Properties

Label 432.8.i.e.145.6
Level $432$
Weight $8$
Character 432.145
Analytic conductor $134.950$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(145,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.145");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(134.950331009\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} + 332929 x^{18} - 2996076 x^{17} + 44578211685 x^{16} - 356557783716 x^{15} + \cdots + 79\!\cdots\!67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{48}\cdot 3^{45} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 145.6
Root \(0.500000 + 2.08484i\) of defining polynomial
Character \(\chi\) \(=\) 432.145
Dual form 432.8.i.e.289.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.05553 - 13.9526i) q^{5} +(629.010 + 1089.48i) q^{7} +(3591.86 + 6221.29i) q^{11} +(-4460.66 + 7726.08i) q^{13} -4941.76 q^{17} +34592.2 q^{19} +(-37022.5 + 64124.8i) q^{23} +(38932.7 + 67433.4i) q^{25} +(83109.0 + 143949. i) q^{29} +(-50746.9 + 87896.2i) q^{31} +20268.0 q^{35} -360076. q^{37} +(198048. - 343029. i) q^{41} +(-431833. - 747956. i) q^{43} +(212800. + 368580. i) q^{47} +(-379535. + 657374. i) q^{49} +634468. q^{53} +115737. q^{55} +(880298. - 1.52472e6i) q^{59} +(-380043. - 658255. i) q^{61} +(71865.9 + 124475. i) q^{65} +(-942841. + 1.63305e6i) q^{67} +2.99804e6 q^{71} +2.45405e6 q^{73} +(-4.51863e6 + 7.82650e6i) q^{77} +(-3.91237e6 - 6.77642e6i) q^{79} +(-2.74085e6 - 4.74729e6i) q^{83} +(-39808.4 + 68950.3i) q^{85} +1.40387e6 q^{89} -1.12232e7 q^{91} +(278659. - 482651. i) q^{95} +(2.17082e6 + 3.75996e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 125 q^{5} - 1245 q^{7} + 6106 q^{11} + 4937 q^{13} - 48722 q^{17} + 26882 q^{19} + 19387 q^{23} - 218957 q^{25} + 46791 q^{29} + 185039 q^{31} + 83094 q^{35} + 108420 q^{37} + 638112 q^{41} - 892628 q^{43}+ \cdots + 17951260 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.05553 13.9526i 0.0288203 0.0499183i −0.851255 0.524751i \(-0.824158\pi\)
0.880076 + 0.474833i \(0.157492\pi\)
\(6\) 0 0
\(7\) 629.010 + 1089.48i 0.693129 + 1.20054i 0.970807 + 0.239861i \(0.0771018\pi\)
−0.277678 + 0.960674i \(0.589565\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3591.86 + 6221.29i 0.813664 + 1.40931i 0.910283 + 0.413986i \(0.135864\pi\)
−0.0966189 + 0.995321i \(0.530803\pi\)
\(12\) 0 0
\(13\) −4460.66 + 7726.08i −0.563115 + 0.975343i 0.434108 + 0.900861i \(0.357064\pi\)
−0.997222 + 0.0744824i \(0.976270\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4941.76 −0.243955 −0.121978 0.992533i \(-0.538924\pi\)
−0.121978 + 0.992533i \(0.538924\pi\)
\(18\) 0 0
\(19\) 34592.2 1.15702 0.578510 0.815675i \(-0.303634\pi\)
0.578510 + 0.815675i \(0.303634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −37022.5 + 64124.8i −0.634480 + 1.09895i 0.352145 + 0.935946i \(0.385453\pi\)
−0.986625 + 0.163007i \(0.947881\pi\)
\(24\) 0 0
\(25\) 38932.7 + 67433.4i 0.498339 + 0.863148i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 83109.0 + 143949.i 0.632784 + 1.09601i 0.986980 + 0.160842i \(0.0514210\pi\)
−0.354197 + 0.935171i \(0.615246\pi\)
\(30\) 0 0
\(31\) −50746.9 + 87896.2i −0.305945 + 0.529913i −0.977471 0.211068i \(-0.932306\pi\)
0.671526 + 0.740981i \(0.265639\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 20268.0 0.0799049
\(36\) 0 0
\(37\) −360076. −1.16866 −0.584329 0.811517i \(-0.698642\pi\)
−0.584329 + 0.811517i \(0.698642\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 198048. 343029.i 0.448773 0.777297i −0.549534 0.835472i \(-0.685195\pi\)
0.998306 + 0.0581742i \(0.0185279\pi\)
\(42\) 0 0
\(43\) −431833. 747956.i −0.828277 1.43462i −0.899389 0.437150i \(-0.855988\pi\)
0.0711112 0.997468i \(-0.477345\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 212800. + 368580.i 0.298971 + 0.517832i 0.975901 0.218215i \(-0.0700234\pi\)
−0.676930 + 0.736047i \(0.736690\pi\)
\(48\) 0 0
\(49\) −379535. + 657374.i −0.460856 + 0.798227i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 634468. 0.585389 0.292694 0.956206i \(-0.405448\pi\)
0.292694 + 0.956206i \(0.405448\pi\)
\(54\) 0 0
\(55\) 115737. 0.0938003
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 880298. 1.52472e6i 0.558017 0.966514i −0.439645 0.898172i \(-0.644896\pi\)
0.997662 0.0683426i \(-0.0217711\pi\)
\(60\) 0 0
\(61\) −380043. 658255.i −0.214377 0.371312i 0.738702 0.674032i \(-0.235439\pi\)
−0.953080 + 0.302719i \(0.902106\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 71865.9 + 124475.i 0.0324583 + 0.0562194i
\(66\) 0 0
\(67\) −942841. + 1.63305e6i −0.382981 + 0.663342i −0.991487 0.130207i \(-0.958436\pi\)
0.608506 + 0.793549i \(0.291769\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.99804e6 0.994106 0.497053 0.867720i \(-0.334415\pi\)
0.497053 + 0.867720i \(0.334415\pi\)
