Properties

Label 432.7.e.j.161.1
Level $432$
Weight $7$
Character 432.161
Analytic conductor $99.383$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,7,Mod(161,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.161");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 432.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(99.3833641238\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(-3.70156i\) of defining polynomial
Character \(\chi\) \(=\) 432.161
Dual form 432.7.e.j.161.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-137.419i q^{5} +514.769 q^{7} -1218.26i q^{11} -170.463 q^{13} -1574.10i q^{17} +11289.1 q^{19} -10572.6i q^{23} -3258.91 q^{25} -8665.42i q^{29} +26209.1 q^{31} -70738.9i q^{35} +21866.9 q^{37} +38166.6i q^{41} -23895.1 q^{43} +26698.7i q^{47} +147338. q^{49} +213997. i q^{53} -167412. q^{55} +163689. i q^{59} +111078. q^{61} +23424.8i q^{65} +381035. q^{67} -675048. i q^{71} -762939. q^{73} -627123. i q^{77} -515708. q^{79} +903773. i q^{83} -216311. q^{85} -644278. i q^{89} -87748.8 q^{91} -1.55133e6i q^{95} -616470. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 676 q^{7} - 3448 q^{13} + 3664 q^{19} + 17392 q^{25} + 153244 q^{31} + 128960 q^{37} - 126008 q^{43} + 121872 q^{49} - 54180 q^{55} + 167696 q^{61} - 8 q^{67} - 1881676 q^{73} - 1188728 q^{79} - 176472 q^{85}+ \cdots + 975212 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 137.419i − 1.09935i −0.835379 0.549675i \(-0.814752\pi\)
0.835379 0.549675i \(-0.185248\pi\)
\(6\) 0 0
\(7\) 514.769 1.50078 0.750392 0.660993i \(-0.229865\pi\)
0.750392 + 0.660993i \(0.229865\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1218.26i − 0.915298i −0.889133 0.457649i \(-0.848692\pi\)
0.889133 0.457649i \(-0.151308\pi\)
\(12\) 0 0
\(13\) −170.463 −0.0775888 −0.0387944 0.999247i \(-0.512352\pi\)
−0.0387944 + 0.999247i \(0.512352\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 1574.10i − 0.320395i −0.987085 0.160197i \(-0.948787\pi\)
0.987085 0.160197i \(-0.0512131\pi\)
\(18\) 0 0
\(19\) 11289.1 1.64588 0.822938 0.568131i \(-0.192333\pi\)
0.822938 + 0.568131i \(0.192333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 10572.6i − 0.868960i −0.900681 0.434480i \(-0.856932\pi\)
0.900681 0.434480i \(-0.143068\pi\)
\(24\) 0 0
\(25\) −3258.91 −0.208570
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 8665.42i − 0.355300i −0.984094 0.177650i \(-0.943150\pi\)
0.984094 0.177650i \(-0.0568496\pi\)
\(30\) 0 0
\(31\) 26209.1 0.879766 0.439883 0.898055i \(-0.355020\pi\)
0.439883 + 0.898055i \(0.355020\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 70738.9i − 1.64989i
\(36\) 0 0
\(37\) 21866.9 0.431701 0.215850 0.976426i \(-0.430748\pi\)
0.215850 + 0.976426i \(0.430748\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 38166.6i 0.553774i 0.960903 + 0.276887i \(0.0893027\pi\)
−0.960903 + 0.276887i \(0.910697\pi\)
\(42\) 0 0
\(43\) −23895.1 −0.300541 −0.150270 0.988645i \(-0.548014\pi\)
−0.150270 + 0.988645i \(0.548014\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 26698.7i 0.257156i 0.991699 + 0.128578i \(0.0410413\pi\)
−0.991699 + 0.128578i \(0.958959\pi\)
\(48\) 0 0
\(49\) 147338. 1.25235
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 213997.i 1.43741i 0.695315 + 0.718705i \(0.255265\pi\)
−0.695315 + 0.718705i \(0.744735\pi\)
\(54\) 0 0
\(55\) −167412. −1.00623
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 163689.i 0.797010i 0.917166 + 0.398505i \(0.130471\pi\)
−0.917166 + 0.398505i \(0.869529\pi\)
\(60\) 0 0
\(61\) 111078. 0.489370 0.244685 0.969603i \(-0.421315\pi\)
0.244685 + 0.969603i \(0.421315\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 23424.8i 0.0852972i
\(66\) 0 0
\(67\) 381035. 1.26689 0.633447 0.773786i \(-0.281639\pi\)
0.633447 + 0.773786i \(0.281639\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 675048.i − 1.88608i −0.332682 0.943039i \(-0.607953\pi\)
0.332682 0.943039i \(-0.392047\pi\)
\(72\) 0 0
\(73\) −762939. −1.96120 −0.980599 0.196025i \(-0.937197\pi\)
−0.980599 + 0.196025i \(0.937197\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 627123.i − 1.37366i
