0.230936i \(0.925821\pi\)
\(332\) −129792. −0.0646253
\(333\) 0 0
\(334\) −226848. −0.111268
\(335\) 577572. + 1.00038e6i 0.281186 + 0.487029i
\(336\) 0 0
\(337\) −1.19029e6 + 2.06165e6i −0.570926 + 0.988873i 0.425545 + 0.904937i \(0.360082\pi\)
−0.996471 + 0.0839354i \(0.973251\pi\)
\(338\) −726744. + 1.25876e6i −0.346011 + 0.599308i
\(339\) 0 0
\(340\) −400896. 694372.i −0.188076 0.325758i
\(341\) −957984. −0.446141
\(342\) 0 0
\(343\) −2.13174e6 −0.978363
\(344\) −199424. 345413.i −0.0908618 0.157377i
\(345\) 0 0
\(346\) 498432. 863310.i 0.223829 0.387683i
\(347\) 1.57894e6 2.73480e6i 0.703948 1.21927i −0.263121 0.964763i \(-0.584752\pi\)
0.967070 0.254512i \(-0.0819147\pi\)
\(348\) 0 0
\(349\) 771684. + 1.33660e6i 0.339138 + 0.587404i 0.984271 0.176666i \(-0.0565314\pi\)
−0.645133 + 0.764070i \(0.723198\pi\)
\(350\) 785092. 0.342571
\(351\) 0 0
\(352\) 417792. 0.179723
\(353\) −1.03850e6 1.79874e6i −0.443579 0.768302i 0.554373 0.832269i \(-0.312958\pi\)
−0.997952 + 0.0639665i \(0.979625\pi\)
\(354\) 0 0
\(355\) −613440. + 1.06251e6i −0.258346 + 0.447468i
\(356\) −354240. + 613562.i −0.148140 + 0.256586i
\(357\) 0 0
\(358\) −355104. 615058.i −0.146436 0.253635i
\(359\) −2.46362e6 −1.00888 −0.504439 0.863448i \(-0.668301\pi\)
−0.504439 + 0.863448i \(0.668301\pi\)
\(360\) 0 0
\(361\) 4.37259e6 1.76592
\(362\) 906106. + 1.56942e6i 0.363419 + 0.629460i
\(363\) 0 0
\(364\) −54824.0 + 94958.0i −0.0216879 + 0.0375645i
\(365\) 368844. 638857.i 0.144914 0.250999i
\(366\) 0 0
\(367\) −406892. 704758.i −0.157694 0.273134i 0.776343 0.630311i \(-0.217073\pi\)
−0.934037 + 0.357177i \(0.883739\pi\)
\(368\) −448512. −0.172645
\(369\) 0 0
\(370\) −479328. −0.182024
\(371\) 870408. + 1.50759e6i 0.328313 + 0.568655i
\(372\) 0 0
\(373\) −1.60218e6 + 2.77506e6i −0.596265 + 1.03276i 0.397102 + 0.917774i \(0.370016\pi\)
−0.993367 + 0.114986i \(0.963318\pi\)
\(374\) 1.70381e6 2.95108e6i 0.629857 1.09094i
\(375\) 0 0
\(376\) 954624. + 1.65346e6i 0.348227 + 0.603147i
\(377\) 649344. 0.235300
\(378\) 0 0
\(379\) −1.94680e6 −0.696182 −0.348091 0.937461i \(-0.613170\pi\)
−0.348091 + 0.937461i \(0.613170\pi\)
\(380\) −502464. 870293.i −0.178503 0.309177i
\(381\) 0 0
\(382\) 1.17682e6 2.03831e6i 0.412620 0.714679i
\(383\) −1.56134e6 + 2.70433e6i −0.543878 + 0.942025i 0.454798 + 0.890594i \(0.349711\pi\)
−0.998677 + 0.0514303i \(0.983622\pi\)
\(384\) 0 0
\(385\) −376992. 652969.i −0.129622 0.224513i
\(386\) −2.34576e6 −0.801336
\(387\) 0 0
\(388\) −2.18642e6 −0.737316
\(389\) 2.28404e6 + 3.95608e6i 0.765298 + 1.32553i 0.940089 + 0.340929i \(0.110742\pi\)
−0.174791 + 0.984606i \(0.555925\pi\)
\(390\) 0 0
\(391\) −1.82909e6 + 3.16807e6i −0.605052 + 1.04798i
\(392\) −348096. + 602920.i −0.114415 + 0.198173i
\(393\) 0 0
\(394\) −748656. 1.29671e6i −0.242964 0.420826i
\(395\) −917256. −0.295800
\(396\) 0 0
\(397\) −3.27733e6 −1.04362 −0.521812 0.853061i \(-0.674744\pi\)
−0.521812 + 0.853061i \(0.674744\pi\)
\(398\) −606830. 1.05106e6i −0.192026 0.332598i
\(399\) 0 0
\(400\) 326272. 565120.i 0.101960 0.176600i
\(401\) 2.72014e6 4.71141e6i 0.844753 1.46315i −0.0410827 0.999156i \(-0.513081\pi\)
0.885836 0.463999i \(-0.153586\pi\)
\(402\) 0 0
\(403\) −104486. 180975.i −0.0320476 0.0555081i
\(404\) −380928. −0.116115
\(405\) 0 0
\(406\) −2.24717e6 −0.676582
\(407\) −1.01857e6 1.76422e6i −0.304794 0.527918i
\(408\) 0 0
\(409\) −2.21361e6 + 3.83409e6i −0.654325 + 1.13332i 0.327738 + 0.944769i \(0.393714\pi\)
−0.982063 + 0.188555i \(0.939620\pi\)
\(410\) −313344. + 542728.i −0.0920580 + 0.159449i
\(411\) 0 0
\(412\) −1.39175e6 2.41059e6i −0.403942 0.699648i
\(413\) −1.50982e6 −0.435561
\(414\) 0 0
\(415\) 194688. 0.0554905
\(416\) 45568.0 + 78926.1i 0.0129100 + 0.0223608i
\(417\) 0 0
