Properties

Label 4334.2.a.d.1.9
Level $4334$
Weight $2$
Character 4334.1
Self dual yes
Analytic conductor $34.607$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4334,2,Mod(1,4334)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4334, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4334.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4334 = 2 \cdot 11 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4334.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.6071642360\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 7 x^{16} - 7 x^{15} + 137 x^{14} - 98 x^{13} - 1048 x^{12} + 1313 x^{11} + 4085 x^{10} + \cdots - 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.577346\) of defining polynomial
Character \(\chi\) \(=\) 4334.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.577346 q^{3} +1.00000 q^{4} +0.543375 q^{5} -0.577346 q^{6} +4.26235 q^{7} +1.00000 q^{8} -2.66667 q^{9} +0.543375 q^{10} -1.00000 q^{11} -0.577346 q^{12} -3.04123 q^{13} +4.26235 q^{14} -0.313715 q^{15} +1.00000 q^{16} -2.22115 q^{17} -2.66667 q^{18} -5.66435 q^{19} +0.543375 q^{20} -2.46085 q^{21} -1.00000 q^{22} -0.371480 q^{23} -0.577346 q^{24} -4.70474 q^{25} -3.04123 q^{26} +3.27163 q^{27} +4.26235 q^{28} -6.58172 q^{29} -0.313715 q^{30} -0.214944 q^{31} +1.00000 q^{32} +0.577346 q^{33} -2.22115 q^{34} +2.31605 q^{35} -2.66667 q^{36} -11.6601 q^{37} -5.66435 q^{38} +1.75584 q^{39} +0.543375 q^{40} -5.07997 q^{41} -2.46085 q^{42} -8.25748 q^{43} -1.00000 q^{44} -1.44900 q^{45} -0.371480 q^{46} +11.6915 q^{47} -0.577346 q^{48} +11.1676 q^{49} -4.70474 q^{50} +1.28237 q^{51} -3.04123 q^{52} -6.06095 q^{53} +3.27163 q^{54} -0.543375 q^{55} +4.26235 q^{56} +3.27029 q^{57} -6.58172 q^{58} -6.42928 q^{59} -0.313715 q^{60} -3.47258 q^{61} -0.214944 q^{62} -11.3663 q^{63} +1.00000 q^{64} -1.65253 q^{65} +0.577346 q^{66} +3.91271 q^{67} -2.22115 q^{68} +0.214472 q^{69} +2.31605 q^{70} +6.54262 q^{71} -2.66667 q^{72} -3.23188 q^{73} -11.6601 q^{74} +2.71626 q^{75} -5.66435 q^{76} -4.26235 q^{77} +1.75584 q^{78} +16.9399 q^{79} +0.543375 q^{80} +6.11116 q^{81} -5.07997 q^{82} -6.45250 q^{83} -2.46085 q^{84} -1.20692 q^{85} -8.25748 q^{86} +3.79993 q^{87} -1.00000 q^{88} +3.09773 q^{89} -1.44900 q^{90} -12.9628 q^{91} -0.371480 q^{92} +0.124097 q^{93} +11.6915 q^{94} -3.07787 q^{95} -0.577346 q^{96} +15.7586 q^{97} +11.1676 q^{98} +2.66667 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 17 q^{2} - 7 q^{3} + 17 q^{4} - 4 q^{5} - 7 q^{6} - 5 q^{7} + 17 q^{8} + 12 q^{9} - 4 q^{10} - 17 q^{11} - 7 q^{12} - 18 q^{13} - 5 q^{14} - 16 q^{15} + 17 q^{16} - 10 q^{17} + 12 q^{18} - 31 q^{19}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.577346 −0.333331 −0.166665 0.986014i \(-0.553300\pi\)
−0.166665 + 0.986014i \(0.553300\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.543375 0.243005 0.121502 0.992591i \(-0.461229\pi\)
0.121502 + 0.992591i \(0.461229\pi\)
\(6\) −0.577346 −0.235700
\(7\) 4.26235 1.61102 0.805508 0.592585i \(-0.201893\pi\)
0.805508 + 0.592585i \(0.201893\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.66667 −0.888891
\(10\) 0.543375 0.171830
\(11\) −1.00000 −0.301511
\(12\) −0.577346 −0.166665
\(13\) −3.04123 −0.843487 −0.421743 0.906715i \(-0.638582\pi\)
−0.421743 + 0.906715i \(0.638582\pi\)
\(14\) 4.26235 1.13916
\(15\) −0.313715 −0.0810009
\(16\) 1.00000 0.250000
\(17\) −2.22115 −0.538708 −0.269354 0.963041i \(-0.586810\pi\)
−0.269354 + 0.963041i \(0.586810\pi\)
\(18\) −2.66667 −0.628541
\(19\) −5.66435 −1.29949 −0.649746 0.760152i \(-0.725125\pi\)
−0.649746 + 0.760152i \(0.725125\pi\)
\(20\) 0.543375 0.121502
\(21\) −2.46085 −0.537001
\(22\) −1.00000 −0.213201
\(23\) −0.371480 −0.0774589 −0.0387295 0.999250i \(-0.512331\pi\)
−0.0387295 + 0.999250i \(0.512331\pi\)
\(24\) −0.577346 −0.117850
\(25\) −4.70474 −0.940949
\(26\) −3.04123 −0.596435
\(27\) 3.27163 0.629625
\(28\) 4.26235 0.805508
\(29\) −6.58172 −1.22219 −0.611097 0.791556i \(-0.709272\pi\)
−0.611097 + 0.791556i \(0.709272\pi\)
\(30\) −0.313715 −0.0572763
\(31\) −0.214944 −0.0386051 −0.0193025 0.999814i \(-0.506145\pi\)
−0.0193025 + 0.999814i \(0.506145\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.577346 0.100503
\(34\) −2.22115 −0.380924
\(35\) 2.31605 0.391484
\(36\) −2.66667 −0.444445
\(37\) −11.6601 −1.91691 −0.958457 0.285236i \(-0.907928\pi\)
−0.958457 + 0.285236i \(0.907928\pi\)
\(38\) −5.66435 −0.918879
\(39\) 1.75584 0.281160
\(40\) 0.543375 0.0859152
\(41\) −5.07997 −0.793359 −0.396679 0.917957i \(-0.629838\pi\)
−0.396679 + 0.917957i \(0.629838\pi\)
\(42\) −2.46085 −0.379717
\(43\) −8.25748 −1.25925 −0.629627 0.776897i \(-0.716792\pi\)
−0.629627 + 0.776897i \(0.716792\pi\)
\(44\) −1.00000 −0.150756
\(45\) −1.44900 −0.216005
\(46\) −0.371480 −0.0547717
\(47\) 11.6915 1.70538 0.852691 0.522416i \(-0.174969\pi\)
0.852691 + 0.522416i \(0.174969\pi\)
\(48\) −0.577346 −0.0833326
\(49\) 11.1676 1.59537
\(50\) −4.70474 −0.665351
\(51\) 1.28237 0.179568
\(52\) −3.04123 −0.421743
\(53\) −6.06095 −0.832536 −0.416268 0.909242i \(-0.636662\pi\)
−0.416268 + 0.909242i \(0.636662\pi\)
\(54\) 3.27163 0.445212
\(55\) −0.543375 −0.0732687
\(56\) 4.26235 0.569580
