Properties

Label 432.8.i.e.289.1
Level $432$
Weight $8$
Character 432.289
Analytic conductor $134.950$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(145,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.145");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(134.950331009\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} + 332929 x^{18} - 2996076 x^{17} + 44578211685 x^{16} - 356557783716 x^{15} + \cdots + 79\!\cdots\!67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{48}\cdot 3^{45} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 + 315.199i\) of defining polynomial
Character \(\chi\) \(=\) 432.289
Dual form 432.8.i.e.145.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-266.720 - 461.973i) q^{5} +(66.5594 - 115.284i) q^{7} +(731.541 - 1267.07i) q^{11} +(1045.78 + 1811.34i) q^{13} -21961.2 q^{17} +34405.2 q^{19} +(32866.5 + 56926.4i) q^{23} +(-103217. + 178777. i) q^{25} +(74878.5 - 129693. i) q^{29} +(-17144.3 - 29694.7i) q^{31} -71010.9 q^{35} -219233. q^{37} +(371671. + 643752. i) q^{41} +(-246801. + 427472. i) q^{43} +(-661565. + 1.14586e6i) q^{47} +(402911. + 697863. i) q^{49} +421155. q^{53} -780467. q^{55} +(-1.23603e6 - 2.14086e6i) q^{59} +(-693435. + 1.20107e6i) q^{61} +(557861. - 966244. i) q^{65} +(447311. + 774766. i) q^{67} +2.89163e6 q^{71} +115265. q^{73} +(-97381.9 - 168670. i) q^{77} +(2.15801e6 - 3.73779e6i) q^{79} +(2.20388e6 - 3.81724e6i) q^{83} +(5.85749e6 + 1.01455e7i) q^{85} -3.58129e6 q^{89} +278426. q^{91} +(-9.17655e6 - 1.58943e7i) q^{95} +(4.45354e6 - 7.71376e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 125 q^{5} - 1245 q^{7} + 6106 q^{11} + 4937 q^{13} - 48722 q^{17} + 26882 q^{19} + 19387 q^{23} - 218957 q^{25} + 46791 q^{29} + 185039 q^{31} + 83094 q^{35} + 108420 q^{37} + 638112 q^{41} - 892628 q^{43}+ \cdots + 17951260 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −266.720 461.973i −0.954247 1.65281i −0.736081 0.676894i \(-0.763326\pi\)
−0.218167 0.975912i \(-0.570008\pi\)
\(6\) 0 0
\(7\) 66.5594 115.284i 0.0733443 0.127036i −0.827021 0.562171i \(-0.809966\pi\)
0.900365 + 0.435135i \(0.143299\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 731.541 1267.07i 0.165716 0.287028i −0.771193 0.636601i \(-0.780340\pi\)
0.936909 + 0.349573i \(0.113673\pi\)
\(12\) 0 0
\(13\) 1045.78 + 1811.34i 0.132020 + 0.228665i 0.924455 0.381291i \(-0.124520\pi\)
−0.792435 + 0.609956i \(0.791187\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −21961.2 −1.08414 −0.542069 0.840334i \(-0.682359\pi\)
−0.542069 + 0.840334i \(0.682359\pi\)
\(18\) 0 0
\(19\) 34405.2 1.15076 0.575382 0.817885i \(-0.304854\pi\)
0.575382 + 0.817885i \(0.304854\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 32866.5 + 56926.4i 0.563256 + 0.975588i 0.997210 + 0.0746525i \(0.0237847\pi\)
−0.433954 + 0.900935i \(0.642882\pi\)
\(24\) 0 0
\(25\) −103217. + 178777.i −1.32118 + 2.28834i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 74878.5 129693.i 0.570118 0.987473i −0.426436 0.904518i \(-0.640231\pi\)
0.996553 0.0829547i \(-0.0264357\pi\)
\(30\) 0 0
\(31\) −17144.3 29694.7i −0.103360 0.179025i 0.809707 0.586834i \(-0.199626\pi\)
−0.913067 + 0.407810i \(0.866293\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −71010.9 −0.279954
\(36\) 0 0
\(37\) −219233. −0.711542 −0.355771 0.934573i \(-0.615782\pi\)
−0.355771 + 0.934573i \(0.615782\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 371671. + 643752.i 0.842199 + 1.45873i 0.888032 + 0.459782i \(0.152073\pi\)
−0.0458325 + 0.998949i \(0.514594\pi\)
\(42\) 0 0
\(43\) −246801. + 427472.i −0.473377 + 0.819913i −0.999536 0.0304733i \(-0.990299\pi\)
0.526158 + 0.850387i \(0.323632\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −661565. + 1.14586e6i −0.929458 + 1.60987i −0.145228 + 0.989398i \(0.546392\pi\)
−0.784230 + 0.620471i \(0.786942\pi\)
\(48\) 0 0
\(49\) 402911. + 697863.i 0.489241 + 0.847391i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 421155. 0.388577 0.194288 0.980944i \(-0.437760\pi\)
0.194288 + 0.980944i \(0.437760\pi\)
\(54\) 0 0
\(55\) −780467. −0.632536
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.23603e6 2.14086e6i −0.783513 1.35708i −0.929884 0.367854i \(-0.880093\pi\)
0.146371 0.989230i \(-0.453241\pi\)
\(60\) 0 0
\(61\) −693435. + 1.20107e6i −0.391157 + 0.677504i −0.992602 0.121410i \(-0.961259\pi\)
0.601445 + 0.798914i \(0.294592\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 557861. 966244.i 0.251959 0.436405i
\(66\) 0 0
\(67\) 447311. + 774766.i 0.181697 + 0.314709i 0.942459 0.334323i \(-0.108508\pi\)
−0.760761 + 0.649032i \(0.775174\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.89163e6 0.958823 0.479411 0.877590i \(-0.340850\pi\)
0.479411 + 0.877590i \(0.340850\pi\)
\(72\) 0 0
