Properties

Label 4320.2.a.bh.1.3
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1509.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.551929\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +5.24730 q^{7} +5.14344 q^{11} +2.10386 q^{13} -5.14344 q^{17} +7.24730 q^{19} +6.24730 q^{23} +1.00000 q^{25} +4.24730 q^{29} +3.14344 q^{31} -5.24730 q^{35} -1.24730 q^{37} -2.20772 q^{41} -6.03959 q^{43} -10.2473 q^{47} +20.5342 q^{49} -4.00000 q^{53} -5.14344 q^{55} -6.49461 q^{59} -1.24730 q^{61} -2.10386 q^{65} +5.03959 q^{67} -1.79228 q^{71} -11.7419 q^{73} +26.9892 q^{77} -6.10386 q^{79} +14.7023 q^{83} +5.14344 q^{85} -8.28689 q^{89} +11.0396 q^{91} -7.24730 q^{95} +13.2473 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + q^{7} + 2 q^{11} + 5 q^{13} - 2 q^{17} + 7 q^{19} + 4 q^{23} + 3 q^{25} - 2 q^{29} - 4 q^{31} - q^{35} + 11 q^{37} - 4 q^{41} - 6 q^{43} - 16 q^{47} + 20 q^{49} - 12 q^{53} - 2 q^{55}+ \cdots + 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 5.24730 1.98329 0.991647 0.128981i \(-0.0411705\pi\)
0.991647 + 0.128981i \(0.0411705\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.14344 1.55081 0.775403 0.631466i \(-0.217547\pi\)
0.775403 + 0.631466i \(0.217547\pi\)
\(12\) 0 0
\(13\) 2.10386 0.583505 0.291753 0.956494i \(-0.405762\pi\)
0.291753 + 0.956494i \(0.405762\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.14344 −1.24747 −0.623734 0.781636i \(-0.714385\pi\)
−0.623734 + 0.781636i \(0.714385\pi\)
\(18\) 0 0
\(19\) 7.24730 1.66265 0.831323 0.555790i \(-0.187584\pi\)
0.831323 + 0.555790i \(0.187584\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.24730 1.30265 0.651326 0.758798i \(-0.274213\pi\)
0.651326 + 0.758798i \(0.274213\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.24730 0.788704 0.394352 0.918959i \(-0.370969\pi\)
0.394352 + 0.918959i \(0.370969\pi\)
\(30\) 0 0
\(31\) 3.14344 0.564579 0.282290 0.959329i \(-0.408906\pi\)
0.282290 + 0.959329i \(0.408906\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.24730 −0.886956
\(36\) 0 0
\(37\) −1.24730 −0.205055 −0.102528 0.994730i \(-0.532693\pi\)
−0.102528 + 0.994730i \(0.532693\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.20772 −0.344788 −0.172394 0.985028i \(-0.555150\pi\)
−0.172394 + 0.985028i \(0.555150\pi\)
\(42\) 0 0
\(43\) −6.03959 −0.921028 −0.460514 0.887652i \(-0.652335\pi\)
−0.460514 + 0.887652i \(0.652335\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.2473 −1.49472 −0.747361 0.664418i \(-0.768680\pi\)
−0.747361 + 0.664418i \(0.768680\pi\)
\(48\) 0 0
\(49\) 20.5342 2.93346
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −5.14344 −0.693542
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.49461 −0.845526 −0.422763 0.906240i \(-0.638940\pi\)
−0.422763 + 0.906240i \(0.638940\pi\)
\(60\) 0 0
\(61\) −1.24730 −0.159701 −0.0798504 0.996807i \(-0.525444\pi\)
−0.0798504 + 0.996807i \(0.525444\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.10386 −0.260952
\(66\) 0 0
\(67\) 5.03959 0.615683 0.307842 0.951438i \(-0.400393\pi\)
0.307842 + 0.951438i \(0.400393\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.79228 −0.212705 −0.106352 0.994329i \(-0.533917\pi\)
−0.106352 + 0.994329i \(0.533917\pi\)
\(72\) 0 0
\(73\) −11.7419 −1.37429 −0.687143 0.726522i \(-0.741136\pi\)
−0.687143 + 0.726522i \(0.741136\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 26.9892 3.07571
\(78\) 0 0
\(79\) −6.10386 −0.686738 −0.343369 0.939201i \(-0.611568\pi\)
−0.343369 + 0.939201i \(0.611568\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.7023 1.61379 0.806895 0.590695i \(-0.201146\pi\)
0.806895 + 0.590695i \(0.201146\pi\)
\(84\) 0 0
\(85\) 5.14344 0.557885
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.28689 −0.878408 −0.439204 0.898387i \(-0.644740\pi\)
−0.439204 + 0.898387i \(0.644740\pi\)
\(90\) 0 0
