Properties

Label 4320.2.a.bi.1.1
Level $4320$
Weight $2$
Character 4320.1
Self dual yes
Analytic conductor $34.495$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(1,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1509.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.551929\) of defining polynomial
Character \(\chi\) \(=\) 4320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -5.24730 q^{7} +5.14344 q^{11} +2.10386 q^{13} +5.14344 q^{17} -7.24730 q^{19} +6.24730 q^{23} +1.00000 q^{25} -4.24730 q^{29} -3.14344 q^{31} -5.24730 q^{35} -1.24730 q^{37} +2.20772 q^{41} +6.03959 q^{43} -10.2473 q^{47} +20.5342 q^{49} +4.00000 q^{53} +5.14344 q^{55} -6.49461 q^{59} -1.24730 q^{61} +2.10386 q^{65} -5.03959 q^{67} -1.79228 q^{71} -11.7419 q^{73} -26.9892 q^{77} +6.10386 q^{79} +14.7023 q^{83} +5.14344 q^{85} +8.28689 q^{89} -11.0396 q^{91} -7.24730 q^{95} +13.2473 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - q^{7} + 2 q^{11} + 5 q^{13} + 2 q^{17} - 7 q^{19} + 4 q^{23} + 3 q^{25} + 2 q^{29} + 4 q^{31} - q^{35} + 11 q^{37} + 4 q^{41} + 6 q^{43} - 16 q^{47} + 20 q^{49} + 12 q^{53} + 2 q^{55}+ \cdots + 25 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −5.24730 −1.98329 −0.991647 0.128981i \(-0.958830\pi\)
−0.991647 + 0.128981i \(0.958830\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.14344 1.55081 0.775403 0.631466i \(-0.217547\pi\)
0.775403 + 0.631466i \(0.217547\pi\)
\(12\) 0 0
\(13\) 2.10386 0.583505 0.291753 0.956494i \(-0.405762\pi\)
0.291753 + 0.956494i \(0.405762\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.14344 1.24747 0.623734 0.781636i \(-0.285615\pi\)
0.623734 + 0.781636i \(0.285615\pi\)
\(18\) 0 0
\(19\) −7.24730 −1.66265 −0.831323 0.555790i \(-0.812416\pi\)
−0.831323 + 0.555790i \(0.812416\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.24730 1.30265 0.651326 0.758798i \(-0.274213\pi\)
0.651326 + 0.758798i \(0.274213\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.24730 −0.788704 −0.394352 0.918959i \(-0.629031\pi\)
−0.394352 + 0.918959i \(0.629031\pi\)
\(30\) 0 0
\(31\) −3.14344 −0.564579 −0.282290 0.959329i \(-0.591094\pi\)
−0.282290 + 0.959329i \(0.591094\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.24730 −0.886956
\(36\) 0 0
\(37\) −1.24730 −0.205055 −0.102528 0.994730i \(-0.532693\pi\)
−0.102528 + 0.994730i \(0.532693\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.20772 0.344788 0.172394 0.985028i \(-0.444850\pi\)
0.172394 + 0.985028i \(0.444850\pi\)
\(42\) 0 0
\(43\) 6.03959 0.921028 0.460514 0.887652i \(-0.347665\pi\)
0.460514 + 0.887652i \(0.347665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.2473 −1.49472 −0.747361 0.664418i \(-0.768680\pi\)
−0.747361 + 0.664418i \(0.768680\pi\)
\(48\) 0 0
\(49\) 20.5342 2.93346
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 5.14344 0.693542
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.49461 −0.845526 −0.422763 0.906240i \(-0.638940\pi\)
−0.422763 + 0.906240i \(0.638940\pi\)
\(60\) 0 0
\(61\) −1.24730 −0.159701 −0.0798504 0.996807i \(-0.525444\pi\)
−0.0798504 + 0.996807i \(0.525444\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.10386 0.260952
\(66\) 0 0
\(67\) −5.03959 −0.615683 −0.307842 0.951438i \(-0.599607\pi\)
−0.307842 + 0.951438i \(0.599607\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.79228 −0.212705 −0.106352 0.994329i \(-0.533917\pi\)
−0.106352 + 0.994329i \(0.533917\pi\)
\(72\) 0 0
\(73\) −11.7419 −1.37429 −0.687143 0.726522i \(-0.741136\pi\)
−0.687143 + 0.726522i \(0.741136\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −26.9892 −3.07571
\(78\) 0 0
\(79\) 6.10386 0.686738 0.343369 0.939201i \(-0.388432\pi\)
0.343369 + 0.939201i \(0.388432\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.7023 1.61379 0.806895 0.590695i \(-0.201146\pi\)
0.806895 + 0.590695i \(0.201146\pi\)
\(84\) 0 0
