Properties

Label 81.7.d.e.26.4
Level $81$
Weight $7$
Character 81.26
Analytic conductor $18.634$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [81,7,Mod(26,81)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("81.26");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6343807732\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.58594980096.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 21x^{6} + 341x^{4} - 2100x^{2} + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{16} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.4
Root \(3.20565 + 1.85078i\) of defining polynomial
Character \(\chi\) \(=\) 81.26
Dual form 81.7.d.e.53.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(12.2150 + 7.05234i) q^{2} +(67.4711 + 116.863i) q^{4} +(119.008 - 68.7094i) q^{5} +(257.384 - 445.803i) q^{7} +1000.62i q^{8} +1938.25 q^{10} +(1055.05 + 609.131i) q^{11} +(85.2313 + 147.625i) q^{13} +(6287.91 - 3630.33i) q^{14} +(-2738.55 + 4743.30i) q^{16} +1574.10i q^{17} -11289.1 q^{19} +(16059.2 + 9271.79i) q^{20} +(8591.60 + 14881.1i) q^{22} +(-9156.17 + 5286.32i) q^{23} +(1629.46 - 2822.30i) q^{25} +2404.32i q^{26} +69464.0 q^{28} +(-7504.48 - 4332.71i) q^{29} +(13104.5 + 22697.7i) q^{31} +(-11442.9 + 6606.58i) q^{32} +(-11101.1 + 19227.7i) q^{34} -70738.9i q^{35} +21866.9 q^{37} +(-137896. - 79614.3i) q^{38} +(68751.8 + 119082. i) q^{40} +(-33053.3 + 19083.3i) q^{41} +(-11947.5 + 20693.8i) q^{43} +164395. i q^{44} -149124. q^{46} +(-23121.8 - 13349.4i) q^{47} +(-73668.9 - 127598. i) q^{49} +(39807.7 - 22983.0i) q^{50} +(-11501.3 + 19920.8i) q^{52} -213997. i q^{53} +167412. q^{55} +(446078. + 257543. i) q^{56} +(-61111.5 - 105848. i) q^{58} +(141759. - 81844.5i) q^{59} +(-55538.9 + 96196.1i) q^{61} +369671. i q^{62} +164166. q^{64} +(20286.4 + 11712.4i) q^{65} +(190518. + 329986. i) q^{67} +(-183955. + 106206. i) q^{68} +(498875. - 864076. i) q^{70} -675048. i q^{71} -762939. q^{73} +(267105. + 154213. i) q^{74} +(-761685. - 1.31928e6i) q^{76} +(543105. - 313562. i) q^{77} +(-257854. + 446616. i) q^{79} +752655. i q^{80} -538328. q^{82} +(-782690. - 451887. i) q^{83} +(108155. + 187331. i) q^{85} +(-291879. + 168516. i) q^{86} +(-609507. + 1.05570e6i) q^{88} +644278. i q^{89} +87748.8 q^{91} +(-1.23555e6 - 713347. i) q^{92} +(-188289. - 326125. i) q^{94} +(-1.34349e6 + 775664. i) q^{95} +(308235. - 533878. i) q^{97} -2.07815e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 194 q^{4} + 676 q^{7} + 6516 q^{10} + 3448 q^{13} - 10498 q^{16} - 7328 q^{19} + 58014 q^{22} - 17392 q^{25} + 304684 q^{28} + 153244 q^{31} - 65988 q^{34} + 257920 q^{37} + 338058 q^{40} - 126008 q^{43}+ \cdots - 975212 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.2150 + 7.05234i 1.52688 + 0.881543i 0.999491 + 0.0319175i \(0.0101614\pi\)
0.527387 + 0.849625i \(0.323172\pi\)
\(3\) 0 0
\(4\) 67.4711 + 116.863i 1.05424 + 1.82599i
\(5\) 119.008 68.7094i 0.952065 0.549675i 0.0583432 0.998297i \(-0.481418\pi\)
0.893722 + 0.448622i \(0.148085\pi\)
\(6\) 0 0
\(7\) 257.384 445.803i 0.750392 1.29972i −0.197241 0.980355i \(-0.563198\pi\)
0.947633 0.319362i \(-0.103468\pi\)
\(8\) 1000.62i 1.95433i
\(9\) 0 0
\(10\) 1938.25 1.93825
\(11\) 1055.05 + 609.131i 0.792672 + 0.457649i 0.840902 0.541187i \(-0.182025\pi\)
−0.0482305 + 0.998836i \(0.515358\pi\)
\(12\) 0 0
\(13\) 85.2313 + 147.625i 0.0387944 + 0.0671939i 0.884771 0.466027i \(-0.154315\pi\)
−0.845976 + 0.533221i \(0.820982\pi\)
\(14\) 6287.91 3630.33i 2.29151 1.32300i
\(15\) 0 0
\(16\) −2738.55 + 4743.30i −0.668590 + 1.15803i
\(17\) 1574.10i 0.320395i 0.987085 + 0.160197i \(0.0512131\pi\)
−0.987085 + 0.160197i \(0.948787\pi\)
\(18\) 0 0
\(19\) −11289.1 −1.64588 −0.822938 0.568131i \(-0.807667\pi\)
−0.822938 + 0.568131i \(0.807667\pi\)
\(20\) 16059.2 + 9271.79i 2.00740 + 1.15897i
\(21\) 0 0
\(22\) 8591.60 + 14881.1i 0.806875 + 1.39755i
\(23\) −9156.17 + 5286.32i −0.752542 + 0.434480i −0.826611 0.562773i \(-0.809735\pi\)
0.0740699 + 0.997253i \(0.476401\pi\)
\(24\) 0 0
\(25\) 1629.46 2822.30i 0.104285 0.180627i
\(26\) 2404.32i 0.136796i
\(27\) 0 0
\(28\) 69464.0 3.16436
\(29\) −7504.48 4332.71i −0.307699 0.177650i 0.338197 0.941075i \(-0.390183\pi\)
−0.645896 + 0.763425i \(0.723516\pi\)
\(30\) 0 0
\(31\) 13104.5 + 22697.7i 0.439883 + 0.761899i 0.997680 0.0680779i \(-0.0216867\pi\)
−0.557797 + 0.829977i \(0.688353\pi\)
\(32\) −11442.9 + 6606.58i −0.349211 + 0.201617i
\(33\) 0 0
\(34\) −11101.1 + 19227.7i −0.282442 + 0.489204i
\(35\) 70738.9i 1.64989i
\(36\) 0 0
\(37\) 21866.9 0.431701 0.215850 0.976426i \(-0.430748\pi\)
0.215850 + 0.976426i \(0.430748\pi\)
\(38\) −137896. 79614.3i −2.51305 1.45091i
\(39\) 0 0
\(40\) 68751.8 + 119082.i 1.07425 + 1.86065i
\(41\) −33053.3 + 19083.3i −0.479582 + 0.276887i −0.720242 0.693723i \(-0.755969\pi\)
0.240660 + 0.970609i \(0.422636\pi\)
\(42\) 0 0
\(43\) −11947.5 + 20693.8i −0.150270 + 0.260276i −0.931327 0.364185i \(-0.881348\pi\)
0.781056 + 0.624460i \(0.214681\pi\)
\(44\) 164395.i 1.92988i
\(45\) 0 0
\(46\) −149124. −1.53205
\(47\) −23121.8 13349.4i −0.222704 0.128578i 0.384498 0.923126i \(-0.374375\pi\)
−0.607202 + 0.794548i \(0.707708\pi\)
\(48\) 0 0
\(49\) −73668.9 127598.i −0.626175 1.08457i
\(50\) 39807.7 22983.0i 0.318461 0.183864i
\(51\) 0 0
\(52\) −11501.3 + 19920.8i −0.0817969 + 0.141676i
\(53\) 213997.i 1.43741i −0.695315 0.718705i \(-0.744735\pi\)
0.695315 0.718705i \(-0.255265\pi\)
\(54\) 0 0
\(55\) 167412. 1.00623
\(56\) 446078. + 257543.i 2.54008 + 1.46651i
\(57\) 0 0
\(58\) −61111.5 105848.i −0.313213 0.542500i
\(59\) 141759. 81844.5i 0.690231 0.398505i −0.113468 0.993542i \(-0.536196\pi\)
0.803698 + 0.595037i \(0.202863\pi\)
\(60\) 0 0
\(61\) −55538.9 + 96196.1i −0.244685 + 0.423807i −0.962043 0.272898i \(-0.912018\pi\)
0.717358 + 0.696705i \(0.245351\pi\)
\(62\) 369671.i 1.55110i
\(63\) 0 0
\(64\) 164166. 0.626245
\(65\) 20286.4 + 11712.4i 0.0738696 + 0.0426486i
\(66\) 0 0
\(67\) 190518. + 329986.i 0.633447 + 1.09716i 0.986842 + 0.161689i \(0.0516941\pi\)
−0.353394 + 0.935474i \(0.614973\pi\)