\(78\) 0 0
\(79\) −515708. −1.04598 −0.522989 0.852340i \(-0.675183\pi\)
−0.522989 + 0.852340i \(0.675183\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 903773.i 1.58061i 0.612713 + 0.790306i \(0.290078\pi\)
−0.612713 + 0.790306i \(0.709922\pi\)
\(84\) 0 0
\(85\) −216311. −0.352226
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 644278.i − 0.913910i −0.889490 0.456955i \(-0.848940\pi\)
0.889490 0.456955i \(-0.151060\pi\)
\(90\) 0 0
\(91\) −87748.8 −0.116444
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 1.55133e6i − 1.80939i
\(96\) 0 0
\(97\) −616470. −0.675455 −0.337728 0.941244i \(-0.609658\pi\)
−0.337728 + 0.941244i \(0.609658\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 623027.i − 0.604704i −0.953196 0.302352i \(-0.902228\pi\)
0.953196 0.302352i \(-0.0977718\pi\)
\(102\) 0 0
\(103\) 750695. 0.686992 0.343496 0.939154i \(-0.388389\pi\)
0.343496 + 0.939154i \(0.388389\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 345428.i 0.281973i 0.990012 + 0.140986i \(0.0450273\pi\)
−0.990012 + 0.140986i \(0.954973\pi\)
\(108\) 0 0
\(109\) 1.17208e6 0.905061 0.452530 0.891749i \(-0.350521\pi\)
0.452530 + 0.891749i \(0.350521\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 2.45331e6i − 1.70026i −0.526569 0.850132i \(-0.676522\pi\)
0.526569 0.850132i \(-0.323478\pi\)
\(114\) 0 0
\(115\) −1.45288e6 −0.955291
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 810297.i − 0.480843i
\(120\) 0 0
\(121\) 287398. 0.162229
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1.69933e6i − 0.870058i
\(126\) 0 0
\(127\) 1.53816e6 0.750913 0.375456 0.926840i \(-0.377486\pi\)
0.375456 + 0.926840i \(0.377486\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1.12723e6i − 0.501416i −0.968063 0.250708i \(-0.919337\pi\)
0.968063 0.250708i \(-0.0806635\pi\)
\(132\) 0 0
\(133\) 5.81126e6 2.47010
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.20599e6i 1.24681i 0.781899 + 0.623406i \(0.214251\pi\)
−0.781899 + 0.623406i \(0.785749\pi\)
\(138\) 0 0
\(139\) 66685.5 0.0248306 0.0124153 0.999923i \(-0.496048\pi\)
0.0124153 + 0.999923i \(0.496048\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 207668.i 0.0710169i
\(144\) 0 0
\(145\) −1.19079e6 −0.390600
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.62846e6i 0.492288i 0.969233 + 0.246144i \(0.0791635\pi\)
−0.969233 + 0.246144i \(0.920836\pi\)
\(150\) 0 0
\(151\) 365620. 0.106194 0.0530968 0.998589i \(-0.483091\pi\)
0.0530968 + 0.998589i \(0.483091\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 3.60162e6i − 0.967170i
\(156\) 0 0
\(157\) −5.18926e6 −1.34093 −0.670465 0.741941i \(-0.733905\pi\)
−0.670465 + 0.741941i \(0.733905\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 5.44246e6i − 1.30412i
\(162\) 0 0
\(163\) 3.00726e6 0.694397 0.347199 0.937792i \(-0.387133\pi\)
0.347199 + 0.937792i \(0.387133\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 4.78381e6i − 1.02713i −0.858051 0.513564i \(-0.828325\pi\)
0.858051 0.513564i \(-0.171675\pi\)
\(168\) 0 0
\(169\) −4.79775e6 −0.993980
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 3.53596e6i − 0.682918i −0.939897 0.341459i \(-0.889079\pi\)
0.939897 0.341459i \(-0.110921\pi\)
\(174\) 0 0
\(175\) −1.67759e6 −0.313019
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 8.57291e6i − 1.49475i −0.664401 0.747376i \(-0.731313\pi\)
0.664401 0.747376i \(-0.268687\pi\)
\(180\) 0 0
\(181\) 1.79208e6 0.302219 0.151110 0.988517i \(-0.451715\pi\)
0.151110 + 0.988517i \(0.451715\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 3.00493e6i − 0.474590i
\(186\) 0 0
\(187\) −1.91767e6 −0.293257
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.01076e7i − 1.45061i −0.688429 0.725304i \(-0.741699\pi\)
0.688429 0.725304i \(-0.258301\pi\)
\(192\) 0 0
\(193\) −7.64657e6 −1.06364 −0.531820 0.846857i \(-0.678492\pi\)
−0.531820 + 0.846857i \(0.678492\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4.94403e6i − 0.646669i −0.946285 0.323335i \(-0.895196\pi\)
0.946285 0.323335i \(-0.104804\pi\)
\(198\) 0 0
\(199\) 1.96814e6 0.249745 0.124872 0.992173i \(-0.460148\pi\)