\(85\) 5.14344 0.557885
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.28689 0.878408 0.439204 0.898387i \(-0.355260\pi\)
0.439204 + 0.898387i \(0.355260\pi\)
\(90\) 0 0
\(91\) −11.0396 −1.15726
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.24730 −0.743558
\(96\) 0 0
\(97\) 13.2473 1.34506 0.672530 0.740070i \(-0.265208\pi\)
0.672530 + 0.740070i \(0.265208\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.24730 0.422622 0.211311 0.977419i \(-0.432227\pi\)
0.211311 + 0.977419i \(0.432227\pi\)
\(102\) 0 0
\(103\) 13.5342 1.33356 0.666782 0.745253i \(-0.267671\pi\)
0.666782 + 0.745253i \(0.267671\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) −2.49461 −0.238940 −0.119470 0.992838i \(-0.538120\pi\)
−0.119470 + 0.992838i \(0.538120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.1434 1.23643 0.618216 0.786009i \(-0.287856\pi\)
0.618216 + 0.786009i \(0.287856\pi\)
\(114\) 0 0
\(115\) 6.24730 0.582564
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −26.9892 −2.47410
\(120\) 0 0
\(121\) 15.4550 1.40500
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 2.28689 0.202929 0.101464 0.994839i \(-0.467647\pi\)
0.101464 + 0.994839i \(0.467647\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13.3512 1.16650 0.583248 0.812294i \(-0.301781\pi\)
0.583248 + 0.812294i \(0.301781\pi\)
\(132\) 0 0
\(133\) 38.0288 3.29752
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.7815 1.09200 0.545998 0.837786i \(-0.316150\pi\)
0.545998 + 0.837786i \(0.316150\pi\)
\(138\) 0 0
\(139\) 13.5342 1.14796 0.573978 0.818871i \(-0.305400\pi\)
0.573978 + 0.818871i \(0.305400\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 10.8211 0.904904
\(144\) 0 0
\(145\) −4.24730 −0.352719
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.74191 0.716165 0.358083 0.933690i \(-0.383431\pi\)
0.358083 + 0.933690i \(0.383431\pi\)
\(150\) 0 0
\(151\) 10.1039 0.822240 0.411120 0.911581i \(-0.365138\pi\)
0.411120 + 0.911581i \(0.365138\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.14344 −0.252488
\(156\) 0 0
\(157\) 15.3512 1.22516 0.612578 0.790410i \(-0.290133\pi\)
0.612578 + 0.790410i \(0.290133\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −32.7815 −2.58354
\(162\) 0 0
\(163\) 3.49461 0.273719 0.136859 0.990590i \(-0.456299\pi\)
0.136859 + 0.990590i \(0.456299\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.4946 0.812097 0.406049 0.913852i \(-0.366906\pi\)
0.406049 + 0.913852i \(0.366906\pi\)
\(168\) 0 0
\(169\) −8.57378 −0.659521
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.494607 −0.0376042 −0.0188021 0.999823i \(-0.505985\pi\)
−0.0188021 + 0.999823i \(0.505985\pi\)
\(174\) 0 0
\(175\) −5.24730 −0.396659
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.9892 −0.970859 −0.485430 0.874276i \(-0.661337\pi\)
−0.485430 + 0.874276i \(0.661337\pi\)
\(180\) 0 0
\(181\) 8.75270 0.650583 0.325291 0.945614i \(-0.394538\pi\)
0.325291 + 0.945614i \(0.394538\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.24730 −0.0917036
\(186\) 0 0
\(187\) 26.4550 1.93458
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.2077 −0.883319 −0.441660 0.897183i \(-0.645610\pi\)
−0.441660 + 0.897183i \(0.645610\pi\)
\(192\) 0 0
\(193\) −16.0288 −1.15378 −0.576889 0.816822i \(-0.695734\pi\)
−0.576889 + 0.816822i \(0.695734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.70232 0.620015 0.310007 0.950734i \(-0.399668\pi\)
0.310007 + 0.950734i \(0.399668\pi\)
\(198\) 0 0
\(199\) −9.68842 −0.686794 −0.343397 0.939190i \(-0.611578\pi\)
−0.343397 + 0.939190i \(0.611578\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 22.2869 1.56423
\(204\) 0 0
\(205\) 2.20772 0.154194
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −37.2761 −2.57844
\(210\) 0 0
\(211\) −15.4550 −1.06397 −0.531984 0.846755i \(-0.678553\pi\)