\(418\) 2.13547e6 3.69875e6i 0.597796 1.03541i
\(419\) 797916. 1.38203e6i 0.222035 0.384577i −0.733391 0.679808i \(-0.762063\pi\)
0.955426 + 0.295231i \(0.0953966\pi\)
\(420\) 0 0
\(421\) 3.02268e6 + 5.23544e6i 0.831165 + 1.43962i 0.897115 + 0.441798i \(0.145659\pi\)
−0.0659494 + 0.997823i \(0.521008\pi\)
\(422\) −917780. −0.250875
\(423\) 0 0
\(424\) 1.44691e6 0.390866
\(425\) −2.66116e6 4.60926e6i −0.714658 1.23782i
\(426\) 0 0
\(427\) 848732. 1.47005e6i 0.225269 0.390177i
\(428\) −1.51085e6 + 2.61687e6i −0.398668 + 0.690513i
\(429\) 0 0
\(430\) 299136. + 518119.i 0.0780185 + 0.135132i
\(431\) −3.92220e6 −1.01704 −0.508518 0.861051i \(-0.669807\pi\)
−0.508518 + 0.861051i \(0.669807\pi\)
\(432\) 0 0
\(433\) 4.74163e6 1.21537 0.607685 0.794178i \(-0.292098\pi\)
0.607685 + 0.794178i \(0.292098\pi\)
\(434\) 361592. + 626296.i 0.0921498 + 0.159608i
\(435\) 0 0
\(436\) 1.66923e6 2.89119e6i 0.420533 0.728385i
\(437\) −2.29249e6 + 3.97071e6i −0.574254 + 0.994638i
\(438\) 0 0
\(439\) −212794. 368570.i −0.0526985 0.0912764i 0.838473 0.544943i \(-0.183449\pi\)
−0.891171 + 0.453667i \(0.850116\pi\)
\(440\) −626688. −0.154319
\(441\) 0 0
\(442\) 743328. 0.180978
\(443\) −1.30116e6 2.25368e6i −0.315008 0.545610i 0.664431 0.747349i \(-0.268674\pi\)
−0.979439 + 0.201740i \(0.935340\pi\)
\(444\) 0 0
\(445\) 531360. 920343.i 0.127201 0.220318i
\(446\) 2.13335e6 3.69507e6i 0.507838 0.879602i
\(447\) 0 0
\(448\) −157696. 273137.i −0.0371215 0.0642963i
\(449\) −167256. −0.0391531 −0.0195765 0.999808i \(-0.506232\pi\)
−0.0195765 + 0.999808i \(0.506232\pi\)
\(450\) 0 0
\(451\) −2.66342e6 −0.616594
\(452\) −1.24512e6 2.15661e6i −0.286659 0.496507i
\(453\) 0 0
\(454\) −535776. + 927991.i −0.121995 + 0.211302i
\(455\) 82236.0 142437.i 0.0186223 0.0322548i
\(456\) 0 0
\(457\) −590731. 1.02318e6i −0.132312 0.229171i 0.792255 0.610190i \(-0.208907\pi\)
−0.924567 + 0.381018i \(0.875573\pi\)
\(458\) 4.07682e6 0.908151
\(459\) 0 0
\(460\) 672768. 0.148242
\(461\) −2.80830e6 4.86412e6i −0.615448 1.06599i −0.990306 0.138905i \(-0.955642\pi\)
0.374858 0.927082i \(-0.377691\pi\)
\(462\) 0 0
\(463\) 562834. 974856.i 0.122019 0.211343i −0.798545 0.601935i \(-0.794396\pi\)
0.920564 + 0.390592i \(0.127730\pi\)
\(464\) −933888. + 1.61754e6i −0.201372 + 0.348787i
\(465\) 0 0
\(466\) −374976. 649477.i −0.0799905 0.138548i
\(467\) −4.74732e6 −1.00729 −0.503647 0.863910i \(-0.668009\pi\)
−0.503647 + 0.863910i \(0.668009\pi\)
\(468\) 0 0
\(469\) 3.70609e6 0.778007
\(470\) −1.43194e6 2.48019e6i −0.299005 0.517892i
\(471\) 0 0
\(472\) −627456. + 1.08679e6i −0.129637 + 0.224538i
\(473\) −1.27133e6 + 2.20200e6i −0.261279 + 0.452549i
\(474\) 0 0
\(475\) −3.33537e6 5.77702e6i −0.678281 1.17482i
\(476\) −2.57242e6 −0.520384
\(477\) 0 0
\(478\) 4.16429e6 0.833626
\(479\) −4.89036e6 8.47035e6i −0.973872 1.68680i −0.683607 0.729850i \(-0.739590\pi\)
−0.290265 0.956946i \(-0.593744\pi\)
\(480\) 0 0
\(481\) 222188. 384842.i 0.0437884 0.0758437i
\(482\) 1.48717e6 2.57585e6i 0.291570 0.505014i
\(483\) 0 0
\(484\) −43304.0 75004.7i −0.00840262 0.0145538i
\(485\) 3.27962e6 0.633096
\(486\) 0 0
\(487\) −2.34782e6 −0.448582 −0.224291 0.974522i \(-0.572007\pi\)
−0.224291 + 0.974522i \(0.572007\pi\)
\(488\) −705440. 1.22186e6i −0.134094 0.232258i
\(489\) 0 0
\(490\) 522144. 904380.i 0.0982427 0.170161i
\(491\) −2.39881e6 + 4.15486e6i −0.449048 + 0.777773i −0.998324 0.0578672i \(-0.981570\pi\)
0.549277 + 0.835641i \(0.314903\pi\)
\(492\) 0 0
\(493\) 7.61702e6 + 1.31931e7i 1.41146 + 2.44472i
\(494\) 931652. 0.171766
\(495\) 0 0
\(496\) 601088. 0.109707
\(497\) 1.96812e6 + 3.40888e6i 0.357405 + 0.619044i
\(498\) 0 0
\(499\) −3.51861e6 + 6.09441e6i −0.632586 + 1.09567i 0.354435 + 0.935081i \(0.384673\pi\)
−0.987021 + 0.160590i \(0.948660\pi\)