\(72\) 0 0
\(73\) 2.45405e6 0.738334 0.369167 0.929363i \(-0.379643\pi\)
0.369167 + 0.929363i \(0.379643\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.51863e6 + 7.82650e6i −1.12795 + 1.95366i
\(78\) 0 0
\(79\) −3.91237e6 6.77642e6i −0.892780 1.54634i −0.836528 0.547924i \(-0.815418\pi\)
−0.0562523 0.998417i \(-0.517915\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.74085e6 4.74729e6i −0.526153 0.911324i −0.999536 0.0304670i \(-0.990301\pi\)
0.473383 0.880857i \(-0.343033\pi\)
\(84\) 0 0
\(85\) −39808.4 + 68950.3i −0.00703087 + 0.0121778i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.40387e6 0.211088 0.105544 0.994415i \(-0.466342\pi\)
0.105544 + 0.994415i \(0.466342\pi\)
\(90\) 0 0
\(91\) −1.12232e7 −1.56125
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 278659. 482651.i 0.0333457 0.0577565i
\(96\) 0 0
\(97\) 2.17082e6 + 3.75996e6i 0.241503 + 0.418295i 0.961143 0.276053i \(-0.0890264\pi\)
−0.719640 + 0.694348i \(0.755693\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.48961e6 + 6.04418e6i 0.337017 + 0.583731i 0.983870 0.178884i \(-0.0572487\pi\)
−0.646853 + 0.762615i \(0.723915\pi\)
\(102\) 0 0
\(103\) 3.65411e6 6.32910e6i 0.329497 0.570705i −0.652915 0.757431i \(-0.726454\pi\)
0.982412 + 0.186726i \(0.0597876\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.43091e7 1.91834 0.959170 0.282830i \(-0.0912732\pi\)
0.959170 + 0.282830i \(0.0912732\pi\)
\(108\) 0 0
\(109\) −8.25424e6 −0.610498 −0.305249 0.952273i \(-0.598740\pi\)
−0.305249 + 0.952273i \(0.598740\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.55175e6 + 1.30800e7i −0.492349 + 0.852773i −0.999961 0.00881220i \(-0.997195\pi\)
0.507612 + 0.861586i \(0.330528\pi\)
\(114\) 0 0
\(115\) 596471. + 1.03312e6i 0.0365719 + 0.0633443i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.10841e6 5.38393e6i −0.169092 0.292877i
\(120\) 0 0
\(121\) −1.60594e7 + 2.78156e7i −0.824099 + 1.42738i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.51317e6 0.115090
\(126\) 0 0
\(127\) −2.81769e7 −1.22062 −0.610310 0.792162i \(-0.708955\pi\)
−0.610310 + 0.792162i \(0.708955\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.78835e6 + 1.17578e7i −0.263824 + 0.456957i −0.967255 0.253807i \(-0.918317\pi\)
0.703431 + 0.710764i \(0.251651\pi\)
\(132\) 0 0
\(133\) 2.17589e7 + 3.76874e7i 0.801965 + 1.38904i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.49999e6 + 9.52626e6i 0.182743 + 0.316520i 0.942814 0.333321i \(-0.108169\pi\)
−0.760071 + 0.649840i \(0.774836\pi\)
\(138\) 0 0
\(139\) 6.95480e6 1.20461e7i 0.219651 0.380447i −0.735050 0.678013i \(-0.762841\pi\)
0.954701 + 0.297566i \(0.0961748\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.40882e7 −1.83275
\(144\) 0 0
\(145\) 2.67795e6 0.0729481
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.60354e7 + 4.50947e7i −0.644782 + 1.11679i 0.339570 + 0.940581i \(0.389718\pi\)
−0.984352 + 0.176214i \(0.943615\pi\)
\(150\) 0 0
\(151\) −2.95863e7 5.12449e7i −0.699311 1.21124i −0.968706 0.248213i \(-0.920157\pi\)
0.269394 0.963030i \(-0.413177\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 817586. + 1.41610e6i 0.0176349 + 0.0305445i
\(156\) 0 0
\(157\) 3.09069e7 5.35323e7i 0.637392 1.10399i −0.348611 0.937267i \(-0.613347\pi\)
0.986003 0.166727i \(-0.0533200\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.31500e7 −1.75911
\(162\) 0 0
\(163\) 7.98394e7 1.44398 0.721989 0.691904i \(-0.243228\pi\)
0.721989 + 0.691904i \(0.243228\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.87461e7 3.24692e7i 0.311460 0.539465i −0.667218 0.744862i \(-0.732515\pi\)
0.978679 + 0.205397i \(0.0658485\pi\)
\(168\) 0 0
\(169\) −8.42064e6 1.45850e7i −0.134197 0.232435i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.50788e7 2.61172e7i −0.221414 0.383500i 0.733824 0.679340i \(-0.237734\pi\)
−0.955238 + 0.295840i \(0.904401\pi\)
\(174\) 0 0
\(175\) −4.89781e7 + 8.48326e7i −0.690826 + 1.19655i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.92111e7 −0.380682 −0.190341 0.981718i \(-0.560959\pi\)
−0.190341 + 0.981718i \(0.560959\pi\)
\(180\) 0 0
\(181\) −9.33823e7 −1.17055 −0.585275 0.810835i \(-0.699013\pi\)
−0.585275 + 0.810835i \(0.699013\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.90060e6 + 5.02399e6i −0.0336811 + 0.0583374i
\(186\) 0 0
\(187\) −1.77501e7 3.07441e7i −0.198498 0.343808i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.09571e7 + 3.62988e7i 0.217628 + 0.376942i 0.954082 0.299545i \(-0.0968348\pi\)
−0.736454 + 0.676487i \(0.763501\pi\)
\(192\) 0 0
\(193\) 1.39456e7 2.41545e7i 0.139633 0.241851i −0.787725 0.616027i \(-0.788741\pi\)
0.927358 + 0.374176i \(0.122074\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.00157e7 −0.279716 −0.139858 0.990172i \(-0.544665\pi\)
−0.139858 + 0.990172i \(0.544665\pi\)