\(57\) 3.27029 0.433160
\(58\) −6.58172 −0.864222
\(59\) −6.42928 −0.837021 −0.418511 0.908212i \(-0.637448\pi\)
−0.418511 + 0.908212i \(0.637448\pi\)
\(60\) −0.313715 −0.0405005
\(61\) −3.47258 −0.444618 −0.222309 0.974976i \(-0.571359\pi\)
−0.222309 + 0.974976i \(0.571359\pi\)
\(62\) −0.214944 −0.0272979
\(63\) −11.3663 −1.43202
\(64\) 1.00000 0.125000
\(65\) −1.65253 −0.204971
\(66\) 0.577346 0.0710663
\(67\) 3.91271 0.478013 0.239007 0.971018i \(-0.423178\pi\)
0.239007 + 0.971018i \(0.423178\pi\)
\(68\) −2.22115 −0.269354
\(69\) 0.214472 0.0258194
\(70\) 2.31605 0.276821
\(71\) 6.54262 0.776466 0.388233 0.921561i \(-0.373086\pi\)
0.388233 + 0.921561i \(0.373086\pi\)
\(72\) −2.66667 −0.314270
\(73\) −3.23188 −0.378263 −0.189131 0.981952i \(-0.560567\pi\)
−0.189131 + 0.981952i \(0.560567\pi\)
\(74\) −11.6601 −1.35546
\(75\) 2.71626 0.313647
\(76\) −5.66435 −0.649746
\(77\) −4.26235 −0.485739
\(78\) 1.75584 0.198810
\(79\) 16.9399 1.90589 0.952945 0.303144i \(-0.0980362\pi\)
0.952945 + 0.303144i \(0.0980362\pi\)
\(80\) 0.543375 0.0607512
\(81\) 6.11116 0.679017
\(82\) −5.07997 −0.560989
\(83\) −6.45250 −0.708254 −0.354127 0.935197i \(-0.615222\pi\)
−0.354127 + 0.935197i \(0.615222\pi\)
\(84\) −2.46085 −0.268500
\(85\) −1.20692 −0.130909
\(86\) −8.25748 −0.890427
\(87\) 3.79993 0.407395
\(88\) −1.00000 −0.106600
\(89\) 3.09773 0.328358 0.164179 0.986431i \(-0.447502\pi\)
0.164179 + 0.986431i \(0.447502\pi\)
\(90\) −1.44900 −0.152738
\(91\) −12.9628 −1.35887
\(92\) −0.371480 −0.0387295
\(93\) 0.124097 0.0128683
\(94\) 11.6915 1.20589
\(95\) −3.07787 −0.315783
\(96\) −0.577346 −0.0589251
\(97\) 15.7586 1.60004 0.800020 0.599974i \(-0.204822\pi\)
0.800020 + 0.599974i \(0.204822\pi\)
\(98\) 11.1676 1.12810
\(99\) 2.66667 0.268011
\(100\) −4.70474 −0.470474
\(101\) −11.4310 −1.13743 −0.568713 0.822536i \(-0.692558\pi\)
−0.568713 + 0.822536i \(0.692558\pi\)
\(102\) 1.28237 0.126974
\(103\) 11.8800 1.17057 0.585286 0.810827i \(-0.300982\pi\)
0.585286 + 0.810827i \(0.300982\pi\)
\(104\) −3.04123 −0.298218
\(105\) −1.33716 −0.130494
\(106\) −6.06095 −0.588692
\(107\) 1.40966 0.136277 0.0681383 0.997676i \(-0.478294\pi\)
0.0681383 + 0.997676i \(0.478294\pi\)
\(108\) 3.27163 0.314813
\(109\) −8.26500 −0.791644 −0.395822 0.918327i \(-0.629540\pi\)
−0.395822 + 0.918327i \(0.629540\pi\)
\(110\) −0.543375 −0.0518088
\(111\) 6.73193 0.638966
\(112\) 4.26235 0.402754
\(113\) 7.06090 0.664234 0.332117 0.943238i \(-0.392237\pi\)
0.332117 + 0.943238i \(0.392237\pi\)
\(114\) 3.27029 0.306290
\(115\) −0.201853 −0.0188229
\(116\) −6.58172 −0.611097
\(117\) 8.10997 0.749767
\(118\) −6.42928 −0.591863
\(119\) −9.46732 −0.867867
\(120\) −0.313715 −0.0286382
\(121\) 1.00000 0.0909091
\(122\) −3.47258 −0.314393
\(123\) 2.93290 0.264451
\(124\) −0.214944 −0.0193025
\(125\) −5.27332 −0.471660
\(126\) −11.3663 −1.01259
\(127\) −12.6007 −1.11813 −0.559065 0.829124i \(-0.688840\pi\)
−0.559065 + 0.829124i \(0.688840\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.76742 0.419748
\(130\) −1.65253 −0.144937
\(131\) 3.03640 0.265292 0.132646 0.991163i \(-0.457653\pi\)
0.132646 + 0.991163i \(0.457653\pi\)
\(132\) 0.577346 0.0502515
\(133\) −24.1434 −2.09350
\(134\) 3.91271 0.338006
\(135\) 1.77772 0.153002
\(136\) −2.22115 −0.190462
\(137\) −10.2838 −0.878603 −0.439301 0.898340i \(-0.644774\pi\)
−0.439301 + 0.898340i \(0.644774\pi\)
\(138\) 0.214472 0.0182571
\(139\) 8.09845 0.686902 0.343451 0.939171i \(-0.388404\pi\)
0.343451 + 0.939171i \(0.388404\pi\)
\(140\) 2.31605 0.195742
\(141\) −6.75004 −0.568456
\(142\) 6.54262 0.549044
\(143\) 3.04123 0.254321
\(144\) −2.66667 −0.222223
\(145\) −3.57634 −0.296999
\(146\) −3.23188 −0.267472
\(147\) −6.44756 −0.531786
\(148\) −11.6601 −0.958457
\(149\) 7.94122 0.650570 0.325285 0.945616i \(-0.394540\pi\)
0.325285 + 0.945616i \(0.394540\pi\)
\(150\) 2.71626 0.221782
\(151\) 16.0787 1.30847 0.654234 0.756292i \(-0.272991\pi\)
0.654234 + 0.756292i \(0.272991\pi\)
\(152\) −5.66435 −0.459439
\(153\) 5.92308 0.478853
\(154\) −4.26235 −0.343470
\(155\) −0.116795 −0.00938122
\(156\) 1.75584 0.140580
\(157\) 15.3756 1.22710 0.613552 0.789654i \(-0.289740\pi\)
0.613552 + 0.789654i \(0.289740\pi\)
\(158\) 16.9399 1.34767
\(159\) 3.49926 0.277510
\(160\) 0.543375 0.0429576
\(161\) −1.58338 −0.124787
\(162\) 6.11116 0.480138
\(163\) 9.50432 0.744436 0.372218 0.928145i \(-0.378597\pi\)
0.372218 + 0.928145i \(0.378597\pi\)
\(164\) −5.07997 −0.396679
\(165\) 0.313715 0.0244227
\(166\) −6.45250 −0.500811
\(167\) 12.1221 0.938033 0.469017 0.883189i \(-0.344608\pi\)
0.469017 + 0.883189i \(0.344608\pi\)
\(168\) −2.46085 −0.189858
\(169\) −3.75090 −0.288530
\(170\) −1.20692 −0.0925664
\(171\) 15.1050 1.15511
\(172\) −8.25748 −0.629627
\(173\) 3.24690 0.246857 0.123428 0.992353i \(-0.460611\pi\)
0.123428 + 0.992353i \(0.460611\pi\)
\(174\) 3.79993 0.288072
\(175\) −20.0532 −1.51588
\(176\) −1.00000 −0.0753778
\(177\) 3.71192 0.279005
\(178\) 3.09773 0.232184
\(179\) −2.55255 −0.190787 −0.0953934 0.995440i \(-0.530411\pi\)
−0.0953934 + 0.995440i \(0.530411\pi\)
\(180\) −1.44900 −0.108002
\(181\) −2.74731 −0.204206 −0.102103 0.994774i \(-0.532557\pi\)