\(500\) −1.08941e6 + 1.88691e6i −0.194879 + 0.337541i
\(501\) 0 0
\(502\) −3.33216e6 5.77147e6i −0.590156 1.02218i
\(503\) 3.98858e6 0.702908 0.351454 0.936205i \(-0.385687\pi\)
0.351454 + 0.936205i \(0.385687\pi\)
\(504\) 0 0
\(505\) 571392. 0.0997024
\(506\) 1.42963e6 + 2.47620e6i 0.248226 + 0.429941i
\(507\) 0 0
\(508\) −890656. + 1.54266e6i −0.153127 + 0.265223i
\(509\) 5.36387e6 9.29049e6i 0.917664 1.58944i 0.114710 0.993399i \(-0.463406\pi\)
0.802954 0.596041i \(-0.203261\pi\)
\(510\) 0 0
\(511\) −1.18337e6 2.04966e6i −0.200479 0.347241i
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 4.80480e6 0.802172
\(515\) 2.08763e6 + 3.61588e6i 0.346845 + 0.600753i
\(516\) 0 0
\(517\) 6.08573e6 1.05408e7i 1.00135 1.73439i
\(518\) −768922. + 1.33181e6i −0.125909 + 0.218081i
\(519\) 0 0
\(520\) −68352.0 118389.i −0.0110852 0.0192001i
\(521\) −5.86332e6 −0.946345 −0.473172 0.880970i \(-0.656891\pi\)
−0.473172 + 0.880970i \(0.656891\pi\)
\(522\) 0 0
\(523\) −2.31968e6 −0.370830 −0.185415 0.982660i \(-0.559363\pi\)
−0.185415 + 0.982660i \(0.559363\pi\)
\(524\) 1.06522e6 + 1.84501e6i 0.169476 + 0.293542i
\(525\) 0 0
\(526\) 326496. 565508.i 0.0514533 0.0891198i
\(527\) 2.45131e6 4.24580e6i 0.384478 0.665936i
\(528\) 0 0
\(529\) 1.68342e6 + 2.91577e6i 0.261549 + 0.453016i
\(530\) −2.17037e6 −0.335617
\(531\) 0 0
\(532\) −3.22414e6 −0.493896
\(533\) −290496. 503154.i −0.0442917 0.0767154i
\(534\) 0 0
\(535\) 2.26627e6 3.92530e6i 0.342316 0.592909i
\(536\) 1.54019e6 2.66769e6i 0.231560 0.401073i
\(537\) 0 0
\(538\) 1.94155e6 + 3.36287e6i 0.289197 + 0.500903i
\(539\) 4.43822e6 0.658017
\(540\) 0 0
\(541\) −3.26629e6 −0.479801 −0.239901 0.970797i \(-0.577115\pi\)
−0.239901 + 0.970797i \(0.577115\pi\)
\(542\) −1.65720e6 2.87036e6i −0.242313 0.419699i
\(543\) 0 0
\(544\) −1.06906e6 + 1.85166e6i −0.154883 + 0.268265i
\(545\) −2.50385e6 + 4.33679e6i −0.361091 + 0.625428i
\(546\) 0 0
\(547\) −2.15840e6 3.73846e6i −0.308435 0.534225i 0.669585 0.742735i \(-0.266472\pi\)
−0.978020 + 0.208510i \(0.933139\pi\)
\(548\) −4.57306e6 −0.650512
\(549\) 0 0
\(550\) −4.15997e6 −0.586386
\(551\) 9.54682e6 + 1.65356e7i 1.33961 + 2.32028i
\(552\) 0 0
\(553\) −1.47143e6 + 2.54859e6i −0.204610 + 0.354395i
\(554\) −1.23268e6 + 2.13507e6i −0.170639 + 0.295555i
\(555\) 0 0
\(556\) −424072. 734514.i −0.0581772 0.100766i
\(557\) −5.78052e6 −0.789458 −0.394729 0.918798i \(-0.629161\pi\)
−0.394729 + 0.918798i \(0.629161\pi\)
\(558\) 0 0
\(559\) −554648. −0.0750737
\(560\) 236544. + 409706.i 0.0318744 + 0.0552081i
\(561\) 0 0
\(562\) −5.23277e6 + 9.06342e6i −0.698861 + 1.21046i
\(563\) −2.47862e6 + 4.29310e6i −0.329564 + 0.570821i −0.982425 0.186656i \(-0.940235\pi\)
0.652861 + 0.757477i \(0.273568\pi\)
\(564\) 0 0
\(565\) 1.86768e6 + 3.23492e6i 0.246140 + 0.426326i
\(566\) 8.20134e6 1.07608
\(567\) 0 0
\(568\) 3.27168e6 0.425500
\(569\) 1.66751e6 + 2.88821e6i 0.215917 + 0.373980i 0.953556 0.301216i \(-0.0973925\pi\)
−0.737639 + 0.675196i \(0.764059\pi\)
\(570\) 0 0
\(571\) −2.78464e6 + 4.82313e6i −0.357419 + 0.619069i −0.987529 0.157438i \(-0.949677\pi\)
0.630110 + 0.776506i \(0.283010\pi\)
\(572\) 290496. 503154.i 0.0371236 0.0643000i
\(573\) 0 0
\(574\) 1.00531e6 + 1.74125e6i 0.127357 + 0.220588i
\(575\) 4.46585e6 0.563293
\(576\) 0 0
\(577\) −226861. −0.0283675 −0.0141837 0.999899i \(-0.504515\pi\)
−0.0141837 + 0.999899i \(0.504515\pi\)
\(578\) 5.87977e6 + 1.01841e7i 0.732050 + 1.26795i
\(579\) 0 0
\(580\) 1.40083e6 2.42631e6i 0.172908 0.299486i
\(581\) 312312. 540940.i 0.0383838 0.0664827i
\(582\) 0 0
\(583\) −4.61203e6 7.98827e6i −0.561980 0.973378i
\(584\) −1.96717e6 −0.238676
\(585\) 0 0
\(586\) −6.57840e6 −0.791364
\(587\) 977748. + 1.69351e6i 0.117120 + 0.202858i 0.918625 0.395130i \(-0.129300\pi\)