0.124872 + 0.992173i \(0.460148\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 4.46069e6i − 0.533229i
\(204\) 0 0
\(205\) 5.24481e6 0.608791
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 1.37530e7i − 1.50647i
\(210\) 0 0
\(211\) −8.29966e6 −0.883513 −0.441756 0.897135i \(-0.645644\pi\)
−0.441756 + 0.897135i \(0.645644\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.28363e6i 0.330399i
\(216\) 0 0
\(217\) 1.34916e7 1.32034
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 268325.i 0.0248590i
\(222\) 0 0
\(223\) −9.37779e6 −0.845641 −0.422821 0.906213i \(-0.638960\pi\)
−0.422821 + 0.906213i \(0.638960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3.66419e6i − 0.313257i −0.987658 0.156628i \(-0.949938\pi\)
0.987658 0.156628i \(-0.0500625\pi\)
\(228\) 0 0
\(229\) 4.98904e6 0.415442 0.207721 0.978188i \(-0.433395\pi\)
0.207721 + 0.978188i \(0.433395\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.00370e6i 0.395570i 0.980245 + 0.197785i \(0.0633749\pi\)
−0.980245 + 0.197785i \(0.936625\pi\)
\(234\) 0 0
\(235\) 3.66890e6 0.282705
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.89151e7i 1.38553i 0.721163 + 0.692765i \(0.243608\pi\)
−0.721163 + 0.692765i \(0.756392\pi\)
\(240\) 0 0
\(241\) −1.52515e7 −1.08958 −0.544791 0.838572i \(-0.683391\pi\)
−0.544791 + 0.838572i \(0.683391\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 2.02470e7i − 1.37677i
\(246\) 0 0
\(247\) −1.92436e6 −0.127702
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 1.44796e7i − 0.915661i −0.889040 0.457830i \(-0.848627\pi\)
0.889040 0.457830i \(-0.151373\pi\)
\(252\) 0 0
\(253\) −1.28802e7 −0.795358
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.19468e7i − 0.703807i −0.936036 0.351904i \(-0.885534\pi\)
0.936036 0.351904i \(-0.114466\pi\)
\(258\) 0 0
\(259\) 1.12564e7 0.647889
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.51400e7i 0.832258i 0.909306 + 0.416129i \(0.136614\pi\)
−0.909306 + 0.416129i \(0.863386\pi\)
\(264\) 0 0
\(265\) 2.94073e7 1.58022
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.37864e7i 1.73574i 0.496789 + 0.867871i \(0.334512\pi\)
−0.496789 + 0.867871i \(0.665488\pi\)
\(270\) 0 0
\(271\) 292052. 0.0146741 0.00733707 0.999973i \(-0.497665\pi\)
0.00733707 + 0.999973i \(0.497665\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.97021e6i 0.190904i
\(276\) 0 0
\(277\) −1.18466e7 −0.557384 −0.278692 0.960381i \(-0.589901\pi\)
−0.278692 + 0.960381i \(0.589901\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 2.67693e6i − 0.120648i −0.998179 0.0603238i \(-0.980787\pi\)
0.998179 0.0603238i \(-0.0192133\pi\)
\(282\) 0 0
\(283\) 3.11101e7 1.37260 0.686298 0.727321i \(-0.259235\pi\)
0.686298 + 0.727321i \(0.259235\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.96470e7i 0.831094i
\(288\) 0 0
\(289\) 2.16598e7 0.897347
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 2.35392e6i − 0.0935813i −0.998905 0.0467906i \(-0.985101\pi\)
0.998905 0.0467906i \(-0.0148994\pi\)
\(294\) 0 0
\(295\) 2.24939e7 0.876193
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.80224e6i 0.0674216i
\(300\) 0 0
\(301\) −1.23004e7 −0.451046
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1.52642e7i − 0.537989i
\(306\) 0 0
\(307\) −3.99249e6 −0.137984 −0.0689920 0.997617i \(-0.521978\pi\)
−0.0689920 + 0.997617i \(0.521978\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 3.01385e7i − 1.00194i −0.865465 0.500969i \(-0.832977\pi\)
0.865465 0.500969i \(-0.167023\pi\)
\(312\) 0 0
\(313\) −3.78911e7 −1.23568 −0.617838 0.786305i \(-0.711991\pi\)
−0.617838 + 0.786305i \(0.711991\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.47444e7i 1.09070i 0.838207 + 0.545352i \(0.183604\pi\)
−0.838207 + 0.545352i \(0.816396\pi\)
\(318\) 0 0
\(319\) −1.05568e7 −0.325206
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 1.77701e7i − 0.527330i
\(324\) 0 0
\(325\) 555522. 0.0161827
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.37437e7i 0.385936i
\(330\) 0 0
\(331\) −3.66213e7 −1.00983 −0.504917 0.863168i \(-0.668477\pi\)
−0.504917 + 0.863168i \(0.668477\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 5.23614e7i − 1.39276i