−0.531984 + 0.846755i \(0.678553\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.03959 0.411896
\(216\) 0 0
\(217\) 16.4946 1.11973
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.8211 0.727905
\(222\) 0 0
\(223\) 18.2077 1.21928 0.609639 0.792679i \(-0.291314\pi\)
0.609639 + 0.792679i \(0.291314\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.7815 1.77755 0.888775 0.458343i \(-0.151557\pi\)
0.888775 + 0.458343i \(0.151557\pi\)
\(228\) 0 0
\(229\) 16.2869 1.07627 0.538134 0.842859i \(-0.319129\pi\)
0.538134 + 0.842859i \(0.319129\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.71311 0.112230 0.0561148 0.998424i \(-0.482129\pi\)
0.0561148 + 0.998424i \(0.482129\pi\)
\(234\) 0 0
\(235\) −10.2473 −0.668460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −28.4946 −1.84316 −0.921581 0.388185i \(-0.873102\pi\)
−0.921581 + 0.388185i \(0.873102\pi\)
\(240\) 0 0
\(241\) 25.5738 1.64735 0.823676 0.567061i \(-0.191920\pi\)
0.823676 + 0.567061i \(0.191920\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 20.5342 1.31188
\(246\) 0 0
\(247\) −15.2473 −0.970163
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.6381 1.74450 0.872249 0.489062i \(-0.162661\pi\)
0.872249 + 0.489062i \(0.162661\pi\)
\(252\) 0 0
\(253\) 32.1327 2.02016
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −26.3404 −1.64307 −0.821534 0.570160i \(-0.806881\pi\)
−0.821534 + 0.570160i \(0.806881\pi\)
\(258\) 0 0
\(259\) 6.54498 0.406685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.415435 0.0256168 0.0128084 0.999918i \(-0.495923\pi\)
0.0128084 + 0.999918i \(0.495923\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.8211 −1.39143 −0.695713 0.718320i \(-0.744911\pi\)
−0.695713 + 0.718320i \(0.744911\pi\)
\(270\) 0 0
\(271\) −9.45502 −0.574352 −0.287176 0.957878i \(-0.592716\pi\)
−0.287176 + 0.957878i \(0.592716\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.14344 0.310161
\(276\) 0 0
\(277\) −21.1969 −1.27360 −0.636800 0.771029i \(-0.719742\pi\)
−0.636800 + 0.771029i \(0.719742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −32.4946 −1.93847 −0.969233 0.246146i \(-0.920836\pi\)
−0.969233 + 0.246146i \(0.920836\pi\)
\(282\) 0 0
\(283\) −20.9892 −1.24768 −0.623840 0.781552i \(-0.714428\pi\)
−0.623840 + 0.781552i \(0.714428\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.5846 −0.683815
\(288\) 0 0
\(289\) 9.45502 0.556178
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.1969 1.70570 0.852851 0.522154i \(-0.174871\pi\)
0.852851 + 0.522154i \(0.174871\pi\)
\(294\) 0 0
\(295\) −6.49461 −0.378131
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 13.1434 0.760105
\(300\) 0 0
\(301\) −31.6915 −1.82667
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.24730 −0.0714204
\(306\) 0 0
\(307\) −1.96041 −0.111887 −0.0559434 0.998434i \(-0.517817\pi\)
−0.0559434 + 0.998434i \(0.517817\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.28689 0.243087 0.121544 0.992586i \(-0.461216\pi\)
0.121544 + 0.992586i \(0.461216\pi\)
\(312\) 0 0
\(313\) 6.83187 0.386160 0.193080 0.981183i \(-0.438152\pi\)
0.193080 + 0.981183i \(0.438152\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.4046 1.42687 0.713434 0.700723i \(-0.247139\pi\)
0.713434 + 0.700723i \(0.247139\pi\)
\(318\) 0 0
\(319\) −21.8458 −1.22313
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −37.2761 −2.07410
\(324\) 0 0
\(325\) 2.10386 0.116701
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 53.7707 2.96448
\(330\) 0 0
\(331\) 6.75270 0.371162 0.185581 0.982629i \(-0.440583\pi\)
0.185581 + 0.982629i \(0.440583\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.03959 −0.275342
\(336\) 0 0
\(337\) 2.54498 0.138634 0.0693169 0.997595i \(-0.477918\pi\)
0.0693169 + 0.997595i \(0.477918\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.1681 −0.875553
\(342\) 0 0
\(343\) −71.0180 −3.83461