\(73\) 115265. 0.0346790 0.0173395 0.999850i \(-0.494480\pi\)
0.0173395 + 0.999850i \(0.494480\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −97381.9 168670.i −0.0243086 0.0421038i
\(78\) 0 0
\(79\) 2.15801e6 3.73779e6i 0.492447 0.852943i −0.507515 0.861643i \(-0.669436\pi\)
0.999962 + 0.00869992i \(0.00276931\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.20388e6 3.81724e6i 0.423073 0.732784i −0.573165 0.819440i \(-0.694285\pi\)
0.996238 + 0.0866560i \(0.0276181\pi\)
\(84\) 0 0
\(85\) 5.85749e6 + 1.01455e7i 1.03454 + 1.79187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.58129e6 −0.538485 −0.269243 0.963072i \(-0.586773\pi\)
−0.269243 + 0.963072i \(0.586773\pi\)
\(90\) 0 0
\(91\) 278426. 0.0387315
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.17655e6 1.58943e7i −1.09811 1.90199i
\(96\) 0 0
\(97\) 4.45354e6 7.71376e6i 0.495456 0.858154i −0.504531 0.863394i \(-0.668334\pi\)
0.999986 + 0.00523960i \(0.00166782\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.89730e6 1.54106e7i 0.859277 1.48831i −0.0133420 0.999911i \(-0.504247\pi\)
0.872619 0.488401i \(-0.162420\pi\)
\(102\) 0 0
\(103\) −859264. 1.48829e6i −0.0774812 0.134201i 0.824681 0.565598i \(-0.191354\pi\)
−0.902163 + 0.431396i \(0.858021\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.23386e7 −1.76284 −0.881419 0.472336i \(-0.843411\pi\)
−0.881419 + 0.472336i \(0.843411\pi\)
\(108\) 0 0
\(109\) 9.63597e6 0.712693 0.356347 0.934354i \(-0.384022\pi\)
0.356347 + 0.934354i \(0.384022\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.84603e6 + 1.35897e7i 0.511535 + 0.886005i 0.999911 + 0.0133713i \(0.00425635\pi\)
−0.488375 + 0.872634i \(0.662410\pi\)
\(114\) 0 0
\(115\) 1.75323e7 3.03668e7i 1.07497 1.86190i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.46172e6 + 2.53178e6i −0.0795153 + 0.137724i
\(120\) 0 0
\(121\) 8.67328e6 + 1.50226e7i 0.445076 + 0.770895i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.84451e7 3.13442
\(126\) 0 0
\(127\) −1.36446e7 −0.591081 −0.295541 0.955330i \(-0.595500\pi\)
−0.295541 + 0.955330i \(0.595500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.13096e7 + 3.69094e7i 0.828183 + 1.43446i 0.899462 + 0.436999i \(0.143959\pi\)
−0.0712787 + 0.997456i \(0.522708\pi\)
\(132\) 0 0
\(133\) 2.28999e6 3.96637e6i 0.0844019 0.146188i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.41545e7 + 4.18368e7i −0.802557 + 1.39007i 0.115371 + 0.993322i \(0.463194\pi\)
−0.917928 + 0.396747i \(0.870139\pi\)
\(138\) 0 0
\(139\) −1.60723e7 2.78380e7i −0.507605 0.879198i −0.999961 0.00880394i \(-0.997198\pi\)
0.492356 0.870394i \(-0.336136\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.06012e6 0.0875110
\(144\) 0 0
\(145\) −7.98865e7 −2.17613
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.12294e6 + 1.40693e7i 0.201169 + 0.348435i 0.948905 0.315561i \(-0.102193\pi\)
−0.747736 + 0.663996i \(0.768859\pi\)
\(150\) 0 0
\(151\) 2.46903e7 4.27649e7i 0.583590 1.01081i −0.411460 0.911428i \(-0.634981\pi\)
0.995050 0.0993794i \(-0.0316857\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.14544e6 + 1.58404e7i −0.197262 + 0.341668i
\(156\) 0 0
\(157\) 3.22880e7 + 5.59244e7i 0.665874 + 1.15333i 0.979047 + 0.203632i \(0.0652747\pi\)
−0.313173 + 0.949696i \(0.601392\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.75029e6 0.165246
\(162\) 0 0
\(163\) 1.67560e7 0.303050 0.151525 0.988453i \(-0.451582\pi\)
0.151525 + 0.988453i \(0.451582\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.24653e7 + 7.35521e7i 0.705549 + 1.22205i 0.966493 + 0.256692i \(0.0826328\pi\)
−0.260944 + 0.965354i \(0.584034\pi\)
\(168\) 0 0
\(169\) 2.91869e7 5.05533e7i 0.465142 0.805649i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.06023e6 + 1.04966e7i −0.0889872 + 0.154130i −0.907083 0.420951i \(-0.861696\pi\)
0.818096 + 0.575082i \(0.195030\pi\)
\(174\) 0 0
\(175\) 1.37401e7 + 2.37986e7i 0.193801 + 0.335674i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.17162e7 0.673970 0.336985 0.941510i \(-0.390593\pi\)
0.336985 + 0.941510i \(0.390593\pi\)
\(180\) 0 0
\(181\) 9.59020e7 1.20213 0.601067 0.799199i \(-0.294743\pi\)
0.601067 + 0.799199i \(0.294743\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.84739e7 + 1.01280e8i 0.678987 + 1.17604i
\(186\) 0 0
\(187\) −1.60655e7 + 2.78263e7i −0.179659 + 0.311178i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.79064e7 8.29763e7i 0.497481 0.861662i −0.502515 0.864569i \(-0.667592\pi\)
0.999996 + 0.00290627i \(0.000925095\pi\)
\(192\) 0 0
\(193\) −6.93095e7 1.20048e8i −0.693972 1.20200i −0.970526 0.240997i \(-0.922526\pi\)
0.276553 0.960999i \(-0.410808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.13963e7 0.572151 0.286075 0.958207i \(-0.407649\pi\)
0.286075 + 0.958207i \(0.407649\pi\)