\(198\) 0 0
\(199\) −1.28960e8 −1.16003 −0.580016 0.814605i \(-0.696954\pi\)
−0.580016 + 0.814605i \(0.696954\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.04553e8 + 1.81091e8i −0.877202 + 1.51936i
\(204\) 0 0
\(205\) −3.19076e6 5.52656e6i −0.0258676 0.0448039i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.24251e8 + 2.15208e8i 0.941426 + 1.63060i
\(210\) 0 0
\(211\) −8.17536e7 + 1.41601e8i −0.599126 + 1.03772i 0.393824 + 0.919186i \(0.371152\pi\)
−0.992950 + 0.118531i \(0.962181\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.39146e7 −0.0954849
\(216\) 0 0
\(217\) −1.27681e8 −0.848239
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.20435e7 3.81804e7i 0.137375 0.237940i
\(222\) 0 0
\(223\) 7.27567e7 + 1.26018e8i 0.439345 + 0.760968i 0.997639 0.0686751i \(-0.0218772\pi\)
−0.558294 + 0.829643i \(0.688544\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.63056e8 + 2.82421e8i 0.925223 + 1.60253i 0.791201 + 0.611556i \(0.209456\pi\)
0.134022 + 0.990978i \(0.457211\pi\)
\(228\) 0 0
\(229\) −1.05969e8 + 1.83543e8i −0.583115 + 1.00998i 0.411993 + 0.911187i \(0.364833\pi\)
−0.995108 + 0.0987973i \(0.968500\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.31310e7 −0.119798 −0.0598988 0.998204i \(-0.519078\pi\)
−0.0598988 + 0.998204i \(0.519078\pi\)
\(234\) 0 0
\(235\) 6.85686e6 0.0344657
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.58609e7 + 6.21128e7i −0.169914 + 0.294299i −0.938389 0.345580i \(-0.887682\pi\)
0.768476 + 0.639879i \(0.221016\pi\)
\(240\) 0 0
\(241\) −2.00073e8 3.46537e8i −0.920724 1.59474i −0.798298 0.602263i \(-0.794266\pi\)
−0.122426 0.992478i \(-0.539067\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.11471e6 + 1.05910e7i 0.0265641 + 0.0460103i
\(246\) 0 0
\(247\) −1.54304e8 + 2.67262e8i −0.651535 + 1.12849i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.64954e8 −1.85589 −0.927945 0.372716i \(-0.878426\pi\)
−0.927945 + 0.372716i \(0.878426\pi\)
\(252\) 0 0
\(253\) −5.31919e8 −2.06502
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.24827e8 2.16207e8i 0.458715 0.794518i −0.540178 0.841551i \(-0.681643\pi\)
0.998893 + 0.0470326i \(0.0149765\pi\)
\(258\) 0 0
\(259\) −2.26491e8 3.92294e8i −0.810032 1.40302i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.97113e8 + 3.41410e8i 0.668144 + 1.15726i 0.978423 + 0.206614i \(0.0662443\pi\)
−0.310279 + 0.950646i \(0.600422\pi\)
\(264\) 0 0
\(265\) 5.11098e6 8.85247e6i 0.0168711 0.0292216i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.97222e8 0.930997 0.465499 0.885049i \(-0.345875\pi\)
0.465499 + 0.885049i \(0.345875\pi\)
\(270\) 0 0
\(271\) 2.39731e8 0.731698 0.365849 0.930674i \(-0.380779\pi\)
0.365849 + 0.930674i \(0.380779\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.79682e8 + 4.84423e8i −0.810961 + 1.40463i
\(276\) 0 0
\(277\) −6.11716e6 1.05952e7i −0.0172930 0.0299524i 0.857249 0.514901i \(-0.172171\pi\)
−0.874542 + 0.484949i \(0.838838\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.00760e8 3.47727e8i −0.539766 0.934903i −0.998916 0.0465438i \(-0.985179\pi\)
0.459150 0.888359i \(-0.348154\pi\)
\(282\) 0 0
\(283\) 1.51229e8 2.61936e8i 0.396626 0.686977i −0.596681 0.802479i \(-0.703514\pi\)
0.993307 + 0.115501i \(0.0368475\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.98296e8 1.24423
\(288\) 0 0
\(289\) −3.85918e8 −0.940486
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.15237e8 + 3.72802e8i −0.499897 + 0.865848i −1.00000 0.000118525i \(-0.999962\pi\)
0.500103 + 0.865966i \(0.333296\pi\)
\(294\) 0 0
\(295\) −1.41825e7 2.45649e7i −0.0321645 0.0557105i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.30289e8 5.72078e8i −0.714571 1.23767i
\(300\) 0 0
\(301\) 5.43254e8 9.40943e8i 1.14821 1.98875i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.22458e7 −0.0247137
\(306\) 0 0
\(307\) −3.90378e8 −0.770018 −0.385009 0.922913i \(-0.625802\pi\)
−0.385009 + 0.922913i \(0.625802\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.82625e8 3.16316e8i 0.344270 0.596294i −0.640951 0.767582i \(-0.721460\pi\)
0.985221 + 0.171288i \(0.0547930\pi\)
\(312\) 0 0
\(313\) 3.99671e8 + 6.92250e8i 0.736711 + 1.27602i 0.953969 + 0.299906i \(0.0969555\pi\)
−0.217258 + 0.976114i \(0.569711\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.89033e8 + 3.27414e8i 0.333295 + 0.577284i 0.983156 0.182769i \(-0.0585061\pi\)
−0.649861 + 0.760053i \(0.725173\pi\)
\(318\) 0 0
\(319\) −5.97032e8 + 1.03409e9i −1.02975 + 1.78357i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.70946e8 −0.282261
\(324\) 0 0
\(325\) −6.94662e8 −1.12249
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.67706e8 + 4.63681e8i −0.414451 + 0.717850i
\(330\) 0 0
\(331\) −9.05939e7 1.56913e8i −0.137310 0.237827i 0.789168 0.614178i \(-0.210512\pi\)