\(336\) 0 0
\(337\) 4.53144e7 1.18398 0.591992 0.805944i \(-0.298342\pi\)
0.591992 + 0.805944i \(0.298342\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 3.19296e7i − 0.805248i
\(342\) 0 0
\(343\) 1.52829e7 0.378724
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.92265e7i 0.699502i 0.936843 + 0.349751i \(0.113734\pi\)
−0.936843 + 0.349751i \(0.886266\pi\)
\(348\) 0 0
\(349\) −9.61270e6 −0.226136 −0.113068 0.993587i \(-0.536068\pi\)
−0.113068 + 0.993587i \(0.536068\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.01291e7i 0.684955i 0.939526 + 0.342478i \(0.111266\pi\)
−0.939526 + 0.342478i \(0.888734\pi\)
\(354\) 0 0
\(355\) −9.27643e7 −2.07346
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.63910e7i 0.786521i 0.919427 + 0.393260i \(0.128653\pi\)
−0.919427 + 0.393260i \(0.871347\pi\)
\(360\) 0 0
\(361\) 8.03970e7 1.70891
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.04842e8i 2.15604i
\(366\) 0 0
\(367\) −5.05958e7 −1.02357 −0.511784 0.859114i \(-0.671015\pi\)
−0.511784 + 0.859114i \(0.671015\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.10159e8i 2.15724i
\(372\) 0 0
\(373\) −9.44996e7 −1.82097 −0.910487 0.413538i \(-0.864293\pi\)
−0.910487 + 0.413538i \(0.864293\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.47713e6i 0.0275673i
\(378\) 0 0
\(379\) 5.62274e7 1.03283 0.516417 0.856337i \(-0.327266\pi\)
0.516417 + 0.856337i \(0.327266\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 2.12413e7i − 0.378080i −0.981969 0.189040i \(-0.939462\pi\)
0.981969 0.189040i \(-0.0605376\pi\)
\(384\) 0 0
\(385\) −8.61785e7 −1.51014
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.62174e7i 1.63458i 0.576230 + 0.817288i \(0.304523\pi\)
−0.576230 + 0.817288i \(0.695477\pi\)
\(390\) 0 0
\(391\) −1.66424e7 −0.278410
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.08679e7i 1.14990i
\(396\) 0 0
\(397\) 2.71686e7 0.434206 0.217103 0.976149i \(-0.430339\pi\)
0.217103 + 0.976149i \(0.430339\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 1.53926e7i − 0.238715i −0.992851 0.119357i \(-0.961917\pi\)
0.992851 0.119357i \(-0.0380834\pi\)
\(402\) 0 0
\(403\) −4.46767e6 −0.0682599
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2.66397e7i − 0.395135i
\(408\) 0 0
\(409\) −3.26408e7 −0.477080 −0.238540 0.971133i \(-0.576669\pi\)
−0.238540 + 0.971133i \(0.576669\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.42620e7i 1.19614i
\(414\) 0 0
\(415\) 1.24195e8 1.73765
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.86249e7i 1.20480i 0.798196 + 0.602398i \(0.205788\pi\)
−0.798196 + 0.602398i \(0.794212\pi\)
\(420\) 0 0
\(421\) 9.51173e7 1.27472 0.637358 0.770568i \(-0.280027\pi\)
0.637358 + 0.770568i \(0.280027\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.12985e6i 0.0668249i
\(426\) 0 0
\(427\) 5.71793e7 0.734439
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.05617e7i 1.00623i 0.864220 + 0.503115i \(0.167813\pi\)
−0.864220 + 0.503115i \(0.832187\pi\)
\(432\) 0 0
\(433\) 3.50511e7 0.431755 0.215878 0.976420i \(-0.430739\pi\)
0.215878 + 0.976420i \(0.430739\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.19355e8i − 1.43020i
\(438\) 0 0
\(439\) 4.63062e7 0.547325 0.273663 0.961826i \(-0.411765\pi\)
0.273663 + 0.961826i \(0.411765\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.19041e8i 1.36926i 0.728893 + 0.684628i \(0.240035\pi\)
−0.728893 + 0.684628i \(0.759965\pi\)
\(444\) 0 0
\(445\) −8.85359e7 −1.00471
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 9.75546e7i − 1.07773i −0.842393 0.538864i \(-0.818854\pi\)
0.842393 0.538864i \(-0.181146\pi\)
\(450\) 0 0
\(451\) 4.64970e7 0.506868
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.20583e7i 0.128013i
\(456\) 0 0
\(457\) −8.13740e6 −0.0852583 −0.0426292 0.999091i \(-0.513573\pi\)
−0.0426292 + 0.999091i \(0.513573\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.55318e8i 1.58533i 0.609659 + 0.792664i \(0.291306\pi\)
−0.609659 + 0.792664i \(0.708694\pi\)
\(462\) 0 0
\(463\) −7.62984e7 −0.768728 −0.384364 0.923182i \(-0.625579\pi\)