\(198\) 0 0
\(199\) −3.17586e7 −0.285677 −0.142839 0.989746i \(-0.545623\pi\)
−0.142839 + 0.989746i \(0.545623\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.96774e6 1.72646e7i −0.0836297 0.144851i
\(204\) 0 0
\(205\) 1.98264e8 3.43404e8i 1.60733 2.78398i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.51688e7 4.35936e7i 0.190700 0.330302i
\(210\) 0 0
\(211\) −3.33699e7 5.77983e7i −0.244549 0.423571i 0.717456 0.696604i \(-0.245307\pi\)
−0.962005 + 0.273033i \(0.911973\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.63307e8 1.80688
\(216\) 0 0
\(217\) −4.56445e6 −0.0303235
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.29665e7 3.97792e7i −0.143127 0.247904i
\(222\) 0 0
\(223\) 1.93530e7 3.35204e7i 0.116864 0.202415i −0.801659 0.597781i \(-0.796049\pi\)
0.918523 + 0.395366i \(0.129382\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.07190e7 + 8.78479e7i −0.287793 + 0.498472i −0.973283 0.229610i \(-0.926255\pi\)
0.685490 + 0.728082i \(0.259588\pi\)
\(228\) 0 0
\(229\) 4.64786e7 + 8.05033e7i 0.255758 + 0.442986i 0.965101 0.261878i \(-0.0843417\pi\)
−0.709343 + 0.704863i \(0.751008\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.57010e8 −1.33108 −0.665540 0.746362i \(-0.731799\pi\)
−0.665540 + 0.746362i \(0.731799\pi\)
\(234\) 0 0
\(235\) 7.05811e8 3.54773
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.59061e7 + 4.48707e7i 0.122747 + 0.212604i 0.920850 0.389917i \(-0.127496\pi\)
−0.798103 + 0.602521i \(0.794163\pi\)
\(240\) 0 0
\(241\) −7.44669e6 + 1.28980e7i −0.0342692 + 0.0593559i −0.882651 0.470028i \(-0.844244\pi\)
0.848382 + 0.529384i \(0.177577\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.14929e8 3.72268e8i 0.933714 1.61724i
\(246\) 0 0
\(247\) 3.59802e7 + 6.23195e7i 0.151923 + 0.263139i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.63741e8 1.05274 0.526368 0.850257i \(-0.323553\pi\)
0.526368 + 0.850257i \(0.323553\pi\)
\(252\) 0 0
\(253\) 9.61727e7 0.373362
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.92140e7 1.71844e8i −0.364592 0.631492i 0.624119 0.781329i \(-0.285458\pi\)
−0.988711 + 0.149838i \(0.952125\pi\)
\(258\) 0 0
\(259\) −1.45920e7 + 2.52741e7i −0.0521875 + 0.0903914i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.51106e8 2.61724e8i 0.512197 0.887151i −0.487703 0.873010i \(-0.662165\pi\)
0.999900 0.0141417i \(-0.00450159\pi\)
\(264\) 0 0
\(265\) −1.12331e8 1.94562e8i −0.370798 0.642241i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.05057e8 −0.329072 −0.164536 0.986371i \(-0.552613\pi\)
−0.164536 + 0.986371i \(0.552613\pi\)
\(270\) 0 0
\(271\) 2.58838e8 0.790016 0.395008 0.918678i \(-0.370742\pi\)
0.395008 + 0.918678i \(0.370742\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.51015e8 + 2.61565e8i 0.437880 + 0.758431i
\(276\) 0 0
\(277\) −6.16771e7 + 1.06828e8i −0.174359 + 0.301999i −0.939939 0.341342i \(-0.889119\pi\)
0.765580 + 0.643340i \(0.222452\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.09130e7 3.62224e7i 0.0562269 0.0973878i −0.836542 0.547903i \(-0.815426\pi\)
0.892769 + 0.450515i \(0.148760\pi\)
\(282\) 0 0
\(283\) −1.84191e8 3.19029e8i −0.483078 0.836715i 0.516734 0.856146i \(-0.327148\pi\)
−0.999811 + 0.0194313i \(0.993814\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.89527e7 0.247082
\(288\) 0 0
\(289\) 7.19546e7 0.175354
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.70598e8 + 4.68689e8i 0.628474 + 1.08855i 0.987858 + 0.155360i \(0.0496536\pi\)
−0.359384 + 0.933190i \(0.617013\pi\)
\(294\) 0 0
\(295\) −6.59347e8 + 1.14202e9i −1.49533 + 2.58999i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.87422e7 + 1.19065e8i −0.148722 + 0.257593i
\(300\) 0 0
\(301\) 3.28538e7 + 5.69045e7i 0.0694390 + 0.120272i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.39813e8 1.49304
\(306\) 0 0
\(307\) 1.85659e7 0.0366210 0.0183105 0.999832i \(-0.494171\pi\)
0.0183105 + 0.999832i \(0.494171\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.35014e8 + 2.33850e8i 0.254517 + 0.440836i 0.964764 0.263116i \(-0.0847503\pi\)
−0.710247 + 0.703952i \(0.751417\pi\)
\(312\) 0 0
\(313\) 3.06051e8 5.30096e8i 0.564142 0.977123i −0.432987 0.901400i \(-0.642540\pi\)
0.997129 0.0757227i \(-0.0241264\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.38932e8 + 7.60252e8i −0.773908 + 1.34045i 0.161498 + 0.986873i \(0.448368\pi\)
−0.935406 + 0.353575i \(0.884966\pi\)
\(318\) 0 0
\(319\) −1.09553e8 1.89752e8i −0.188955 0.327280i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.55578e8 −1.24759
\(324\) 0 0
\(325\) −4.31768e8 −0.697685
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.80667e7 + 1.52536e8i 0.136341 + 0.236149i
\(330\) 0 0