−0.926477 + 0.376350i \(0.877179\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.51902e7 + 2.63101e7i 0.0220753 + 0.0382355i
\(336\) 0 0
\(337\) 8.10544e7 1.40390e8i 0.115364 0.199817i −0.802561 0.596570i \(-0.796530\pi\)
0.917925 + 0.396753i \(0.129863\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.29104e8 −0.995747
\(342\) 0 0
\(343\) 8.11083e7 0.108526
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.72711e7 + 9.91964e7i −0.0735838 + 0.127451i −0.900470 0.434919i \(-0.856777\pi\)
0.826886 + 0.562370i \(0.190110\pi\)
\(348\) 0 0
\(349\) 7.38174e8 + 1.27855e9i 0.929543 + 1.61002i 0.784087 + 0.620651i \(0.213132\pi\)
0.145456 + 0.989365i \(0.453535\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.61441e8 + 7.99240e8i 0.558348 + 0.967087i 0.997635 + 0.0687402i \(0.0218980\pi\)
−0.439287 + 0.898347i \(0.644769\pi\)
\(354\) 0 0
\(355\) 2.41508e7 4.18304e7i 0.0286505 0.0496241i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.04373e8 0.233127 0.116564 0.993183i \(-0.462812\pi\)
0.116564 + 0.993183i \(0.462812\pi\)
\(360\) 0 0
\(361\) 3.02751e8 0.338696
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.97686e7 3.42403e7i 0.0212790 0.0368564i
\(366\) 0 0
\(367\) −4.57810e8 7.92951e8i −0.483453 0.837365i 0.516366 0.856368i \(-0.327284\pi\)
−0.999819 + 0.0190026i \(0.993951\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.99087e8 + 6.91239e8i 0.405750 + 0.702780i
\(372\) 0 0
\(373\) −3.11520e8 + 5.39569e8i −0.310818 + 0.538352i −0.978540 0.206059i \(-0.933936\pi\)
0.667722 + 0.744411i \(0.267269\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.48288e9 −1.42532
\(378\) 0 0
\(379\) 2.07365e9 1.95658 0.978290 0.207242i \(-0.0664487\pi\)
0.978290 + 0.207242i \(0.0664487\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.84294e8 1.53164e9i 0.804269 1.39303i −0.112515 0.993650i \(-0.535891\pi\)
0.916784 0.399384i \(-0.130776\pi\)
\(384\) 0 0
\(385\) 7.27999e7 + 1.26093e8i 0.0650157 + 0.112611i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.18262e8 3.78041e8i −0.187999 0.325623i 0.756584 0.653896i \(-0.226867\pi\)
−0.944583 + 0.328273i \(0.893533\pi\)
\(390\) 0 0
\(391\) 1.82956e8 3.16889e8i 0.154785 0.268095i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.26065e8 −0.102921
\(396\) 0 0
\(397\) 1.93370e9 1.55104 0.775519 0.631325i \(-0.217488\pi\)
0.775519 + 0.631325i \(0.217488\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.70049e8 1.33376e9i 0.596366 1.03294i −0.396986 0.917825i \(-0.629944\pi\)
0.993352 0.115112i \(-0.0367228\pi\)
\(402\) 0 0
\(403\) −4.52729e8 7.84150e8i −0.344565 0.596803i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.29334e9 2.24013e9i −0.950896 1.64700i
\(408\) 0 0
\(409\) 2.41538e8 4.18356e8i 0.174564 0.302353i −0.765446 0.643500i \(-0.777482\pi\)
0.940010 + 0.341146i \(0.110815\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.21486e9 1.54711
\(414\) 0 0
\(415\) −8.83160e7 −0.0606556
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.97234e8 1.55405e9i 0.595877 1.03209i −0.397545 0.917582i \(-0.630138\pi\)
0.993422 0.114507i \(-0.0365288\pi\)
\(420\) 0 0
\(421\) 3.89591e8 + 6.74791e8i 0.254461 + 0.440739i 0.964749 0.263172i \(-0.0847686\pi\)
−0.710288 + 0.703911i \(0.751435\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.92396e8 3.33240e8i −0.121572 0.210569i
\(426\) 0 0
\(427\) 4.78102e8 8.28097e8i 0.297182 0.514735i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.69529e9 −1.62157 −0.810785 0.585344i \(-0.800960\pi\)
−0.810785 + 0.585344i \(0.800960\pi\)
\(432\) 0 0
\(433\) 1.51823e9 0.898731 0.449366 0.893348i \(-0.351650\pi\)
0.449366 + 0.893348i \(0.351650\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.28069e9 + 2.21822e9i −0.734107 + 1.27151i
\(438\) 0 0
\(439\) −1.03683e9 1.79585e9i −0.584901 1.01308i −0.994888 0.100987i \(-0.967800\pi\)
0.409987 0.912092i \(-0.365533\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.72205e8 + 1.51070e9i 0.476657 + 0.825593i 0.999642 0.0267480i \(-0.00851518\pi\)
−0.522986 + 0.852342i \(0.675182\pi\)
\(444\) 0 0
\(445\) 1.13089e7 1.95877e7i 0.00608362 0.0105371i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.40235e9 −1.25249 −0.626244 0.779627i \(-0.715409\pi\)
−0.626244 + 0.779627i \(0.715409\pi\)
\(450\) 0 0
\(451\) 2.84544e9 1.46060
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.04087e7 + 1.56592e8i −0.0449956 + 0.0779347i
\(456\) 0 0
\(457\) 6.99854e8 + 1.21218e9i 0.343005 + 0.594103i 0.984989 0.172615i \(-0.0552218\pi\)
−0.641984 + 0.766718i \(0.721888\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.51935e8 6.09569e8i −0.167305 0.289781i 0.770166 0.637843i \(-0.220173\pi\)
−0.937471 + 0.348062i \(0.886840\pi\)
\(462\) 0 0
\(463\) 4.10315e8 7.10686e8i 0.192125 0.332770i −0.753829 0.657070i \(-0.771795\pi\)