\(68\) −183955. + 106206.i −0.585038 + 0.337772i
\(69\) 0 0
\(70\) 498875. 864076.i 1.45445 2.51917i
\(71\) 675048.i 1.88608i −0.332682 0.943039i \(-0.607953\pi\)
0.332682 0.943039i \(-0.392047\pi\)
\(72\) 0 0
\(73\) −762939. −1.96120 −0.980599 0.196025i \(-0.937197\pi\)
−0.980599 + 0.196025i \(0.937197\pi\)
\(74\) 267105. + 154213.i 0.659154 + 0.380563i
\(75\) 0 0
\(76\) −761685. 1.31928e6i −1.73514 3.00535i
\(77\) 543105. 313562.i 1.18963 0.686832i
\(78\) 0 0
\(79\) −257854. + 446616.i −0.522989 + 0.905843i 0.476653 + 0.879091i \(0.341850\pi\)
−0.999642 + 0.0267519i \(0.991484\pi\)
\(80\) 752655.i 1.47003i
\(81\) 0 0
\(82\) −538328. −0.976350
\(83\) −782690. 451887.i −1.36885 0.790306i −0.378068 0.925778i \(-0.623412\pi\)
−0.990781 + 0.135472i \(0.956745\pi\)
\(84\) 0 0
\(85\) 108155. + 187331.i 0.176113 + 0.305037i
\(86\) −291879. + 168516.i −0.458889 + 0.264940i
\(87\) 0 0
\(88\) −609507. + 1.05570e6i −0.894398 + 1.54914i
\(89\) 644278.i 0.913910i 0.889490 + 0.456955i \(0.151060\pi\)
−0.889490 + 0.456955i \(0.848940\pi\)
\(90\) 0 0
\(91\) 87748.8 0.116444
\(92\) −1.23555e6 713347.i −1.58671 0.916089i
\(93\) 0 0
\(94\) −188289. 326125.i −0.226694 0.392646i
\(95\) −1.34349e6 + 775664.i −1.56698 + 0.904697i
\(96\) 0 0
\(97\) 308235. 533878.i 0.337728 0.584961i −0.646277 0.763103i \(-0.723675\pi\)
0.984005 + 0.178141i \(0.0570084\pi\)
\(98\) 2.07815e6i 2.20800i
\(99\) 0 0
\(100\) 439765. 0.439765
\(101\) −539557. 311514.i −0.523689 0.302352i 0.214754 0.976668i \(-0.431105\pi\)
−0.738443 + 0.674316i \(0.764438\pi\)
\(102\) 0 0
\(103\) 375348. + 650121.i 0.343496 + 0.594953i 0.985079 0.172101i \(-0.0550554\pi\)
−0.641583 + 0.767053i \(0.721722\pi\)
\(104\) −147716. + 85283.9i −0.131319 + 0.0758171i
\(105\) 0 0
\(106\) 1.50918e6 2.61398e6i 1.26714 2.19475i
\(107\) 345428.i 0.281973i 0.990012 + 0.140986i \(0.0450273\pi\)
−0.990012 + 0.140986i \(0.954973\pi\)
\(108\) 0 0
\(109\) 1.17208e6 0.905061 0.452530 0.891749i \(-0.350521\pi\)
0.452530 + 0.891749i \(0.350521\pi\)
\(110\) 2.04494e6 + 1.18065e6i 1.53639 + 0.887038i
\(111\) 0 0
\(112\) 1.40972e6 + 2.44170e6i 1.00341 + 1.73796i
\(113\) 2.12463e6 1.22665e6i 1.47247 0.850132i 0.472952 0.881088i \(-0.343189\pi\)
0.999521 + 0.0309561i \(0.00985519\pi\)
\(114\) 0 0
\(115\) −726439. + 1.25823e6i −0.477646 + 0.827307i
\(116\) 1.16933e6i 0.749141i
\(117\) 0 0
\(118\) 2.30878e6 1.40520
\(119\) 701738. + 405149.i 0.416422 + 0.240422i
\(120\) 0 0
\(121\) −143699. 248894.i −0.0811143 0.140494i
\(122\) −1.35682e6 + 783358.i −0.747208 + 0.431401i
\(123\) 0 0
\(124\) −1.76836e6 + 3.06288e6i −0.927480 + 1.60644i
\(125\) 1.69933e6i 0.870058i
\(126\) 0 0
\(127\) −1.53816e6 −0.750913 −0.375456 0.926840i \(-0.622514\pi\)
−0.375456 + 0.926840i \(0.622514\pi\)
\(128\) 2.73764e6 + 1.58058e6i 1.30541 + 0.753679i
\(129\) 0 0
\(130\) 165199. + 286134.i 0.0751932 + 0.130238i
\(131\) −976209. + 563615.i −0.434239 + 0.250708i −0.701151 0.713013i \(-0.747330\pi\)
0.266912 + 0.963721i \(0.413997\pi\)
\(132\) 0 0
\(133\) −2.90563e6 + 5.03269e6i −1.23505 + 2.13917i
\(134\) 5.37438e6i 2.23364i
\(135\) 0 0
\(136\) −1.57507e6 −0.626157
\(137\) 2.77647e6 + 1.60300e6i 1.07977 + 0.623406i 0.930834 0.365441i \(-0.119082\pi\)
0.148936 + 0.988847i \(0.452415\pi\)
\(138\) 0 0
\(139\) 33342.8 + 57751.4i 0.0124153 + 0.0215039i 0.872166 0.489210i \(-0.162715\pi\)
−0.859751 + 0.510713i \(0.829381\pi\)
\(140\) 8.26678e6 4.77283e6i 3.01268 1.73937i
\(141\) 0 0
\(142\) 4.76067e6 8.24573e6i 1.66266 2.87981i
\(143\) 207668.i 0.0710169i
\(144\) 0 0
\(145\) −1.19079e6 −0.390600
\(146\) −9.31932e6 5.38051e6i −2.99451 1.72888i
\(147\) 0 0
\(148\) 1.47539e6 + 2.55544e6i 0.455114 + 0.788281i
\(149\) −1.41029e6 + 814231.i −0.426333 + 0.246144i −0.697783 0.716309i \(-0.745830\pi\)
0.271450 + 0.962453i \(0.412497\pi\)
\(150\) 0 0
\(151\) 182810. 316636.i 0.0530968 0.0919664i −0.838255 0.545278i \(-0.816424\pi\)
0.891352 + 0.453311i \(0.149757\pi\)
\(152\) 1.12960e7i 3.21658i
\(153\) 0 0
\(154\) 8.84538e6 2.42189
\(155\) 3.11910e6 + 1.80081e6i 0.837594 + 0.483585i
\(156\) 0 0
\(157\) 2.59463e6 + 4.49403e6i 0.670465 + 1.16128i 0.977772 + 0.209669i \(0.0672387\pi\)
−0.307307 + 0.951610i \(0.599428\pi\)
\(158\) −6.29938e6 + 3.63695e6i −1.59708 + 0.922074i
\(159\) 0 0
\(160\) −907868. + 1.57247e6i −0.221648 + 0.383905i
\(161\) 5.44246e6i 1.30412i
\(162\) 0 0
\(163\) −3.00726e6 −0.694397 −0.347199 0.937792i \(-0.612867\pi\)
−0.347199 + 0.937792i \(0.612867\pi\)
\(164\) −4.46028e6 2.57514e6i −1.01119 0.583808i
\(165\) 0 0
\(166\) −6.37372e6 1.10396e7i −1.39338 2.41340i
\(167\) −4.14290e6 + 2.39191e6i −0.889519 + 0.513564i −0.873785 0.486312i \(-0.838342\pi\)
−0.0157339 + 0.999876i \(0.505008\pi\)
\(168\) 0 0
\(169\) 2.39888e6 4.15497e6i 0.496990 0.860812i
\(170\) 3.05100e6i 0.621005i
\(171\) 0 0
\(172\) −3.22446e6 −0.633681
\(173\) −3.06223e6 1.76798e6i −0.591425 0.341459i 0.174236 0.984704i \(-0.444254\pi\)
−0.765661 + 0.643245i \(0.777588\pi\)
\(174\) 0 0
\(175\) −838793. 1.45283e6i −0.156509 0.271082i
\(176\) −5.77858e6 + 3.33627e6i −1.05995 + 0.611960i
\(177\) 0 0
\(178\) −4.54367e6 + 7.86987e6i −0.805651 + 1.39543i
\(179\) 8.57291e6i 1.49475i −0.664401 0.747376i \(-0.731313\pi\)
0.664401 0.747376i \(-0.268687\pi\)
\(180\) 0 0
\(181\) 1.79208e6 0.302219 0.151110 0.988517i \(-0.451715\pi\)
0.151110 + 0.988517i \(0.451715\pi\)
\(182\) 1.07185e6 + 618835.i 0.177796 + 0.102650i
\(183\) 0 0
\(184\) −5.28958e6 9.16182e6i −0.849118 1.47071i
\(185\) 2.60234e6 1.50246e6i 0.411007 0.237295i
\(186\) 0 0
\(187\) −958833. + 1.66075e6i −0.146628 + 0.253968i
\(188\) 3.60278e6i 0.542206i
\(189\) 0 0
\(190\) −2.18810e7 −3.19012
\(191\) 8.75348e6 + 5.05382e6i 1.25626 + 0.725304i 0.972346 0.233545i \(-0.0750327\pi\)
0.283917 + 0.958849i \(0.408366\pi\)
\(192\) 0 0
\(193\) 3.82329e6 + 6.62213e6i 0.531820 + 0.921140i 0.999310 + 0.0371413i \(0.0118252\pi\)
−0.467490 + 0.883999i \(0.654842\pi\)
\(194\) 7.53019e6 4.34755e6i 1.03134 0.595443i
\(195\) 0 0
\(196\) 9.94104e6 1.72184e7i 1.32027 2.28678i
\(197\) 4.94403e6i 0.646669i 0.946285 + 0.323335i \(0.104804\pi\)