\(331\) 6.31951e7 1.09457e8i 0.0957824 0.165900i −0.814152 0.580651i \(-0.802798\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.38614e8 4.13292e8i 0.346768 0.600620i
\(336\) 0 0
\(337\) 4.11001e8 + 7.11875e8i 0.584977 + 1.01321i 0.994878 + 0.101079i \(0.0322296\pi\)
−0.409902 + 0.912130i \(0.634437\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5.01669e7 −0.0685137
\(342\) 0 0
\(343\) 2.16899e8 0.290221
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.01462e8 + 6.95352e8i 0.515811 + 0.893411i 0.999832 + 0.0183545i \(0.00584276\pi\)
−0.484020 + 0.875057i \(0.660824\pi\)
\(348\) 0 0
\(349\) 6.02303e7 1.04322e8i 0.0758449 0.131367i −0.825609 0.564243i \(-0.809168\pi\)
0.901453 + 0.432876i \(0.142501\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.43578e7 + 1.46112e8i −0.102074 + 0.176797i −0.912539 0.408990i \(-0.865881\pi\)
0.810465 + 0.585787i \(0.199214\pi\)
\(354\) 0 0
\(355\) −7.71256e8 1.33585e9i −0.914954 1.58475i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.90600e8 0.559625 0.279812 0.960055i \(-0.409728\pi\)
0.279812 + 0.960055i \(0.409728\pi\)
\(360\) 0 0
\(361\) 2.89843e8 0.324256
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.07434e7 5.32492e7i −0.0330923 0.0573176i
\(366\) 0 0
\(367\) 4.60920e8 7.98338e8i 0.486737 0.843054i −0.513146 0.858301i \(-0.671520\pi\)
0.999884 + 0.0152472i \(0.00485353\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.80318e7 4.85525e7i 0.0284999 0.0493632i
\(372\) 0 0
\(373\) −1.05604e8 1.82911e8i −0.105365 0.182498i 0.808522 0.588466i \(-0.200268\pi\)
−0.913887 + 0.405968i \(0.866935\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.13226e8 0.301067
\(378\) 0 0
\(379\) 1.54128e9 1.45427 0.727136 0.686494i \(-0.240851\pi\)
0.727136 + 0.686494i \(0.240851\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.86985e8 8.43482e8i −0.442914 0.767150i 0.554990 0.831857i \(-0.312722\pi\)
−0.997904 + 0.0647071i \(0.979389\pi\)
\(384\) 0 0
\(385\) −5.19474e7 + 8.99756e7i −0.0463929 + 0.0803549i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.29227e7 1.60947e8i 0.0800384 0.138631i −0.823228 0.567711i \(-0.807829\pi\)
0.903266 + 0.429081i \(0.141162\pi\)
\(390\) 0 0
\(391\) −7.21786e8 1.25017e9i −0.610647 1.05767i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.30234e9 −1.87966
\(396\) 0 0
\(397\) −2.02132e9 −1.62132 −0.810659 0.585519i \(-0.800891\pi\)
−0.810659 + 0.585519i \(0.800891\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.97914e7 1.20882e8i −0.0540501 0.0936175i 0.837734 0.546078i \(-0.183880\pi\)
−0.891785 + 0.452460i \(0.850546\pi\)
\(402\) 0 0
\(403\) 3.58582e7 6.21083e7i 0.0272911 0.0472696i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.60378e8 + 2.77783e8i −0.117914 + 0.204233i
\(408\) 0 0
\(409\) 1.10712e9 + 1.91758e9i 0.800133 + 1.38587i 0.919528 + 0.393025i \(0.128571\pi\)
−0.119395 + 0.992847i \(0.538095\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.29077e8 −0.229865
\(414\) 0 0
\(415\) −2.35128e9 −1.61486
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.12567e8 1.58061e9i −0.606060 1.04973i −0.991883 0.127154i \(-0.959416\pi\)
0.385823 0.922573i \(-0.373917\pi\)
\(420\) 0 0
\(421\) 1.04524e8 1.81040e8i 0.0682697 0.118247i −0.829870 0.557957i \(-0.811586\pi\)
0.898140 + 0.439710i \(0.144919\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.26676e9 3.92615e9i 1.43234 2.48088i
\(426\) 0 0
\(427\) 9.23093e7 + 1.59884e8i 0.0573783 + 0.0993821i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3.22269e9 −1.93887 −0.969435 0.245350i \(-0.921097\pi\)
−0.969435 + 0.245350i \(0.921097\pi\)
\(432\) 0 0
\(433\) −3.34353e8 −0.197923 −0.0989617 0.995091i \(-0.531552\pi\)
−0.0989617 + 0.995091i \(0.531552\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.13078e9 + 1.95856e9i 0.648174 + 1.12267i
\(438\) 0 0
\(439\) 7.81986e8 1.35444e9i 0.441137 0.764071i −0.556637 0.830756i \(-0.687909\pi\)
0.997774 + 0.0666843i \(0.0212420\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.66035e7 8.07196e7i 0.0254686 0.0441129i −0.853010 0.521894i \(-0.825226\pi\)
0.878479 + 0.477781i \(0.158559\pi\)
\(444\) 0 0
\(445\) 9.55201e8 + 1.65446e9i 0.513848 + 0.890011i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −1.77844e9 −0.927208 −0.463604 0.886042i \(-0.653444\pi\)
−0.463604 + 0.886042i \(0.653444\pi\)
\(450\) 0 0
\(451\) 1.08757e9 0.558263
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.42618e7 1.28625e8i −0.0369595 0.0640156i
\(456\) 0 0
\(457\) 2.13606e8 3.69977e8i 0.104691 0.181329i −0.808921 0.587917i \(-0.799948\pi\)
0.913612 + 0.406588i \(0.133281\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.03434e9 + 1.79154e9i −0.491713 + 0.851672i −0.999954 0.00954253i \(-0.996962\pi\)
0.508241 + 0.861215i \(0.330296\pi\)
\(462\) 0 0
\(463\) 1.67864e9 + 2.90750e9i 0.786004 + 1.36140i 0.928397 + 0.371589i \(0.121187\pi\)