0.945954 + 0.324300i \(0.105129\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.85482e9 0.842737 0.421368 0.906890i \(-0.361550\pi\)
0.421368 + 0.906890i \(0.361550\pi\)
\(468\) 0 0
\(469\) −2.37223e9 −1.06182
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.10217e9 5.37311e9i 1.34788 2.33460i
\(474\) 0 0
\(475\) 1.34677e9 + 2.33267e9i 0.576588 + 0.998680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.94650e8 + 8.56758e8i 0.205647 + 0.356192i 0.950339 0.311217i \(-0.100737\pi\)
−0.744691 + 0.667409i \(0.767403\pi\)
\(480\) 0 0
\(481\) 1.60617e9 2.78197e9i 0.658089 1.13984i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.99483e7 0.0278408
\(486\) 0 0
\(487\) −7.40241e8 −0.290417 −0.145208 0.989401i \(-0.546385\pi\)
−0.145208 + 0.989401i \(0.546385\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.41638e9 4.18529e9i 0.921255 1.59566i 0.123779 0.992310i \(-0.460499\pi\)
0.797476 0.603351i \(-0.206168\pi\)
\(492\) 0 0
\(493\) −4.10704e8 7.11361e8i −0.154371 0.267378i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.88579e9 + 3.26629e9i 0.689044 + 1.19346i
\(498\) 0 0
\(499\) −1.65538e9 + 2.86720e9i −0.596412 + 1.03302i 0.396934 + 0.917847i \(0.370074\pi\)
−0.993346 + 0.115168i \(0.963259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.51666e9 1.58245 0.791225 0.611526i \(-0.209444\pi\)
0.791225 + 0.611526i \(0.209444\pi\)
\(504\) 0 0
\(505\) 1.12443e8 0.0388518
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.35555e9 4.07994e9i 0.791737 1.37133i −0.133154 0.991095i \(-0.542510\pi\)
0.924891 0.380233i \(-0.124156\pi\)
\(510\) 0 0
\(511\) 1.54362e9 + 2.67363e9i 0.511761 + 0.886396i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.88715e7 1.01969e8i −0.0189924 0.0328958i
\(516\) 0 0
\(517\) −1.52869e9 + 2.64778e9i −0.486524 + 0.842684i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.36592e9 0.423150 0.211575 0.977362i \(-0.432141\pi\)
0.211575 + 0.977362i \(0.432141\pi\)
\(522\) 0 0
\(523\) −3.67627e9 −1.12370 −0.561852 0.827238i \(-0.689911\pi\)
−0.561852 + 0.827238i \(0.689911\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.50779e8 4.34362e8i 0.0746369 0.129275i
\(528\) 0 0
\(529\) −1.03892e9 1.79946e9i −0.305131 0.528502i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.76685e9 + 3.06027e9i 0.505421 + 0.875415i
\(534\) 0 0
\(535\) 1.95823e8 3.39175e8i 0.0552872 0.0957602i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.45295e9 −1.49993
\(540\) 0 0
\(541\) 2.21813e9 0.602277 0.301139 0.953580i \(-0.402633\pi\)
0.301139 + 0.953580i \(0.402633\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.64923e7 + 1.15168e8i −0.0175948 + 0.0304750i
\(546\) 0 0
\(547\) −9.60119e8 1.66297e9i −0.250824 0.434440i 0.712929 0.701236i \(-0.247368\pi\)
−0.963753 + 0.266796i \(0.914035\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.87493e9 + 4.97952e9i 0.732143 + 1.26811i
\(552\) 0 0
\(553\) 4.92183e9 8.52486e9i 1.23762 2.14363i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.27139e9 0.311736 0.155868 0.987778i \(-0.450183\pi\)
0.155868 + 0.987778i \(0.450183\pi\)
\(558\) 0 0
\(559\) 7.70503e9 1.86566
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.21064e9 2.09689e9i 0.285915 0.495219i −0.686916 0.726737i \(-0.741036\pi\)
0.972831 + 0.231518i \(0.0743693\pi\)
\(564\) 0 0
\(565\) 1.21667e8 + 2.10733e8i 0.0283793 + 0.0491544i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.80973e9 4.86659e9i −0.639399 1.10747i −0.985565 0.169298i \(-0.945850\pi\)
0.346166 0.938173i \(-0.387483\pi\)
\(570\) 0 0
\(571\) −3.80308e8 + 6.58714e8i −0.0854889 + 0.148071i −0.905599 0.424134i \(-0.860579\pi\)
0.820111 + 0.572205i \(0.193912\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.76554e9 −1.26474
\(576\) 0 0
\(577\) −7.92531e9 −1.71752 −0.858758 0.512381i \(-0.828763\pi\)
−0.858758 + 0.512381i \(0.828763\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.44804e9 5.97219e9i 0.729384 1.26333i
\(582\) 0 0
\(583\) 2.27892e9 + 3.94721e9i 0.476310 + 0.824993i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.84157e9 + 3.18969e9i 0.375798 + 0.650902i 0.990446 0.137900i \(-0.0440352\pi\)
−0.614648 + 0.788802i \(0.710702\pi\)
\(588\) 0 0
\(589\) −1.75545e9 + 3.04053e9i −0.353985 + 0.613120i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.41737e9 −1.26376 −0.631882 0.775065i \(-0.717717\pi\)
−0.631882 + 0.775065i \(0.717717\pi\)
\(594\) 0 0
\(595\) −1.00160e8 −0.0194932
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.72849e9 + 4.72589e9i −0.518715 + 0.898441i 0.481048 + 0.876694i \(0.340256\pi\)
−0.999764 + 0.0217468i \(0.993077\pi\)
\(600\) 0 0
\(601\) −3.33717e8 5.78016e8i −0.0627073 0.108612i 0.832967 0.553322i \(-0.186640\pi\)