−0.801505 + 0.597988i \(0.795967\pi\)
\(588\) 0 0
\(589\) 3.07236e6 5.32148e6i 0.364908 0.632039i
\(590\) 941184. 1.63018e6i 0.111313 0.192799i
\(591\) 0 0
\(592\) 639104. + 1.10696e6i 0.0749492 + 0.129816i
\(593\) 9.83938e6 1.14903 0.574514 0.818495i \(-0.305191\pi\)
0.574514 + 0.818495i \(0.305191\pi\)
\(594\) 0 0
\(595\) 3.85862e6 0.446828
\(596\) 1.68384e6 + 2.91650e6i 0.194171 + 0.336315i
\(597\) 0 0
\(598\) −311856. + 540150.i −0.0356616 + 0.0617677i
\(599\) 2.22931e6 3.86128e6i 0.253866 0.439708i −0.710721 0.703474i \(-0.751631\pi\)
0.964587 + 0.263766i \(0.0849646\pi\)
\(600\) 0 0
\(601\) −6.04720e6 1.04741e7i −0.682917 1.18285i −0.974087 0.226176i \(-0.927378\pi\)
0.291170 0.956671i \(-0.405956\pi\)
\(602\) 1.91946e6 0.215867
\(603\) 0 0
\(604\) −491536. −0.0548230
\(605\) 64956.0 + 112507.i 0.00721491 + 0.0124966i
\(606\) 0 0
\(607\) −1.77015e6 + 3.06598e6i −0.195001 + 0.337752i −0.946901 0.321525i \(-0.895804\pi\)
0.751900 + 0.659278i \(0.229138\pi\)
\(608\) −1.33990e6 + 2.32078e6i −0.146999 + 0.254610i
\(609\) 0 0
\(610\) 1.05816e6 + 1.83279e6i 0.115140 + 0.199429i
\(611\) 2.65505e6 0.287720
\(612\) 0 0
\(613\) −1.30110e7 −1.39849 −0.699243 0.714884i \(-0.746480\pi\)
−0.699243 + 0.714884i \(0.746480\pi\)
\(614\) −4.34307e6 7.52242e6i −0.464918 0.805261i
\(615\) 0 0
\(616\) −1.00531e6 + 1.74125e6i −0.106745 + 0.184888i
\(617\) −1.68421e6 + 2.91714e6i −0.178108 + 0.308492i −0.941233 0.337759i \(-0.890331\pi\)
0.763124 + 0.646252i \(0.223664\pi\)
\(618\) 0 0
\(619\) −2.08139e6 3.60507e6i −0.218336 0.378170i 0.735963 0.677022i \(-0.236730\pi\)
−0.954300 + 0.298852i \(0.903396\pi\)
\(620\) −901632. −0.0941998
\(621\) 0 0
\(622\) −673248. −0.0697749
\(623\) −1.70478e6 2.95277e6i −0.175974 0.304796i
\(624\) 0 0
\(625\) −2.34870e6 + 4.06807e6i −0.240507 + 0.416570i
\(626\) −2.76742e6 + 4.79331e6i −0.282253 + 0.488877i
\(627\) 0 0
\(628\) 3.62830e6 + 6.28441e6i 0.367117 + 0.635865i
\(629\) 1.04254e7 1.05067
\(630\) 0 0
\(631\) 1.65343e7 1.65315 0.826577 0.562823i \(-0.190285\pi\)
0.826577 + 0.562823i \(0.190285\pi\)
\(632\) 1.22301e6 + 2.11831e6i 0.121797 + 0.210959i
\(633\) 0 0
\(634\) −971232. + 1.68222e6i −0.0959621 + 0.166211i
\(635\) 1.33598e6 2.31399e6i 0.131482 0.227734i
\(636\) 0 0
\(637\) 484071. + 838436.i 0.0472673 + 0.0818693i
\(638\) 1.19071e7 1.15812
\(639\) 0 0
\(640\) 393216. 0.0379473
\(641\) 4.05190e6 + 7.01809e6i 0.389505 + 0.674643i 0.992383 0.123191i \(-0.0393127\pi\)
−0.602878 + 0.797834i \(0.705979\pi\)
\(642\) 0 0
\(643\) 3.29853e6 5.71323e6i 0.314625 0.544947i −0.664733 0.747081i \(-0.731455\pi\)
0.979358 + 0.202135i \(0.0647879\pi\)
\(644\) 1.07923e6 1.86928e6i 0.102542 0.177607i
\(645\) 0 0
\(646\) 1.09286e7 + 1.89289e7i 1.03035 + 1.78461i
\(647\) 1.06116e7 0.996603 0.498301 0.867004i \(-0.333957\pi\)
0.498301 + 0.867004i \(0.333957\pi\)
\(648\) 0 0
\(649\) 8.00006e6 0.745558
\(650\) −453722. 785870.i −0.0421218 0.0729570i
\(651\) 0 0
\(652\) −1.40193e6 + 2.42821e6i −0.129154 + 0.223701i
\(653\) −5.72402e6 + 9.91430e6i −0.525313 + 0.909870i 0.474252 + 0.880389i \(0.342719\pi\)
−0.999565 + 0.0294804i \(0.990615\pi\)
\(654\) 0 0
\(655\) −1.59782e6 2.76751e6i −0.145521 0.252050i
\(656\) 1.67117e6 0.151621
\(657\) 0 0
\(658\) −9.18826e6 −0.827310
\(659\) −5.17044e6 8.95546e6i −0.463782 0.803294i 0.535364 0.844622i \(-0.320175\pi\)
−0.999146 + 0.0413276i \(0.986841\pi\)
\(660\) 0 0
\(661\) 1.60533e6 2.78051e6i 0.142909 0.247526i −0.785682 0.618631i \(-0.787688\pi\)
0.928591 + 0.371105i \(0.121021\pi\)
\(662\) 2.28421e6 3.95637e6i 0.202577 0.350874i
\(663\) 0 0
\(664\) −259584. 449613.i −0.0228485 0.0395748i
\(665\) 4.83622e6 0.424084
\(666\) 0 0
\(667\) −1.27826e7 −1.11251
\(668\) −453696. 785825.i −0.0393390 0.0681372i