−0.142393 + 0.989810i \(0.545480\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.30858e8 0.195760 0.0978802 0.995198i \(-0.468794\pi\)
0.0978802 + 0.995198i \(0.468794\pi\)
\(468\) 0 0
\(469\) 1.19091e8 0.0533058
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.61090e8 + 6.25427e8i 0.156892 + 0.271745i
\(474\) 0 0
\(475\) −3.55119e9 + 6.15085e9i −1.52036 + 2.63334i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.48173e6 + 1.46908e7i −0.00352623 + 0.00610760i −0.867783 0.496943i \(-0.834456\pi\)
0.864257 + 0.503051i \(0.167789\pi\)
\(480\) 0 0
\(481\) −2.29270e8 3.97107e8i −0.0939374 0.162704i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.75140e9 −1.89115
\(486\) 0 0
\(487\) −4.04688e9 −1.58770 −0.793852 0.608111i \(-0.791927\pi\)
−0.793852 + 0.608111i \(0.791927\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.56052e8 + 1.13631e9i 0.250123 + 0.433225i 0.963559 0.267495i \(-0.0861958\pi\)
−0.713437 + 0.700720i \(0.752862\pi\)
\(492\) 0 0
\(493\) −1.64442e9 + 2.84822e9i −0.618086 + 1.07056i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.92465e8 3.33359e8i 0.0703241 0.121805i
\(498\) 0 0
\(499\) −2.06483e9 3.57639e9i −0.743930 1.28853i −0.950693 0.310134i \(-0.899626\pi\)
0.206763 0.978391i \(-0.433707\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.12317e9 1.09423 0.547115 0.837058i \(-0.315726\pi\)
0.547115 + 0.837058i \(0.315726\pi\)
\(504\) 0 0
\(505\) −9.49236e9 −3.27985
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.44861e8 1.11693e9i −0.216747 0.375418i 0.737064 0.675823i \(-0.236211\pi\)
−0.953812 + 0.300405i \(0.902878\pi\)
\(510\) 0 0
\(511\) 7.67195e6 1.32882e7i 0.00254350 0.00440548i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.58366e8 + 7.93913e8i −0.147872 + 0.256123i
\(516\) 0 0
\(517\) 9.67924e8 + 1.67649e9i 0.308052 + 0.533562i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.74687e9 −1.47053 −0.735267 0.677777i \(-0.762943\pi\)
−0.735267 + 0.677777i \(0.762943\pi\)
\(522\) 0 0
\(523\) −1.53189e9 −0.468243 −0.234122 0.972207i \(-0.575221\pi\)
−0.234122 + 0.972207i \(0.575221\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.76508e8 + 6.52131e8i 0.112057 + 0.194088i
\(528\) 0 0
\(529\) −4.57997e8 + 7.93274e8i −0.134514 + 0.232985i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.77371e8 + 1.34645e9i −0.222374 + 0.385162i
\(534\) 0 0
\(535\) 5.95815e9 + 1.03198e10i 1.68218 + 2.91363i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.17898e9 0.324300
\(540\) 0 0
\(541\) 4.15229e9 1.12745 0.563725 0.825962i \(-0.309368\pi\)
0.563725 + 0.825962i \(0.309368\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.57011e9 4.45156e9i −0.680086 1.17794i
\(546\) 0 0
\(547\) −5.17003e8 + 8.95476e8i −0.135063 + 0.233937i −0.925622 0.378450i \(-0.876457\pi\)
0.790558 + 0.612387i \(0.209790\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.57621e9 4.46212e9i 0.656070 1.13635i
\(552\) 0 0
\(553\) −2.87272e8 4.97570e8i −0.0722363 0.125117i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.16070e9 0.284594 0.142297 0.989824i \(-0.454551\pi\)
0.142297 + 0.989824i \(0.454551\pi\)
\(558\) 0 0
\(559\) −1.03240e9 −0.249980
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.24836e8 1.08225e9i −0.147566 0.255592i 0.782761 0.622322i \(-0.213811\pi\)
−0.930327 + 0.366730i \(0.880477\pi\)
\(564\) 0 0
\(565\) 4.18539e9 7.24931e9i 0.976262 1.69094i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.77827e8 1.00083e9i 0.131494 0.227754i −0.792759 0.609535i \(-0.791356\pi\)
0.924253 + 0.381782i \(0.124689\pi\)
\(570\) 0 0
\(571\) 2.40144e9 + 4.15942e9i 0.539816 + 0.934988i 0.998914 + 0.0466025i \(0.0148394\pi\)
−0.459098 + 0.888386i \(0.651827\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.35695e10 −2.97664
\(576\) 0 0
\(577\) 3.18167e9 0.689510 0.344755 0.938693i \(-0.387962\pi\)
0.344755 + 0.938693i \(0.387962\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.93378e8 5.08146e8i −0.0620599 0.107491i
\(582\) 0 0
\(583\) 3.08092e8 5.33632e8i 0.0643933 0.111533i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.16528e9 7.21448e9i 0.849984 1.47222i −0.0312374 0.999512i \(-0.509945\pi\)
0.881221 0.472704i \(-0.156722\pi\)
\(588\) 0 0
\(589\) −5.89851e8 1.02165e9i −0.118943 0.206015i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −5.80401e9 −1.14297 −0.571487 0.820611i \(-0.693633\pi\)
−0.571487 + 0.820611i \(0.693633\pi\)
\(594\) 0 0
\(595\) 1.55948e9 0.303509
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.89357e9 + 8.47592e9i 0.930320 + 1.61136i 0.782774 + 0.622306i \(0.213804\pi\)
0.147546 + 0.989055i \(0.452863\pi\)
\(600\) 0 0
\(601\) −3.04825e9 + 5.27972e9i −0.572783 + 0.992089i 0.423496 + 0.905898i \(0.360803\pi\)