\(91\) 11.0396 1.15726
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.24730 −0.743558
\(96\) 0 0
\(97\) 13.2473 1.34506 0.672530 0.740070i \(-0.265208\pi\)
0.672530 + 0.740070i \(0.265208\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.24730 −0.422622 −0.211311 0.977419i \(-0.567773\pi\)
−0.211311 + 0.977419i \(0.567773\pi\)
\(102\) 0 0
\(103\) −13.5342 −1.33356 −0.666782 0.745253i \(-0.732329\pi\)
−0.666782 + 0.745253i \(0.732329\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) −2.49461 −0.238940 −0.119470 0.992838i \(-0.538120\pi\)
−0.119470 + 0.992838i \(0.538120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −13.1434 −1.23643 −0.618216 0.786009i \(-0.712144\pi\)
−0.618216 + 0.786009i \(0.712144\pi\)
\(114\) 0 0
\(115\) −6.24730 −0.582564
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −26.9892 −2.47410
\(120\) 0 0
\(121\) 15.4550 1.40500
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.28689 −0.202929 −0.101464 0.994839i \(-0.532353\pi\)
−0.101464 + 0.994839i \(0.532353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.3512 1.16650 0.583248 0.812294i \(-0.301781\pi\)
0.583248 + 0.812294i \(0.301781\pi\)
\(132\) 0 0
\(133\) 38.0288 3.29752
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.7815 −1.09200 −0.545998 0.837786i \(-0.683850\pi\)
−0.545998 + 0.837786i \(0.683850\pi\)
\(138\) 0 0
\(139\) −13.5342 −1.14796 −0.573978 0.818871i \(-0.694600\pi\)
−0.573978 + 0.818871i \(0.694600\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.8211 0.904904
\(144\) 0 0
\(145\) −4.24730 −0.352719
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.74191 −0.716165 −0.358083 0.933690i \(-0.616569\pi\)
−0.358083 + 0.933690i \(0.616569\pi\)
\(150\) 0 0
\(151\) −10.1039 −0.822240 −0.411120 0.911581i \(-0.634862\pi\)
−0.411120 + 0.911581i \(0.634862\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.14344 −0.252488
\(156\) 0 0
\(157\) 15.3512 1.22516 0.612578 0.790410i \(-0.290133\pi\)
0.612578 + 0.790410i \(0.290133\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 32.7815 2.58354
\(162\) 0 0
\(163\) −3.49461 −0.273719 −0.136859 0.990590i \(-0.543701\pi\)
−0.136859 + 0.990590i \(0.543701\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.4946 0.812097 0.406049 0.913852i \(-0.366906\pi\)
0.406049 + 0.913852i \(0.366906\pi\)
\(168\) 0 0
\(169\) −8.57378 −0.659521
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.494607 0.0376042 0.0188021 0.999823i \(-0.494015\pi\)
0.0188021 + 0.999823i \(0.494015\pi\)
\(174\) 0 0
\(175\) 5.24730 0.396659
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.9892 −0.970859 −0.485430 0.874276i \(-0.661337\pi\)
−0.485430 + 0.874276i \(0.661337\pi\)
\(180\) 0 0
\(181\) 8.75270 0.650583 0.325291 0.945614i \(-0.394538\pi\)
0.325291 + 0.945614i \(0.394538\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.24730 0.0917036
\(186\) 0 0
\(187\) −26.4550 −1.93458
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.2077 −0.883319 −0.441660 0.897183i \(-0.645610\pi\)
−0.441660 + 0.897183i \(0.645610\pi\)
\(192\) 0 0
\(193\) −16.0288 −1.15378 −0.576889 0.816822i \(-0.695734\pi\)
−0.576889 + 0.816822i \(0.695734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.70232 −0.620015 −0.310007 0.950734i \(-0.600332\pi\)
−0.310007 + 0.950734i \(0.600332\pi\)
\(198\) 0 0
\(199\) 9.68842 0.686794 0.343397 0.939190i \(-0.388422\pi\)
0.343397 + 0.939190i \(0.388422\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 22.2869 1.56423
\(204\) 0 0
\(205\) 2.20772 0.154194
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 37.2761 2.57844
\(210\) 0 0
\(211\) 15.4550 1.06397 0.531984 0.846755i \(-0.321447\pi\)
0.531984 + 0.846755i \(0.321447\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.03959 0.411896
\(216\) 0 0
\(217\) 16.4946 1.11973
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.8211 −0.727905