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.78150 −0.149319 −0.0746593 0.997209i \(-0.523787\pi\)
−0.0746593 + 0.997209i \(0.523787\pi\)
\(348\) 0 0
\(349\) −21.8211 −1.16806 −0.584028 0.811734i \(-0.698524\pi\)
−0.584028 + 0.811734i \(0.698524\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.9357 1.11430 0.557148 0.830413i \(-0.311896\pi\)
0.557148 + 0.830413i \(0.311896\pi\)
\(354\) 0 0
\(355\) −1.79228 −0.0951245
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.286889 −0.0151414 −0.00757071 0.999971i \(-0.502410\pi\)
−0.00757071 + 0.999971i \(0.502410\pi\)
\(360\) 0 0
\(361\) 33.5234 1.76439
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.7419 −0.614600
\(366\) 0 0
\(367\) −7.45502 −0.389149 −0.194574 0.980888i \(-0.562333\pi\)
−0.194574 + 0.980888i \(0.562333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −20.9892 −1.08971
\(372\) 0 0
\(373\) −1.68842 −0.0874233 −0.0437116 0.999044i \(-0.513918\pi\)
−0.0437116 + 0.999044i \(0.513918\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.93573 −0.460213
\(378\) 0 0
\(379\) −30.0288 −1.54248 −0.771238 0.636547i \(-0.780362\pi\)
−0.771238 + 0.636547i \(0.780362\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −32.8211 −1.67708 −0.838539 0.544841i \(-0.816590\pi\)
−0.838539 + 0.544841i \(0.816590\pi\)
\(384\) 0 0
\(385\) −26.9892 −1.37550
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13.8319 0.701304 0.350652 0.936506i \(-0.385960\pi\)
0.350652 + 0.936506i \(0.385960\pi\)
\(390\) 0 0
\(391\) 32.1327 1.62502
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.10386 0.307118
\(396\) 0 0
\(397\) 21.6381 1.08598 0.542991 0.839738i \(-0.317292\pi\)
0.542991 + 0.839738i \(0.317292\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.41544 −0.420247 −0.210123 0.977675i \(-0.567387\pi\)
−0.210123 + 0.977675i \(0.567387\pi\)
\(402\) 0 0
\(403\) −6.61336 −0.329435
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.41544 −0.318001
\(408\) 0 0
\(409\) −15.9100 −0.786701 −0.393350 0.919389i \(-0.628684\pi\)
−0.393350 + 0.919389i \(0.628684\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 34.0792 1.67693
\(414\) 0 0
\(415\) 14.7023 0.721709
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.154231 −0.00753468 −0.00376734 0.999993i \(-0.501199\pi\)
−0.00376734 + 0.999993i \(0.501199\pi\)
\(420\) 0 0
\(421\) −2.83187 −0.138017 −0.0690084 0.997616i \(-0.521984\pi\)
−0.0690084 + 0.997616i \(0.521984\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.14344 0.249494
\(426\) 0 0
\(427\) 6.54498 0.316734
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.0792 −1.25619 −0.628095 0.778137i \(-0.716165\pi\)
−0.628095 + 0.778137i \(0.716165\pi\)
\(432\) 0 0
\(433\) 28.7815 1.38315 0.691575 0.722304i \(-0.256917\pi\)
0.691575 + 0.722304i \(0.256917\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −45.2761 −2.16585
\(438\) 0 0
\(439\) 36.5738 1.74557 0.872786 0.488104i \(-0.162311\pi\)
0.872786 + 0.488104i \(0.162311\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.7923 1.22543 0.612714 0.790305i \(-0.290078\pi\)
0.612714 + 0.790305i \(0.290078\pi\)
\(444\) 0 0
\(445\) 8.28689 0.392836
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.207718 0.00980281 0.00490140 0.999988i \(-0.498440\pi\)
0.00490140 + 0.999988i \(0.498440\pi\)
\(450\) 0 0
\(451\) 11.3553 0.534699
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.0396 −0.517544
\(456\) 0 0
\(457\) 14.9100 0.697462 0.348731 0.937223i \(-0.386613\pi\)
0.348731 + 0.937223i \(0.386613\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.9892 −1.44331 −0.721656 0.692252i \(-0.756619\pi\)
−0.721656 + 0.692252i \(0.756619\pi\)
\(462\) 0 0
\(463\) −10.6242 −0.493746 −0.246873 0.969048i \(-0.579403\pi\)
−0.246873 + 0.969048i \(0.579403\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.28689 0.383471 0.191736 0.981447i \(-0.438588\pi\)