−0.996279 + 0.0861907i \(0.972531\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.62668e9 8.01364e9i 0.849426 1.47125i
\(606\) 0 0
\(607\) −4.08870e9 7.08184e9i −0.742036 1.28524i −0.951567 0.307442i \(-0.900527\pi\)
0.209531 0.977802i \(-0.432806\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.76740e9 −0.490827
\(612\) 0 0
\(613\) 3.02808e9 0.530953 0.265477 0.964117i \(-0.414471\pi\)
0.265477 + 0.964117i \(0.414471\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.38870e8 7.60146e8i −0.0752208 0.130286i 0.825961 0.563727i \(-0.190633\pi\)
−0.901182 + 0.433440i \(0.857300\pi\)
\(618\) 0 0
\(619\) −2.65741e9 + 4.60277e9i −0.450340 + 0.780013i −0.998407 0.0564222i \(-0.982031\pi\)
0.548067 + 0.836435i \(0.315364\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.38368e8 + 4.12866e8i −0.0394948 + 0.0684070i
\(624\) 0 0
\(625\) −1.01919e10 1.76529e10i −1.66984 2.89224i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.81462e9 0.771409
\(630\) 0 0
\(631\) 3.01146e9 0.477171 0.238586 0.971121i \(-0.423316\pi\)
0.238586 + 0.971121i \(0.423316\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.63929e9 + 6.30343e9i 0.564038 + 0.976942i
\(636\) 0 0
\(637\) −8.42713e8 + 1.45962e9i −0.129179 + 0.223744i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.65767e9 + 4.60322e9i −0.398564 + 0.690334i −0.993549 0.113403i \(-0.963825\pi\)
0.594985 + 0.803737i \(0.297158\pi\)
\(642\) 0 0
\(643\) −2.99268e9 5.18347e9i −0.443937 0.768922i 0.554040 0.832490i \(-0.313085\pi\)
−0.997978 + 0.0635680i \(0.979752\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.24427e9 0.470925 0.235463 0.971883i \(-0.424339\pi\)
0.235463 + 0.971883i \(0.424339\pi\)
\(648\) 0 0
\(649\) −3.61682e9 −0.519362
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.93554e9 + 6.81656e9i 0.553106 + 0.958008i 0.998048 + 0.0624488i \(0.0198910\pi\)
−0.444942 + 0.895559i \(0.646776\pi\)
\(654\) 0 0
\(655\) 1.13674e10 1.96890e10i 1.58058 2.73765i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.20083e9 3.81195e9i 0.299563 0.518858i −0.676473 0.736467i \(-0.736493\pi\)
0.976036 + 0.217609i \(0.0698258\pi\)
\(660\) 0 0
\(661\) 2.90322e9 + 5.02853e9i 0.390999 + 0.677230i 0.992582 0.121581i \(-0.0387964\pi\)
−0.601583 + 0.798810i \(0.705463\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.44314e9 −0.322161
\(666\) 0 0
\(667\) 9.84397e9 1.28449
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.01455e9 + 1.75726e9i 0.129642 + 0.224547i
\(672\) 0 0
\(673\) −1.57613e9 + 2.72994e9i −0.199315 + 0.345223i −0.948306 0.317356i \(-0.897205\pi\)
0.748992 + 0.662579i \(0.230538\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.95539e8 6.85094e8i 0.0489924 0.0848574i −0.840489 0.541828i \(-0.817732\pi\)
0.889482 + 0.456971i \(0.151066\pi\)
\(678\) 0 0
\(679\) −5.92850e8 1.02685e9i −0.0726776 0.125881i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.05529e10 1.26735 0.633677 0.773598i \(-0.281545\pi\)
0.633677 + 0.773598i \(0.281545\pi\)
\(684\) 0 0
\(685\) 2.57700e10 3.06335
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.40435e8 + 7.62856e8i 0.0512997 + 0.0888537i
\(690\) 0 0
\(691\) −2.35912e9 + 4.08611e9i −0.272005 + 0.471126i −0.969375 0.245585i \(-0.921020\pi\)
0.697370 + 0.716711i \(0.254353\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.57361e9 + 1.48499e10i −0.968762 + 1.67794i
\(696\) 0 0
\(697\) −8.16232e9 1.41376e10i −0.913060 1.58147i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.06877e9 −0.226829 −0.113414 0.993548i \(-0.536179\pi\)
−0.113414 + 0.993548i \(0.536179\pi\)
\(702\) 0 0
\(703\) −7.54275e9 −0.818816
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.18440e9 2.05144e9i −0.126046 0.218318i
\(708\) 0 0
\(709\) −8.45547e9 + 1.46453e10i −0.890996 + 1.54325i −0.0523138 + 0.998631i \(0.516660\pi\)
−0.838683 + 0.544620i \(0.816674\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.12694e9 1.95192e9i 0.116436 0.201674i
\(714\) 0 0
\(715\) −8.16197e8 1.41369e9i −0.0835072 0.144639i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.93452e9 0.595435 0.297718 0.954654i \(-0.403775\pi\)
0.297718 + 0.954654i \(0.403775\pi\)
\(720\) 0 0
\(721\) −2.28768e8 −0.0227312
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.54575e10 + 2.67731e10i 1.50645 + 2.60925i
\(726\) 0 0
\(727\) −3.86981e9 + 6.70270e9i −0.373524 + 0.646963i −0.990105 0.140329i \(-0.955184\pi\)
0.616581 + 0.787292i \(0.288517\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.42004e9 9.38778e9i 0.513206 0.888899i
\(732\) 0 0
\(733\) 1.84980e9 + 3.20395e9i 0.173485 + 0.300484i 0.939636 0.342176i \(-0.111164\pi\)
−0.766151 + 0.642660i \(0.777831\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.30891e9 0.120440
\(738\) 0 0
\(739\) −1.77671e10 −1.61942 −0.809711 0.586829i \(-0.800376\pi\)