\(222\) 0 0
\(223\) −18.2077 −1.21928 −0.609639 0.792679i \(-0.708686\pi\)
−0.609639 + 0.792679i \(0.708686\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.7815 1.77755 0.888775 0.458343i \(-0.151557\pi\)
0.888775 + 0.458343i \(0.151557\pi\)
\(228\) 0 0
\(229\) 16.2869 1.07627 0.538134 0.842859i \(-0.319129\pi\)
0.538134 + 0.842859i \(0.319129\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.71311 −0.112230 −0.0561148 0.998424i \(-0.517871\pi\)
−0.0561148 + 0.998424i \(0.517871\pi\)
\(234\) 0 0
\(235\) 10.2473 0.668460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −28.4946 −1.84316 −0.921581 0.388185i \(-0.873102\pi\)
−0.921581 + 0.388185i \(0.873102\pi\)
\(240\) 0 0
\(241\) 25.5738 1.64735 0.823676 0.567061i \(-0.191920\pi\)
0.823676 + 0.567061i \(0.191920\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −20.5342 −1.31188
\(246\) 0 0
\(247\) 15.2473 0.970163
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.6381 1.74450 0.872249 0.489062i \(-0.162661\pi\)
0.872249 + 0.489062i \(0.162661\pi\)
\(252\) 0 0
\(253\) 32.1327 2.02016
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 26.3404 1.64307 0.821534 0.570160i \(-0.193119\pi\)
0.821534 + 0.570160i \(0.193119\pi\)
\(258\) 0 0
\(259\) −6.54498 −0.406685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.415435 0.0256168 0.0128084 0.999918i \(-0.495923\pi\)
0.0128084 + 0.999918i \(0.495923\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.8211 1.39143 0.695713 0.718320i \(-0.255089\pi\)
0.695713 + 0.718320i \(0.255089\pi\)
\(270\) 0 0
\(271\) 9.45502 0.574352 0.287176 0.957878i \(-0.407284\pi\)
0.287176 + 0.957878i \(0.407284\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.14344 0.310161
\(276\) 0 0
\(277\) −21.1969 −1.27360 −0.636800 0.771029i \(-0.719742\pi\)
−0.636800 + 0.771029i \(0.719742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 32.4946 1.93847 0.969233 0.246146i \(-0.0791641\pi\)
0.969233 + 0.246146i \(0.0791641\pi\)
\(282\) 0 0
\(283\) 20.9892 1.24768 0.623840 0.781552i \(-0.285572\pi\)
0.623840 + 0.781552i \(0.285572\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.5846 −0.683815
\(288\) 0 0
\(289\) 9.45502 0.556178
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −29.1969 −1.70570 −0.852851 0.522154i \(-0.825129\pi\)
−0.852851 + 0.522154i \(0.825129\pi\)
\(294\) 0 0
\(295\) 6.49461 0.378131
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.1434 0.760105
\(300\) 0 0
\(301\) −31.6915 −1.82667
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.24730 0.0714204
\(306\) 0 0
\(307\) 1.96041 0.111887 0.0559434 0.998434i \(-0.482183\pi\)
0.0559434 + 0.998434i \(0.482183\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.28689 0.243087 0.121544 0.992586i \(-0.461216\pi\)
0.121544 + 0.992586i \(0.461216\pi\)
\(312\) 0 0
\(313\) 6.83187 0.386160 0.193080 0.981183i \(-0.438152\pi\)
0.193080 + 0.981183i \(0.438152\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −25.4046 −1.42687 −0.713434 0.700723i \(-0.752861\pi\)
−0.713434 + 0.700723i \(0.752861\pi\)
\(318\) 0 0
\(319\) 21.8458 1.22313
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −37.2761 −2.07410
\(324\) 0 0
\(325\) 2.10386 0.116701
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −53.7707 −2.96448
\(330\) 0 0
\(331\) −6.75270 −0.371162 −0.185581 0.982629i \(-0.559417\pi\)
−0.185581 + 0.982629i \(0.559417\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.03959 −0.275342
\(336\) 0 0
\(337\) 2.54498 0.138634 0.0693169 0.997595i \(-0.477918\pi\)
0.0693169 + 0.997595i \(0.477918\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.1681 0.875553
\(342\) 0 0
\(343\) 71.0180 3.83461
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.78150 −0.149319 −0.0746593 0.997209i \(-0.523787\pi\)
−0.0746593 + 0.997209i \(0.523787\pi\)
\(348\) 0 0