−0.895675 + 0.444710i \(0.853307\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.58733e8 + 4.48139e8i 0.0475016 + 0.0822752i
\(606\) 0 0
\(607\) 3.87497e9 6.71164e9i 0.703246 1.21806i −0.264074 0.964502i \(-0.585066\pi\)
0.967321 0.253556i \(-0.0816002\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.79691e9 −0.673419
\(612\) 0 0
\(613\) 5.23247e9 0.917477 0.458738 0.888571i \(-0.348301\pi\)
0.458738 + 0.888571i \(0.348301\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.38936e9 5.87054e9i 0.580924 1.00619i −0.414446 0.910074i \(-0.636025\pi\)
0.995370 0.0961166i \(-0.0306422\pi\)
\(618\) 0 0
\(619\) 3.60531e9 + 6.24458e9i 0.610977 + 1.05824i 0.991076 + 0.133298i \(0.0425566\pi\)
−0.380099 + 0.924946i \(0.624110\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.83051e8 + 1.52949e9i 0.146311 + 0.253418i
\(624\) 0 0
\(625\) −3.02137e9 + 5.23317e9i −0.495022 + 0.857403i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.77941e9 0.285100
\(630\) 0 0
\(631\) 3.24048e9 0.513460 0.256730 0.966483i \(-0.417355\pi\)
0.256730 + 0.966483i \(0.417355\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.26980e8 + 3.93141e8i −0.0351787 + 0.0609313i
\(636\) 0 0
\(637\) −3.38595e9 5.86464e9i −0.519030 0.898986i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.41139e9 4.17665e9i −0.361630 0.626362i 0.626599 0.779342i \(-0.284446\pi\)
−0.988229 + 0.152980i \(0.951113\pi\)
\(642\) 0 0
\(643\) 2.87064e9 4.97210e9i 0.425835 0.737567i −0.570663 0.821184i \(-0.693314\pi\)
0.996498 + 0.0836170i \(0.0266472\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.26278e9 −0.618768 −0.309384 0.950937i \(-0.600123\pi\)
−0.309384 + 0.950937i \(0.600123\pi\)
\(648\) 0 0
\(649\) 1.26476e10 1.81616
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.20410e9 + 5.54967e9i −0.450308 + 0.779957i −0.998405 0.0564580i \(-0.982019\pi\)
0.548097 + 0.836415i \(0.315353\pi\)
\(654\) 0 0
\(655\) 1.09367e8 + 1.89430e8i 0.0152070 + 0.0263393i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.74480e9 8.21823e9i −0.645831 1.11861i −0.984109 0.177566i \(-0.943178\pi\)
0.338278 0.941046i \(-0.390156\pi\)
\(660\) 0 0
\(661\) −3.96599e9 + 6.86929e9i −0.534129 + 0.925138i 0.465076 + 0.885271i \(0.346027\pi\)
−0.999205 + 0.0398677i \(0.987306\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7.01116e8 0.0924515
\(666\) 0 0
\(667\) −1.23076e10 −1.60596
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.73013e9 4.72872e9i 0.348862 0.604247i
\(672\) 0 0
\(673\) −3.39566e9 5.88145e9i −0.429409 0.743758i 0.567412 0.823434i \(-0.307945\pi\)
−0.996821 + 0.0796763i \(0.974611\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.50731e9 + 1.12710e10i 0.806012 + 1.39605i 0.915606 + 0.402077i \(0.131712\pi\)
−0.109594 + 0.993976i \(0.534955\pi\)
\(678\) 0 0
\(679\) −2.73093e9 + 4.73011e9i −0.334785 + 0.579865i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.51975e9 1.14328 0.571640 0.820504i \(-0.306307\pi\)
0.571640 + 0.820504i \(0.306307\pi\)
\(684\) 0 0
\(685\) 1.77221e8 0.0210668
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.83014e9 + 4.90195e9i −0.329641 + 0.570955i
\(690\) 0 0
\(691\) 2.34333e8 + 4.05877e8i 0.0270185 + 0.0467973i 0.879218 0.476419i \(-0.158065\pi\)
−0.852200 + 0.523216i \(0.824732\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.12049e8 1.94075e8i −0.0126608 0.0219292i
\(696\) 0 0
\(697\) −9.78704e8 + 1.69516e9i −0.109480 + 0.189626i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.05093e10 −1.15229 −0.576145 0.817348i \(-0.695444\pi\)
−0.576145 + 0.817348i \(0.695444\pi\)
\(702\) 0 0
\(703\) −1.24558e10 −1.35216
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.38999e9 + 7.60369e9i −0.467193 + 0.809201i
\(708\) 0 0
\(709\) −2.92228e8 5.06154e8i −0.0307936 0.0533361i 0.850218 0.526431i \(-0.176470\pi\)
−0.881012 + 0.473095i \(0.843137\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.75756e9 6.50828e9i −0.388233 0.672439i
\(714\) 0 0
\(715\) −5.16264e8 + 8.94196e8i −0.0528203 + 0.0914875i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.03702e9 −0.405051 −0.202526 0.979277i \(-0.564915\pi\)
−0.202526 + 0.979277i \(0.564915\pi\)
\(720\) 0 0
\(721\) 9.19388e9 0.913535
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.47132e9 + 1.12087e10i −0.630681 + 1.09237i
\(726\) 0 0
\(727\) −2.29032e9 3.96695e9i −0.221068 0.382901i 0.734065 0.679080i \(-0.237621\pi\)
−0.955133 + 0.296179i \(0.904288\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.13401e9 + 3.69622e9i 0.202063 + 0.349983i
\(732\) 0 0
\(733\) −6.80858e9 + 1.17928e10i −0.638547 + 1.10600i 0.347205 + 0.937789i \(0.387131\pi\)
−0.985752 + 0.168207i \(0.946202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.35462e10 −1.24647
\(738\) 0 0
\(739\) −2.25285e9 −0.205341 −0.102671 0.994715i \(-0.532739\pi\)