0.191736 + 0.981447i \(0.438588\pi\)
\(468\) 0 0
\(469\) 26.4442 1.22108
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 31.0643 1.42834
\(474\) 0 0
\(475\) −7.24730 −0.332529
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.7707 1.26888 0.634438 0.772974i \(-0.281232\pi\)
0.634438 + 0.772974i \(0.281232\pi\)
\(480\) 0 0
\(481\) −2.62415 −0.119651
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.2473 0.601529
\(486\) 0 0
\(487\) −14.5450 −0.659096 −0.329548 0.944139i \(-0.606896\pi\)
−0.329548 + 0.944139i \(0.606896\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.0684 −0.680027 −0.340013 0.940421i \(-0.610432\pi\)
−0.340013 + 0.940421i \(0.610432\pi\)
\(492\) 0 0
\(493\) −21.8458 −0.983884
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.40465 0.421856
\(498\) 0 0
\(499\) 29.4046 1.31633 0.658166 0.752872i \(-0.271332\pi\)
0.658166 + 0.752872i \(0.271332\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.1573 −1.38924 −0.694619 0.719378i \(-0.744427\pi\)
−0.694619 + 0.719378i \(0.744427\pi\)
\(504\) 0 0
\(505\) 4.24730 0.189003
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.33726 −0.413867 −0.206933 0.978355i \(-0.566348\pi\)
−0.206933 + 0.978355i \(0.566348\pi\)
\(510\) 0 0
\(511\) 61.6134 2.72561
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.5342 0.596388
\(516\) 0 0
\(517\) −52.7064 −2.31803
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.2761 0.932123 0.466061 0.884752i \(-0.345673\pi\)
0.466061 + 0.884752i \(0.345673\pi\)
\(522\) 0 0
\(523\) 26.4838 1.15806 0.579028 0.815307i \(-0.303432\pi\)
0.579028 + 0.815307i \(0.303432\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16.1681 −0.704295
\(528\) 0 0
\(529\) 16.0288 0.696904
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.64473 0.201185
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 105.616 4.54922
\(540\) 0 0
\(541\) −21.5342 −0.925827 −0.462914 0.886403i \(-0.653196\pi\)
−0.462914 + 0.886403i \(0.653196\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.49461 −0.106857
\(546\) 0 0
\(547\) 35.0792 1.49988 0.749939 0.661508i \(-0.230083\pi\)
0.749939 + 0.661508i \(0.230083\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.7815 1.31134
\(552\) 0 0
\(553\) −32.0288 −1.36200
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.87145 0.164039 0.0820194 0.996631i \(-0.473863\pi\)
0.0820194 + 0.996631i \(0.473863\pi\)
\(558\) 0 0
\(559\) 12.7064 0.537425
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 42.8607 1.80636 0.903181 0.429260i \(-0.141226\pi\)
0.903181 + 0.429260i \(0.141226\pi\)
\(564\) 0 0
\(565\) 13.1434 0.552949
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −30.4946 −1.27840 −0.639200 0.769040i \(-0.720734\pi\)
−0.639200 + 0.769040i \(0.720734\pi\)
\(570\) 0 0
\(571\) 12.4442 0.520775 0.260388 0.965504i \(-0.416150\pi\)
0.260388 + 0.965504i \(0.416150\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.24730 0.260531
\(576\) 0 0
\(577\) −31.5342 −1.31279 −0.656393 0.754419i \(-0.727919\pi\)
−0.656393 + 0.754419i \(0.727919\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −77.1476 −3.20062
\(582\) 0 0
\(583\) 20.5738 0.852079
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −29.3553 −1.21162 −0.605811 0.795609i \(-0.707151\pi\)
−0.605811 + 0.795609i \(0.707151\pi\)
\(588\) 0 0
\(589\) 22.7815 0.938695
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.6381 1.29922 0.649610 0.760268i \(-0.274932\pi\)
0.649610 + 0.760268i \(0.274932\pi\)
\(594\) 0 0
\(595\) −26.9892 −1.10645
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.2653 1.64520 0.822598 0.568623i \(-0.192524\pi\)
0.822598 + 0.568623i \(0.192524\pi\)
\(600\) 0 0
\(601\) −0.455021 −0.0185607 −0.00928035 0.999957i \(-0.502954\pi\)
−0.00928035 + 0.999957i \(0.502954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.4550 0.628336
\(606\) 0 0