−0.102103 + 0.994774i \(0.532557\pi\)
\(182\) −12.9628 −0.960866
\(183\) 2.00488 0.148205
\(184\) −0.371480 −0.0273859
\(185\) −6.33583 −0.465819
\(186\) 0.124097 0.00909923
\(187\) 2.22115 0.162427
\(188\) 11.6915 0.852691
\(189\) 13.9448 1.01434
\(190\) −3.07787 −0.223292
\(191\) −19.9264 −1.44182 −0.720912 0.693027i \(-0.756277\pi\)
−0.720912 + 0.693027i \(0.756277\pi\)
\(192\) −0.577346 −0.0416663
\(193\) −4.92907 −0.354803 −0.177401 0.984139i \(-0.556769\pi\)
−0.177401 + 0.984139i \(0.556769\pi\)
\(194\) 15.7586 1.13140
\(195\) 0.954081 0.0683232
\(196\) 11.1676 0.797685
\(197\) 1.00000 0.0712470
\(198\) 2.66667 0.189512
\(199\) −9.26803 −0.656993 −0.328496 0.944505i \(-0.606542\pi\)
−0.328496 + 0.944505i \(0.606542\pi\)
\(200\) −4.70474 −0.332676
\(201\) −2.25898 −0.159336
\(202\) −11.4310 −0.804281
\(203\) −28.0536 −1.96897
\(204\) 1.28237 0.0897840
\(205\) −2.76033 −0.192790
\(206\) 11.8800 0.827720
\(207\) 0.990615 0.0688525
\(208\) −3.04123 −0.210872
\(209\) 5.66435 0.391811
\(210\) −1.33716 −0.0922730
\(211\) −25.3840 −1.74750 −0.873752 0.486372i \(-0.838320\pi\)
−0.873752 + 0.486372i \(0.838320\pi\)
\(212\) −6.06095 −0.416268
\(213\) −3.77735 −0.258820
\(214\) 1.40966 0.0963621
\(215\) −4.48691 −0.306005
\(216\) 3.27163 0.222606
\(217\) −0.916165 −0.0621934
\(218\) −8.26500 −0.559777
\(219\) 1.86591 0.126087
\(220\) −0.543375 −0.0366343
\(221\) 6.75504 0.454393
\(222\) 6.73193 0.451817
\(223\) 6.11272 0.409338 0.204669 0.978831i \(-0.434388\pi\)
0.204669 + 0.978831i \(0.434388\pi\)
\(224\) 4.26235 0.284790
\(225\) 12.5460 0.836401
\(226\) 7.06090 0.469684
\(227\) −22.6472 −1.50315 −0.751575 0.659647i \(-0.770706\pi\)
−0.751575 + 0.659647i \(0.770706\pi\)
\(228\) 3.27029 0.216580
\(229\) −8.94455 −0.591072 −0.295536 0.955332i \(-0.595498\pi\)
−0.295536 + 0.955332i \(0.595498\pi\)
\(230\) −0.201853 −0.0133098
\(231\) 2.46085 0.161912
\(232\) −6.58172 −0.432111
\(233\) 2.06997 0.135608 0.0678040 0.997699i \(-0.478401\pi\)
0.0678040 + 0.997699i \(0.478401\pi\)
\(234\) 8.10997 0.530166
\(235\) 6.35287 0.414416
\(236\) −6.42928 −0.418511
\(237\) −9.78019 −0.635291
\(238\) −9.46732 −0.613675
\(239\) 6.45225 0.417361 0.208681 0.977984i \(-0.433083\pi\)
0.208681 + 0.977984i \(0.433083\pi\)
\(240\) −0.313715 −0.0202502
\(241\) −19.8363 −1.27777 −0.638884 0.769303i \(-0.720604\pi\)
−0.638884 + 0.769303i \(0.720604\pi\)
\(242\) 1.00000 0.0642824
\(243\) −13.3431 −0.855962
\(244\) −3.47258 −0.222309
\(245\) 6.06819 0.387683
\(246\) 2.93290 0.186995
\(247\) 17.2266 1.09610
\(248\) −0.214944 −0.0136490
\(249\) 3.72532 0.236083
\(250\) −5.27332 −0.333514
\(251\) 12.1367 0.766059 0.383029 0.923736i \(-0.374881\pi\)
0.383029 + 0.923736i \(0.374881\pi\)
\(252\) −11.3663 −0.716008
\(253\) 0.371480 0.0233547
\(254\) −12.6007 −0.790637
\(255\) 0.696809 0.0436359
\(256\) 1.00000 0.0625000
\(257\) 7.28629 0.454506 0.227253 0.973836i \(-0.427026\pi\)
0.227253 + 0.973836i \(0.427026\pi\)
\(258\) 4.76742 0.296807
\(259\) −49.6995 −3.08818
\(260\) −1.65253 −0.102486
\(261\) 17.5513 1.08640
\(262\) 3.03640 0.187590
\(263\) 12.1105 0.746763 0.373382 0.927678i \(-0.378198\pi\)
0.373382 + 0.927678i \(0.378198\pi\)
\(264\) 0.577346 0.0355332
\(265\) −3.29337 −0.202310
\(266\) −24.1434 −1.48033
\(267\) −1.78846 −0.109452
\(268\) 3.91271 0.239007
\(269\) 17.5560 1.07041 0.535205 0.844722i \(-0.320234\pi\)
0.535205 + 0.844722i \(0.320234\pi\)
\(270\) 1.77772 0.108189
\(271\) −1.29395 −0.0786020 −0.0393010 0.999227i \(-0.512513\pi\)
−0.0393010 + 0.999227i \(0.512513\pi\)
\(272\) −2.22115 −0.134677
\(273\) 7.48401 0.452953
\(274\) −10.2838 −0.621266
\(275\) 4.70474 0.283707
\(276\) 0.214472 0.0129097
\(277\) 14.3459 0.861964 0.430982 0.902361i \(-0.358167\pi\)
0.430982 + 0.902361i \(0.358167\pi\)
\(278\) 8.09845 0.485713
\(279\) 0.573185 0.0343157
\(280\) 2.31605 0.138411
\(281\) 0.881377 0.0525786 0.0262893 0.999654i \(-0.491631\pi\)
0.0262893 + 0.999654i \(0.491631\pi\)
\(282\) −6.75004 −0.401959
\(283\) 8.73102 0.519005 0.259503 0.965742i \(-0.416441\pi\)
0.259503 + 0.965742i \(0.416441\pi\)
\(284\) 6.54262 0.388233
\(285\) 1.77699 0.105260
\(286\) 3.04123 0.179832
\(287\) −21.6526 −1.27811
\(288\) −2.66667 −0.157135
\(289\) −12.0665 −0.709793
\(290\) −3.57634 −0.210010
\(291\) −9.09813 −0.533342
\(292\) −3.23188 −0.189131
\(293\) −25.6867 −1.50063 −0.750316 0.661080i \(-0.770099\pi\)
−0.750316 + 0.661080i \(0.770099\pi\)
\(294\) −6.44756 −0.376029
\(295\) −3.49351 −0.203400
\(296\) −11.6601 −0.677732
\(297\) −3.27163 −0.189839
\(298\) 7.94122 0.460023
\(299\) 1.12976 0.0653355
\(300\) 2.71626 0.156823
\(301\) −35.1962 −2.02868
\(302\) 16.0787 0.925227
\(303\) 6.59963 0.379139
\(304\) −5.66435 −0.324873
\(305\) −1.88691 −0.108044
\(306\) 5.92308 0.338600
\(307\) −16.5178 −0.942720 −0.471360 0.881941i \(-0.656237\pi\)
−0.471360 + 0.881941i \(0.656237\pi\)
\(308\) −4.26235 −0.242870
\(309\) −6.85887 −0.390188
\(310\) −0.116795 −0.00663352
\(311\) 29.5386 1.67498 0.837491 0.546451i \(-0.184022\pi\)
0.837491 + 0.546451i \(0.184022\pi\)
\(312\) 1.75584 0.0994050
\(313\) −19.9854 −1.12964 −0.564821 0.825213i \(-0.691055\pi\)
−0.564821 + 0.825213i \(0.691055\pi\)
\(314\) 15.3756 0.867693