−0.384364 + 0.923182i \(0.625579\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.85842e8i − 1.82470i −0.409408 0.912352i \(-0.634265\pi\)
0.409408 0.912352i \(-0.365735\pi\)
\(468\) 0 0
\(469\) 1.96145e8 1.90133
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.91105e7i 0.275084i
\(474\) 0 0
\(475\) −3.67901e7 −0.343281
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.23819e8i 1.12663i 0.826243 + 0.563314i \(0.190474\pi\)
−0.826243 + 0.563314i \(0.809526\pi\)
\(480\) 0 0
\(481\) −3.72749e6 −0.0334951
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.47145e7i 0.742561i
\(486\) 0 0
\(487\) 6.09360e7 0.527578 0.263789 0.964580i \(-0.415028\pi\)
0.263789 + 0.964580i \(0.415028\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 6.48068e7i − 0.547490i −0.961802 0.273745i \(-0.911738\pi\)
0.961802 0.273745i \(-0.0882624\pi\)
\(492\) 0 0
\(493\) −1.36402e7 −0.113836
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 3.47494e8i − 2.83060i
\(498\) 0 0
\(499\) −2.87096e7 −0.231061 −0.115530 0.993304i \(-0.536857\pi\)
−0.115530 + 0.993304i \(0.536857\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.12463e8i 0.883702i 0.897088 + 0.441851i \(0.145678\pi\)
−0.897088 + 0.441851i \(0.854322\pi\)
\(504\) 0 0
\(505\) −8.56156e7 −0.664781
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.61786e7i 0.426008i 0.977051 + 0.213004i \(0.0683247\pi\)
−0.977051 + 0.213004i \(0.931675\pi\)
\(510\) 0 0
\(511\) −3.92737e8 −2.94333
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 1.03160e8i − 0.755245i
\(516\) 0 0
\(517\) 3.25260e7 0.235375
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.68861e8i 1.19403i 0.802230 + 0.597015i \(0.203647\pi\)
−0.802230 + 0.597015i \(0.796353\pi\)
\(522\) 0 0
\(523\) 2.39748e8 1.67591 0.837955 0.545739i \(-0.183751\pi\)
0.837955 + 0.545739i \(0.183751\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.12557e7i − 0.281872i
\(528\) 0 0
\(529\) 3.62552e7 0.244908
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 6.50598e6i − 0.0429666i
\(534\) 0 0
\(535\) 4.74683e7 0.309986
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 1.79496e8i − 1.14627i
\(540\) 0 0
\(541\) 1.85322e8 1.17040 0.585200 0.810889i \(-0.301016\pi\)
0.585200 + 0.810889i \(0.301016\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 1.61066e8i − 0.994978i
\(546\) 0 0
\(547\) −2.52846e8 −1.54488 −0.772438 0.635090i \(-0.780963\pi\)
−0.772438 + 0.635090i \(0.780963\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 9.78245e7i − 0.584780i
\(552\) 0 0
\(553\) −2.65470e8 −1.56979
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.01472e8i 0.587194i 0.955929 + 0.293597i \(0.0948524\pi\)
−0.955929 + 0.293597i \(0.905148\pi\)
\(558\) 0 0
\(559\) 4.07322e6 0.0233186
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.15852e8i 0.649202i 0.945851 + 0.324601i \(0.105230\pi\)
−0.945851 + 0.324601i \(0.894770\pi\)
\(564\) 0 0
\(565\) −3.37130e8 −1.86919
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.30159e7i 0.396352i 0.980166 + 0.198176i \(0.0635017\pi\)
−0.980166 + 0.198176i \(0.936498\pi\)
\(570\) 0 0
\(571\) 9.75143e7 0.523793 0.261897 0.965096i \(-0.415652\pi\)
0.261897 + 0.965096i \(0.415652\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.44553e7i 0.181239i
\(576\) 0 0
\(577\) 8.90080e7 0.463342 0.231671 0.972794i \(-0.425581\pi\)
0.231671 + 0.972794i \(0.425581\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.65234e8i 2.37216i
\(582\) 0 0
\(583\) 2.60705e8 1.31566
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.26314e8i − 0.624509i −0.949998 0.312255i \(-0.898916\pi\)
0.949998 0.312255i \(-0.101084\pi\)
\(588\) 0 0
\(589\) 2.95876e8 1.44798
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 1.59275e8i − 0.763805i −0.924203 0.381902i \(-0.875269\pi\)
0.924203 0.381902i \(-0.124731\pi\)
\(594\) 0 0
\(595\) −1.11350e8 −0.528615
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.42561e8i 0.663315i 0.943400 + 0.331658i \(0.107608\pi\)
−0.943400 + 0.331658i \(0.892392\pi\)
\(600\) 0 0
\(601\) −1.18489e8 −0.545828 −0.272914 0.962038i \(-0.587987\pi\)