−0.946285 + 0.323335i \(0.895196\pi\)
\(198\) 0 0
\(199\) −1.96814e6 −0.249745 −0.124872 0.992173i \(-0.539852\pi\)
−0.124872 + 0.992173i \(0.539852\pi\)
\(200\) 2.82404e6 + 1.63046e6i 0.353005 + 0.203808i
\(201\) 0 0
\(202\) −4.39380e6 7.61029e6i −0.533073 0.923309i
\(203\) −3.86307e6 + 2.23034e6i −0.461790 + 0.266615i
\(204\) 0 0
\(205\) −2.62241e6 + 4.54214e6i −0.304396 + 0.527229i
\(206\) 1.05883e7i 1.21123i
\(207\) 0 0
\(208\) −933639. −0.103750
\(209\) −1.19105e7 6.87652e6i −1.30464 0.753234i
\(210\) 0 0
\(211\) −4.14983e6 7.18771e6i −0.441756 0.765144i 0.556064 0.831140i \(-0.312311\pi\)
−0.997820 + 0.0659953i \(0.978978\pi\)
\(212\) 2.50085e7 1.44386e7i 2.62470 1.51537i
\(213\) 0 0
\(214\) −2.43608e6 + 4.21941e6i −0.248571 + 0.430537i
\(215\) 3.28363e6i 0.330399i
\(216\) 0 0
\(217\) 1.34916e7 1.32034
\(218\) 1.43170e7 + 8.26591e6i 1.38192 + 0.797850i
\(219\) 0 0
\(220\) 1.12955e7 + 1.95643e7i 1.06081 + 1.83737i
\(221\) −232376. + 134163.i −0.0215286 + 0.0124295i
\(222\) 0 0
\(223\) −4.68890e6 + 8.12141e6i −0.422821 + 0.732347i −0.996214 0.0869334i \(-0.972293\pi\)
0.573394 + 0.819280i \(0.305627\pi\)
\(224\) 6.80172e6i 0.605167i
\(225\) 0 0
\(226\) 3.46031e7 2.99771
\(227\) 3.17328e6 + 1.83209e6i 0.271288 + 0.156628i 0.629473 0.777022i \(-0.283271\pi\)
−0.358185 + 0.933651i \(0.616604\pi\)
\(228\) 0 0
\(229\) −2.49452e6 4.32063e6i −0.207721 0.359783i 0.743275 0.668986i \(-0.233271\pi\)
−0.950996 + 0.309202i \(0.899938\pi\)
\(230\) −1.77469e7 + 1.02462e7i −1.45861 + 0.842130i
\(231\) 0 0
\(232\) 4.33539e6 7.50911e6i 0.347187 0.601346i
\(233\) 5.00370e6i 0.395570i −0.980245 0.197785i \(-0.936625\pi\)
0.980245 0.197785i \(-0.0633749\pi\)
\(234\) 0 0
\(235\) −3.66890e6 −0.282705
\(236\) 1.91293e7 + 1.10443e7i 1.45533 + 0.840236i
\(237\) 0 0
\(238\) 5.71449e6 + 9.89780e6i 0.423884 + 0.734189i
\(239\) 1.63810e7 9.45757e6i 1.19990 0.692765i 0.239370 0.970928i \(-0.423059\pi\)
0.960534 + 0.278163i \(0.0897256\pi\)
\(240\) 0 0
\(241\) 7.62573e6 1.32081e7i 0.544791 0.943606i −0.453829 0.891089i \(-0.649942\pi\)
0.998620 0.0525173i \(-0.0167245\pi\)
\(242\) 4.05366e6i 0.286023i
\(243\) 0 0
\(244\) −1.49891e7 −1.03182
\(245\) −1.75344e7 1.01235e7i −1.19232 0.688386i
\(246\) 0 0
\(247\) −962181. 1.66655e6i −0.0638508 0.110593i
\(248\) −2.27118e7 + 1.31126e7i −1.48900 + 0.859676i
\(249\) 0 0
\(250\) −1.19843e7 + 2.07574e7i −0.766994 + 1.32847i
\(251\) 1.44796e7i 0.915661i −0.889040 0.457830i \(-0.848627\pi\)
0.889040 0.457830i \(-0.151373\pi\)
\(252\) 0 0
\(253\) −1.28802e7 −0.795358
\(254\) −1.87886e7 1.08476e7i −1.14655 0.661962i
\(255\) 0 0
\(256\) 1.70402e7 + 2.95146e7i 1.01568 + 1.75921i
\(257\) 1.03463e7 5.97342e6i 0.609515 0.351904i −0.163261 0.986583i \(-0.552201\pi\)
0.772776 + 0.634679i \(0.218868\pi\)
\(258\) 0 0
\(259\) 5.62821e6 9.74834e6i 0.323945 0.561089i
\(260\) 3.16099e6i 0.179847i
\(261\) 0 0
\(262\) −1.58992e7 −0.884040
\(263\) −1.31116e7 7.56999e6i −0.720757 0.416129i 0.0942745 0.995546i \(-0.469947\pi\)
−0.815031 + 0.579417i \(0.803280\pi\)
\(264\) 0 0
\(265\) −1.47036e7 2.54674e7i −0.790109 1.36851i
\(266\) −7.09846e7 + 4.09830e7i −3.77154 + 2.17750i
\(267\) 0 0
\(268\) −2.57089e7 + 4.45290e7i −1.33561 + 2.31334i
\(269\) 3.37864e7i 1.73574i −0.496789 0.867871i \(-0.665488\pi\)
0.496789 0.867871i \(-0.334512\pi\)
\(270\) 0 0
\(271\) −292052. −0.0146741 −0.00733707 0.999973i \(-0.502335\pi\)
−0.00733707 + 0.999973i \(0.502335\pi\)
\(272\) −7.46643e6 4.31074e6i −0.371028 0.214213i
\(273\) 0 0
\(274\) 2.26098e7 + 3.91612e7i 1.09912 + 1.90373i
\(275\) 3.43830e6 1.98510e6i 0.165328 0.0954521i
\(276\) 0 0
\(277\) 5.92330e6 1.02595e7i 0.278692 0.482708i −0.692368 0.721545i \(-0.743433\pi\)
0.971060 + 0.238836i \(0.0767659\pi\)
\(278\) 940578.i 0.0437785i
\(279\) 0 0
\(280\) 7.07825e7 3.22442
\(281\) −2.31829e6 1.33847e6i −0.104484 0.0603238i 0.446847 0.894610i \(-0.352547\pi\)
−0.551331 + 0.834286i \(0.685880\pi\)
\(282\) 0 0
\(283\) 1.55551e7 + 2.69422e7i 0.686298 + 1.18870i 0.973027 + 0.230691i \(0.0740987\pi\)
−0.286729 + 0.958012i \(0.592568\pi\)
\(284\) 7.88884e7 4.55462e7i 3.44396 1.98837i
\(285\) 0 0
\(286\) −1.46455e6 + 2.53667e6i −0.0626044 + 0.108434i
\(287\) 1.96470e7i 0.831094i
\(288\) 0 0
\(289\) 2.16598e7 0.897347
\(290\) −1.45455e7 8.39787e6i −0.596397 0.344330i
\(291\) 0 0
\(292\) −5.14763e7 8.91596e7i −2.06756 3.58113i
\(293\) 2.03856e6 1.17696e6i 0.0810438 0.0467906i −0.458930 0.888472i \(-0.651767\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(294\) 0 0
\(295\) 1.12470e7 1.94803e7i 0.438096 0.758805i
\(296\) 2.18804e7i 0.843686i
\(297\) 0 0
\(298\) −2.29689e7 −0.867945
\(299\) −1.56078e6 901120.i −0.0583888 0.0337108i
\(300\) 0 0
\(301\) 6.15022e6 + 1.06525e7i 0.225523 + 0.390618i
\(302\) 4.46605e6 2.57848e6i 0.162145 0.0936143i
\(303\) 0 0
\(304\) 3.09156e7 5.35474e7i 1.10042 1.90598i
\(305\) 1.52642e7i 0.537989i
\(306\) 0 0
\(307\) 3.99249e6 0.137984 0.0689920 0.997617i \(-0.478022\pi\)
0.0689920 + 0.997617i \(0.478022\pi\)
\(308\) 7.32877e7 + 4.23127e7i 2.50830 + 1.44817i
\(309\) 0 0
\(310\) 2.53999e7 + 4.39939e7i 0.852602 + 1.47675i
\(311\) −2.61007e7 + 1.50692e7i −0.867703 + 0.500969i −0.866584 0.499031i \(-0.833689\pi\)
−0.00111874 + 0.999999i \(0.500356\pi\)
\(312\) 0 0
\(313\) 1.89456e7 3.28147e7i 0.617838 1.07013i −0.372041 0.928216i \(-0.621342\pi\)
0.989879 0.141911i \(-0.0453246\pi\)
\(314\) 7.31928e7i 2.36417i
\(315\) 0 0
\(316\) −6.95907e7 −2.20541
\(317\) 3.00895e7 + 1.73722e7i 0.944577 + 0.545352i 0.891392 0.453233i \(-0.149729\pi\)
0.0531849 + 0.998585i \(0.483063\pi\)
\(318\) 0 0
\(319\) −5.27838e6 9.14242e6i −0.162603 0.281637i
\(320\) 1.95371e7 1.12798e7i 0.596226 0.344231i
\(321\) 0 0
\(322\) −3.83821e7 + 6.64798e7i −1.14964 + 1.99123i
\(323\) 1.77701e7i 0.527330i
\(324\) 0 0
\(325\) 555522. 0.0161827
\(326\) −3.67337e7 2.12082e7i −1.06026 0.612141i
\(327\) 0 0
\(328\) −1.90951e7 3.30737e7i −0.541128 0.937262i
\(329\) −1.19024e7 + 6.87183e6i −0.334230 + 0.192968i
\(330\) 0 0