\(315\) −6.17615 −0.347987
\(316\) 16.9399 0.952945
\(317\) 10.2716 0.576912 0.288456 0.957493i \(-0.406858\pi\)
0.288456 + 0.957493i \(0.406858\pi\)
\(318\) 3.49926 0.196229
\(319\) 6.58172 0.368505
\(320\) 0.543375 0.0303756
\(321\) −0.813858 −0.0454251
\(322\) −1.58338 −0.0882381
\(323\) 12.5814 0.700047
\(324\) 6.11116 0.339509
\(325\) 14.3082 0.793678
\(326\) 9.50432 0.526396
\(327\) 4.77176 0.263879
\(328\) −5.07997 −0.280495
\(329\) 49.8332 2.74740
\(330\) 0.313715 0.0172695
\(331\) −0.0160706 −0.000883318 0 −0.000441659 1.00000i \(-0.500141\pi\)
−0.000441659 1.00000i \(0.500141\pi\)
\(332\) −6.45250 −0.354127
\(333\) 31.0938 1.70393
\(334\) 12.1221 0.663290
\(335\) 2.12607 0.116159
\(336\) −2.46085 −0.134250
\(337\) −19.5074 −1.06263 −0.531317 0.847173i \(-0.678303\pi\)
−0.531317 + 0.847173i \(0.678303\pi\)
\(338\) −3.75090 −0.204022
\(339\) −4.07658 −0.221409
\(340\) −1.20692 −0.0654544
\(341\) 0.214944 0.0116399
\(342\) 15.1050 0.816783
\(343\) 17.7637 0.959151
\(344\) −8.25748 −0.445214
\(345\) 0.116539 0.00627424
\(346\) 3.24690 0.174554
\(347\) −12.9180 −0.693472 −0.346736 0.937963i \(-0.612710\pi\)
−0.346736 + 0.937963i \(0.612710\pi\)
\(348\) 3.79993 0.203697
\(349\) −0.975358 −0.0522097 −0.0261049 0.999659i \(-0.508310\pi\)
−0.0261049 + 0.999659i \(0.508310\pi\)
\(350\) −20.0532 −1.07189
\(351\) −9.94979 −0.531080
\(352\) −1.00000 −0.0533002
\(353\) −31.6053 −1.68218 −0.841091 0.540893i \(-0.818086\pi\)
−0.841091 + 0.540893i \(0.818086\pi\)
\(354\) 3.71192 0.197286
\(355\) 3.55510 0.188685
\(356\) 3.09773 0.164179
\(357\) 5.46591 0.289287
\(358\) −2.55255 −0.134907
\(359\) 9.98162 0.526810 0.263405 0.964685i \(-0.415154\pi\)
0.263405 + 0.964685i \(0.415154\pi\)
\(360\) −1.44900 −0.0763692
\(361\) 13.0849 0.688677
\(362\) −2.74731 −0.144395
\(363\) −0.577346 −0.0303028
\(364\) −12.9628 −0.679435
\(365\) −1.75612 −0.0919197
\(366\) 2.00488 0.104797
\(367\) −33.6940 −1.75881 −0.879406 0.476073i \(-0.842060\pi\)
−0.879406 + 0.476073i \(0.842060\pi\)
\(368\) −0.371480 −0.0193647
\(369\) 13.5466 0.705209
\(370\) −6.33583 −0.329384
\(371\) −25.8339 −1.34123
\(372\) 0.124097 0.00643413
\(373\) 14.9247 0.772773 0.386387 0.922337i \(-0.373723\pi\)
0.386387 + 0.922337i \(0.373723\pi\)
\(374\) 2.22115 0.114853
\(375\) 3.04453 0.157219
\(376\) 11.6915 0.602943
\(377\) 20.0165 1.03090
\(378\) 13.9448 0.717244
\(379\) 32.9765 1.69389 0.846945 0.531681i \(-0.178439\pi\)
0.846945 + 0.531681i \(0.178439\pi\)
\(380\) −3.07787 −0.157891
\(381\) 7.27495 0.372707
\(382\) −19.9264 −1.01952
\(383\) −28.6521 −1.46406 −0.732028 0.681275i \(-0.761426\pi\)
−0.732028 + 0.681275i \(0.761426\pi\)
\(384\) −0.577346 −0.0294625
\(385\) −2.31605 −0.118037
\(386\) −4.92907 −0.250883
\(387\) 22.0200 1.11934
\(388\) 15.7586 0.800020
\(389\) −29.9562 −1.51884 −0.759419 0.650601i \(-0.774517\pi\)
−0.759419 + 0.650601i \(0.774517\pi\)
\(390\) 0.954081 0.0483118
\(391\) 0.825113 0.0417278
\(392\) 11.1676 0.564049
\(393\) −1.75305 −0.0884299
\(394\) 1.00000 0.0503793
\(395\) 9.20473 0.463140
\(396\) 2.66667 0.134005
\(397\) −12.5466 −0.629697 −0.314849 0.949142i \(-0.601954\pi\)
−0.314849 + 0.949142i \(0.601954\pi\)
\(398\) −9.26803 −0.464564
\(399\) 13.9391 0.697828
\(400\) −4.70474 −0.235237
\(401\) −27.4744 −1.37201 −0.686003 0.727599i \(-0.740636\pi\)
−0.686003 + 0.727599i \(0.740636\pi\)
\(402\) −2.25898 −0.112668
\(403\) 0.653695 0.0325629
\(404\) −11.4310 −0.568713
\(405\) 3.32065 0.165004
\(406\) −28.0536 −1.39227
\(407\) 11.6601 0.577971
\(408\) 1.28237 0.0634869
\(409\) −28.5484 −1.41163 −0.705814 0.708397i \(-0.749418\pi\)
−0.705814 + 0.708397i \(0.749418\pi\)
\(410\) −2.76033 −0.136323
\(411\) 5.93729 0.292865
\(412\) 11.8800 0.585286
\(413\) −27.4038 −1.34845
\(414\) 0.990615 0.0486861
\(415\) −3.50613 −0.172109
\(416\) −3.04123 −0.149109
\(417\) −4.67561 −0.228965
\(418\) 5.66435 0.277052
\(419\) 12.2932 0.600561 0.300280 0.953851i \(-0.402920\pi\)
0.300280 + 0.953851i \(0.402920\pi\)
\(420\) −1.33716 −0.0652469
\(421\) 29.5043 1.43795 0.718976 0.695034i \(-0.244611\pi\)
0.718976 + 0.695034i \(0.244611\pi\)
\(422\) −25.3840 −1.23567
\(423\) −31.1774 −1.51590
\(424\) −6.06095 −0.294346
\(425\) 10.4499 0.506897
\(426\) −3.77735 −0.183013
\(427\) −14.8013 −0.716287
\(428\) 1.40966 0.0681383
\(429\) −1.75584 −0.0847729
\(430\) −4.48691 −0.216378
\(431\) 16.2220 0.781386 0.390693 0.920521i \(-0.372235\pi\)
0.390693 + 0.920521i \(0.372235\pi\)
\(432\) 3.27163 0.157406
\(433\) −26.0231 −1.25059 −0.625295 0.780388i \(-0.715021\pi\)
−0.625295 + 0.780388i \(0.715021\pi\)
\(434\) −0.916165 −0.0439773
\(435\) 2.06479 0.0989989
\(436\) −8.26500 −0.395822
\(437\) 2.10419 0.100657
\(438\) 1.86591 0.0891567
\(439\) −19.3226 −0.922218 −0.461109 0.887343i \(-0.652548\pi\)
−0.461109 + 0.887343i \(0.652548\pi\)
\(440\) −0.543375 −0.0259044
\(441\) −29.7803 −1.41811
\(442\) 6.75504 0.321305
\(443\) −15.4052 −0.731922 −0.365961 0.930630i \(-0.619260\pi\)
−0.365961 + 0.930630i \(0.619260\pi\)
\(444\) 6.73193 0.319483
\(445\) 1.68323 0.0797927
\(446\) 6.11272 0.289445
\(447\) −4.58483 −0.216855
\(448\) 4.26235 0.201377
\(449\) −0.282425 −0.0133284 −0.00666422 0.999978i \(-0.502121\pi\)