\(669\) 0 0
\(670\) −2.31029e6 + 4.00154e6i −0.198829 + 0.344381i
\(671\) −4.49718e6 + 7.78934e6i −0.385597 + 0.667874i
\(672\) 0 0
\(673\) −3.62383e6 6.27665e6i −0.308411 0.534183i 0.669604 0.742718i \(-0.266464\pi\)
−0.978015 + 0.208535i \(0.933130\pi\)
\(674\) −9.52236e6 −0.807411
\(675\) 0 0
\(676\) −5.81395e6 −0.489333
\(677\) 1.43315e6 + 2.48229e6i 0.120176 + 0.208152i 0.919837 0.392300i \(-0.128321\pi\)
−0.799661 + 0.600452i \(0.794987\pi\)
\(678\) 0 0
\(679\) 5.26106e6 9.11243e6i 0.437924 0.758507i
\(680\) 1.60358e6 2.77749e6i 0.132990 0.230346i
\(681\) 0 0
\(682\) −1.91597e6 3.31855e6i −0.157735 0.273205i
\(683\) −2.12852e7 −1.74593 −0.872964 0.487785i \(-0.837805\pi\)
−0.872964 + 0.487785i \(0.837805\pi\)
\(684\) 0 0
\(685\) 6.85958e6 0.558562
\(686\) −4.26349e6 7.38458e6i −0.345904 0.599122i
\(687\) 0 0
\(688\) 797696. 1.38165e6i 0.0642490 0.111283i
\(689\) 1.00606e6 1.74254e6i 0.0807373 0.139841i
\(690\) 0 0
\(691\) −104020. 180168.i −0.00828747 0.0143543i 0.861852 0.507160i \(-0.169305\pi\)
−0.870139 + 0.492806i \(0.835971\pi\)
\(692\) 3.98746e6 0.316542
\(693\) 0 0
\(694\) 1.26315e7 0.995533
\(695\) 636108. + 1.10177e6i 0.0499538 + 0.0865226i
\(696\) 0 0
\(697\) 6.81523e6 1.18043e7i 0.531372 0.920363i
\(698\) −3.08674e6 + 5.34639e6i −0.239807 + 0.415357i
\(699\) 0 0
\(700\) 1.57018e6 + 2.71964e6i 0.121117 + 0.209781i
\(701\) −952488. −0.0732090 −0.0366045 0.999330i \(-0.511654\pi\)
−0.0366045 + 0.999330i \(0.511654\pi\)
\(702\) 0 0
\(703\) 1.30667e7 0.997188
\(704\) 835584. + 1.44727e6i 0.0635416 + 0.110057i
\(705\) 0 0
\(706\) 4.15402e6 7.19497e6i 0.313658 0.543272i
\(707\) 916608. 1.58761e6i 0.0689660 0.119453i
\(708\) 0 0
\(709\) 4.48216e6 + 7.76333e6i 0.334867 + 0.580006i 0.983459 0.181130i \(-0.0579754\pi\)
−0.648593 + 0.761136i \(0.724642\pi\)
\(710\) −4.90752e6 −0.365356
\(711\) 0 0
\(712\) −2.83392e6 −0.209502
\(713\) 2.05685e6 + 3.56257e6i 0.151523 + 0.262445i
\(714\) 0 0
\(715\) −435744. + 754731.i −0.0318762 + 0.0552112i
\(716\) 1.42042e6 2.46023e6i 0.103546 0.179347i
\(717\) 0 0
\(718\) −4.92725e6 8.53424e6i −0.356692 0.617809i
\(719\) −1.33824e7 −0.965407 −0.482703 0.875784i \(-0.660345\pi\)
−0.482703 + 0.875784i \(0.660345\pi\)
\(720\) 0 0
\(721\) 1.33956e7 0.959676
\(722\) 8.74518e6 + 1.51471e7i 0.624347 + 1.08140i
\(723\) 0 0
\(724\) −3.62442e6 + 6.27769e6i −0.256976 + 0.445096i
\(725\) 9.29875e6 1.61059e7i 0.657022 1.13799i
\(726\) 0 0
\(727\) −3.39422e6 5.87896e6i −0.238179 0.412539i 0.722013 0.691880i \(-0.243217\pi\)
−0.960192 + 0.279341i \(0.909884\pi\)
\(728\) −438592. −0.0306713
\(729\) 0 0
\(730\) 2.95075e6 0.204939
\(731\) −6.50621e6 1.12691e7i −0.450334 0.780001i
\(732\) 0 0
\(733\) −2.60530e6 + 4.51251e6i −0.179101 + 0.310212i −0.941573 0.336810i \(-0.890652\pi\)
0.762472 + 0.647021i \(0.223985\pi\)
\(734\) 1.62757e6 2.81903e6i 0.111506 0.193135i
\(735\) 0 0
\(736\) −897024. 1.55369e6i −0.0610393 0.105723i
\(737\) −1.96374e7 −1.33173
\(738\) 0 0
\(739\) 6.17470e6 0.415915 0.207958 0.978138i \(-0.433318\pi\)
0.207958 + 0.978138i \(0.433318\pi\)
\(740\) −958656. 1.66044e6i −0.0643552 0.111466i
\(741\) 0 0
\(742\) −3.48163e6 + 6.03036e6i −0.232152 + 0.402100i
\(743\) −154644. + 267851.i −0.0102769 + 0.0178001i −0.871118 0.491074i \(-0.836605\pi\)
0.860841 + 0.508874i \(0.169938\pi\)
\(744\) 0 0
\(745\) −2.52576e6 4.37474e6i −0.166725 0.288777i
\(746\) −1.28174e7 −0.843246
\(747\) 0 0
\(748\) 1.36305e7 0.890752
\(749\) −7.27096e6 1.25937e7i −0.473573 0.820253i
\(750\) 0 0
\(751\) 4.71325e6 8.16358e6i 0.304944 0.528179i −0.672305 0.740275i \(-0.734696\pi\)
0.977249 + 0.212096i \(0.0680289\pi\)
\(752\) −3.81850e6 + 6.61383e6i −0.246234 + 0.426490i
\(753\) 0 0
\(754\) 1.29869e6 + 2.24939e6i 0.0831910 + 0.144091i