\(349\) −21.8211 −1.16806 −0.584028 0.811734i \(-0.698524\pi\)
−0.584028 + 0.811734i \(0.698524\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.9357 −1.11430 −0.557148 0.830413i \(-0.688104\pi\)
−0.557148 + 0.830413i \(0.688104\pi\)
\(354\) 0 0
\(355\) 1.79228 0.0951245
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.286889 −0.0151414 −0.00757071 0.999971i \(-0.502410\pi\)
−0.00757071 + 0.999971i \(0.502410\pi\)
\(360\) 0 0
\(361\) 33.5234 1.76439
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.7419 0.614600
\(366\) 0 0
\(367\) 7.45502 0.389149 0.194574 0.980888i \(-0.437667\pi\)
0.194574 + 0.980888i \(0.437667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −20.9892 −1.08971
\(372\) 0 0
\(373\) −1.68842 −0.0874233 −0.0437116 0.999044i \(-0.513918\pi\)
−0.0437116 + 0.999044i \(0.513918\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.93573 0.460213
\(378\) 0 0
\(379\) 30.0288 1.54248 0.771238 0.636547i \(-0.219638\pi\)
0.771238 + 0.636547i \(0.219638\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −32.8211 −1.67708 −0.838539 0.544841i \(-0.816590\pi\)
−0.838539 + 0.544841i \(0.816590\pi\)
\(384\) 0 0
\(385\) −26.9892 −1.37550
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.8319 −0.701304 −0.350652 0.936506i \(-0.614040\pi\)
−0.350652 + 0.936506i \(0.614040\pi\)
\(390\) 0 0
\(391\) −32.1327 −1.62502
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.10386 0.307118
\(396\) 0 0
\(397\) 21.6381 1.08598 0.542991 0.839738i \(-0.317292\pi\)
0.542991 + 0.839738i \(0.317292\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.41544 0.420247 0.210123 0.977675i \(-0.432613\pi\)
0.210123 + 0.977675i \(0.432613\pi\)
\(402\) 0 0
\(403\) 6.61336 0.329435
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.41544 −0.318001
\(408\) 0 0
\(409\) −15.9100 −0.786701 −0.393350 0.919389i \(-0.628684\pi\)
−0.393350 + 0.919389i \(0.628684\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −34.0792 −1.67693
\(414\) 0 0
\(415\) −14.7023 −0.721709
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.154231 −0.00753468 −0.00376734 0.999993i \(-0.501199\pi\)
−0.00376734 + 0.999993i \(0.501199\pi\)
\(420\) 0 0
\(421\) −2.83187 −0.138017 −0.0690084 0.997616i \(-0.521984\pi\)
−0.0690084 + 0.997616i \(0.521984\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.14344 −0.249494
\(426\) 0 0
\(427\) −6.54498 −0.316734
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.0792 −1.25619 −0.628095 0.778137i \(-0.716165\pi\)
−0.628095 + 0.778137i \(0.716165\pi\)
\(432\) 0 0
\(433\) 28.7815 1.38315 0.691575 0.722304i \(-0.256917\pi\)
0.691575 + 0.722304i \(0.256917\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 45.2761 2.16585
\(438\) 0 0
\(439\) −36.5738 −1.74557 −0.872786 0.488104i \(-0.837689\pi\)
−0.872786 + 0.488104i \(0.837689\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.7923 1.22543 0.612714 0.790305i \(-0.290078\pi\)
0.612714 + 0.790305i \(0.290078\pi\)
\(444\) 0 0
\(445\) 8.28689 0.392836
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.207718 −0.00980281 −0.00490140 0.999988i \(-0.501560\pi\)
−0.00490140 + 0.999988i \(0.501560\pi\)
\(450\) 0 0
\(451\) −11.3553 −0.534699
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.0396 −0.517544
\(456\) 0 0
\(457\) 14.9100 0.697462 0.348731 0.937223i \(-0.386613\pi\)
0.348731 + 0.937223i \(0.386613\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.9892 1.44331 0.721656 0.692252i \(-0.243381\pi\)
0.721656 + 0.692252i \(0.243381\pi\)
\(462\) 0 0
\(463\) 10.6242 0.493746 0.246873 0.969048i \(-0.420597\pi\)
0.246873 + 0.969048i \(0.420597\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.28689 0.383471 0.191736 0.981447i \(-0.438588\pi\)
0.191736 + 0.981447i \(0.438588\pi\)
\(468\) 0 0
\(469\) 26.4442 1.22108
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.0643 −1.42834