−0.809711 + 0.586829i \(0.800376\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.85189e9 6.67166e9i −0.344518 0.596723i 0.640748 0.767752i \(-0.278624\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(744\) 0 0
\(745\) 4.33311e9 7.50516e9i 0.383930 0.664987i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.48684e9 + 2.57529e9i −0.129294 + 0.223944i
\(750\) 0 0
\(751\) 3.42522e9 + 5.93266e9i 0.295086 + 0.511104i 0.975005 0.222183i \(-0.0713183\pi\)
−0.679919 + 0.733288i \(0.737985\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.63417e10 −2.22756
\(756\) 0 0
\(757\) 7.84916e9 0.657639 0.328820 0.944393i \(-0.393349\pi\)
0.328820 + 0.944393i \(0.393349\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.77512e9 + 1.34669e10i 0.639530 + 1.10770i 0.985536 + 0.169466i \(0.0542043\pi\)
−0.346006 + 0.938232i \(0.612462\pi\)
\(762\) 0 0
\(763\) 6.41364e8 1.11088e9i 0.0522720 0.0905377i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.58522e9 4.47774e9i 0.206878 0.358323i
\(768\) 0 0
\(769\) 1.09657e10 + 1.89932e10i 0.869553 + 1.50611i 0.862454 + 0.506135i \(0.168926\pi\)
0.00709847 + 0.999975i \(0.497740\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.66645e10 1.29767 0.648836 0.760929i \(-0.275256\pi\)
0.648836 + 0.760929i \(0.275256\pi\)
\(774\) 0 0
\(775\) 7.07831e9 0.546228
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.27874e10 + 2.21484e10i 0.969172 + 1.67865i
\(780\) 0 0
\(781\) 2.11535e9 3.66389e9i 0.158892 0.275209i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.72237e10 2.98324e10i 1.27082 2.20112i
\(786\) 0 0
\(787\) −4.71586e9 8.16810e9i −0.344865 0.597323i 0.640464 0.767988i \(-0.278742\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.08891e9 0.150073
\(792\) 0 0
\(793\) −2.90072e9 −0.206562
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.85452e9 + 1.53365e10i 0.619528 + 1.07305i 0.989572 + 0.144039i \(0.0460091\pi\)
−0.370044 + 0.929014i \(0.620658\pi\)
\(798\) 0 0
\(799\) 1.45287e10 2.51645e10i 1.00766 1.74532i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.43209e7 1.46048e8i 0.00574686 0.00995386i
\(804\) 0 0
\(805\) −2.33388e9 4.04240e9i −0.157686 0.273120i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.34937e9 0.222404 0.111202 0.993798i \(-0.464530\pi\)
0.111202 + 0.993798i \(0.464530\pi\)
\(810\) 0 0
\(811\) −7.29930e8 −0.0480517 −0.0240258 0.999711i \(-0.507648\pi\)
−0.0240258 + 0.999711i \(0.507648\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.46916e9 7.74082e9i −0.289184 0.500882i
\(816\) 0 0
\(817\) −8.49123e9 + 1.47072e10i −0.544745 + 0.943526i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.21782e9 9.03754e9i 0.329070 0.569966i −0.653258 0.757136i \(-0.726598\pi\)
0.982328 + 0.187170i \(0.0599314\pi\)
\(822\) 0 0
\(823\) 7.40738e9 + 1.28300e10i 0.463196 + 0.802279i 0.999118 0.0419882i \(-0.0133692\pi\)
−0.535922 + 0.844268i \(0.680036\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.25726e10 0.772957 0.386478 0.922298i \(-0.373691\pi\)
0.386478 + 0.922298i \(0.373691\pi\)
\(828\) 0 0
\(829\) 1.18391e10 0.721737 0.360869 0.932617i \(-0.382480\pi\)
0.360869 + 0.932617i \(0.382480\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.84840e9 1.53259e10i −0.530405 0.918688i
\(834\) 0 0
\(835\) 2.26527e10 3.92357e10i 1.34654 2.33227i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.27141e9 1.60586e10i 0.541975 0.938728i −0.456816 0.889561i \(-0.651010\pi\)
0.998791 0.0491664i \(-0.0156564\pi\)
\(840\) 0 0
\(841\) −2.58865e9 4.48368e9i −0.150068 0.259925i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.11390e10 −1.77544
\(846\) 0 0
\(847\) 2.30915e9 0.130575
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.20542e9 1.24802e10i −0.400780 0.694171i
\(852\) 0 0
\(853\) 4.31684e9 7.47699e9i 0.238147 0.412482i −0.722036 0.691856i \(-0.756793\pi\)
0.960183 + 0.279373i \(0.0901267\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.36326e9 1.62176e10i 0.508153 0.880146i −0.491803 0.870707i \(-0.663662\pi\)
0.999955 0.00943966i \(-0.00300478\pi\)
\(858\) 0 0
\(859\) 7.89141e9 + 1.36683e10i 0.424794 + 0.735765i 0.996401 0.0847627i \(-0.0270132\pi\)
−0.571607 + 0.820527i \(0.693680\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.21027e10 −1.17060 −0.585300 0.810817i \(-0.699023\pi\)
−0.585300 + 0.810817i \(0.699023\pi\)
\(864\) 0 0
\(865\) 6.46554e9 0.339663
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.15735e9 5.46869e9i −0.163213 0.282692i
\(870\) 0 0
\(871\) −9.35578e8 + 1.62047e9i −0.0479752 + 0.0830954i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.55567e9 7.89064e9i 0.229892 0.398184i
\(876\) 0 0
\(877\) 5.63562e9 + 9.76117e9i 0.282126 + 0.488656i 0.971908 0.235361i \(-0.0756271\pi\)