−0.272914 + 0.962038i \(0.587987\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 3.94939e7i − 0.178346i
\(606\) 0 0
\(607\) 8.06041e7 0.360405 0.180203 0.983630i \(-0.442325\pi\)
0.180203 + 0.983630i \(0.442325\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 4.55113e6i − 0.0199524i
\(612\) 0 0
\(613\) −2.49459e8 −1.08297 −0.541486 0.840710i \(-0.682138\pi\)
−0.541486 + 0.840710i \(0.682138\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 3.44285e8i − 1.46576i −0.680358 0.732880i \(-0.738176\pi\)
0.680358 0.732880i \(-0.261824\pi\)
\(618\) 0 0
\(619\) −4.59439e7 −0.193712 −0.0968558 0.995298i \(-0.530879\pi\)
−0.0968558 + 0.995298i \(0.530879\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 3.31654e8i − 1.37158i
\(624\) 0 0
\(625\) −2.84441e8 −1.16507
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 3.44207e7i − 0.138315i
\(630\) 0 0
\(631\) 2.71320e8 1.07993 0.539963 0.841689i \(-0.318438\pi\)
0.539963 + 0.841689i \(0.318438\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 2.11372e8i − 0.825516i
\(636\) 0 0
\(637\) −2.51156e7 −0.0971684
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 3.13515e8i − 1.19037i −0.803587 0.595187i \(-0.797078\pi\)
0.803587 0.595187i \(-0.202922\pi\)
\(642\) 0 0
\(643\) −5.94578e7 −0.223654 −0.111827 0.993728i \(-0.535670\pi\)
−0.111827 + 0.993728i \(0.535670\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2.04779e8i − 0.756089i −0.925787 0.378045i \(-0.876597\pi\)
0.925787 0.378045i \(-0.123403\pi\)
\(648\) 0 0
\(649\) 1.99416e8 0.729502
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 3.40035e7i − 0.122119i −0.998134 0.0610596i \(-0.980552\pi\)
0.998134 0.0610596i \(-0.0194480\pi\)
\(654\) 0 0
\(655\) −1.54902e8 −0.551232
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 2.43145e8i − 0.849590i −0.905290 0.424795i \(-0.860346\pi\)
0.905290 0.424795i \(-0.139654\pi\)
\(660\) 0 0
\(661\) 4.51973e8 1.56498 0.782488 0.622665i \(-0.213950\pi\)
0.782488 + 0.622665i \(0.213950\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 7.98575e8i − 2.71551i
\(666\) 0 0
\(667\) −9.16164e7 −0.308742
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 1.35322e8i − 0.447920i
\(672\) 0 0
\(673\) 3.17560e8 1.04179 0.520896 0.853620i \(-0.325598\pi\)
0.520896 + 0.853620i \(0.325598\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 6.70541e7i − 0.216102i −0.994145 0.108051i \(-0.965539\pi\)
0.994145 0.108051i \(-0.0344610\pi\)
\(678\) 0 0
\(679\) −3.17339e8 −1.01371
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.51437e8i 0.475303i 0.971350 + 0.237652i \(0.0763777\pi\)
−0.971350 + 0.237652i \(0.923622\pi\)
\(684\) 0 0
\(685\) 4.40563e8 1.37068
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 3.64786e7i − 0.111527i
\(690\) 0 0
\(691\) −9.46804e7 −0.286963 −0.143482 0.989653i \(-0.545830\pi\)
−0.143482 + 0.989653i \(0.545830\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 9.16384e6i − 0.0272975i
\(696\) 0 0
\(697\) 6.00781e7 0.177426
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.92713e6i 0.0230124i 0.999934 + 0.0115062i \(0.00366262\pi\)
−0.999934 + 0.0115062i \(0.996337\pi\)
\(702\) 0 0
\(703\) 2.46857e8 0.710526
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 3.20715e8i − 0.907530i
\(708\) 0 0
\(709\) −6.65474e8 −1.86721 −0.933603 0.358310i \(-0.883353\pi\)
−0.933603 + 0.358310i \(0.883353\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 2.77099e8i − 0.764481i
\(714\) 0 0
\(715\) 2.85375e7 0.0780724
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.90198e8i 1.31882i 0.751784 + 0.659409i \(0.229194\pi\)
−0.751784 + 0.659409i \(0.770806\pi\)
\(720\) 0 0
\(721\) 3.86434e8 1.03103
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.82398e7i 0.0741051i
\(726\) 0 0
\(727\) 2.09307e8 0.544730 0.272365 0.962194i \(-0.412194\pi\)
0.272365 + 0.962194i \(0.412194\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.76133e7i 0.0962917i
\(732\) 0 0
\(733\) −3.66672e8 −0.931034 −0.465517 0.885039i \(-0.654132\pi\)
−0.465517 + 0.885039i \(0.654132\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 4.64201e8i − 1.15959i
\(738\) 0 0