\(755\) 737304. 0.0470738
\(756\) 0 0
\(757\) −3.03790e7 −1.92679 −0.963393 0.268095i \(-0.913606\pi\)
−0.963393 + 0.268095i \(0.913606\pi\)
\(758\) −3.89359e6 6.74390e6i −0.246137 0.426323i
\(759\) 0 0
\(760\) 2.00986e6 3.48117e6i 0.126221 0.218621i
\(761\) 6.44668e6 1.11660e7i 0.403528 0.698932i −0.590620 0.806949i \(-0.701117\pi\)
0.994149 + 0.108018i \(0.0344503\pi\)
\(762\) 0 0
\(763\) 8.03318e6 + 1.39139e7i 0.499547 + 0.865240i
\(764\) 9.41453e6 0.583533
\(765\) 0 0
\(766\) −1.24908e7 −0.769160
\(767\) 872556. + 1.51131e6i 0.0535556 + 0.0927610i
\(768\) 0 0
\(769\) −1.21356e6 + 2.10195e6i −0.0740023 + 0.128176i −0.900652 0.434541i \(-0.856911\pi\)
0.826650 + 0.562717i \(0.190244\pi\)
\(770\) 1.50797e6 2.61188e6i 0.0916569 0.158754i
\(771\) 0 0
\(772\) −4.69151e6 8.12594e6i −0.283315 0.490716i
\(773\) −1.14496e7 −0.689193 −0.344597 0.938751i \(-0.611984\pi\)
−0.344597 + 0.938751i \(0.611984\pi\)
\(774\) 0 0
\(775\) −5.98505e6 −0.357943
\(776\) −4.37283e6 7.57397e6i −0.260680 0.451512i
\(777\) 0 0
\(778\) −9.13618e6 + 1.58243e7i −0.541147 + 0.937295i
\(779\) 8.54189e6 1.47950e7i 0.504325 0.873516i
\(780\) 0 0
\(781\) −1.04285e7 1.80627e7i −0.611777 1.05963i
\(782\) −1.46327e7 −0.855673
\(783\) 0 0
\(784\) −2.78477e6 −0.161808
\(785\) −5.44246e6 9.42661e6i −0.315225 0.545986i
\(786\) 0 0
\(787\) −1.61460e6 + 2.79657e6i −0.0929240 + 0.160949i −0.908740 0.417362i \(-0.862955\pi\)
0.815816 + 0.578311i \(0.196288\pi\)
\(788\) 2.99462e6 5.18684e6i 0.171801 0.297569i
\(789\) 0 0
\(790\) −1.83451e6 3.17747e6i −0.104581 0.181140i
\(791\) 1.19843e7 0.681037
\(792\) 0 0
\(793\) −1.96200e6 −0.110794
\(794\) −6.55466e6 1.13530e7i −0.368977 0.639086i
\(795\) 0 0
\(796\) 2.42732e6 4.20424e6i 0.135783 0.235182i
\(797\) −1.07124e7 + 1.85544e7i −0.597367 + 1.03467i 0.395842 + 0.918319i \(0.370453\pi\)
−0.993208 + 0.116351i \(0.962880\pi\)
\(798\) 0 0
\(799\) 3.11446e7 + 5.39440e7i 1.72590 + 2.98935i
\(800\) 2.61018e6 0.144193
\(801\) 0 0
\(802\) 2.17611e7 1.19466
\(803\) 6.27035e6 + 1.08606e7i 0.343165 + 0.594379i
\(804\) 0 0
\(805\) −1.61885e6 + 2.80393e6i −0.0880474 + 0.152503i
\(806\) 417944. 723900.i 0.0226611 0.0392501i
\(807\) 0 0
\(808\) −761856. 1.31957e6i −0.0410530 0.0711058i
\(809\) −1.55614e7 −0.835942 −0.417971 0.908460i \(-0.637259\pi\)
−0.417971 + 0.908460i \(0.637259\pi\)
\(810\) 0 0
\(811\) −1.91972e7 −1.02491 −0.512454 0.858715i \(-0.671263\pi\)
−0.512454 + 0.858715i \(0.671263\pi\)
\(812\) −4.49434e6 7.78442e6i −0.239208 0.414320i
\(813\) 0 0
\(814\) 4.07429e6 7.05687e6i 0.215522 0.373294i
\(815\) 2.10289e6 3.64232e6i 0.110898 0.192081i
\(816\) 0 0
\(817\) −8.15457e6 1.41241e7i −0.427411 0.740298i
\(818\) −1.77089e7 −0.925355
\(819\) 0 0
\(820\) −2.50675e6 −0.130190
\(821\) −1.18151e7 2.04644e7i −0.611760 1.05960i −0.990944 0.134278i \(-0.957129\pi\)
0.379184 0.925321i \(-0.376205\pi\)
\(822\) 0 0
\(823\) 838980. 1.45316e6i 0.0431770 0.0747847i −0.843629 0.536926i \(-0.819585\pi\)
0.886806 + 0.462141i \(0.152919\pi\)
\(824\) 5.56701e6 9.64234e6i 0.285630 0.494726i
\(825\) 0 0
\(826\) −3.01963e6 5.23016e6i −0.153994 0.266725i
\(827\) 1.39053e7 0.706995 0.353497 0.935436i \(-0.384992\pi\)
0.353497 + 0.935436i \(0.384992\pi\)
\(828\) 0 0
\(829\) −1.33464e7 −0.674493 −0.337247 0.941416i \(-0.609496\pi\)
−0.337247 + 0.941416i \(0.609496\pi\)
\(830\) 389376. + 674419.i 0.0196189 + 0.0339809i
\(831\) 0 0
\(832\) −182272. + 315704.i −0.00912876 + 0.0158115i
\(833\) −1.13566e7 + 1.96703e7i −0.567070 + 0.982195i
\(834\) 0 0
\(835\) 680544. + 1.17874e6i 0.0337785 + 0.0585060i
\(836\) 1.70838e7 0.845412
\(837\) 0 0
\(838\) 6.38333e6 0.314005
\(839\) −1.47613e7 2.55673e7i −0.723967 1.25395i −0.959398 0.282057i \(-0.908983\pi\)
0.235431 0.971891i \(-0.424350\pi\)