\(331\) −1.83106e7 + 3.17150e7i −0.504917 + 0.874541i 0.495067 + 0.868855i \(0.335143\pi\)
−0.999984 + 0.00568670i \(0.998190\pi\)
\(332\) 1.21957e8i 3.33267i
\(333\) 0 0
\(334\) −6.74742e7 −1.81092
\(335\) 4.53463e7 + 2.61807e7i 1.20617 + 0.696380i
\(336\) 0 0
\(337\) −2.26572e7 3.92434e7i −0.591992 1.02536i −0.993964 0.109709i \(-0.965008\pi\)
0.401971 0.915652i \(-0.368325\pi\)
\(338\) 5.86046e7 3.38354e7i 1.51769 0.876236i
\(339\) 0 0
\(340\) −1.45947e7 + 2.52788e7i −0.371329 + 0.643161i
\(341\) 3.19296e7i 0.805248i
\(342\) 0 0
\(343\) −1.52829e7 −0.378724
\(344\) −2.07065e7 1.19549e7i −0.508665 0.293678i
\(345\) 0 0
\(346\) −2.49368e7 4.31918e7i −0.602022 1.04273i
\(347\) 2.53109e7 1.46133e7i 0.605787 0.349751i −0.165528 0.986205i \(-0.552933\pi\)
0.771315 + 0.636454i \(0.219599\pi\)
\(348\) 0 0
\(349\) 4.80635e6 8.32484e6i 0.113068 0.195839i −0.803938 0.594713i \(-0.797266\pi\)
0.917006 + 0.398874i \(0.130599\pi\)
\(350\) 2.36618e7i 0.551879i
\(351\) 0 0
\(352\) −1.60971e7 −0.369079
\(353\) 2.60926e7 + 1.50646e7i 0.593189 + 0.342478i 0.766357 0.642415i \(-0.222067\pi\)
−0.173169 + 0.984892i \(0.555401\pi\)
\(354\) 0 0
\(355\) −4.63821e7 8.03362e7i −1.03673 1.79567i
\(356\) −7.52925e7 + 4.34702e7i −1.66879 + 0.963477i
\(357\) 0 0
\(358\) 6.04591e7 1.04718e8i 1.31769 2.28230i
\(359\) 3.63910e7i 0.786521i 0.919427 + 0.393260i \(0.128653\pi\)
−0.919427 + 0.393260i \(0.871347\pi\)
\(360\) 0 0
\(361\) 8.03970e7 1.70891
\(362\) 2.18903e7 + 1.26384e7i 0.461452 + 0.266419i
\(363\) 0 0
\(364\) 5.92051e6 + 1.02546e7i 0.122759 + 0.212626i
\(365\) −9.07960e7 + 5.24211e7i −1.86719 + 1.07802i
\(366\) 0 0
\(367\) −2.52979e7 + 4.38173e7i −0.511784 + 0.886436i 0.488123 + 0.872775i \(0.337682\pi\)
−0.999907 + 0.0136607i \(0.995652\pi\)
\(368\) 5.79073e7i 1.16196i
\(369\) 0 0
\(370\) 4.23836e7 0.836743
\(371\) −9.54007e7 5.50796e7i −1.86823 1.07862i
\(372\) 0 0
\(373\) 4.72498e7 + 8.18391e7i 0.910487 + 1.57701i 0.813378 + 0.581736i \(0.197626\pi\)
0.0971089 + 0.995274i \(0.469040\pi\)
\(374\) −2.34243e7 + 1.35240e7i −0.447767 + 0.258519i
\(375\) 0 0
\(376\) 1.33576e7 2.31360e7i 0.251284 0.435237i
\(377\) 1.47713e6i 0.0275673i
\(378\) 0 0
\(379\) −5.62274e7 −1.03283 −0.516417 0.856337i \(-0.672734\pi\)
−0.516417 + 0.856337i \(0.672734\pi\)
\(380\) −1.81293e8 1.04670e8i −3.30393 1.90753i
\(381\) 0 0
\(382\) 7.12826e7 + 1.23465e8i 1.27877 + 2.21490i
\(383\) −1.83955e7 + 1.06206e7i −0.327427 + 0.189040i −0.654698 0.755890i \(-0.727204\pi\)
0.327271 + 0.944930i \(0.393871\pi\)
\(384\) 0 0
\(385\) 4.30892e7 7.46328e7i 0.755069 1.30782i
\(386\) 1.07853e8i 1.87529i
\(387\) 0 0
\(388\) 8.31877e7 1.42418
\(389\) 8.33267e7 + 4.81087e7i 1.41558 + 0.817288i 0.995907 0.0903860i \(-0.0288101\pi\)
0.419677 + 0.907674i \(0.362143\pi\)
\(390\) 0 0
\(391\) −8.32119e6 1.44127e7i −0.139205 0.241110i
\(392\) 1.27677e8 7.37144e7i 2.11960 1.22375i
\(393\) 0 0
\(394\) −3.48670e7 + 6.03914e7i −0.570067 + 0.987384i
\(395\) 7.08679e7i 1.14990i
\(396\) 0 0
\(397\) 2.71686e7 0.434206 0.217103 0.976149i \(-0.430339\pi\)
0.217103 + 0.976149i \(0.430339\pi\)
\(398\) −2.40409e7 1.38800e7i −0.381330 0.220161i
\(399\) 0 0
\(400\) 8.92468e6 + 1.54580e7i 0.139448 + 0.241531i
\(401\) 1.33304e7 7.69630e6i 0.206733 0.119357i −0.393059 0.919513i \(-0.628583\pi\)
0.599792 + 0.800156i \(0.295250\pi\)
\(402\) 0 0
\(403\) −2.23384e6 + 3.86912e6i −0.0341300 + 0.0591148i
\(404\) 8.40727e7i 1.27500i
\(405\) 0 0
\(406\) −6.29166e7 −0.940129
\(407\) 2.30706e7 + 1.33198e7i 0.342197 + 0.197568i
\(408\) 0 0
\(409\) 1.63204e7 + 2.82678e7i 0.238540 + 0.413164i 0.960296 0.278985i \(-0.0899978\pi\)
−0.721755 + 0.692148i \(0.756664\pi\)
\(410\) −6.40655e7 + 3.69882e7i −0.929549 + 0.536675i
\(411\) 0 0
\(412\) −5.06502e7 + 8.77288e7i −0.724252 + 1.25444i
\(413\) 8.42620e7i 1.19614i
\(414\) 0 0
\(415\) −1.24195e8 −1.73765
\(416\) −1.95059e6 1.12618e6i −0.0270948 0.0156432i
\(417\) 0 0
\(418\) −9.69911e7 1.67994e8i −1.32802 2.30019i
\(419\) 7.67514e7 4.43125e7i 1.04338 0.602398i 0.122595 0.992457i \(-0.460878\pi\)
0.920790 + 0.390058i \(0.127545\pi\)
\(420\) 0 0
\(421\) −4.75587e7 + 8.23740e7i −0.637358 + 1.10394i 0.348652 + 0.937252i \(0.386639\pi\)
−0.986010 + 0.166684i \(0.946694\pi\)
\(422\) 1.17064e8i 1.55771i
\(423\) 0 0
\(424\) 2.14130e8 2.80918
\(425\) 4.44258e6 + 2.56493e6i 0.0578720 + 0.0334124i
\(426\) 0 0
\(427\) 2.85897e7 + 4.95188e7i 0.367219 + 0.636043i
\(428\) −4.03679e7 + 2.33064e7i −0.514879 + 0.297266i
\(429\) 0 0
\(430\) −2.31573e7 + 4.01096e7i −0.291261 + 0.504479i
\(431\) 8.05617e7i 1.00623i 0.864220 + 0.503115i \(0.167813\pi\)
−0.864220 + 0.503115i \(0.832187\pi\)
\(432\) 0 0
\(433\) 3.50511e7 0.431755 0.215878 0.976420i \(-0.430739\pi\)
0.215878 + 0.976420i \(0.430739\pi\)
\(434\) 1.64800e8 + 9.51475e7i 2.01599 + 1.16393i
\(435\) 0 0
\(436\) 7.90815e7 + 1.36973e8i 0.954147 + 1.65263i
\(437\) 1.03365e8 5.96776e7i 1.23859 0.715100i
\(438\) 0 0
\(439\) 2.31531e7 4.01023e7i 0.273663 0.473998i −0.696134 0.717912i \(-0.745098\pi\)
0.969797 + 0.243914i \(0.0784315\pi\)
\(440\) 1.67515e8i 1.96651i
\(441\) 0 0
\(442\) −3.78464e6 −0.0438286
\(443\) −1.03092e8 5.95204e7i −1.18581 0.684628i −0.228458 0.973554i \(-0.573369\pi\)
−0.957351 + 0.288926i \(0.906702\pi\)
\(444\) 0 0
\(445\) 4.42680e7 + 7.66744e7i 0.502354 + 0.870102i
\(446\) −1.14550e8 + 6.61354e7i −1.29119 + 0.745469i
\(447\) 0 0
\(448\) 4.22538e7 7.31858e7i 0.469929 0.813941i
\(449\) 9.75546e7i 1.07773i 0.842393 + 0.538864i \(0.181146\pi\)
−0.842393 + 0.538864i \(0.818854\pi\)
\(450\) 0 0
\(451\) −4.64970e7 −0.506868
\(452\) 2.86702e8 + 1.65527e8i 3.10467 + 1.79248i
\(453\) 0 0
\(454\) 2.58411e7 + 4.47581e7i 0.276149 + 0.478304i
\(455\) 1.04428e7 6.02917e6i 0.110862 0.0640063i
\(456\) 0 0
\(457\) 4.06870e6 7.04719e6i 0.0426292 0.0738359i −0.843924 0.536463i \(-0.819760\pi\)
0.886553 + 0.462628i \(0.153093\pi\)
\(458\) 7.03688e7i 0.732460i
\(459\) 0 0
\(460\) −1.96055e8 −2.01420
\(461\) 1.34509e8 + 7.76590e7i 1.37293 + 0.792664i 0.991297 0.131648i \(-0.0420269\pi\)
0.381638 + 0.924312i \(0.375360\pi\)
\(462\) 0 0