\(474\) 0 0
\(475\) 7.24730 0.332529
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.7707 1.26888 0.634438 0.772974i \(-0.281232\pi\)
0.634438 + 0.772974i \(0.281232\pi\)
\(480\) 0 0
\(481\) −2.62415 −0.119651
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.2473 −0.601529
\(486\) 0 0
\(487\) 14.5450 0.659096 0.329548 0.944139i \(-0.393104\pi\)
0.329548 + 0.944139i \(0.393104\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.0684 −0.680027 −0.340013 0.940421i \(-0.610432\pi\)
−0.340013 + 0.940421i \(0.610432\pi\)
\(492\) 0 0
\(493\) −21.8458 −0.983884
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.40465 −0.421856
\(498\) 0 0
\(499\) −29.4046 −1.31633 −0.658166 0.752872i \(-0.728668\pi\)
−0.658166 + 0.752872i \(0.728668\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.1573 −1.38924 −0.694619 0.719378i \(-0.744427\pi\)
−0.694619 + 0.719378i \(0.744427\pi\)
\(504\) 0 0
\(505\) 4.24730 0.189003
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.33726 0.413867 0.206933 0.978355i \(-0.433652\pi\)
0.206933 + 0.978355i \(0.433652\pi\)
\(510\) 0 0
\(511\) −61.6134 −2.72561
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.5342 0.596388
\(516\) 0 0
\(517\) −52.7064 −2.31803
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.2761 −0.932123 −0.466061 0.884752i \(-0.654327\pi\)
−0.466061 + 0.884752i \(0.654327\pi\)
\(522\) 0 0
\(523\) −26.4838 −1.15806 −0.579028 0.815307i \(-0.696568\pi\)
−0.579028 + 0.815307i \(0.696568\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.1681 −0.704295
\(528\) 0 0
\(529\) 16.0288 0.696904
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.64473 −0.201185
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 105.616 4.54922
\(540\) 0 0
\(541\) −21.5342 −0.925827 −0.462914 0.886403i \(-0.653196\pi\)
−0.462914 + 0.886403i \(0.653196\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.49461 0.106857
\(546\) 0 0
\(547\) −35.0792 −1.49988 −0.749939 0.661508i \(-0.769917\pi\)
−0.749939 + 0.661508i \(0.769917\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.7815 1.31134
\(552\) 0 0
\(553\) −32.0288 −1.36200
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.87145 −0.164039 −0.0820194 0.996631i \(-0.526137\pi\)
−0.0820194 + 0.996631i \(0.526137\pi\)
\(558\) 0 0
\(559\) −12.7064 −0.537425
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 42.8607 1.80636 0.903181 0.429260i \(-0.141226\pi\)
0.903181 + 0.429260i \(0.141226\pi\)
\(564\) 0 0
\(565\) 13.1434 0.552949
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 30.4946 1.27840 0.639200 0.769040i \(-0.279266\pi\)
0.639200 + 0.769040i \(0.279266\pi\)
\(570\) 0 0
\(571\) −12.4442 −0.520775 −0.260388 0.965504i \(-0.583850\pi\)
−0.260388 + 0.965504i \(0.583850\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.24730 0.260531
\(576\) 0 0
\(577\) −31.5342 −1.31279 −0.656393 0.754419i \(-0.727919\pi\)
−0.656393 + 0.754419i \(0.727919\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 77.1476 3.20062
\(582\) 0 0
\(583\) −20.5738 −0.852079
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −29.3553 −1.21162 −0.605811 0.795609i \(-0.707151\pi\)
−0.605811 + 0.795609i \(0.707151\pi\)
\(588\) 0 0
\(589\) 22.7815 0.938695
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.6381 −1.29922 −0.649610 0.760268i \(-0.725068\pi\)
−0.649610 + 0.760268i \(0.725068\pi\)
\(594\) 0 0
\(595\) 26.9892 1.10645
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.2653 1.64520 0.822598 0.568623i \(-0.192524\pi\)
0.822598 + 0.568623i \(0.192524\pi\)
\(600\) 0 0
\(601\) −0.455021 −0.0185607 −0.00928035 0.999957i \(-0.502954\pi\)
−0.00928035 + 0.999957i \(0.502954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −15.4550 −0.628336
\(606\) 0 0
\(607\) −5.94963 −0.241488 −0.120744 0.992684i \(-0.538528\pi\)