\(840\) 0 0
\(841\) −1.63602e7 + 2.83368e7i −0.797626 + 1.38153i
\(842\) −1.20907e7 + 2.09418e7i −0.587723 + 1.01797i
\(843\) 0 0
\(844\) −1.83556e6 3.17928e6i −0.0886977 0.153629i
\(845\) 8.72093e6 0.420166
\(846\) 0 0
\(847\) 416801. 0.0199627
\(848\) 2.89382e6 + 5.01225e6i 0.138192 + 0.239355i
\(849\) 0 0
\(850\) 1.06446e7 1.84370e7i 0.505339 0.875273i
\(851\) −4.37387e6 + 7.57576e6i −0.207034 + 0.358593i
\(852\) 0 0
\(853\) −6.15414e6 1.06593e7i −0.289597 0.501598i 0.684116 0.729373i \(-0.260188\pi\)
−0.973714 + 0.227776i \(0.926855\pi\)
\(854\) 6.78986e6 0.318578
\(855\) 0 0
\(856\) −1.20868e7 −0.563802
\(857\) −8.29452e6 1.43665e7i −0.385780 0.668190i 0.606097 0.795390i \(-0.292734\pi\)
−0.991877 + 0.127201i \(0.959401\pi\)
\(858\) 0 0
\(859\) −6.56430e6 + 1.13697e7i −0.303533 + 0.525734i −0.976934 0.213543i \(-0.931500\pi\)
0.673401 + 0.739278i \(0.264833\pi\)
\(860\) −1.19654e6 + 2.07248e6i −0.0551674 + 0.0955527i
\(861\) 0 0
\(862\) −7.84440e6 1.35869e7i −0.359577 0.622805i
\(863\) −2.09802e7 −0.958918 −0.479459 0.877564i \(-0.659167\pi\)
−0.479459 + 0.877564i \(0.659167\pi\)
\(864\) 0 0
\(865\) −5.98118e6 −0.271798
\(866\) 9.48327e6 + 1.64255e7i 0.429698 + 0.744259i
\(867\) 0 0
\(868\) −1.44637e6 + 2.50518e6i −0.0651598 + 0.112860i
\(869\) 7.79668e6 1.35042e7i 0.350235 0.606626i
\(870\) 0 0
\(871\) −2.14183e6 3.70976e6i −0.0956620 0.165691i
\(872\) 1.33539e7 0.594724
\(873\) 0 0
\(874\) −1.83399e7 −0.812118
\(875\) −5.24278e6 9.08075e6i −0.231495 0.400961i
\(876\) 0 0
\(877\) −2.36941e6 + 4.10394e6i −0.104026 + 0.180178i −0.913340 0.407198i \(-0.866506\pi\)
0.809314 + 0.587376i \(0.199839\pi\)
\(878\) 851176. 1.47428e6i 0.0372635 0.0645422i
\(879\) 0 0
\(880\) −1.25338e6 2.17091e6i −0.0545600 0.0945008i
\(881\) 3.09880e7 1.34510 0.672549 0.740053i \(-0.265199\pi\)
0.672549 + 0.740053i \(0.265199\pi\)
\(882\) 0 0
\(883\) −1.94710e6 −0.0840402 −0.0420201 0.999117i \(-0.513379\pi\)
−0.0420201 + 0.999117i \(0.513379\pi\)
\(884\) 1.48666e6 + 2.57496e6i 0.0639852 + 0.110826i
\(885\) 0 0
\(886\) 5.20464e6 9.01470e6i 0.222744 0.385804i
\(887\) −9.26268e6 + 1.60434e7i −0.395301 + 0.684681i −0.993140 0.116935i \(-0.962693\pi\)
0.597839 + 0.801616i \(0.296026\pi\)
\(888\) 0 0
\(889\) −4.28628e6 7.42406e6i −0.181897 0.315055i
\(890\) 4.25088e6 0.179889
\(891\) 0 0
\(892\) 1.70668e7 0.718192
\(893\) 3.90352e7 + 6.76109e7i 1.63805 + 2.83719i
\(894\) 0 0
\(895\) −2.13062e6 + 3.69035e6i −0.0889097 + 0.153996i
\(896\) 630784. 1.09255e6i 0.0262489 0.0454644i
\(897\) 0 0
\(898\) −334512. 579392.i −0.0138427 0.0239763i
\(899\) 1.71310e7 0.706942
\(900\) 0 0
\(901\) 4.72055e7 1.93723
\(902\) −5.32685e6 9.22637e6i −0.217999 0.377585i
\(903\) 0 0
\(904\) 4.98048e6 8.62644e6i 0.202698 0.351084i
\(905\) 5.43664e6 9.41653e6i 0.220652 0.382181i
\(906\) 0 0
\(907\) 1.80616e7 + 3.12837e7i 0.729019 + 1.26270i 0.957298 + 0.289102i \(0.0933568\pi\)
−0.228279 + 0.973596i \(0.573310\pi\)
\(908\) −4.28621e6 −0.172528
\(909\) 0 0
\(910\) 657888. 0.0263359
\(911\) 1.51560e7 + 2.62509e7i 0.605044 + 1.04797i 0.992044 + 0.125888i \(0.0401780\pi\)
−0.387000 + 0.922080i \(0.626489\pi\)
\(912\) 0 0
\(913\) −1.65485e6 + 2.86628e6i −0.0657024 + 0.113800i
\(914\) 2.36292e6 4.09270e6i 0.0935587 0.162048i
\(915\) 0 0
\(916\) 8.15365e6 + 1.41225e7i 0.321080 + 0.556127i
\(917\) −1.02527e7 −0.402638
\(918\) 0 0
\(919\) 1.82688e7 0.713545 0.356772 0.934191i \(-0.383877\pi\)
0.356772 + 0.934191i \(0.383877\pi\)
\(920\) 1.34554e6 + 2.33054e6i 0.0524114 + 0.0907792i
\(921\) 0 0
\(922\) 1.12332e7 1.94565e7i 0.435187 0.753766i
\(923\) 2.27484e6 3.94014e6i 0.0878914 0.152232i
\(924\) 0 0
\(925\) −6.36358e6 1.10220e7i −0.244538 0.423553i
\(926\) 4.50267e6 0.172561
\(927\) 0 0