−0.00666422 + 0.999978i \(0.502121\pi\)
\(450\) 12.5460 0.591424
\(451\) 5.07997 0.239207
\(452\) 7.06090 0.332117
\(453\) −9.28298 −0.436152
\(454\) −22.6472 −1.06289
\(455\) −7.04366 −0.330212
\(456\) 3.27029 0.153145
\(457\) −15.3844 −0.719653 −0.359826 0.933019i \(-0.617164\pi\)
−0.359826 + 0.933019i \(0.617164\pi\)
\(458\) −8.94455 −0.417951
\(459\) −7.26678 −0.339184
\(460\) −0.201853 −0.00941144
\(461\) 33.8126 1.57481 0.787404 0.616437i \(-0.211424\pi\)
0.787404 + 0.616437i \(0.211424\pi\)
\(462\) 2.46085 0.114489
\(463\) −7.83856 −0.364289 −0.182144 0.983272i \(-0.558304\pi\)
−0.182144 + 0.983272i \(0.558304\pi\)
\(464\) −6.58172 −0.305549
\(465\) 0.0674312 0.00312705
\(466\) 2.06997 0.0958894
\(467\) −15.1724 −0.702093 −0.351046 0.936358i \(-0.614174\pi\)
−0.351046 + 0.936358i \(0.614174\pi\)
\(468\) 8.10997 0.374884
\(469\) 16.6773 0.770087
\(470\) 6.35287 0.293036
\(471\) −8.87701 −0.409031
\(472\) −6.42928 −0.295932
\(473\) 8.25748 0.379679
\(474\) −9.78019 −0.449219
\(475\) 26.6493 1.22275
\(476\) −9.46732 −0.433934
\(477\) 16.1626 0.740033
\(478\) 6.45225 0.295119
\(479\) 19.4182 0.887241 0.443621 0.896215i \(-0.353694\pi\)
0.443621 + 0.896215i \(0.353694\pi\)
\(480\) −0.313715 −0.0143191
\(481\) 35.4612 1.61689
\(482\) −19.8363 −0.903518
\(483\) 0.914155 0.0415955
\(484\) 1.00000 0.0454545
\(485\) 8.56281 0.388817
\(486\) −13.3431 −0.605257
\(487\) −32.6899 −1.48132 −0.740662 0.671878i \(-0.765488\pi\)
−0.740662 + 0.671878i \(0.765488\pi\)
\(488\) −3.47258 −0.157196
\(489\) −5.48728 −0.248143
\(490\) 6.06819 0.274133
\(491\) 12.9260 0.583341 0.291670 0.956519i \(-0.405789\pi\)
0.291670 + 0.956519i \(0.405789\pi\)
\(492\) 2.93290 0.132225
\(493\) 14.6190 0.658406
\(494\) 17.2266 0.775062
\(495\) 1.44900 0.0651279
\(496\) −0.214944 −0.00965127
\(497\) 27.8869 1.25090
\(498\) 3.72532 0.166936
\(499\) 25.7188 1.15133 0.575666 0.817685i \(-0.304743\pi\)
0.575666 + 0.817685i \(0.304743\pi\)
\(500\) −5.27332 −0.235830
\(501\) −6.99862 −0.312675
\(502\) 12.1367 0.541685
\(503\) −15.3846 −0.685963 −0.342982 0.939342i \(-0.611437\pi\)
−0.342982 + 0.939342i \(0.611437\pi\)
\(504\) −11.3663 −0.506294
\(505\) −6.21131 −0.276400
\(506\) 0.371480 0.0165143
\(507\) 2.16556 0.0961760
\(508\) −12.6007 −0.559065
\(509\) 30.9021 1.36971 0.684857 0.728678i \(-0.259865\pi\)
0.684857 + 0.728678i \(0.259865\pi\)
\(510\) 0.696809 0.0308552
\(511\) −13.7754 −0.609387
\(512\) 1.00000 0.0441942
\(513\) −18.5316 −0.818192
\(514\) 7.28629 0.321384
\(515\) 6.45530 0.284455
\(516\) 4.76742 0.209874
\(517\) −11.6915 −0.514192
\(518\) −49.6995 −2.18367
\(519\) −1.87458 −0.0822850
\(520\) −1.65253 −0.0724683
\(521\) 35.0575 1.53590 0.767948 0.640513i \(-0.221278\pi\)
0.767948 + 0.640513i \(0.221278\pi\)
\(522\) 17.5513 0.768199
\(523\) −24.8244 −1.08550 −0.542748 0.839896i \(-0.682616\pi\)
−0.542748 + 0.839896i \(0.682616\pi\)
\(524\) 3.03640 0.132646
\(525\) 11.5777 0.505290
\(526\) 12.1105 0.528042
\(527\) 0.477423 0.0207969
\(528\) 0.577346 0.0251257
\(529\) −22.8620 −0.994000
\(530\) −3.29337 −0.143055
\(531\) 17.1448 0.744021
\(532\) −24.1434 −1.04675
\(533\) 15.4494 0.669187
\(534\) −1.78846 −0.0773942
\(535\) 0.765972 0.0331158
\(536\) 3.91271 0.169003
\(537\) 1.47370 0.0635951
\(538\) 17.5560 0.756894
\(539\) −11.1676 −0.481022
\(540\) 1.77772 0.0765009
\(541\) 17.5317 0.753745 0.376872 0.926265i \(-0.377000\pi\)
0.376872 + 0.926265i \(0.377000\pi\)
\(542\) −1.29395 −0.0555800
\(543\) 1.58615 0.0680681
\(544\) −2.22115 −0.0952311
\(545\) −4.49100 −0.192373
\(546\) 7.48401 0.320286
\(547\) 10.9370 0.467634 0.233817 0.972281i \(-0.424878\pi\)
0.233817 + 0.972281i \(0.424878\pi\)
\(548\) −10.2838 −0.439301
\(549\) 9.26023 0.395217
\(550\) 4.70474 0.200611
\(551\) 37.2812 1.58823
\(552\) 0.214472 0.00912854
\(553\) 72.2038 3.07042
\(554\) 14.3459 0.609501
\(555\) 3.65796 0.155272
\(556\) 8.09845 0.343451
\(557\) 44.1500 1.87070 0.935349 0.353728i \(-0.115086\pi\)
0.935349 + 0.353728i \(0.115086\pi\)
\(558\) 0.573185 0.0242649
\(559\) 25.1129 1.06216
\(560\) 2.31605 0.0978711
\(561\) −1.28237 −0.0541418
\(562\) 0.881377 0.0371787
\(563\) 45.3609 1.91173 0.955866 0.293802i \(-0.0949207\pi\)
0.955866 + 0.293802i \(0.0949207\pi\)
\(564\) −6.75004 −0.284228
\(565\) 3.83672 0.161412
\(566\) 8.73102 0.366992
\(567\) 26.0479 1.09391
\(568\) 6.54262 0.274522
\(569\) 20.9765 0.879381 0.439691 0.898149i \(-0.355088\pi\)
0.439691 + 0.898149i \(0.355088\pi\)
\(570\) 1.77699 0.0744300
\(571\) 29.2335 1.22338 0.611691 0.791097i \(-0.290489\pi\)
0.611691 + 0.791097i \(0.290489\pi\)
\(572\) 3.04123 0.127160
\(573\) 11.5044 0.480604
\(574\) −21.6526 −0.903762
\(575\) 1.74772 0.0728849
\(576\) −2.66667 −0.111111
\(577\) −22.9837 −0.956822 −0.478411 0.878136i \(-0.658787\pi\)
−0.478411 + 0.878136i \(0.658787\pi\)
\(578\) −12.0665 −0.501900
\(579\) 2.84578 0.118267
\(580\) −3.57634 −0.148500
\(581\) −27.5028 −1.14101
\(582\) −9.09813 −0.377130
\(583\) 6.06095 0.251019
\(584\) −3.23188 −0.133736
\(585\) 4.40676 0.182197
\(586\) −25.6867 −1.06111
\(587\) 7.70832 0.318156 0.159078 0.987266i \(-0.449148\pi\)
0.159078 + 0.987266i \(0.449148\pi\)
\(588\) −6.44756 −0.265893