\(463\) −3.81492e7 6.60764e7i −0.384364 0.665738i 0.607317 0.794460i \(-0.292246\pi\)
−0.991681 + 0.128722i \(0.958913\pi\)
\(464\) 4.11027e7 2.37307e7i 0.411449 0.237550i
\(465\) 0 0
\(466\) 3.52878e7 6.11203e7i 0.348712 0.603987i
\(467\) 1.85842e8i 1.82470i −0.409408 0.912352i \(-0.634265\pi\)
0.409408 0.912352i \(-0.365735\pi\)
\(468\) 0 0
\(469\) 1.96145e8 1.90133
\(470\) −4.48157e7 2.58744e7i −0.431655 0.249216i
\(471\) 0 0
\(472\) 8.18950e7 + 1.41846e8i 0.778810 + 1.34894i
\(473\) −2.52104e7 + 1.45552e7i −0.238230 + 0.137542i
\(474\) 0 0
\(475\) −1.83950e7 + 3.18611e7i −0.171640 + 0.297290i
\(476\) 1.09343e8i 1.01384i
\(477\) 0 0
\(478\) 2.66792e8 2.44281
\(479\) −1.07230e8 6.19095e7i −0.975689 0.563314i −0.0747229 0.997204i \(-0.523807\pi\)
−0.900966 + 0.433890i \(0.857141\pi\)
\(480\) 0 0
\(481\) 1.86375e6 + 3.22811e6i 0.0167476 + 0.0290076i
\(482\) 1.86297e8 1.07559e8i 1.66366 0.960514i
\(483\) 0 0
\(484\) 1.93911e7 3.35863e7i 0.171027 0.296228i
\(485\) 8.47145e7i 0.742561i
\(486\) 0 0
\(487\) −6.09360e7 −0.527578 −0.263789 0.964580i \(-0.584972\pi\)
−0.263789 + 0.964580i \(0.584972\pi\)
\(488\) −9.62555e7 5.55731e7i −0.828259 0.478196i
\(489\) 0 0
\(490\) −1.42789e8 2.47317e8i −1.21368 2.10216i
\(491\) −5.61243e7 + 3.24034e7i −0.474140 + 0.273745i −0.717971 0.696073i \(-0.754929\pi\)
0.243831 + 0.969818i \(0.421596\pi\)
\(492\) 0 0
\(493\) 6.82012e6 1.18128e7i 0.0569182 0.0985852i
\(494\) 2.71425e7i 0.225149i
\(495\) 0 0
\(496\) −1.43550e8 −1.17641
\(497\) −3.00938e8 1.73747e8i −2.45137 1.41530i
\(498\) 0 0
\(499\) −1.43548e7 2.48633e7i −0.115530 0.200104i 0.802461 0.596704i \(-0.203523\pi\)
−0.917992 + 0.396600i \(0.870190\pi\)
\(500\) −1.98590e8 + 1.14656e8i −1.58872 + 0.917246i
\(501\) 0 0
\(502\) 1.02115e8 1.76868e8i 0.807194 1.39810i
\(503\) 1.12463e8i 0.883702i 0.897088 + 0.441851i \(0.145678\pi\)
−0.897088 + 0.441851i \(0.854322\pi\)
\(504\) 0 0
\(505\) −8.56156e7 −0.664781
\(506\) −1.57332e8 9.08359e7i −1.21441 0.701142i
\(507\) 0 0
\(508\) −1.03781e8 1.79754e8i −0.791639 1.37116i
\(509\) −4.86521e7 + 2.80893e7i −0.368934 + 0.213004i −0.672993 0.739649i \(-0.734991\pi\)
0.304059 + 0.952653i \(0.401658\pi\)
\(510\) 0 0
\(511\) −1.96369e8 + 3.40120e8i −1.47167 + 2.54900i
\(512\) 2.78380e8i 2.07410i
\(513\) 0 0
\(514\) 1.68506e8 1.24087
\(515\) 8.93388e7 + 5.15798e7i 0.654061 + 0.377623i
\(516\) 0 0
\(517\) −1.62630e7 2.81684e7i −0.117687 0.203840i
\(518\) 1.37497e8 7.93841e7i 0.989247 0.571142i
\(519\) 0 0
\(520\) −1.17196e7 + 2.02990e7i −0.0833495 + 0.144366i
\(521\) 1.68861e8i 1.19403i −0.802230 0.597015i \(-0.796353\pi\)
0.802230 0.597015i \(-0.203647\pi\)
\(522\) 0 0
\(523\) −2.39748e8 −1.67591 −0.837955 0.545739i \(-0.816249\pi\)
−0.837955 + 0.545739i \(0.816249\pi\)
\(524\) −1.31732e8 7.60554e7i −0.915581 0.528611i
\(525\) 0 0
\(526\) −1.06772e8 1.84935e8i −0.733671 1.27076i
\(527\) −3.57285e7 + 2.06279e7i −0.244109 + 0.140936i
\(528\) 0 0
\(529\) −1.81276e7 + 3.13979e7i −0.122454 + 0.212097i
\(530\) 4.14780e8i 2.78606i
\(531\) 0 0
\(532\) −7.84183e8 −5.20814
\(533\) −5.63435e6 3.25299e6i −0.0372102 0.0214833i
\(534\) 0 0
\(535\) 2.37342e7 + 4.11088e7i 0.154993 + 0.268456i
\(536\) −3.30190e8 + 1.90635e8i −2.14422 + 1.23797i
\(537\) 0 0
\(538\) 2.38273e8 4.12702e8i 1.53013 2.65027i
\(539\) 1.79496e8i 1.14627i
\(540\) 0 0
\(541\) 1.85322e8 1.17040 0.585200 0.810889i \(-0.301016\pi\)
0.585200 + 0.810889i \(0.301016\pi\)
\(542\) −3.56742e6 2.05965e6i −0.0224056 0.0129359i
\(543\) 0 0
\(544\) −1.03994e7 1.80123e7i −0.0645970 0.111885i
\(545\) 1.39487e8 8.05329e7i 0.861676 0.497489i
\(546\) 0 0
\(547\) −1.26423e8 + 2.18971e8i −0.772438 + 1.33790i 0.163785 + 0.986496i \(0.447630\pi\)
−0.936223 + 0.351406i \(0.885704\pi\)
\(548\) 4.32624e8i 2.62887i
\(549\) 0 0
\(550\) 5.59986e7 0.336580
\(551\) 8.47185e7 + 4.89122e7i 0.506435 + 0.292390i
\(552\) 0 0
\(553\) 1.32735e8 + 2.29904e8i 0.784893 + 1.35947i
\(554\) 1.44706e8 8.35463e7i 0.851056 0.491358i
\(555\) 0 0
\(556\) −4.49934e6 + 7.79309e6i −0.0261773 + 0.0453404i
\(557\) 1.01472e8i 0.587194i −0.955929 0.293597i \(-0.905148\pi\)
0.955929 0.293597i \(-0.0948524\pi\)
\(558\) 0 0
\(559\) −4.07322e6 −0.0233186
\(560\) 3.35536e8 + 1.93722e8i 1.91062 + 1.10310i
\(561\) 0 0
\(562\) −1.88787e7 3.26988e7i −0.106356 0.184214i
\(563\) 1.00331e8 5.79262e7i 0.562225 0.324601i −0.191813 0.981431i \(-0.561437\pi\)
0.754038 + 0.656831i \(0.228103\pi\)
\(564\) 0 0
\(565\) 1.68565e8 2.91963e8i 0.934593 1.61876i
\(566\) 4.38799e8i 2.42000i
\(567\) 0 0
\(568\) 6.75465e8 3.68602
\(569\) 6.32337e7 + 3.65080e7i 0.343251 + 0.198176i 0.661709 0.749761i \(-0.269832\pi\)
−0.318458 + 0.947937i \(0.603165\pi\)
\(570\) 0 0
\(571\) 4.87571e7 + 8.44498e7i 0.261897 + 0.453618i 0.966746 0.255739i \(-0.0823187\pi\)
−0.704849 + 0.709357i \(0.748985\pi\)
\(572\) −2.42688e7 + 1.40116e7i −0.129676 + 0.0748686i
\(573\) 0 0
\(574\) −1.38557e8 + 2.39988e8i −0.732645 + 1.26898i
\(575\) 3.44553e7i 0.181239i
\(576\) 0 0
\(577\) 8.90080e7 0.463342 0.231671 0.972794i \(-0.425581\pi\)
0.231671 + 0.972794i \(0.425581\pi\)
\(578\) 2.64575e8 + 1.52752e8i 1.37014 + 0.791050i
\(579\) 0 0
\(580\) −8.03440e7 1.39160e8i −0.411784 0.713231i
\(581\) −4.02905e8 + 2.32617e8i −2.05435 + 1.18608i
\(582\) 0 0
\(583\) 1.30353e8 2.25777e8i 0.657830 1.13940i
\(584\) 7.63410e8i 3.83283i
\(585\) 0 0
\(586\) 3.32013e7 0.164992
\(587\) 1.09392e8 + 6.31572e7i 0.540841 + 0.312255i 0.745420 0.666596i \(-0.232249\pi\)
−0.204579 + 0.978850i \(0.565582\pi\)
\(588\) 0 0
\(589\) −1.47938e8 2.56236e8i −0.723992 1.25399i
\(590\) 2.74764e8 1.58635e8i 1.33784 0.772401i
\(591\) 0 0
\(592\) −5.98836e7 + 1.03721e8i −0.288631 + 0.499923i
\(593\) 1.59275e8i 0.763805i 0.924203 + 0.381902i \(0.124731\pi\)
−0.924203 + 0.381902i \(0.875269\pi\)
\(594\) 0 0
\(595\) 1.11350e8 0.528615
\(596\) −1.90308e8 1.09874e8i −0.898912 0.518987i
\(597\) 0 0
\(598\) −1.27100e7 2.20144e7i −0.0594350 0.102944i
\(599\) 1.23461e8 7.12804e7i 0.574448 0.331658i −0.184476 0.982837i \(-0.559059\pi\)
0.758924 + 0.651179i \(0.225725\pi\)
\(600\) 0 0