−0.689782 + 0.724017i \(0.742294\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.22841e10 1.09794 0.548970 0.835842i \(-0.315020\pi\)
0.548970 + 0.835842i \(0.315020\pi\)
\(882\) 0 0
\(883\) 3.02051e10 1.47645 0.738224 0.674555i \(-0.235665\pi\)
0.738224 + 0.674555i \(0.235665\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.32998e10 + 2.30360e10i 0.639903 + 1.10834i 0.985454 + 0.169944i \(0.0543587\pi\)
−0.345551 + 0.938400i \(0.612308\pi\)
\(888\) 0 0
\(889\) −9.08175e8 + 1.57300e9i −0.0433524 + 0.0750886i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.27612e10 + 3.94236e10i −1.06959 + 1.85258i
\(894\) 0 0
\(895\) −1.37938e10 2.38915e10i −0.643135 1.11394i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.13495e9 −0.235710
\(900\) 0 0
\(901\) −9.24906e9 −0.421270
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.55790e10 4.43041e10i −1.14713 1.98689i
\(906\) 0 0
\(907\) −1.34288e9 + 2.32594e9i −0.0597602 + 0.103508i −0.894358 0.447353i \(-0.852367\pi\)
0.834597 + 0.550860i \(0.185700\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.82911e9 6.63221e9i 0.167797 0.290632i −0.769848 0.638227i \(-0.779668\pi\)
0.937645 + 0.347595i \(0.113001\pi\)
\(912\) 0 0
\(913\) −3.22446e9 5.58493e9i −0.140220 0.242868i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.67342e9 0.242970
\(918\) 0 0
\(919\) −2.78330e9 −0.118292 −0.0591462 0.998249i \(-0.518838\pi\)
−0.0591462 + 0.998249i \(0.518838\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.02401e9 + 5.23773e9i 0.126583 + 0.219249i
\(924\) 0 0
\(925\) 2.26286e10 3.91938e10i 0.940072 1.62825i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.97854e10 3.42692e10i 0.809634 1.40233i −0.103483 0.994631i \(-0.532999\pi\)
0.913117 0.407697i \(-0.133668\pi\)
\(930\) 0 0
\(931\) 1.38622e10 + 2.40101e10i 0.563001 + 0.975146i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.71400e10 0.685756
\(936\) 0 0
\(937\) −4.48366e9 −0.178051 −0.0890255 0.996029i \(-0.528375\pi\)
−0.0890255 + 0.996029i \(0.528375\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.37920e10 + 2.38885e10i 0.539591 + 0.934599i 0.998926 + 0.0463355i \(0.0147543\pi\)
−0.459335 + 0.888263i \(0.651912\pi\)
\(942\) 0 0
\(943\) −2.44310e10 + 4.23157e10i −0.948747 + 1.64328i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.71646e9 + 2.97299e9i −0.0656762 + 0.113755i −0.896994 0.442043i \(-0.854254\pi\)
0.831318 + 0.555798i \(0.187587\pi\)
\(948\) 0 0
\(949\) 1.20541e8 + 2.08784e8i 0.00457831 + 0.00792986i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.24967e10 1.21623 0.608113 0.793851i \(-0.291927\pi\)
0.608113 + 0.793851i \(0.291927\pi\)
\(954\) 0 0
\(955\) −5.11104e10 −1.89888
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.21542e9 + 5.56926e9i 0.117726 + 0.203907i
\(960\) 0 0
\(961\) 1.31685e10 2.28084e10i 0.478633 0.829017i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.69725e10 + 6.40383e10i −1.32444 + 2.29400i
\(966\) 0 0
\(967\) 1.29956e10 + 2.25091e10i 0.462173 + 0.800508i 0.999069 0.0431408i \(-0.0137364\pi\)
−0.536896 + 0.843649i \(0.680403\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.28654e9 −0.0450980 −0.0225490 0.999746i \(-0.507178\pi\)
−0.0225490 + 0.999746i \(0.507178\pi\)
\(972\) 0 0
\(973\) −4.27905e9 −0.148920
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.73369e9 + 9.93105e9i 0.196700 + 0.340694i 0.947456 0.319885i \(-0.103644\pi\)
−0.750757 + 0.660579i \(0.770311\pi\)
\(978\) 0 0
\(979\) −2.61986e9 + 4.53773e9i −0.0892356 + 0.154561i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.37066e10 4.10609e10i 0.796033 1.37877i −0.126148 0.992011i \(-0.540261\pi\)
0.922181 0.386758i \(-0.126405\pi\)
\(984\) 0 0
\(985\) −1.63756e10 2.83634e10i −0.545973 0.945653i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.24459e10 −1.06653
\(990\) 0 0
\(991\) −4.06382e10 −1.32641 −0.663203 0.748440i \(-0.730803\pi\)
−0.663203 + 0.748440i \(0.730803\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.47066e9 + 1.46716e10i 0.272607 + 0.472169i
\(996\) 0 0
\(997\) −9.07756e8 + 1.57228e9i −0.0290092 + 0.0502455i −0.880166 0.474667i \(-0.842569\pi\)
0.851156 + 0.524912i \(0.175902\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.8.i.e.289.1 20
3.2 odd 2 144.8.i.e.97.10 20
4.3 odd 2 216.8.i.a.73.1 20
9.4 even 3 inner 432.8.i.e.145.1 20
9.5 odd 6 144.8.i.e.49.10 20
12.11 even 2 72.8.i.a.25.1 20
36.23 even 6 72.8.i.a.49.1 yes 20
36.31 odd 6 216.8.i.a.145.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.8.i.a.25.1 20 12.11 even 2
72.8.i.a.49.1 yes 20 36.23 even 6
144.8.i.e.49.10 20 9.5 odd 6
144.8.i.e.97.10 20 3.2 odd 2
216.8.i.a.73.1 20 4.3 odd 2
216.8.i.a.145.1 20 36.31 odd 6
432.8.i.e.145.1 20 9.4 even 3 inner
432.8.i.e.289.1 20 1.1 even 1 trivial