\(589\) 1.21752 0.0501669
\(590\) −3.49351 −0.143826
\(591\) −0.577346 −0.0237488
\(592\) −11.6601 −0.479229
\(593\) −4.89540 −0.201030 −0.100515 0.994936i \(-0.532049\pi\)
−0.100515 + 0.994936i \(0.532049\pi\)
\(594\) −3.27163 −0.134237
\(595\) −5.14430 −0.210896
\(596\) 7.94122 0.325285
\(597\) 5.35085 0.218996
\(598\) 1.12976 0.0461992
\(599\) 42.3017 1.72840 0.864199 0.503150i \(-0.167826\pi\)
0.864199 + 0.503150i \(0.167826\pi\)
\(600\) 2.71626 0.110891
\(601\) −32.4040 −1.32179 −0.660894 0.750479i \(-0.729823\pi\)
−0.660894 + 0.750479i \(0.729823\pi\)
\(602\) −35.1962 −1.43449
\(603\) −10.4339 −0.424901
\(604\) 16.0787 0.654234
\(605\) 0.543375 0.0220913
\(606\) 6.59963 0.268092
\(607\) 0.663158 0.0269167 0.0134584 0.999909i \(-0.495716\pi\)
0.0134584 + 0.999909i \(0.495716\pi\)
\(608\) −5.66435 −0.229720
\(609\) 16.1966 0.656319
\(610\) −1.88691 −0.0763989
\(611\) −35.5566 −1.43847
\(612\) 5.92308 0.239426
\(613\) −35.6846 −1.44129 −0.720644 0.693305i \(-0.756154\pi\)
−0.720644 + 0.693305i \(0.756154\pi\)
\(614\) −16.5178 −0.666604
\(615\) 1.59367 0.0642628
\(616\) −4.26235 −0.171735
\(617\) 18.2875 0.736227 0.368114 0.929781i \(-0.380004\pi\)
0.368114 + 0.929781i \(0.380004\pi\)
\(618\) −6.85887 −0.275904
\(619\) 17.7899 0.715037 0.357519 0.933906i \(-0.383623\pi\)
0.357519 + 0.933906i \(0.383623\pi\)
\(620\) −0.116795 −0.00469061
\(621\) −1.21534 −0.0487701
\(622\) 29.5386 1.18439
\(623\) 13.2036 0.528990
\(624\) 1.75584 0.0702900
\(625\) 20.6583 0.826333
\(626\) −19.9854 −0.798778
\(627\) −3.27029 −0.130603
\(628\) 15.3756 0.613552
\(629\) 25.8989 1.03266
\(630\) −6.17615 −0.246064
\(631\) −20.2350 −0.805542 −0.402771 0.915301i \(-0.631953\pi\)
−0.402771 + 0.915301i \(0.631953\pi\)
\(632\) 16.9399 0.673834
\(633\) 14.6553 0.582496
\(634\) 10.2716 0.407938
\(635\) −6.84690 −0.271711
\(636\) 3.49926 0.138755
\(637\) −33.9633 −1.34567
\(638\) 6.58172 0.260573
\(639\) −17.4470 −0.690193
\(640\) 0.543375 0.0214788
\(641\) 35.3802 1.39743 0.698716 0.715399i \(-0.253755\pi\)
0.698716 + 0.715399i \(0.253755\pi\)
\(642\) −0.813858 −0.0321204
\(643\) −37.1995 −1.46701 −0.733503 0.679686i \(-0.762116\pi\)
−0.733503 + 0.679686i \(0.762116\pi\)
\(644\) −1.58338 −0.0623937
\(645\) 2.59050 0.102001
\(646\) 12.5814 0.495008
\(647\) 17.3381 0.681629 0.340815 0.940131i \(-0.389297\pi\)
0.340815 + 0.940131i \(0.389297\pi\)
\(648\) 6.11116 0.240069
\(649\) 6.42928 0.252371
\(650\) 14.3082 0.561215
\(651\) 0.528944 0.0207310
\(652\) 9.50432 0.372218
\(653\) −40.7979 −1.59655 −0.798273 0.602296i \(-0.794253\pi\)
−0.798273 + 0.602296i \(0.794253\pi\)
\(654\) 4.77176 0.186591
\(655\) 1.64991 0.0644672
\(656\) −5.07997 −0.198340
\(657\) 8.61837 0.336234
\(658\) 49.8332 1.94270
\(659\) 12.5360 0.488333 0.244166 0.969733i \(-0.421486\pi\)
0.244166 + 0.969733i \(0.421486\pi\)
\(660\) 0.313715 0.0122113
\(661\) −30.3291 −1.17966 −0.589832 0.807526i \(-0.700806\pi\)
−0.589832 + 0.807526i \(0.700806\pi\)
\(662\) −0.0160706 −0.000624600 0
\(663\) −3.89999 −0.151463
\(664\) −6.45250 −0.250405
\(665\) −13.1189 −0.508730
\(666\) 31.0938 1.20486
\(667\) 2.44498 0.0946698
\(668\) 12.1221 0.469017
\(669\) −3.52915 −0.136445
\(670\) 2.12607 0.0821372
\(671\) 3.47258 0.134057
\(672\) −2.46085 −0.0949292
\(673\) −31.4378 −1.21184 −0.605919 0.795527i \(-0.707194\pi\)
−0.605919 + 0.795527i \(0.707194\pi\)
\(674\) −19.5074 −0.751396
\(675\) −15.3922 −0.592445
\(676\) −3.75090 −0.144265
\(677\) 11.5272 0.443028 0.221514 0.975157i \(-0.428900\pi\)
0.221514 + 0.975157i \(0.428900\pi\)
\(678\) −4.07658 −0.156560
\(679\) 67.1684 2.57769
\(680\) −1.20692 −0.0462832
\(681\) 13.0753 0.501046
\(682\) 0.214944 0.00823063
\(683\) −6.91408 −0.264560 −0.132280 0.991212i \(-0.542230\pi\)
−0.132280 + 0.991212i \(0.542230\pi\)
\(684\) 15.1050 0.577553
\(685\) −5.58795 −0.213505
\(686\) 17.7637 0.678222
\(687\) 5.16409 0.197022
\(688\) −8.25748 −0.314814
\(689\) 18.4328 0.702233
\(690\) 0.116539 0.00443656
\(691\) −36.0166 −1.37014 −0.685069 0.728478i \(-0.740228\pi\)
−0.685069 + 0.728478i \(0.740228\pi\)
\(692\) 3.24690 0.123428
\(693\) 11.3663 0.431769
\(694\) −12.9180 −0.490359
\(695\) 4.40050 0.166920
\(696\) 3.79993 0.144036
\(697\) 11.2834 0.427389
\(698\) −0.975358 −0.0369178
\(699\) −1.19509 −0.0452023
\(700\) −20.0532 −0.757941
\(701\) −4.92174 −0.185892 −0.0929458 0.995671i \(-0.529628\pi\)
−0.0929458 + 0.995671i \(0.529628\pi\)
\(702\) −9.94979 −0.375530
\(703\) 66.0471 2.49101
\(704\) −1.00000 −0.0376889
\(705\) −3.66780 −0.138137
\(706\) −31.6053 −1.18948
\(707\) −48.7228 −1.83241
\(708\) 3.71192 0.139502
\(709\) 37.1273 1.39435 0.697173 0.716903i \(-0.254441\pi\)
0.697173 + 0.716903i \(0.254441\pi\)
\(710\) 3.55510 0.133420
\(711\) −45.1732 −1.69413
\(712\) 3.09773 0.116092
\(713\) 0.0798473 0.00299031
\(714\) 5.46591 0.204557
\(715\) 1.65253 0.0618012
\(716\) −2.55255 −0.0953934
\(717\) −3.72518 −0.139119
\(718\) 9.98162 0.372511
\(719\) 10.7461 0.400762 0.200381 0.979718i \(-0.435782\pi\)
0.200381 + 0.979718i \(0.435782\pi\)
\(720\) −1.44900 −0.0540012
\(721\) 50.6367 1.88581
\(722\) 13.0849 0.486968
\(723\) 11.4524 0.425919
\(724\) −2.74731 −0.102103
\(725\) 30.9653 1.15002
\(726\) −0.577346 −0.0214273