\(607\) 5.94963 0.241488 0.120744 0.992684i \(-0.461472\pi\)
0.120744 + 0.992684i \(0.461472\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.5589 −0.872179
\(612\) 0 0
\(613\) −32.3907 −1.30825 −0.654125 0.756386i \(-0.726963\pi\)
−0.654125 + 0.756386i \(0.726963\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14.1327 −0.568959 −0.284480 0.958682i \(-0.591821\pi\)
−0.284480 + 0.958682i \(0.591821\pi\)
\(618\) 0 0
\(619\) 25.6627 1.03147 0.515736 0.856747i \(-0.327518\pi\)
0.515736 + 0.856747i \(0.327518\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −43.4838 −1.74214
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.41544 −0.255800
\(630\) 0 0
\(631\) −21.6134 −0.860414 −0.430207 0.902730i \(-0.641560\pi\)
−0.430207 + 0.902730i \(0.641560\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.28689 0.0907524
\(636\) 0 0
\(637\) 43.2010 1.71169
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.27610 0.129398 0.0646991 0.997905i \(-0.479391\pi\)
0.0646991 + 0.997905i \(0.479391\pi\)
\(642\) 0 0
\(643\) −14.5342 −0.573173 −0.286586 0.958054i \(-0.592521\pi\)
−0.286586 + 0.958054i \(0.592521\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.4046 −0.841504 −0.420752 0.907176i \(-0.638234\pi\)
−0.420752 + 0.907176i \(0.638234\pi\)
\(648\) 0 0
\(649\) −33.4046 −1.31125
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.37685 0.210412 0.105206 0.994450i \(-0.466450\pi\)
0.105206 + 0.994450i \(0.466450\pi\)
\(654\) 0 0
\(655\) 13.3512 0.521673
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.415435 0.0161831 0.00809153 0.999967i \(-0.497424\pi\)
0.00809153 + 0.999967i \(0.497424\pi\)
\(660\) 0 0
\(661\) −0.673525 −0.0261971 −0.0130986 0.999914i \(-0.504170\pi\)
−0.0130986 + 0.999914i \(0.504170\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 38.0288 1.47469
\(666\) 0 0
\(667\) −26.5342 −1.02741
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.41544 −0.247665
\(672\) 0 0
\(673\) −47.6134 −1.83536 −0.917680 0.397320i \(-0.869940\pi\)
−0.917680 + 0.397320i \(0.869940\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.6529 1.17809 0.589044 0.808101i \(-0.299504\pi\)
0.589044 + 0.808101i \(0.299504\pi\)
\(678\) 0 0
\(679\) −69.5126 −2.66765
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.5846 −0.443271 −0.221636 0.975130i \(-0.571140\pi\)
−0.221636 + 0.975130i \(0.571140\pi\)
\(684\) 0 0
\(685\) 12.7815 0.488356
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.41544 0.320603
\(690\) 0 0
\(691\) −26.2869 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.5342 0.513381
\(696\) 0 0
\(697\) 11.3553 0.430112
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.66274 0.100570 0.0502851 0.998735i \(-0.483987\pi\)
0.0502851 + 0.998735i \(0.483987\pi\)
\(702\) 0 0
\(703\) 9.03959 0.340934
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.2869 −0.838185
\(708\) 0 0
\(709\) −0.881243 −0.0330958 −0.0165479 0.999863i \(-0.505268\pi\)
−0.0165479 + 0.999863i \(0.505268\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −19.6381 −0.735451
\(714\) 0 0
\(715\) 10.8211 0.404685
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.0684 1.23324 0.616621 0.787260i \(-0.288501\pi\)
0.616621 + 0.787260i \(0.288501\pi\)
\(720\) 0 0
\(721\) −71.0180 −2.64485
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.24730 −0.157741
\(726\) 0 0
\(727\) 37.4046 1.38726 0.693631 0.720331i \(-0.256010\pi\)
0.693631 + 0.720331i \(0.256010\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31.0643 1.14895
\(732\) 0 0
\(733\) −4.20772 −0.155416 −0.0777078 0.996976i \(-0.524760\pi\)
−0.0777078 + 0.996976i \(0.524760\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −25.9208 −0.954806
\(738\) 0 0
\(739\) −2.62315 −0.0964942 −0.0482471 0.998835i \(-0.515364\pi\)
−0.0482471 + 0.998835i \(0.515364\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.8103 −0.873515 −0.436757 0.899579i \(-0.643873\pi\)