−0.120744 + 0.992684i \(0.538528\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.5589 −0.872179
\(612\) 0 0
\(613\) −32.3907 −1.30825 −0.654125 0.756386i \(-0.726963\pi\)
−0.654125 + 0.756386i \(0.726963\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.1327 0.568959 0.284480 0.958682i \(-0.408179\pi\)
0.284480 + 0.958682i \(0.408179\pi\)
\(618\) 0 0
\(619\) −25.6627 −1.03147 −0.515736 0.856747i \(-0.672482\pi\)
−0.515736 + 0.856747i \(0.672482\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −43.4838 −1.74214
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.41544 0.255800
\(630\) 0 0
\(631\) 21.6134 0.860414 0.430207 0.902730i \(-0.358440\pi\)
0.430207 + 0.902730i \(0.358440\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.28689 0.0907524
\(636\) 0 0
\(637\) 43.2010 1.71169
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.27610 −0.129398 −0.0646991 0.997905i \(-0.520609\pi\)
−0.0646991 + 0.997905i \(0.520609\pi\)
\(642\) 0 0
\(643\) 14.5342 0.573173 0.286586 0.958054i \(-0.407479\pi\)
0.286586 + 0.958054i \(0.407479\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.4046 −0.841504 −0.420752 0.907176i \(-0.638234\pi\)
−0.420752 + 0.907176i \(0.638234\pi\)
\(648\) 0 0
\(649\) −33.4046 −1.31125
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.37685 −0.210412 −0.105206 0.994450i \(-0.533550\pi\)
−0.105206 + 0.994450i \(0.533550\pi\)
\(654\) 0 0
\(655\) −13.3512 −0.521673
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.415435 0.0161831 0.00809153 0.999967i \(-0.497424\pi\)
0.00809153 + 0.999967i \(0.497424\pi\)
\(660\) 0 0
\(661\) −0.673525 −0.0261971 −0.0130986 0.999914i \(-0.504170\pi\)
−0.0130986 + 0.999914i \(0.504170\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −38.0288 −1.47469
\(666\) 0 0
\(667\) 26.5342 1.02741
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.41544 −0.247665
\(672\) 0 0
\(673\) −47.6134 −1.83536 −0.917680 0.397320i \(-0.869940\pi\)
−0.917680 + 0.397320i \(0.869940\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.6529 −1.17809 −0.589044 0.808101i \(-0.700496\pi\)
−0.589044 + 0.808101i \(0.700496\pi\)
\(678\) 0 0
\(679\) 69.5126 2.66765
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.5846 −0.443271 −0.221636 0.975130i \(-0.571140\pi\)
−0.221636 + 0.975130i \(0.571140\pi\)
\(684\) 0 0
\(685\) 12.7815 0.488356
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −8.41544 −0.320603
\(690\) 0 0
\(691\) 26.2869 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.5342 0.513381
\(696\) 0 0
\(697\) 11.3553 0.430112
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.66274 −0.100570 −0.0502851 0.998735i \(-0.516013\pi\)
−0.0502851 + 0.998735i \(0.516013\pi\)
\(702\) 0 0
\(703\) −9.03959 −0.340934
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.2869 −0.838185
\(708\) 0 0
\(709\) −0.881243 −0.0330958 −0.0165479 0.999863i \(-0.505268\pi\)
−0.0165479 + 0.999863i \(0.505268\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.6381 0.735451
\(714\) 0 0
\(715\) −10.8211 −0.404685
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.0684 1.23324 0.616621 0.787260i \(-0.288501\pi\)
0.616621 + 0.787260i \(0.288501\pi\)
\(720\) 0 0
\(721\) −71.0180 −2.64485
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.24730 0.157741
\(726\) 0 0
\(727\) −37.4046 −1.38726 −0.693631 0.720331i \(-0.743990\pi\)
−0.693631 + 0.720331i \(0.743990\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31.0643 1.14895
\(732\) 0 0
\(733\) −4.20772 −0.155416 −0.0777078 0.996976i \(-0.524760\pi\)
−0.0777078 + 0.996976i \(0.524760\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 25.9208 0.954806
\(738\) 0 0
\(739\) 2.62315 0.0964942 0.0482471 0.998835i \(-0.484636\pi\)
0.0482471 + 0.998835i \(0.484636\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.8103 −0.873515 −0.436757 0.899579i \(-0.643873\pi\)
−0.436757 + 0.899579i \(0.643873\pi\)