\(928\) −7.47110e6 −0.284784
\(929\) −4.59948e6 7.96653e6i −0.174852 0.302852i 0.765258 0.643723i \(-0.222611\pi\)
−0.940110 + 0.340872i \(0.889278\pi\)
\(930\) 0 0
\(931\) −1.42339e7 + 2.46538e7i −0.538206 + 0.932200i
\(932\) 1.49990e6 2.59791e6i 0.0565619 0.0979680i
\(933\) 0 0
\(934\) −9.49464e6 1.64452e7i −0.356132 0.616839i
\(935\) −2.04457e7 −0.764844
\(936\) 0 0
\(937\) −6.01912e6 −0.223967 −0.111983 0.993710i \(-0.535720\pi\)
−0.111983 + 0.993710i \(0.535720\pi\)
\(938\) 7.41217e6 + 1.28383e7i 0.275067 + 0.476430i
\(939\) 0 0
\(940\) 5.72774e6 9.92074e6i 0.211429 0.366205i
\(941\) −1.61808e7 + 2.80259e7i −0.595696 + 1.03178i 0.397752 + 0.917493i \(0.369791\pi\)
−0.993448 + 0.114283i \(0.963543\pi\)
\(942\) 0 0
\(943\) 5.71853e6 + 9.90478e6i 0.209414 + 0.362715i
\(944\) −5.01965e6 −0.183334
\(945\) 0 0
\(946\) −1.01706e7 −0.369505
\(947\) 1.68154e7 + 2.91252e7i 0.609303 + 1.05534i 0.991355 + 0.131203i \(0.0418841\pi\)
−0.382052 + 0.924141i \(0.624783\pi\)
\(948\) 0 0
\(949\) −1.36780e6 + 2.36909e6i −0.0493010 + 0.0853919i
\(950\) 1.33415e7 2.31081e7i 0.479617 0.830721i
\(951\) 0 0
\(952\) −5.14483e6 8.91111e6i −0.183983 0.318669i
\(953\) 2.17482e7 0.775697 0.387848 0.921723i \(-0.373218\pi\)
0.387848 + 0.921723i \(0.373218\pi\)
\(954\) 0 0
\(955\) −1.41218e7 −0.501050
\(956\) 8.32858e6 + 1.44255e7i 0.294731 + 0.510489i
\(957\) 0 0
\(958\) 1.95614e7 3.38814e7i 0.688632 1.19275i
\(959\) 1.10039e7 1.90593e7i 0.386368 0.669208i
\(960\) 0 0
\(961\) 1.15580e7 + 2.00191e7i 0.403715 + 0.699255i
\(962\) 1.77751e6 0.0619261
\(963\) 0 0
\(964\) 1.18974e7 0.412342
\(965\) 7.03727e6 + 1.21889e7i 0.243268 + 0.421353i
\(966\) 0 0
\(967\) 1.64077e7 2.84189e7i 0.564262 0.977330i −0.432856 0.901463i \(-0.642494\pi\)
0.997118 0.0758671i \(-0.0241725\pi\)
\(968\) 173216. 300019.i 0.00594155 0.0102911i
\(969\) 0 0
\(970\) 6.55925e6 + 1.13610e7i 0.223833 + 0.387691i
\(971\) 1.98137e6 0.0674399 0.0337200 0.999431i \(-0.489265\pi\)
0.0337200 + 0.999431i \(0.489265\pi\)
\(972\) 0 0
\(973\) 4.08169e6 0.138216
\(974\) −4.69564e6 8.13308e6i −0.158598 0.274699i
\(975\) 0 0
\(976\) 2.82176e6 4.88743e6i 0.0948190 0.164231i
\(977\) 1.92564e7 3.33530e7i 0.645414 1.11789i −0.338792 0.940861i \(-0.610018\pi\)
0.984206 0.177028i \(-0.0566483\pi\)
\(978\) 0 0
\(979\) 9.03312e6 + 1.56458e7i 0.301218 + 0.521725i
\(980\) 4.17715e6 0.138936
\(981\) 0 0
\(982\) −1.91905e7 −0.635049
\(983\) 1.57929e7 + 2.73541e7i 0.521288 + 0.902898i 0.999693 + 0.0247588i \(0.00788176\pi\)
−0.478405 + 0.878139i \(0.658785\pi\)
\(984\) 0 0
\(985\) −4.49194e6 + 7.78026e6i −0.147517 + 0.255507i
\(986\) −3.04681e7 + 5.27723e7i −0.998052 + 1.72868i
\(987\) 0 0
\(988\) 1.86330e6 + 3.22734e6i 0.0607283 + 0.105185i
\(989\) 1.09185e7 0.354953
\(990\) 0 0
\(991\) 5.92538e7 1.91660 0.958302 0.285758i \(-0.0922453\pi\)
0.958302 + 0.285758i \(0.0922453\pi\)
\(992\) 1.20218e6 + 2.08223e6i 0.0387872 + 0.0671815i
\(993\) 0 0
\(994\) −7.87248e6 + 1.36355e7i −0.252723 + 0.437730i
\(995\) −3.64098e6 + 6.30636e6i −0.116590 + 0.201939i
\(996\) 0 0
\(997\) −2.33863e7 4.05062e7i −0.745115 1.29058i −0.950141 0.311821i \(-0.899061\pi\)
0.205026 0.978757i \(-0.434272\pi\)
\(998\) −2.81489e7 −0.894612
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 162.6.c.j.109.1 2
3.2 odd 2 162.6.c.c.109.1 2
9.2 odd 6 162.6.c.c.55.1 2
9.4 even 3 54.6.a.b.1.1 1
9.5 odd 6 54.6.a.e.1.1 yes 1
9.7 even 3 inner 162.6.c.j.55.1 2
36.23 even 6 432.6.a.g.1.1 1
36.31 odd 6 432.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
54.6.a.b.1.1 1 9.4 even 3
54.6.a.e.1.1 yes 1 9.5 odd 6
162.6.c.c.55.1 2 9.2 odd 6
162.6.c.c.109.1 2 3.2 odd 2
162.6.c.j.55.1 2 9.7 even 3 inner
162.6.c.j.109.1 2 1.1 even 1 trivial
432.6.a.d.1.1 1 36.31 odd 6
432.6.a.g.1.1 1 36.23 even 6