\(739\) 6.11387e8 1.51490 0.757449 0.652895i \(-0.226446\pi\)
0.757449 + 0.652895i \(0.226446\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 2.10111e8i − 0.512252i −0.966643 0.256126i \(-0.917554\pi\)
0.966643 0.256126i \(-0.0824461\pi\)
\(744\) 0 0
\(745\) 2.23781e8 0.541196
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.77816e8i 0.423180i
\(750\) 0 0
\(751\) −5.05697e8 −1.19391 −0.596953 0.802276i \(-0.703622\pi\)
−0.596953 + 0.802276i \(0.703622\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 5.02430e7i − 0.116744i
\(756\) 0 0
\(757\) 4.19839e8 0.967822 0.483911 0.875117i \(-0.339216\pi\)
0.483911 + 0.875117i \(0.339216\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 7.32156e8i − 1.66131i −0.556791 0.830653i \(-0.687968\pi\)
0.556791 0.830653i \(-0.312032\pi\)
\(762\) 0 0
\(763\) 6.03350e8 1.35830
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 2.79029e7i − 0.0618390i
\(768\) 0 0
\(769\) −2.53294e8 −0.556988 −0.278494 0.960438i \(-0.589835\pi\)
−0.278494 + 0.960438i \(0.589835\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.82197e8i 1.69347i 0.532014 + 0.846735i \(0.321435\pi\)
−0.532014 + 0.846735i \(0.678565\pi\)
\(774\) 0 0
\(775\) −8.54131e7 −0.183493
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.30865e8i 0.911443i
\(780\) 0 0
\(781\) −8.22386e8 −1.72632
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.13101e8i 1.47415i
\(786\) 0 0
\(787\) −6.81837e8 −1.39880 −0.699401 0.714730i \(-0.746550\pi\)
−0.699401 + 0.714730i \(0.746550\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1.26289e9i − 2.55173i
\(792\) 0 0
\(793\) −1.89346e7 −0.0379696
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.08452e7i 0.100433i 0.998738 + 0.0502163i \(0.0159911\pi\)
−0.998738 + 0.0502163i \(0.984009\pi\)
\(798\) 0 0
\(799\) 4.20264e7 0.0823915
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.29460e8i 1.79508i
\(804\) 0 0
\(805\) −7.47896e8 −1.43369
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.02851e7i 0.0194251i 0.999953 + 0.00971257i \(0.00309166\pi\)
−0.999953 + 0.00971257i \(0.996908\pi\)
\(810\) 0 0
\(811\) −4.84952e8 −0.909152 −0.454576 0.890708i \(-0.650209\pi\)
−0.454576 + 0.890708i \(0.650209\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 4.13254e8i − 0.763385i
\(816\) 0 0
\(817\) −2.69753e8 −0.494653
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.96161e8i 0.896588i 0.893886 + 0.448294i \(0.147968\pi\)
−0.893886 + 0.448294i \(0.852032\pi\)
\(822\) 0 0
\(823\) 3.21483e8 0.576711 0.288356 0.957523i \(-0.406891\pi\)
0.288356 + 0.957523i \(0.406891\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.54902e8i 1.33467i 0.744757 + 0.667336i \(0.232565\pi\)
−0.744757 + 0.667336i \(0.767435\pi\)
\(828\) 0 0
\(829\) −5.82262e8 −1.02201 −0.511004 0.859578i \(-0.670726\pi\)
−0.511004 + 0.859578i \(0.670726\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 2.31924e8i − 0.401247i
\(834\) 0 0
\(835\) −6.57385e8 −1.12917
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.64141e8i 1.12454i 0.826954 + 0.562270i \(0.190072\pi\)
−0.826954 + 0.562270i \(0.809928\pi\)
\(840\) 0 0
\(841\) 5.19734e8 0.873762
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.59301e8i 1.09273i
\(846\) 0 0
\(847\) 1.47943e8 0.243470
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 2.31191e8i − 0.375131i
\(852\) 0 0
\(853\) 7.87779e8 1.26928 0.634640 0.772808i \(-0.281148\pi\)
0.634640 + 0.772808i \(0.281148\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 9.65175e8i − 1.53343i −0.641988 0.766715i \(-0.721890\pi\)
0.641988 0.766715i \(-0.278110\pi\)
\(858\) 0 0
\(859\) 5.95457e8 0.939444 0.469722 0.882814i \(-0.344354\pi\)
0.469722 + 0.882814i \(0.344354\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 9.85551e8i − 1.53337i −0.642024 0.766684i \(-0.721905\pi\)
0.642024 0.766684i \(-0.278095\pi\)
\(864\) 0 0
\(865\) −4.85907e8 −0.750766
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.28267e8i 0.957382i
\(870\) 0 0
\(871\) −6.49522e7 −0.0982969
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 8.74763e8i − 1.30577i
\(876\) 0 0