\(744\) 0 0
\(745\) 8.74191 0.320279
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 31.4838 1.15039
\(750\) 0 0
\(751\) −21.6884 −0.791422 −0.395711 0.918375i \(-0.629502\pi\)
−0.395711 + 0.918375i \(0.629502\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.1039 0.367717
\(756\) 0 0
\(757\) −41.5877 −1.51153 −0.755765 0.654843i \(-0.772735\pi\)
−0.755765 + 0.654843i \(0.772735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.7923 0.427470 0.213735 0.976892i \(-0.431437\pi\)
0.213735 + 0.976892i \(0.431437\pi\)
\(762\) 0 0
\(763\) −13.0900 −0.473888
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.6637 −0.493369
\(768\) 0 0
\(769\) −12.5846 −0.453811 −0.226906 0.973917i \(-0.572861\pi\)
−0.226906 + 0.973917i \(0.572861\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.71311 −0.205486 −0.102743 0.994708i \(-0.532762\pi\)
−0.102743 + 0.994708i \(0.532762\pi\)
\(774\) 0 0
\(775\) 3.14344 0.112916
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −9.21850 −0.329864
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.3512 −0.547906
\(786\) 0 0
\(787\) −21.1583 −0.754213 −0.377107 0.926170i \(-0.623081\pi\)
−0.377107 + 0.926170i \(0.623081\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −68.9676 −2.45221
\(792\) 0 0
\(793\) −2.62415 −0.0931863
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.21850 0.326536 0.163268 0.986582i \(-0.447796\pi\)
0.163268 + 0.986582i \(0.447796\pi\)
\(798\) 0 0
\(799\) 52.7064 1.86462
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −60.3939 −2.13125
\(804\) 0 0
\(805\) −32.7815 −1.15540
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 33.4046 1.17444 0.587222 0.809426i \(-0.300221\pi\)
0.587222 + 0.809426i \(0.300221\pi\)
\(810\) 0 0
\(811\) 34.2869 1.20398 0.601988 0.798505i \(-0.294376\pi\)
0.601988 + 0.798505i \(0.294376\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.49461 0.122411
\(816\) 0 0
\(817\) −43.7707 −1.53134
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.5738 0.508628 0.254314 0.967122i \(-0.418150\pi\)
0.254314 + 0.967122i \(0.418150\pi\)
\(822\) 0 0
\(823\) −28.1080 −0.979782 −0.489891 0.871784i \(-0.662963\pi\)
−0.489891 + 0.871784i \(0.662963\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.9892 1.21669 0.608347 0.793671i \(-0.291833\pi\)
0.608347 + 0.793671i \(0.291833\pi\)
\(828\) 0 0
\(829\) −50.8597 −1.76643 −0.883215 0.468969i \(-0.844626\pi\)
−0.883215 + 0.468969i \(0.844626\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −105.616 −3.65939
\(834\) 0 0
\(835\) −10.4946 −0.363181
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.1178 0.660018 0.330009 0.943978i \(-0.392948\pi\)
0.330009 + 0.943978i \(0.392948\pi\)
\(840\) 0 0
\(841\) −10.9604 −0.377945
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.57378 0.294947
\(846\) 0 0
\(847\) 81.0972 2.78653
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.79228 −0.267116
\(852\) 0 0
\(853\) −3.97531 −0.136112 −0.0680561 0.997681i \(-0.521680\pi\)
−0.0680561 + 0.997681i \(0.521680\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.7023 1.59532 0.797661 0.603107i \(-0.206071\pi\)
0.797661 + 0.603107i \(0.206071\pi\)
\(858\) 0 0
\(859\) −23.7419 −0.810064 −0.405032 0.914303i \(-0.632740\pi\)
−0.405032 + 0.914303i \(0.632740\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.84265 −0.164846 −0.0824229 0.996597i \(-0.526266\pi\)
−0.0824229 + 0.996597i \(0.526266\pi\)
\(864\) 0 0
\(865\) −0.494607 −0.0168171
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −31.3949 −1.06500
\(870\) 0 0
\(871\) 10.6026 0.359255
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.24730 −0.177391
\(876\) 0 0
\(877\) 36.2900 1.22543 0.612713 0.790305i \(-0.290078\pi\)
0.612713 + 0.790305i \(0.290078\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.01079 0.0340543 0.0170271 0.999855i \(-0.494580\pi\)