−0.436757 + 0.899579i \(0.643873\pi\)
\(744\) 0 0
\(745\) 8.74191 0.320279
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −31.4838 −1.15039
\(750\) 0 0
\(751\) 21.6884 0.791422 0.395711 0.918375i \(-0.370498\pi\)
0.395711 + 0.918375i \(0.370498\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.1039 0.367717
\(756\) 0 0
\(757\) −41.5877 −1.51153 −0.755765 0.654843i \(-0.772735\pi\)
−0.755765 + 0.654843i \(0.772735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.7923 −0.427470 −0.213735 0.976892i \(-0.568563\pi\)
−0.213735 + 0.976892i \(0.568563\pi\)
\(762\) 0 0
\(763\) 13.0900 0.473888
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.6637 −0.493369
\(768\) 0 0
\(769\) −12.5846 −0.453811 −0.226906 0.973917i \(-0.572861\pi\)
−0.226906 + 0.973917i \(0.572861\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.71311 0.205486 0.102743 0.994708i \(-0.467238\pi\)
0.102743 + 0.994708i \(0.467238\pi\)
\(774\) 0 0
\(775\) −3.14344 −0.112916
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −9.21850 −0.329864
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 15.3512 0.547906
\(786\) 0 0
\(787\) 21.1583 0.754213 0.377107 0.926170i \(-0.376919\pi\)
0.377107 + 0.926170i \(0.376919\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −68.9676 −2.45221
\(792\) 0 0
\(793\) −2.62415 −0.0931863
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.21850 −0.326536 −0.163268 0.986582i \(-0.552204\pi\)
−0.163268 + 0.986582i \(0.552204\pi\)
\(798\) 0 0
\(799\) −52.7064 −1.86462
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −60.3939 −2.13125
\(804\) 0 0
\(805\) −32.7815 −1.15540
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −33.4046 −1.17444 −0.587222 0.809426i \(-0.699779\pi\)
−0.587222 + 0.809426i \(0.699779\pi\)
\(810\) 0 0
\(811\) −34.2869 −1.20398 −0.601988 0.798505i \(-0.705624\pi\)
−0.601988 + 0.798505i \(0.705624\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.49461 0.122411
\(816\) 0 0
\(817\) −43.7707 −1.53134
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.5738 −0.508628 −0.254314 0.967122i \(-0.581850\pi\)
−0.254314 + 0.967122i \(0.581850\pi\)
\(822\) 0 0
\(823\) 28.1080 0.979782 0.489891 0.871784i \(-0.337037\pi\)
0.489891 + 0.871784i \(0.337037\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34.9892 1.21669 0.608347 0.793671i \(-0.291833\pi\)
0.608347 + 0.793671i \(0.291833\pi\)
\(828\) 0 0
\(829\) −50.8597 −1.76643 −0.883215 0.468969i \(-0.844626\pi\)
−0.883215 + 0.468969i \(0.844626\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 105.616 3.65939
\(834\) 0 0
\(835\) 10.4946 0.363181
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.1178 0.660018 0.330009 0.943978i \(-0.392948\pi\)
0.330009 + 0.943978i \(0.392948\pi\)
\(840\) 0 0
\(841\) −10.9604 −0.377945
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.57378 −0.294947
\(846\) 0 0
\(847\) −81.0972 −2.78653
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.79228 −0.267116
\(852\) 0 0
\(853\) −3.97531 −0.136112 −0.0680561 0.997681i \(-0.521680\pi\)
−0.0680561 + 0.997681i \(0.521680\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −46.7023 −1.59532 −0.797661 0.603107i \(-0.793929\pi\)
−0.797661 + 0.603107i \(0.793929\pi\)
\(858\) 0 0
\(859\) 23.7419 0.810064 0.405032 0.914303i \(-0.367260\pi\)
0.405032 + 0.914303i \(0.367260\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.84265 −0.164846 −0.0824229 0.996597i \(-0.526266\pi\)
−0.0824229 + 0.996597i \(0.526266\pi\)
\(864\) 0 0
\(865\) −0.494607 −0.0168171
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 31.3949 1.06500
\(870\) 0 0
\(871\) −10.6026 −0.359255
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.24730 −0.177391
\(876\) 0 0
\(877\) 36.2900 1.22543 0.612713 0.790305i \(-0.290078\pi\)