\(601\) 5.92447e7 1.02615e8i 0.272914 0.472701i −0.696693 0.717370i \(-0.745346\pi\)
0.969607 + 0.244669i \(0.0786792\pi\)
\(602\) 1.73494e8i 0.795234i
\(603\) 0 0
\(604\) 4.93375e7 0.223906
\(605\) −3.42027e7 1.97469e7i −0.154452 0.0891730i
\(606\) 0 0
\(607\) 4.03021e7 + 6.98052e7i 0.180203 + 0.312120i 0.941949 0.335755i \(-0.108991\pi\)
−0.761747 + 0.647875i \(0.775658\pi\)
\(608\) 1.29180e8 7.45821e7i 0.574757 0.331836i
\(609\) 0 0
\(610\) −1.07648e8 + 1.86452e8i −0.474260 + 0.821443i
\(611\) 4.55113e6i 0.0199524i
\(612\) 0 0
\(613\) −2.49459e8 −1.08297 −0.541486 0.840710i \(-0.682138\pi\)
−0.541486 + 0.840710i \(0.682138\pi\)
\(614\) 4.87683e7 + 2.81564e7i 0.210685 + 0.121639i
\(615\) 0 0
\(616\) 3.13755e8 + 5.43440e8i 1.34230 + 2.32493i
\(617\) 2.98160e8 1.72143e8i 1.26939 0.732880i 0.294514 0.955647i \(-0.404842\pi\)
0.974872 + 0.222767i \(0.0715088\pi\)
\(618\) 0 0
\(619\) −2.29719e7 + 3.97886e7i −0.0968558 + 0.167759i −0.910382 0.413770i \(-0.864212\pi\)
0.813526 + 0.581529i \(0.197545\pi\)
\(620\) 4.86011e8i 2.03925i
\(621\) 0 0
\(622\) −4.25094e8 −1.76650
\(623\) 2.87221e8 + 1.65827e8i 1.18782 + 0.685791i
\(624\) 0 0
\(625\) 1.42220e8 + 2.46333e8i 0.582534 + 1.00898i
\(626\) 4.62841e8 2.67221e8i 1.88673 1.08930i
\(627\) 0 0
\(628\) −3.50125e8 + 6.06434e8i −1.41366 + 2.44852i
\(629\) 3.44207e7i 0.138315i
\(630\) 0 0
\(631\) −2.71320e8 −1.07993 −0.539963 0.841689i \(-0.681562\pi\)
−0.539963 + 0.841689i \(0.681562\pi\)
\(632\) −4.46892e8 2.58013e8i −1.77032 1.02209i
\(633\) 0 0
\(634\) 2.45029e8 + 4.24403e8i 0.961502 + 1.66537i
\(635\) −1.83053e8 + 1.05686e8i −0.714918 + 0.412758i
\(636\) 0 0
\(637\) 1.25578e7 2.17507e7i 0.0485842 0.0841503i
\(638\) 1.48900e8i 0.573366i
\(639\) 0 0
\(640\) 4.34402e8 1.65711
\(641\) −2.71512e8 1.56757e8i −1.03089 0.595187i −0.113654 0.993520i \(-0.536255\pi\)
−0.917241 + 0.398333i \(0.869589\pi\)
\(642\) 0 0
\(643\) −2.97289e7 5.14920e7i −0.111827 0.193690i 0.804680 0.593709i \(-0.202337\pi\)
−0.916507 + 0.400019i \(0.869004\pi\)
\(644\) −6.36024e8 + 3.67209e8i −2.38131 + 1.37485i
\(645\) 0 0
\(646\) 1.25321e8 2.17062e8i 0.464864 0.805168i
\(647\) 2.04779e8i 0.756089i −0.925787 0.378045i \(-0.876597\pi\)
0.925787 0.378045i \(-0.123403\pi\)
\(648\) 0 0
\(649\) 1.99416e8 0.729502
\(650\) 6.78572e6 + 3.91774e6i 0.0247090 + 0.0142658i
\(651\) 0 0
\(652\) −2.02903e8 3.51438e8i −0.732058 1.26796i
\(653\) 2.94479e7 1.70017e7i 0.105758 0.0610596i −0.446188 0.894939i \(-0.647219\pi\)
0.551946 + 0.833880i \(0.313885\pi\)
\(654\) 0 0
\(655\) −7.74512e7 + 1.34149e8i −0.275616 + 0.477381i
\(656\) 2.09042e8i 0.740495i
\(657\) 0 0
\(658\) −1.93850e8 −0.680438
\(659\) 2.10570e8 + 1.21573e8i 0.735766 + 0.424795i 0.820528 0.571606i \(-0.193680\pi\)
−0.0847616 + 0.996401i \(0.527013\pi\)
\(660\) 0 0
\(661\) −2.25986e8 3.91420e8i −0.782488 1.35531i −0.930488 0.366322i \(-0.880617\pi\)
0.148000 0.988987i \(-0.452717\pi\)
\(662\) −4.47330e8 + 2.58266e8i −1.54189 + 0.890212i
\(663\) 0 0
\(664\) 4.52165e8 7.83174e8i 1.54452 2.67518i
\(665\) 7.98575e8i 2.71551i
\(666\) 0 0
\(667\) 9.16164e7 0.308742
\(668\) −5.59052e8 3.22769e8i −1.87553 1.08284i
\(669\) 0 0
\(670\) 3.69270e8 + 6.39595e8i 1.22778 + 2.12657i
\(671\) −1.17192e8 + 6.76609e7i −0.387910 + 0.223960i
\(672\) 0 0
\(673\) −1.58780e8 + 2.75015e8i −0.520896 + 0.902217i 0.478809 + 0.877919i \(0.341069\pi\)
−0.999705 + 0.0242985i \(0.992265\pi\)
\(674\) 6.39145e8i 2.08747i
\(675\) 0 0
\(676\) 6.47419e8 2.09578
\(677\) −5.80706e7 3.35271e7i −0.187150 0.108051i 0.403498 0.914981i \(-0.367794\pi\)
−0.590648 + 0.806930i \(0.701128\pi\)
\(678\) 0 0
\(679\) −1.58670e8 2.74824e8i −0.506856 0.877900i
\(680\) −1.87446e8 + 1.08222e8i −0.596142 + 0.344183i
\(681\) 0 0
\(682\) −2.25178e8 + 3.90020e8i −0.709861 + 1.22951i
\(683\) 1.51437e8i 0.475303i 0.971350 + 0.237652i \(0.0763777\pi\)
−0.971350 + 0.237652i \(0.923622\pi\)
\(684\) 0 0
\(685\) 4.40563e8 1.37068
\(686\) −1.86681e8 1.07780e8i −0.578265 0.333861i
\(687\) 0 0
\(688\) −6.54378e7 1.13342e8i −0.200939 0.348036i
\(689\) 3.15914e7 1.82393e7i 0.0965852 0.0557635i
\(690\) 0 0
\(691\) −4.73402e7 + 8.19956e7i −0.143482 + 0.248517i −0.928805 0.370568i \(-0.879163\pi\)
0.785324 + 0.619085i \(0.212496\pi\)
\(692\) 4.77150e8i 1.43991i
\(693\) 0 0
\(694\) 4.12231e8 1.23328
\(695\) 7.93612e6 + 4.58192e6i 0.0236403 + 0.0136488i
\(696\) 0 0
\(697\) −3.00390e7 5.20292e7i −0.0887131 0.153656i
\(698\) 1.17419e8 6.77921e7i 0.345281 0.199348i
\(699\) 0 0
\(700\) 1.13189e8 1.96048e8i 0.329996 0.571569i
\(701\) 7.92713e6i 0.0230124i −0.999934 0.0115062i \(-0.996337\pi\)
0.999934 0.0115062i \(-0.00366262\pi\)
\(702\) 0 0
\(703\) −2.46857e8 −0.710526
\(704\) 1.73203e8 + 9.99988e7i 0.496407 + 0.286600i
\(705\) 0 0
\(706\) 2.12481e8 + 3.68028e8i 0.603817 + 1.04584i
\(707\) −2.77747e8 + 1.60357e8i −0.785944 + 0.453765i
\(708\) 0 0
\(709\) 3.32737e8 5.76317e8i 0.933603 1.61705i 0.156496 0.987679i \(-0.449980\pi\)
0.777107 0.629369i \(-0.216687\pi\)
\(710\) 1.30841e9i 3.65569i
\(711\) 0 0
\(712\) −6.44676e8 −1.78608
\(713\) −2.39975e8 1.38550e8i −0.662060 0.382241i
\(714\) 0 0
\(715\) 1.42687e7 + 2.47142e7i 0.0390362 + 0.0676127i
\(716\) 1.00186e9 5.78424e8i 2.72940 1.57582i
\(717\) 0 0
\(718\) −2.56642e8 + 4.44516e8i −0.693352 + 1.20092i
\(719\) 4.90198e8i 1.31882i 0.751784 + 0.659409i \(0.229194\pi\)
−0.751784 + 0.659409i \(0.770806\pi\)
\(720\) 0 0
\(721\) 3.86434e8 1.03103
\(722\) 9.82051e8 + 5.66987e8i 2.60929 + 1.50647i
\(723\) 0 0
\(724\) 1.20914e8 + 2.09429e8i 0.318610 + 0.551849i
\(725\) −2.44564e7 + 1.41199e7i −0.0641769 + 0.0370526i
\(726\) 0 0
\(727\) 1.04654e8 1.81265e8i 0.272365 0.471750i −0.697102 0.716972i \(-0.745528\pi\)
0.969467 + 0.245222i \(0.0788609\pi\)
\(728\) 8.78030e7i 0.227570i
\(729\) 0 0
\(730\) −1.47877e9 −3.80129
\(731\) −3.25740e7 1.88066e7i −0.0833910 0.0481458i
\(732\) 0 0
\(733\) 1.83336e8 + 3.17547e8i 0.465517 + 0.806299i 0.999225 0.0393698i \(-0.0125350\pi\)
−0.533708 + 0.845669i \(0.679202\pi\)
\(734\) −6.18029e8 + 3.56819e8i −1.56286 + 0.902319i
\(735\) 0 0