0.0170271 + 0.999855i \(0.494580\pi\)
\(882\) 0 0
\(883\) −6.44423 −0.216866 −0.108433 0.994104i \(-0.534583\pi\)
−0.108433 + 0.994104i \(0.534583\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.6627 0.962401 0.481200 0.876611i \(-0.340201\pi\)
0.481200 + 0.876611i \(0.340201\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −74.2653 −2.48519
\(894\) 0 0
\(895\) 12.9892 0.434182
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.3512 0.445286
\(900\) 0 0
\(901\) 20.5738 0.685412
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.75270 −0.290949
\(906\) 0 0
\(907\) −17.0000 −0.564476 −0.282238 0.959344i \(-0.591077\pi\)
−0.282238 + 0.959344i \(0.591077\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.5846 −0.383814 −0.191907 0.981413i \(-0.561467\pi\)
−0.191907 + 0.981413i \(0.561467\pi\)
\(912\) 0 0
\(913\) 75.6206 2.50268
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 70.0576 2.31351
\(918\) 0 0
\(919\) −56.7064 −1.87057 −0.935286 0.353892i \(-0.884858\pi\)
−0.935286 + 0.353892i \(0.884858\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.77071 −0.124114
\(924\) 0 0
\(925\) −1.24730 −0.0410111
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.79228 0.0588029 0.0294014 0.999568i \(-0.490640\pi\)
0.0294014 + 0.999568i \(0.490640\pi\)
\(930\) 0 0
\(931\) 148.818 4.87730
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 26.4550 0.865172
\(936\) 0 0
\(937\) 9.53419 0.311468 0.155734 0.987799i \(-0.450226\pi\)
0.155734 + 0.987799i \(0.450226\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 54.3265 1.77099 0.885496 0.464647i \(-0.153819\pi\)
0.885496 + 0.464647i \(0.153819\pi\)
\(942\) 0 0
\(943\) −13.7923 −0.449139
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.6232 −0.540180 −0.270090 0.962835i \(-0.587053\pi\)
−0.270090 + 0.962835i \(0.587053\pi\)
\(948\) 0 0
\(949\) −24.7033 −0.801904
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19.1219 0.619418 0.309709 0.950831i \(-0.399768\pi\)
0.309709 + 0.950831i \(0.399768\pi\)
\(954\) 0 0
\(955\) 12.2077 0.395032
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −67.0684 −2.16575
\(960\) 0 0
\(961\) −21.1188 −0.681250
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.0288 0.515985
\(966\) 0 0
\(967\) 8.96041 0.288148 0.144074 0.989567i \(-0.453980\pi\)
0.144074 + 0.989567i \(0.453980\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.71722 0.183474 0.0917372 0.995783i \(-0.470758\pi\)
0.0917372 + 0.995783i \(0.470758\pi\)
\(972\) 0 0
\(973\) −71.0180 −2.27673
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.06427 −0.0980348 −0.0490174 0.998798i \(-0.515609\pi\)
−0.0490174 + 0.998798i \(0.515609\pi\)
\(978\) 0 0
\(979\) −42.6232 −1.36224
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.4056 1.35253 0.676265 0.736658i \(-0.263597\pi\)
0.676265 + 0.736658i \(0.263597\pi\)
\(984\) 0 0
\(985\) 8.70232 0.277279
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −37.7311 −1.19978
\(990\) 0 0
\(991\) 11.0931 0.352383 0.176192 0.984356i \(-0.443622\pi\)
0.176192 + 0.984356i \(0.443622\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.68842 −0.307144
\(996\) 0 0
\(997\) −54.2118 −1.71691 −0.858453 0.512892i \(-0.828574\pi\)
−0.858453 + 0.512892i \(0.828574\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.bh.1.3 yes 3
3.2 odd 2 4320.2.a.bj.1.3 yes 3
4.3 odd 2 4320.2.a.bg.1.1 3
8.3 odd 2 8640.2.a.dm.1.1 3
8.5 even 2 8640.2.a.dn.1.3 3
12.11 even 2 4320.2.a.bi.1.1 yes 3
24.5 odd 2 8640.2.a.dl.1.3 3
24.11 even 2 8640.2.a.dk.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.bg.1.1 3 4.3 odd 2
4320.2.a.bh.1.3 yes 3 1.1 even 1 trivial
4320.2.a.bi.1.1 yes 3 12.11 even 2
4320.2.a.bj.1.3 yes 3 3.2 odd 2
8640.2.a.dk.1.1 3 24.11 even 2
8640.2.a.dl.1.3 3 24.5 odd 2
8640.2.a.dm.1.1 3 8.3 odd 2
8640.2.a.dn.1.3 3 8.5 even 2