−0.102671 + 0.994715i \(0.532739\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.93509e9 6.81578e9i 0.351961 0.609614i −0.634632 0.772814i \(-0.718848\pi\)
0.986593 + 0.163200i \(0.0521817\pi\)
\(744\) 0 0
\(745\) 4.19458e8 + 7.26523e8i 0.0371656 + 0.0643728i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.52907e10 + 2.64842e10i 1.32966 + 2.30303i
\(750\) 0 0
\(751\) 2.54147e9 4.40195e9i 0.218950 0.379232i −0.735537 0.677484i \(-0.763070\pi\)
0.954487 + 0.298252i \(0.0964036\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.53331e8 −0.0806175
\(756\) 0 0
\(757\) −1.51049e10 −1.26556 −0.632780 0.774332i \(-0.718086\pi\)
−0.632780 + 0.774332i \(0.718086\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.88888e9 + 5.00369e9i −0.237620 + 0.411570i −0.960031 0.279894i \(-0.909701\pi\)
0.722411 + 0.691464i \(0.243034\pi\)
\(762\) 0 0
\(763\) −5.19200e9 8.99280e9i −0.423154 0.732925i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.85341e9 + 1.36025e10i 0.628456 + 1.08852i
\(768\) 0 0
\(769\) 1.19009e9 2.06130e9i 0.0943712 0.163456i −0.814975 0.579496i \(-0.803249\pi\)
0.909346 + 0.416041i \(0.136583\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.06529e9 −0.550176 −0.275088 0.961419i \(-0.588707\pi\)
−0.275088 + 0.961419i \(0.588707\pi\)
\(774\) 0 0
\(775\) −7.90286e9 −0.609858
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.85092e9 1.18661e10i 0.519239 0.899349i
\(780\) 0 0
\(781\) 1.07685e10 + 1.86517e10i 0.808869 + 1.40100i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.97942e8 8.62461e8i −0.0367397 0.0636350i
\(786\) 0 0
\(787\) −6.76448e9 + 1.17164e10i −0.494679 + 0.856809i −0.999981 0.00613374i \(-0.998048\pi\)
0.505303 + 0.862942i \(0.331381\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.90005e10 −1.36505
\(792\) 0 0
\(793\) 6.78097e9 0.482876
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.90848e9 + 5.03763e9i −0.203499 + 0.352470i −0.949653 0.313302i \(-0.898565\pi\)
0.746155 + 0.665773i \(0.231898\pi\)
\(798\) 0 0
\(799\) −1.05160e9 1.82143e9i −0.0729355 0.126328i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.81460e9 + 1.52673e10i 0.600756 + 1.04054i
\(804\) 0 0
\(805\) −7.50373e8 + 1.29968e9i −0.0506981 + 0.0878116i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.81965e9 0.120828 0.0604140 0.998173i \(-0.480758\pi\)
0.0604140 + 0.998173i \(0.480758\pi\)
\(810\) 0 0
\(811\) −9.75638e9 −0.642267 −0.321133 0.947034i \(-0.604064\pi\)
−0.321133 + 0.947034i \(0.604064\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.43148e8 1.11397e9i 0.0416159 0.0720809i
\(816\) 0 0
\(817\) −1.49381e10 2.58735e10i −0.958334 1.65988i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.19115e10 + 2.06314e10i 0.751220 + 1.30115i 0.947232 + 0.320550i \(0.103868\pi\)
−0.196012 + 0.980602i \(0.562799\pi\)
\(822\) 0 0
\(823\) 7.89296e9 1.36710e10i 0.493561 0.854872i −0.506412 0.862292i \(-0.669028\pi\)
0.999972 + 0.00741953i \(0.00236173\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −7.54697e9 −0.463985 −0.231992 0.972718i \(-0.574524\pi\)
−0.231992 + 0.972718i \(0.574524\pi\)
\(828\) 0 0
\(829\) −2.77361e10 −1.69085 −0.845424 0.534096i \(-0.820652\pi\)
−0.845424 + 0.534096i \(0.820652\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.87557e9 3.24858e9i 0.112428 0.194732i
\(834\) 0 0
\(835\) −3.02019e8 5.23112e8i −0.0179528 0.0310951i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.06404e8 3.57502e8i −0.0120657 0.0208983i 0.859930 0.510413i \(-0.170507\pi\)
−0.871995 + 0.489514i \(0.837174\pi\)
\(840\) 0 0
\(841\) −5.18928e9 + 8.98810e9i −0.300830 + 0.521053i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.71331e8 −0.0154704
\(846\) 0 0
\(847\) −4.04060e10 −2.28483
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.33309e10 2.30898e10i 0.741491 1.28430i
\(852\) 0 0
\(853\) 1.24159e10 + 2.15050e10i 0.684947 + 1.18636i 0.973453 + 0.228885i \(0.0735081\pi\)
−0.288506 + 0.957478i \(0.593159\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.21928e9 7.30801e9i −0.228984 0.396612i 0.728523 0.685021i \(-0.240207\pi\)
−0.957507 + 0.288409i \(0.906874\pi\)
\(858\) 0 0
\(859\) 1.37913e10 2.38873e10i 0.742387 1.28585i −0.209018 0.977912i \(-0.567027\pi\)
0.951406 0.307941i \(-0.0996399\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.47588e9 0.290012 0.145006 0.989431i \(-0.453680\pi\)
0.145006 + 0.989431i \(0.453680\pi\)
\(864\) 0 0
\(865\) −4.85870e8 −0.0255249
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.81054e10 4.86799e10i 1.45285 2.51640i
\(870\) 0 0
\(871\) −8.41138e9 1.45689e10i −0.431324 0.747075i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.58081e9 + 2.73804e9i 0.0797721 + 0.138169i
\(876\) 0 0
\(877\) −1.30792e10 + 2.26538e10i −0.654761 + 1.13408i 0.327193 + 0.944958i \(0.393897\pi\)