\(736\) 6.98490e7 1.20982e8i 0.175197 0.303450i
\(737\) 4.64201e8i 1.15959i
\(738\) 0 0
\(739\) −6.11387e8 −1.51490 −0.757449 0.652895i \(-0.773554\pi\)
−0.757449 + 0.652895i \(0.773554\pi\)
\(740\) 3.51166e8 + 2.02746e8i 0.866597 + 0.500330i
\(741\) 0 0
\(742\) −7.76880e8 1.34560e9i −1.90170 3.29384i
\(743\) −1.81962e8 + 1.05056e8i −0.443623 + 0.256126i −0.705133 0.709075i \(-0.749113\pi\)
0.261510 + 0.965201i \(0.415779\pi\)
\(744\) 0 0
\(745\) −1.11891e8 + 1.93800e8i −0.270598 + 0.468690i
\(746\) 1.33289e9i 3.21053i
\(747\) 0 0
\(748\) −2.58774e8 −0.618324
\(749\) 1.53993e8 + 8.89079e7i 0.366484 + 0.211590i
\(750\) 0 0
\(751\) −2.52848e8 4.37946e8i −0.596953 1.03395i −0.993268 0.115839i \(-0.963044\pi\)
0.396315 0.918115i \(-0.370289\pi\)
\(752\) 1.26640e8 7.31157e7i 0.297795 0.171932i
\(753\) 0 0
\(754\) 1.04172e7 1.80432e7i 0.0243018 0.0420919i
\(755\) 5.02430e7i 0.116744i
\(756\) 0 0
\(757\) 4.19839e8 0.967822 0.483911 0.875117i \(-0.339216\pi\)
0.483911 + 0.875117i \(0.339216\pi\)
\(758\) −6.86819e8 3.96535e8i −1.57701 0.910487i
\(759\) 0 0
\(760\) −7.76143e8 1.34432e9i −1.76808 3.06240i
\(761\) 6.34065e8 3.66078e8i 1.43873 0.830653i 0.440971 0.897521i \(-0.354634\pi\)
0.997762 + 0.0668687i \(0.0213009\pi\)
\(762\) 0 0
\(763\) 3.01675e8 5.22516e8i 0.679150 1.17632i
\(764\) 1.36395e9i 3.05856i
\(765\) 0 0
\(766\) −2.99601e8 −0.666588
\(767\) 2.41646e7 + 1.39514e7i 0.0535542 + 0.0309195i
\(768\) 0 0
\(769\) 1.26647e8 + 2.19359e8i 0.278494 + 0.482366i 0.971011 0.239036i \(-0.0768314\pi\)
−0.692517 + 0.721402i \(0.743498\pi\)
\(770\) 1.05267e9 6.07760e8i 2.30580 1.33125i
\(771\) 0 0
\(772\) −5.15923e8 + 8.93604e8i −1.12133 + 1.94220i
\(773\) 7.82197e8i 1.69347i −0.532014 0.846735i \(-0.678565\pi\)
0.532014 0.846735i \(-0.321435\pi\)
\(774\) 0 0
\(775\) 8.54131e7 0.183493
\(776\) 5.34208e8 + 3.08425e8i 1.14321 + 0.660031i
\(777\) 0 0
\(778\) 6.78558e8 + 1.17530e9i 1.44095 + 2.49580i
\(779\) 3.73140e8 2.15433e8i 0.789332 0.455721i
\(780\) 0 0
\(781\) 4.11193e8 7.12207e8i 0.863162 1.49504i
\(782\) 2.34736e8i 0.490861i
\(783\) 0 0
\(784\) 8.06983e8 1.67462
\(785\) 6.17564e8 + 3.56550e8i 1.27665 + 0.737076i
\(786\) 0 0
\(787\) −3.40918e8 5.90488e8i −0.699401 1.21140i −0.968674 0.248334i \(-0.920117\pi\)
0.269274 0.963064i \(-0.413216\pi\)
\(788\) −5.77775e8 + 3.33579e8i −1.18081 + 0.681742i
\(789\) 0 0
\(790\) −4.99785e8 + 8.65653e8i −1.01368 + 1.75575i
\(791\) 1.26289e9i 2.55173i
\(792\) 0 0
\(793\) −1.89346e7 −0.0379696
\(794\) 3.31865e8 + 1.91602e8i 0.662980 + 0.382771i
\(795\) 0 0
\(796\) −1.32793e8 2.30003e8i −0.263290 0.456032i
\(797\) −4.40332e7 + 2.54226e7i −0.0869772 + 0.0502163i −0.542858 0.839825i \(-0.682658\pi\)
0.455881 + 0.890041i \(0.349324\pi\)
\(798\) 0 0
\(799\) 2.10132e7 3.63960e7i 0.0411957 0.0713531i
\(800\) 4.30605e7i 0.0841026i
\(801\) 0 0
\(802\) 2.17108e8 0.420874
\(803\) −8.04936e8 4.64730e8i −1.55459 0.897541i
\(804\) 0 0
\(805\) 3.73948e8 + 6.47697e8i 0.716843 + 1.24161i
\(806\) −5.45727e7 + 3.15075e7i −0.104225 + 0.0601741i
\(807\) 0 0
\(808\) 3.11706e8 5.39890e8i 0.590896 1.02346i
\(809\) 1.02851e7i 0.0194251i −0.999953 0.00971257i \(-0.996908\pi\)
0.999953 0.00971257i \(-0.00309166\pi\)
\(810\) 0 0
\(811\) 4.84952e8 0.909152 0.454576 0.890708i \(-0.349791\pi\)
0.454576 + 0.890708i \(0.349791\pi\)
\(812\) −5.21291e8 3.00968e8i −0.973671 0.562149i
\(813\) 0 0
\(814\) 1.87872e8 + 3.25404e8i 0.348329 + 0.603323i
\(815\) −3.57888e8 + 2.06627e8i −0.661111 + 0.381693i
\(816\) 0 0
\(817\) 1.34877e8 2.33613e8i 0.247326 0.428382i
\(818\) 4.60389e8i 0.841133i
\(819\) 0 0
\(820\) −7.07746e8 −1.28362
\(821\) 4.29688e8 + 2.48080e8i 0.776468 + 0.448294i 0.835177 0.549981i \(-0.185365\pi\)
−0.0587089 + 0.998275i \(0.518698\pi\)
\(822\) 0 0
\(823\) 1.60742e8 + 2.78412e8i 0.288356 + 0.499447i 0.973417 0.229038i \(-0.0735581\pi\)
−0.685062 + 0.728485i \(0.740225\pi\)
\(824\) −6.50522e8 + 3.75579e8i −1.16273 + 0.671305i
\(825\) 0 0
\(826\) 5.94245e8 1.02926e9i 1.05445 1.82636i
\(827\) 7.54902e8i 1.33467i 0.744757 + 0.667336i \(0.232565\pi\)
−0.744757 + 0.667336i \(0.767435\pi\)
\(828\) 0 0
\(829\) −5.82262e8 −1.02201 −0.511004 0.859578i \(-0.670726\pi\)
−0.511004 + 0.859578i \(0.670726\pi\)
\(830\) −1.51705e9 8.75868e8i −2.65317 1.53181i
\(831\) 0 0
\(832\) 1.39921e7 + 2.42350e7i 0.0242948 + 0.0420798i
\(833\) 2.00852e8 1.15962e8i 0.347490 0.200623i
\(834\) 0 0
\(835\) −3.28693e8 + 5.69312e8i −0.564587 + 0.977893i
\(836\) 1.85586e9i 3.17634i
\(837\) 0 0
\(838\) 1.25003e9 2.12416
\(839\) −5.75163e8 3.32071e8i −0.973879 0.562270i −0.0734627 0.997298i \(-0.523405\pi\)
−0.900417 + 0.435028i \(0.856738\pi\)
\(840\) 0 0
\(841\) −2.59867e8 4.50103e8i −0.436881 0.756700i
\(842\) −1.16186e9 + 6.70800e8i −1.94633 + 1.12372i
\(843\) 0 0
\(844\) 5.59987e8 9.69926e8i 0.931431 1.61329i
\(845\) 6.59301e8i 1.09273i
\(846\) 0 0
\(847\) −1.47943e8 −0.243470
\(848\) 1.01505e9 + 5.86042e8i 1.66457 + 0.961039i
\(849\) 0 0
\(850\) 3.61775e7 + 6.26612e7i 0.0589090 + 0.102033i
\(851\) −2.00217e8 + 1.15596e8i −0.324873 + 0.187565i
\(852\) 0 0
\(853\) −3.93890e8 + 6.82237e8i −0.634640 + 1.09923i 0.351951 + 0.936018i \(0.385518\pi\)
−0.986591 + 0.163211i \(0.947815\pi\)
\(854\) 8.06497e8i 1.29488i
\(855\) 0 0
\(856\) −3.45642e8 −0.551067
\(857\) −8.35866e8 4.82588e8i −1.32799 0.766715i −0.343000 0.939335i \(-0.611443\pi\)
−0.984988 + 0.172621i \(0.944776\pi\)
\(858\) 0 0
\(859\) 2.97728e8 + 5.15681e8i 0.469722 + 0.813582i 0.999401 0.0346161i \(-0.0110208\pi\)
−0.529679 + 0.848198i \(0.677688\pi\)
\(860\) −3.83736e8 + 2.21550e8i −0.603306 + 0.348319i
\(861\) 0 0
\(862\) −5.68149e8 + 9.84063e8i −0.887034 + 1.53639i
\(863\) 9.85551e8i 1.53337i −0.642024 0.766684i \(-0.721905\pi\)
0.642024 0.766684i \(-0.278095\pi\)
\(864\) 0 0
\(865\) −4.85907e8 −0.750766
\(866\) 4.28150e8 + 2.47192e8i 0.659237 + 0.380611i
\(867\) 0 0
\(868\) 9.10294e8 + 1.57668e9i 1.39195 + 2.41092i
\(869\) −5.44096e8 + 3.14134e8i −0.829117 + 0.478691i
\(870\) 0 0
\(871\) −3.24761e7 + 5.62503e7i −0.0491484 + 0.0851276i
\(872\) 1.17280e9i 1.76879i