0.612713 + 0.790305i \(0.290078\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.01079 −0.0340543 −0.0170271 0.999855i \(-0.505420\pi\)
−0.0170271 + 0.999855i \(0.505420\pi\)
\(882\) 0 0
\(883\) 6.44423 0.216866 0.108433 0.994104i \(-0.465417\pi\)
0.108433 + 0.994104i \(0.465417\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.6627 0.962401 0.481200 0.876611i \(-0.340201\pi\)
0.481200 + 0.876611i \(0.340201\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 74.2653 2.48519
\(894\) 0 0
\(895\) −12.9892 −0.434182
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.3512 0.445286
\(900\) 0 0
\(901\) 20.5738 0.685412
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.75270 0.290949
\(906\) 0 0
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.5846 −0.383814 −0.191907 0.981413i \(-0.561467\pi\)
−0.191907 + 0.981413i \(0.561467\pi\)
\(912\) 0 0
\(913\) 75.6206 2.50268
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −70.0576 −2.31351
\(918\) 0 0
\(919\) 56.7064 1.87057 0.935286 0.353892i \(-0.115142\pi\)
0.935286 + 0.353892i \(0.115142\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.77071 −0.124114
\(924\) 0 0
\(925\) −1.24730 −0.0410111
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.79228 −0.0588029 −0.0294014 0.999568i \(-0.509360\pi\)
−0.0294014 + 0.999568i \(0.509360\pi\)
\(930\) 0 0
\(931\) −148.818 −4.87730
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 26.4550 0.865172
\(936\) 0 0
\(937\) 9.53419 0.311468 0.155734 0.987799i \(-0.450226\pi\)
0.155734 + 0.987799i \(0.450226\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −54.3265 −1.77099 −0.885496 0.464647i \(-0.846181\pi\)
−0.885496 + 0.464647i \(0.846181\pi\)
\(942\) 0 0
\(943\) 13.7923 0.449139
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16.6232 −0.540180 −0.270090 0.962835i \(-0.587053\pi\)
−0.270090 + 0.962835i \(0.587053\pi\)
\(948\) 0 0
\(949\) −24.7033 −0.801904
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.1219 −0.619418 −0.309709 0.950831i \(-0.600232\pi\)
−0.309709 + 0.950831i \(0.600232\pi\)
\(954\) 0 0
\(955\) −12.2077 −0.395032
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −67.0684 −2.16575
\(960\) 0 0
\(961\) −21.1188 −0.681250
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.0288 −0.515985
\(966\) 0 0
\(967\) −8.96041 −0.288148 −0.144074 0.989567i \(-0.546020\pi\)
−0.144074 + 0.989567i \(0.546020\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.71722 0.183474 0.0917372 0.995783i \(-0.470758\pi\)
0.0917372 + 0.995783i \(0.470758\pi\)
\(972\) 0 0
\(973\) −71.0180 −2.27673
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.06427 0.0980348 0.0490174 0.998798i \(-0.484391\pi\)
0.0490174 + 0.998798i \(0.484391\pi\)
\(978\) 0 0
\(979\) 42.6232 1.36224
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.4056 1.35253 0.676265 0.736658i \(-0.263597\pi\)
0.676265 + 0.736658i \(0.263597\pi\)
\(984\) 0 0
\(985\) 8.70232 0.277279
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 37.7311 1.19978
\(990\) 0 0
\(991\) −11.0931 −0.352383 −0.176192 0.984356i \(-0.556378\pi\)
−0.176192 + 0.984356i \(0.556378\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.68842 −0.307144
\(996\) 0 0
\(997\) −54.2118 −1.71691 −0.858453 0.512892i \(-0.828574\pi\)
−0.858453 + 0.512892i \(0.828574\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.a.bi.1.1 yes 3
3.2 odd 2 4320.2.a.bg.1.1 3
4.3 odd 2 4320.2.a.bj.1.3 yes 3
8.3 odd 2 8640.2.a.dl.1.3 3
8.5 even 2 8640.2.a.dk.1.1 3
12.11 even 2 4320.2.a.bh.1.3 yes 3
24.5 odd 2 8640.2.a.dm.1.1 3
24.11 even 2 8640.2.a.dn.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.a.bg.1.1 3 3.2 odd 2
4320.2.a.bh.1.3 yes 3 12.11 even 2
4320.2.a.bi.1.1 yes 3 1.1 even 1 trivial
4320.2.a.bj.1.3 yes 3 4.3 odd 2
8640.2.a.dk.1.1 3 8.5 even 2
8640.2.a.dl.1.3 3 8.3 odd 2
8640.2.a.dm.1.1 3 24.5 odd 2
8640.2.a.dn.1.3 3 24.11 even 2