−0.981954 + 0.189122i \(0.939436\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.51788e9 −0.370408 −0.185204 0.982700i \(-0.559295\pi\)
−0.185204 + 0.982700i \(0.559295\pi\)
\(882\) 0 0
\(883\) −6.87631e9 −0.336119 −0.168060 0.985777i \(-0.553750\pi\)
−0.168060 + 0.985777i \(0.553750\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.65691e9 + 1.49942e10i −0.416515 + 0.721425i −0.995586 0.0938521i \(-0.970082\pi\)
0.579071 + 0.815277i \(0.303415\pi\)
\(888\) 0 0
\(889\) −1.77236e10 3.06981e10i −0.846048 1.46540i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.36122e9 + 1.27500e10i 0.345915 + 0.599143i
\(894\) 0 0
\(895\) −2.35311e8 + 4.07571e8i −0.0109714 + 0.0190030i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.68701e10 −0.774389
\(900\) 0 0
\(901\) −3.13539e9 −0.142809
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.52244e8 + 1.30292e9i −0.0337356 + 0.0584318i
\(906\) 0 0
\(907\) 1.37840e10 + 2.38747e10i 0.613410 + 1.06246i 0.990661 + 0.136346i \(0.0435360\pi\)
−0.377251 + 0.926111i \(0.623131\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.21133e9 + 9.02628e9i 0.228367 + 0.395544i 0.957324 0.289016i \(-0.0933280\pi\)
−0.728957 + 0.684559i \(0.759995\pi\)
\(912\) 0 0
\(913\) 1.96895e10 3.41032e10i 0.856224 1.48302i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.70798e10 −0.731457
\(918\) 0 0
\(919\) 4.43234e10 1.88377 0.941887 0.335929i \(-0.109050\pi\)
0.941887 + 0.335929i \(0.109050\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.33732e10 + 2.31631e10i −0.559796 + 0.969595i
\(924\) 0 0
\(925\) −1.40187e10 2.42811e10i −0.582388 1.00873i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.15099e9 + 1.41179e10i 0.333546 + 0.577718i 0.983204 0.182508i \(-0.0584215\pi\)
−0.649659 + 0.760226i \(0.725088\pi\)
\(930\) 0 0
\(931\) −1.31290e10 + 2.27400e10i −0.533220 + 0.923564i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.71946e8 −0.0228831
\(936\) 0 0
\(937\) 1.40475e10 0.557843 0.278921 0.960314i \(-0.410023\pi\)
0.278921 + 0.960314i \(0.410023\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.23540e10 + 3.87182e10i −0.874563 + 1.51479i −0.0173363 + 0.999850i \(0.505519\pi\)
−0.857227 + 0.514938i \(0.827815\pi\)
\(942\) 0 0
\(943\) 1.46644e10 + 2.53996e10i 0.569475 + 0.986360i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.80653e10 + 3.12901e10i 0.691228 + 1.19724i 0.971436 + 0.237302i \(0.0762632\pi\)
−0.280208 + 0.959939i \(0.590403\pi\)
\(948\) 0 0
\(949\) −1.09467e10 + 1.89602e10i −0.415767 + 0.720129i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.92408e10 −1.09437 −0.547185 0.837011i \(-0.684301\pi\)
−0.547185 + 0.837011i \(0.684301\pi\)
\(954\) 0 0
\(955\) 6.75282e8 0.0250884
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.91909e9 + 1.19842e10i −0.253329 + 0.438778i
\(960\) 0 0
\(961\) 8.60581e9 + 1.49057e10i 0.312795 + 0.541777i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.24679e8 3.89155e8i −0.00804852 0.0139404i
\(966\) 0 0
\(967\) −1.93427e10 + 3.35026e10i −0.687900 + 1.19148i 0.284616 + 0.958642i \(0.408134\pi\)
−0.972516 + 0.232836i \(0.925199\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.44519e9 0.225927 0.112964 0.993599i \(-0.463966\pi\)
0.112964 + 0.993599i \(0.463966\pi\)
\(972\) 0 0
\(973\) 1.74986e10 0.608986
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.78292e9 1.69445e10i 0.335612 0.581297i −0.647990 0.761649i \(-0.724390\pi\)
0.983602 + 0.180352i \(0.0577235\pi\)
\(978\) 0 0
\(979\) 5.04252e9 + 8.73391e9i 0.171755 + 0.297488i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.84494e10 3.19553e10i −0.619505 1.07301i −0.989576 0.144011i \(-0.954000\pi\)
0.370071 0.929004i \(-0.379333\pi\)
\(984\) 0 0
\(985\) −2.41792e8 + 4.18797e8i −0.00806150 + 0.0139629i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.39501e10 2.10210
\(990\) 0 0
\(991\) 8.90183e9 0.290550 0.145275 0.989391i \(-0.453593\pi\)
0.145275 + 0.989391i \(0.453593\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.03884e9 + 1.79933e9i −0.0334325 + 0.0579068i
\(996\) 0 0
\(997\) 1.30622e10 + 2.26244e10i 0.417430 + 0.723009i 0.995680 0.0928501i \(-0.0295977\pi\)
−0.578251 + 0.815859i \(0.696264\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.8.i.e.145.6 20
3.2 odd 2 144.8.i.e.49.3 20
4.3 odd 2 216.8.i.a.145.6 20
9.2 odd 6 144.8.i.e.97.3 20
9.7 even 3 inner 432.8.i.e.289.6 20
12.11 even 2 72.8.i.a.49.8 yes 20
36.7 odd 6 216.8.i.a.73.6 20
36.11 even 6 72.8.i.a.25.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.8.i.a.25.8 20 36.11 even 6
72.8.i.a.49.8 yes 20 12.11 even 2
144.8.i.e.49.3 20 3.2 odd 2
144.8.i.e.97.3 20 9.2 odd 6
216.8.i.a.73.6 20 36.7 odd 6
216.8.i.a.145.6 20 4.3 odd 2
432.8.i.e.145.6 20 1.1 even 1 trivial
432.8.i.e.289.6 20 9.7 even 3 inner