\(727\) −3.05686 −0.113373 −0.0566863 0.998392i \(-0.518053\pi\)
−0.0566863 + 0.998392i \(0.518053\pi\)
\(728\) −12.9628 −0.480433
\(729\) −10.6299 −0.393699
\(730\) −1.75612 −0.0649970
\(731\) 18.3411 0.678371
\(732\) 2.00488 0.0741024
\(733\) 11.5295 0.425852 0.212926 0.977068i \(-0.431701\pi\)
0.212926 + 0.977068i \(0.431701\pi\)
\(734\) −33.6940 −1.24367
\(735\) −3.50344 −0.129226
\(736\) −0.371480 −0.0136929
\(737\) −3.91271 −0.144126
\(738\) 13.5466 0.498658
\(739\) −50.2385 −1.84805 −0.924027 0.382327i \(-0.875123\pi\)
−0.924027 + 0.382327i \(0.875123\pi\)
\(740\) −6.33583 −0.232910
\(741\) −9.94571 −0.365365
\(742\) −25.8339 −0.948391
\(743\) 24.5377 0.900200 0.450100 0.892978i \(-0.351388\pi\)
0.450100 + 0.892978i \(0.351388\pi\)
\(744\) 0.124097 0.00454961
\(745\) 4.31506 0.158092
\(746\) 14.9247 0.546433
\(747\) 17.2067 0.629560
\(748\) 2.22115 0.0812133
\(749\) 6.00844 0.219544
\(750\) 3.04453 0.111170
\(751\) −36.7785 −1.34207 −0.671033 0.741428i \(-0.734149\pi\)
−0.671033 + 0.741428i \(0.734149\pi\)
\(752\) 11.6915 0.426345
\(753\) −7.00704 −0.255351
\(754\) 20.0165 0.728960
\(755\) 8.73678 0.317964
\(756\) 13.9448 0.507168
\(757\) 45.7385 1.66240 0.831198 0.555977i \(-0.187656\pi\)
0.831198 + 0.555977i \(0.187656\pi\)
\(758\) 32.9765 1.19776
\(759\) −0.214472 −0.00778485
\(760\) −3.07787 −0.111646
\(761\) −15.8046 −0.572918 −0.286459 0.958093i \(-0.592478\pi\)
−0.286459 + 0.958093i \(0.592478\pi\)
\(762\) 7.27495 0.263543
\(763\) −35.2283 −1.27535
\(764\) −19.9264 −0.720912
\(765\) 3.21846 0.116364
\(766\) −28.6521 −1.03524
\(767\) 19.5530 0.706016
\(768\) −0.577346 −0.0208332
\(769\) −5.53133 −0.199465 −0.0997324 0.995014i \(-0.531799\pi\)
−0.0997324 + 0.995014i \(0.531799\pi\)
\(770\) −2.31605 −0.0834648
\(771\) −4.20670 −0.151501
\(772\) −4.92907 −0.177401
\(773\) −16.3353 −0.587540 −0.293770 0.955876i \(-0.594910\pi\)
−0.293770 + 0.955876i \(0.594910\pi\)
\(774\) 22.0200 0.791493
\(775\) 1.01126 0.0363254
\(776\) 15.7586 0.565699
\(777\) 28.6938 1.02938
\(778\) −29.9562 −1.07398
\(779\) 28.7748 1.03096
\(780\) 0.954081 0.0341616
\(781\) −6.54262 −0.234113
\(782\) 0.825113 0.0295060
\(783\) −21.5329 −0.769524
\(784\) 11.1676 0.398843
\(785\) 8.35470 0.298192
\(786\) −1.75305 −0.0625293
\(787\) 25.2923 0.901575 0.450787 0.892631i \(-0.351143\pi\)
0.450787 + 0.892631i \(0.351143\pi\)
\(788\) 1.00000 0.0356235
\(789\) −6.99193 −0.248919
\(790\) 9.20473 0.327490
\(791\) 30.0960 1.07009
\(792\) 2.66667 0.0947561
\(793\) 10.5609 0.375030
\(794\) −12.5466 −0.445263
\(795\) 1.90141 0.0674361
\(796\) −9.26803 −0.328496
\(797\) 41.1775 1.45858 0.729291 0.684203i \(-0.239850\pi\)
0.729291 + 0.684203i \(0.239850\pi\)
\(798\) 13.9391 0.493439
\(799\) −25.9686 −0.918703
\(800\) −4.70474 −0.166338
\(801\) −8.26062 −0.291875
\(802\) −27.4744 −0.970154
\(803\) 3.23188 0.114051
\(804\) −2.25898 −0.0796682
\(805\) −0.860367 −0.0303240
\(806\) 0.653695 0.0230254
\(807\) −10.1359 −0.356800
\(808\) −11.4310 −0.402141
\(809\) 21.5702 0.758369 0.379185 0.925321i \(-0.376205\pi\)
0.379185 + 0.925321i \(0.376205\pi\)
\(810\) 3.32065 0.116676
\(811\) −40.4062 −1.41885 −0.709427 0.704779i \(-0.751046\pi\)
−0.709427 + 0.704779i \(0.751046\pi\)
\(812\) −28.0536 −0.984487
\(813\) 0.747058 0.0262005
\(814\) 11.6601 0.408688
\(815\) 5.16441 0.180901
\(816\) 1.28237 0.0448920
\(817\) 46.7733 1.63639
\(818\) −28.5484 −0.998171
\(819\) 34.5675 1.20789
\(820\) −2.76033 −0.0963950
\(821\) 16.5128 0.576302 0.288151 0.957585i \(-0.406959\pi\)
0.288151 + 0.957585i \(0.406959\pi\)
\(822\) 5.93729 0.207087
\(823\) 9.15963 0.319285 0.159642 0.987175i \(-0.448966\pi\)
0.159642 + 0.987175i \(0.448966\pi\)
\(824\) 11.8800 0.413860
\(825\) −2.71626 −0.0945681
\(826\) −27.4038 −0.953501
\(827\) −41.4541 −1.44150 −0.720751 0.693194i \(-0.756203\pi\)
−0.720751 + 0.693194i \(0.756203\pi\)
\(828\) 0.990615 0.0344263
\(829\) 19.8914 0.690855 0.345428 0.938445i \(-0.387734\pi\)
0.345428 + 0.938445i \(0.387734\pi\)
\(830\) −3.50613 −0.121699
\(831\) −8.28256 −0.287319
\(832\) −3.04123 −0.105436
\(833\) −24.8049 −0.859439
\(834\) −4.67561 −0.161903
\(835\) 6.58683 0.227946
\(836\) 5.66435 0.195906
\(837\) −0.703217 −0.0243067
\(838\) 12.2932 0.424661
\(839\) −15.7693 −0.544417 −0.272208 0.962238i \(-0.587754\pi\)
−0.272208 + 0.962238i \(0.587754\pi\)
\(840\) −1.33716 −0.0461365
\(841\) 14.3190 0.493759
\(842\) 29.5043 1.01679
\(843\) −0.508859 −0.0175260
\(844\) −25.3840 −0.873752
\(845\) −2.03814 −0.0701143
\(846\) −31.1774 −1.07190
\(847\) 4.26235 0.146456
\(848\) −6.06095 −0.208134
\(849\) −5.04082 −0.173000
\(850\) 10.4499 0.358430
\(851\) 4.33151 0.148482
\(852\) −3.77735 −0.129410
\(853\) 56.9782 1.95090 0.975448 0.220231i \(-0.0706812\pi\)
0.975448 + 0.220231i \(0.0706812\pi\)
\(854\) −14.8013 −0.506491
\(855\) 8.20766 0.280696
\(856\) 1.40966 0.0481810
\(857\) 33.5837 1.14720 0.573598 0.819137i \(-0.305547\pi\)
0.573598 + 0.819137i \(0.305547\pi\)
\(858\) −1.75584 −0.0599435
\(859\) −7.61821 −0.259930 −0.129965 0.991519i \(-0.541486\pi\)
−0.129965 + 0.991519i \(0.541486\pi\)
\(860\) −4.48691 −0.153002
\(861\) 12.5010 0.426034
\(862\) 16.2220 0.552524