\(877\) 3.68680e8 0.546577 0.273288 0.961932i \(-0.411889\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.29792e8i 1.06726i 0.845717 + 0.533632i \(0.179173\pi\)
−0.845717 + 0.533632i \(0.820827\pi\)
\(882\) 0 0
\(883\) 7.12900e7 0.103549 0.0517746 0.998659i \(-0.483512\pi\)
0.0517746 + 0.998659i \(0.483512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.15305e8i 0.451814i 0.974149 + 0.225907i \(0.0725346\pi\)
−0.974149 + 0.225907i \(0.927465\pi\)
\(888\) 0 0
\(889\) 7.91795e8 1.12696
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.01403e8i 0.423247i
\(894\) 0 0
\(895\) −1.17808e9 −1.64326
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 2.27113e8i − 0.312581i
\(900\) 0 0
\(901\) 3.36853e8 0.460539
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 2.46266e8i − 0.332245i
\(906\) 0 0
\(907\) 5.70419e8 0.764491 0.382245 0.924061i \(-0.375151\pi\)
0.382245 + 0.924061i \(0.375151\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.43557e8i 0.454406i 0.973847 + 0.227203i \(0.0729581\pi\)
−0.973847 + 0.227203i \(0.927042\pi\)
\(912\) 0 0
\(913\) 1.10103e9 1.44673
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 5.80262e8i − 0.752517i
\(918\) 0 0
\(919\) −7.92851e8 −1.02152 −0.510758 0.859725i \(-0.670635\pi\)
−0.510758 + 0.859725i \(0.670635\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.15070e8i 0.146339i
\(924\) 0 0
\(925\) −7.12624e7 −0.0900400
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1.82427e8i − 0.227531i −0.993508 0.113766i \(-0.963709\pi\)
0.993508 0.113766i \(-0.0362913\pi\)
\(930\) 0 0
\(931\) 1.66331e9 2.06121
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.63523e8i 0.322392i
\(936\) 0 0
\(937\) −3.34488e8 −0.406594 −0.203297 0.979117i \(-0.565166\pi\)
−0.203297 + 0.979117i \(0.565166\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.91160e8i 0.349433i 0.984619 + 0.174716i \(0.0559008\pi\)
−0.984619 + 0.174716i \(0.944099\pi\)
\(942\) 0 0
\(943\) 4.03522e8 0.481207
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.69634e8i 0.199739i 0.995001 + 0.0998694i \(0.0318425\pi\)
−0.995001 + 0.0998694i \(0.968158\pi\)
\(948\) 0 0
\(949\) 1.30053e8 0.152167
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 5.17958e8i − 0.598434i −0.954185 0.299217i \(-0.903275\pi\)
0.954185 0.299217i \(-0.0967254\pi\)
\(954\) 0 0
\(955\) −1.38898e9 −1.59473
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.65034e9i 1.87119i
\(960\) 0 0
\(961\) −2.00587e8 −0.226013
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.05078e9i 1.16931i
\(966\) 0 0
\(967\) 1.37422e9 1.51976 0.759881 0.650062i \(-0.225257\pi\)
0.759881 + 0.650062i \(0.225257\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.45510e8i 0.814321i 0.913357 + 0.407160i \(0.133481\pi\)
−0.913357 + 0.407160i \(0.866519\pi\)
\(972\) 0 0
\(973\) 3.43276e7 0.0372653
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.80224e8i 1.05109i 0.850764 + 0.525547i \(0.176139\pi\)
−0.850764 + 0.525547i \(0.823861\pi\)
\(978\) 0 0
\(979\) −7.84900e8 −0.836501
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.01328e9i 1.06676i 0.845875 + 0.533381i \(0.179079\pi\)
−0.845875 + 0.533381i \(0.820921\pi\)
\(984\) 0 0
\(985\) −6.79402e8 −0.710916
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.52634e8i 0.261158i
\(990\) 0 0
\(991\) 1.85231e9 1.90324 0.951620 0.307279i \(-0.0994183\pi\)
0.951620 + 0.307279i \(0.0994183\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 2.70459e8i − 0.274557i
\(996\) 0 0
\(997\) 1.25665e9 1.26803 0.634013 0.773322i \(-0.281407\pi\)
0.634013 + 0.773322i \(0.281407\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.7.e.j.161.1 4
3.2 odd 2 inner 432.7.e.j.161.4 4
4.3 odd 2 27.7.b.c.26.4 yes 4
12.11 even 2 27.7.b.c.26.1 4
36.7 odd 6 81.7.d.e.53.4 8
36.11 even 6 81.7.d.e.53.1 8
36.23 even 6 81.7.d.e.26.4 8
36.31 odd 6 81.7.d.e.26.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.b.c.26.1 4 12.11 even 2
27.7.b.c.26.4 yes 4 4.3 odd 2
81.7.d.e.26.1 8 36.31 odd 6
81.7.d.e.26.4 8 36.23 even 6
81.7.d.e.53.1 8 36.11 even 6
81.7.d.e.53.4 8 36.7 odd 6
432.7.e.j.161.1 4 1.1 even 1 trivial
432.7.e.j.161.4 4 3.2 odd 2 inner