\(873\) 0 0
\(874\) 1.68347e9 2.52157
\(875\) 7.57567e8 + 4.37382e8i 1.13083 + 0.652884i
\(876\) 0 0
\(877\) −1.84340e8 3.19286e8i −0.273288 0.473349i 0.696413 0.717641i \(-0.254778\pi\)
−0.969702 + 0.244291i \(0.921445\pi\)
\(878\) 5.65631e8 3.26567e8i 0.835698 0.482491i
\(879\) 0 0
\(880\) −4.58466e8 + 7.94086e8i −0.672758 + 1.16525i
\(881\) 7.29792e8i 1.06726i −0.845717 0.533632i \(-0.820827\pi\)
0.845717 0.533632i \(-0.179173\pi\)
\(882\) 0 0
\(883\) −7.12900e7 −0.103549 −0.0517746 0.998659i \(-0.516488\pi\)
−0.0517746 + 0.998659i \(0.516488\pi\)
\(884\) −3.13574e7 1.81042e7i −0.0453924 0.0262073i
\(885\) 0 0
\(886\) −8.39516e8 1.45408e9i −1.20706 2.09068i
\(887\) 2.73062e8 1.57653e8i 0.391283 0.225907i −0.291433 0.956591i \(-0.594132\pi\)
0.682716 + 0.730684i \(0.260799\pi\)
\(888\) 0 0
\(889\) −3.95897e8 + 6.85715e8i −0.563479 + 0.975974i
\(890\) 1.24877e9i 1.77139i
\(891\) 0 0
\(892\) −1.26546e9 −1.78301
\(893\) 2.61023e8 + 1.50702e8i 0.366543 + 0.211624i
\(894\) 0 0
\(895\) −5.89039e8 1.02025e9i −0.821628 1.42310i
\(896\) 1.40925e9 8.13632e8i 1.95914 1.13111i
\(897\) 0 0
\(898\) −6.87989e8 + 1.19163e9i −0.950063 + 1.64556i
\(899\) 2.27113e8i 0.312581i
\(900\) 0 0
\(901\) 3.36853e8 0.460539
\(902\) −5.67961e8 3.27913e8i −0.773925 0.446826i
\(903\) 0 0
\(904\) 1.22741e9 + 2.12594e9i 1.66144 + 2.87770i
\(905\) 2.13272e8 1.23133e8i 0.287732 0.166122i
\(906\) 0 0
\(907\) 2.85210e8 4.93997e8i 0.382245 0.662068i −0.609137 0.793065i \(-0.708484\pi\)
0.991383 + 0.130996i \(0.0418176\pi\)
\(908\) 4.94454e8i 0.660493i
\(909\) 0 0
\(910\) 1.70079e8 0.225697
\(911\) −2.97529e8 1.71779e8i −0.393527 0.227203i 0.290160 0.956978i \(-0.406291\pi\)
−0.683687 + 0.729775i \(0.739625\pi\)
\(912\) 0 0
\(913\) −5.50516e8 9.53522e8i −0.723366 1.25291i
\(914\) 9.93984e7 5.73877e7i 0.130179 0.0751589i
\(915\) 0 0
\(916\) 3.36616e8 5.83036e8i 0.437974 0.758593i
\(917\) 5.80262e8i 0.752517i
\(918\) 0 0
\(919\) 7.92851e8 1.02152 0.510758 0.859725i \(-0.329365\pi\)
0.510758 + 0.859725i \(0.329365\pi\)
\(920\) −1.25901e9 7.26888e8i −1.61683 0.933477i
\(921\) 0 0
\(922\) 1.09536e9 + 1.89721e9i 1.39753 + 2.42060i
\(923\) 9.96539e7 5.75352e7i 0.126733 0.0731693i
\(924\) 0 0
\(925\) 3.56312e7 6.17151e7i 0.0450200 0.0779769i
\(926\) 1.07617e9i 1.35533i
\(927\) 0 0
\(928\) 1.14498e8 0.143269
\(929\) −1.57986e8 9.12134e7i −0.197048 0.113766i 0.398230 0.917286i \(-0.369625\pi\)
−0.595278 + 0.803520i \(0.702958\pi\)
\(930\) 0 0
\(931\) 8.31653e8 + 1.44047e9i 1.03061 + 1.78506i
\(932\) 5.84750e8 3.37605e8i 0.722308 0.417025i
\(933\) 0 0
\(934\) 1.31062e9 2.27006e9i 1.60855 2.78610i
\(935\) 2.63523e8i 0.322392i
\(936\) 0 0
\(937\) −3.34488e8 −0.406594 −0.203297 0.979117i \(-0.565166\pi\)
−0.203297 + 0.979117i \(0.565166\pi\)
\(938\) 2.39591e9 + 1.38328e9i 2.90310 + 1.67611i
\(939\) 0 0
\(940\) −2.47545e8 4.28760e8i −0.298037 0.516216i
\(941\) −2.52152e8 + 1.45580e8i −0.302618 + 0.174716i −0.643618 0.765347i \(-0.722567\pi\)
0.341001 + 0.940063i \(0.389234\pi\)
\(942\) 0 0
\(943\) 2.01761e8 3.49460e8i 0.240604 0.416738i
\(944\) 8.96540e8i 1.06575i
\(945\) 0 0
\(946\) −4.10594e8 −0.484997
\(947\) −1.46907e8 8.48169e7i −0.172979 0.0998694i 0.411011 0.911630i \(-0.365176\pi\)
−0.583990 + 0.811761i \(0.698509\pi\)
\(948\) 0 0
\(949\) −6.50263e7 1.12629e8i −0.0760835 0.131780i
\(950\) −4.49391e8 + 2.59456e8i −0.524148 + 0.302617i
\(951\) 0 0
\(952\) −4.05399e8 + 7.02171e8i −0.469863 + 0.813827i
\(953\) 5.17958e8i 0.598434i 0.954185 + 0.299217i \(0.0967254\pi\)
−0.954185 + 0.299217i \(0.903275\pi\)
\(954\) 0 0
\(955\) 1.38898e9 1.59473
\(956\) 2.21049e9 + 1.27623e9i 2.52996 + 1.46068i
\(957\) 0 0
\(958\) −8.73214e8 1.51245e9i −0.993171 1.72022i
\(959\) 1.42924e9 8.25172e8i 1.62050 0.935597i
\(960\) 0 0
\(961\) 1.00294e8 1.73713e8i 0.113006 0.195733i
\(962\) 5.25751e7i 0.0590548i
\(963\) 0 0
\(964\) 2.05806e9 2.29735
\(965\) 9.10004e8 + 5.25391e8i 1.01266 + 0.584657i
\(966\) 0 0
\(967\) 6.87108e8 + 1.19011e9i 0.759881 + 1.31615i 0.942911 + 0.333046i \(0.108076\pi\)
−0.183029 + 0.983107i \(0.558590\pi\)
\(968\) 2.49048e8 1.43788e8i 0.274572 0.158524i
\(969\) 0 0
\(970\) 5.97436e8 1.03479e9i 0.654600 1.13380i
\(971\) 7.45510e8i 0.814321i 0.913357 + 0.407160i \(0.133481\pi\)
−0.913357 + 0.407160i \(0.866519\pi\)
\(972\) 0 0
\(973\) 3.43276e7 0.0372653
\(974\) −7.44334e8 4.29742e8i −0.805547 0.465083i
\(975\) 0 0
\(976\) −3.04191e8 5.26875e8i −0.327188 0.566707i
\(977\) −8.48899e8 + 4.90112e8i −0.910274 + 0.525547i −0.880519 0.474010i \(-0.842806\pi\)
−0.0297550 + 0.999557i \(0.509473\pi\)
\(978\) 0 0
\(979\) −3.92450e8 + 6.79743e8i −0.418250 + 0.724431i
\(980\) 2.73217e9i 2.90288i
\(981\) 0 0
\(982\) −9.14080e8 −0.965272
\(983\) −8.77524e8 5.06639e8i −0.923844 0.533381i −0.0389845 0.999240i \(-0.512412\pi\)
−0.884859 + 0.465858i \(0.845746\pi\)
\(984\) 0 0
\(985\) 3.39701e8 + 5.88379e8i 0.355458 + 0.615671i
\(986\) 1.66616e8 9.61957e7i 0.173814 0.100352i
\(987\) 0 0
\(988\) 1.29839e8 2.24887e8i 0.134627 0.233182i
\(989\) 2.52634e8i 0.261158i
\(990\) 0 0
\(991\) −1.85231e9 −1.90324 −0.951620 0.307279i \(-0.900582\pi\)
−0.951620 + 0.307279i \(0.900582\pi\)
\(992\) −2.99909e8 1.73153e8i −0.307224 0.177376i
\(993\) 0 0
\(994\) −2.45064e9 4.24464e9i −2.49529 4.32197i
\(995\) −2.34225e8 + 1.35230e8i −0.237773 + 0.137279i
\(996\) 0 0
\(997\) −6.28324e8 + 1.08829e9i −0.634013 + 1.09814i 0.352710 + 0.935733i \(0.385260\pi\)
−0.986723 + 0.162410i \(0.948073\pi\)
\(998\) 4.04941e8i 0.407380i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.7.d.e.26.4 8
3.2 odd 2 inner 81.7.d.e.26.1 8
9.2 odd 6 27.7.b.c.26.4 yes 4
9.4 even 3 inner 81.7.d.e.53.1 8
9.5 odd 6 inner 81.7.d.e.53.4 8
9.7 even 3 27.7.b.c.26.1 4
36.7 odd 6 432.7.e.j.161.4 4
36.11 even 6 432.7.e.j.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.b.c.26.1 4 9.7 even 3
27.7.b.c.26.4 yes 4 9.2 odd 6
81.7.d.e.26.1 8 3.2 odd 2 inner
81.7.d.e.26.4 8 1.1 even 1 trivial
81.7.d.e.53.1 8 9.4 even 3 inner
81.7.d.e.53.4 8 9.5 odd 6 inner
432.7.e.j.161.1 4 36.11 even 6
432.7.e.j.161.4 4 36.7 odd 6