\(863\) 46.7048 1.58985 0.794926 0.606707i \(-0.207510\pi\)
0.794926 + 0.606707i \(0.207510\pi\)
\(864\) 3.27163 0.111303
\(865\) 1.76428 0.0599874
\(866\) −26.0231 −0.884301
\(867\) 6.96653 0.236596
\(868\) −0.916165 −0.0310967
\(869\) −16.9399 −0.574647
\(870\) 2.06479 0.0700028
\(871\) −11.8995 −0.403198
\(872\) −8.26500 −0.279888
\(873\) −42.0229 −1.42226
\(874\) 2.10419 0.0711754
\(875\) −22.4767 −0.759851
\(876\) 1.86591 0.0630433
\(877\) 40.6627 1.37308 0.686541 0.727091i \(-0.259128\pi\)
0.686541 + 0.727091i \(0.259128\pi\)
\(878\) −19.3226 −0.652107
\(879\) 14.8301 0.500206
\(880\) −0.543375 −0.0183172
\(881\) −44.2654 −1.49134 −0.745669 0.666317i \(-0.767870\pi\)
−0.745669 + 0.666317i \(0.767870\pi\)
\(882\) −29.7803 −1.00276
\(883\) −39.8339 −1.34052 −0.670259 0.742127i \(-0.733817\pi\)
−0.670259 + 0.742127i \(0.733817\pi\)
\(884\) 6.75504 0.227197
\(885\) 2.01696 0.0677995
\(886\) −15.4052 −0.517547
\(887\) −28.9752 −0.972892 −0.486446 0.873711i \(-0.661707\pi\)
−0.486446 + 0.873711i \(0.661707\pi\)
\(888\) 6.73193 0.225909
\(889\) −53.7084 −1.80132
\(890\) 1.68323 0.0564219
\(891\) −6.11116 −0.204731
\(892\) 6.11272 0.204669
\(893\) −66.2248 −2.21613
\(894\) −4.58483 −0.153340
\(895\) −1.38699 −0.0463621
\(896\) 4.26235 0.142395
\(897\) −0.652260 −0.0217783
\(898\) −0.282425 −0.00942464
\(899\) 1.41470 0.0471829
\(900\) 12.5460 0.418200
\(901\) 13.4623 0.448494
\(902\) 5.07997 0.169145
\(903\) 20.3204 0.676220
\(904\) 7.06090 0.234842
\(905\) −1.49282 −0.0496230
\(906\) −9.28298 −0.308406
\(907\) 13.4780 0.447530 0.223765 0.974643i \(-0.428165\pi\)
0.223765 + 0.974643i \(0.428165\pi\)
\(908\) −22.6472 −0.751575
\(909\) 30.4827 1.01105
\(910\) −7.04366 −0.233495
\(911\) 38.5358 1.27675 0.638374 0.769726i \(-0.279607\pi\)
0.638374 + 0.769726i \(0.279607\pi\)
\(912\) 3.27029 0.108290
\(913\) 6.45250 0.213547
\(914\) −15.3844 −0.508871
\(915\) 1.08940 0.0360145
\(916\) −8.94455 −0.295536
\(917\) 12.9422 0.427389
\(918\) −7.26678 −0.239840
\(919\) −11.3858 −0.375583 −0.187792 0.982209i \(-0.560133\pi\)
−0.187792 + 0.982209i \(0.560133\pi\)
\(920\) −0.201853 −0.00665489
\(921\) 9.53648 0.314238
\(922\) 33.8126 1.11356
\(923\) −19.8976 −0.654938
\(924\) 2.46085 0.0809559
\(925\) 54.8579 1.80372
\(926\) −7.83856 −0.257591
\(927\) −31.6801 −1.04051
\(928\) −6.58172 −0.216055
\(929\) 31.0358 1.01825 0.509126 0.860692i \(-0.329969\pi\)
0.509126 + 0.860692i \(0.329969\pi\)
\(930\) 0.0674312 0.00221116
\(931\) −63.2572 −2.07317
\(932\) 2.06997 0.0678040
\(933\) −17.0540 −0.558323
\(934\) −15.1724 −0.496455
\(935\) 1.20692 0.0394705
\(936\) 8.10997 0.265083
\(937\) 27.5758 0.900862 0.450431 0.892811i \(-0.351270\pi\)
0.450431 + 0.892811i \(0.351270\pi\)
\(938\) 16.6773 0.544533
\(939\) 11.5385 0.376544
\(940\) 6.35287 0.207208
\(941\) −16.2567 −0.529955 −0.264977 0.964255i \(-0.585364\pi\)
−0.264977 + 0.964255i \(0.585364\pi\)
\(942\) −8.87701 −0.289229
\(943\) 1.88711 0.0614527
\(944\) −6.42928 −0.209255
\(945\) 7.57726 0.246488
\(946\) 8.25748 0.268474
\(947\) −55.2041 −1.79389 −0.896946 0.442140i \(-0.854219\pi\)
−0.896946 + 0.442140i \(0.854219\pi\)
\(948\) −9.78019 −0.317646
\(949\) 9.82890 0.319060
\(950\) 26.6493 0.864618
\(951\) −5.93028 −0.192302
\(952\) −9.46732 −0.306837
\(953\) 57.9092 1.87586 0.937931 0.346822i \(-0.112739\pi\)
0.937931 + 0.346822i \(0.112739\pi\)
\(954\) 16.1626 0.523282
\(955\) −10.8275 −0.350370
\(956\) 6.45225 0.208681
\(957\) −3.79993 −0.122834
\(958\) 19.4182 0.627374
\(959\) −43.8330 −1.41544
\(960\) −0.313715 −0.0101251
\(961\) −30.9538 −0.998510
\(962\) 35.4612 1.14331
\(963\) −3.75909 −0.121135
\(964\) −19.8363 −0.638884
\(965\) −2.67834 −0.0862187
\(966\) 0.914155 0.0294124
\(967\) −2.26108 −0.0727114 −0.0363557 0.999339i \(-0.511575\pi\)
−0.0363557 + 0.999339i \(0.511575\pi\)
\(968\) 1.00000 0.0321412
\(969\) −7.26380 −0.233347
\(970\) 8.56281 0.274935
\(971\) −45.2687 −1.45274 −0.726371 0.687303i \(-0.758794\pi\)
−0.726371 + 0.687303i \(0.758794\pi\)
\(972\) −13.3431 −0.427981
\(973\) 34.5184 1.10661
\(974\) −32.6899 −1.04745
\(975\) −8.26079 −0.264557
\(976\) −3.47258 −0.111155
\(977\) 25.3979 0.812552 0.406276 0.913750i \(-0.366827\pi\)
0.406276 + 0.913750i \(0.366827\pi\)
\(978\) −5.48728 −0.175464
\(979\) −3.09773 −0.0990038
\(980\) 6.06819 0.193841
\(981\) 22.0401 0.703685
\(982\) 12.9260 0.412484
\(983\) −33.3803 −1.06467 −0.532334 0.846535i \(-0.678685\pi\)
−0.532334 + 0.846535i \(0.678685\pi\)
\(984\) 2.93290 0.0934975
\(985\) 0.543375 0.0173134
\(986\) 14.6190 0.465564
\(987\) −28.7710 −0.915791
\(988\) 17.2266 0.548052
\(989\) 3.06749 0.0975405
\(990\) 1.44900 0.0460524
\(991\) −41.0135 −1.30284 −0.651418 0.758719i \(-0.725826\pi\)
−0.651418 + 0.758719i \(0.725826\pi\)
\(992\) −0.214944 −0.00682448
\(993\) 0.00927827 0.000294437 0
\(994\) 27.8869 0.884519
\(995\) −5.03602 −0.159652
\(996\) 3.72532 0.118041
\(997\) −9.56023 −0.302776 −0.151388 0.988474i \(-0.548374\pi\)
−0.151388 + 0.988474i \(0.548374\pi\)
\(998\) 25.7188 0.814115
\(999\) −38.1476 −1.20694
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4334.2.a.d.1.9 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4334.2.a.d.1.9 17 1.1 even 1 trivial