Properties

Label 435.2.c.e.349.4
Level $435$
Weight $2$
Character 435.349
Analytic conductor $3.473$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,2,Mod(349,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.4
Root \(0.313948 - 0.313948i\) of defining polynomial
Character \(\chi\) \(=\) 435.349
Dual form 435.2.c.e.349.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.754474i q^{2} +1.00000i q^{3} +1.43077 q^{4} +(-2.23474 + 0.0770824i) q^{5} +0.754474 q^{6} -4.18524i q^{7} -2.58843i q^{8} -1.00000 q^{9} +(0.0581566 + 1.68605i) q^{10} +0.596817 q^{11} +1.43077i q^{12} -2.18524i q^{13} -3.15766 q^{14} +(-0.0770824 - 2.23474i) q^{15} +0.908639 q^{16} -2.81314i q^{17} +0.754474i q^{18} -0.528904 q^{19} +(-3.19740 + 0.110287i) q^{20} +4.18524 q^{21} -0.450283i q^{22} +0.590044i q^{23} +2.58843 q^{24} +(4.98812 - 0.344518i) q^{25} -1.64871 q^{26} -1.00000i q^{27} -5.98812i q^{28} -1.00000 q^{29} +(-1.68605 + 0.0581566i) q^{30} +8.02005 q^{31} -5.86240i q^{32} +0.596817i q^{33} -2.12244 q^{34} +(0.322608 + 9.35293i) q^{35} -1.43077 q^{36} +2.52465i q^{37} +0.399044i q^{38} +2.18524 q^{39} +(0.199522 + 5.78446i) q^{40} +1.57110 q^{41} -3.15766i q^{42} -6.98484i q^{43} +0.853908 q^{44} +(2.23474 - 0.0770824i) q^{45} +0.445173 q^{46} +2.57524i q^{47} +0.908639i q^{48} -10.5163 q^{49} +(-0.259930 - 3.76340i) q^{50} +2.81314 q^{51} -3.12658i q^{52} +10.3878i q^{53} -0.754474 q^{54} +(-1.33373 + 0.0460041i) q^{55} -10.8332 q^{56} -0.528904i q^{57} +0.754474i q^{58} -13.9168 q^{59} +(-0.110287 - 3.19740i) q^{60} -11.1942 q^{61} -6.05092i q^{62} +4.18524i q^{63} -2.60575 q^{64} +(0.168444 + 4.88345i) q^{65} +0.450283 q^{66} -0.614139i q^{67} -4.02495i q^{68} -0.590044 q^{69} +(7.05654 - 0.243400i) q^{70} +9.28010 q^{71} +2.58843i q^{72} +9.59116i q^{73} +1.90478 q^{74} +(0.344518 + 4.98812i) q^{75} -0.756739 q^{76} -2.49783i q^{77} -1.64871i q^{78} +10.3396 q^{79} +(-2.03057 + 0.0700400i) q^{80} +1.00000 q^{81} -1.18536i q^{82} +3.92531i q^{83} +5.98812 q^{84} +(0.216843 + 6.28663i) q^{85} -5.26988 q^{86} -1.00000i q^{87} -1.54482i q^{88} +12.3352 q^{89} +(-0.0581566 - 1.68605i) q^{90} -9.14577 q^{91} +0.844217i q^{92} +8.02005i q^{93} +1.94295 q^{94} +(1.18196 - 0.0407692i) q^{95} +5.86240 q^{96} -3.21794i q^{97} +7.93424i q^{98} -0.596817 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 6 q^{6} - 10 q^{9} + 4 q^{10} + 24 q^{11} - 12 q^{14} + 2 q^{15} + 2 q^{16} + 4 q^{19} + 8 q^{20} + 16 q^{21} - 18 q^{24} + 2 q^{25} - 10 q^{29} - 18 q^{30} + 4 q^{31} - 8 q^{34} + 2 q^{35}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.754474i 0.533494i −0.963767 0.266747i \(-0.914051\pi\)
0.963767 0.266747i \(-0.0859487\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.43077 0.715385
\(5\) −2.23474 + 0.0770824i −0.999406 + 0.0344723i
\(6\) 0.754474 0.308013
\(7\) 4.18524i 1.58187i −0.611898 0.790937i \(-0.709594\pi\)
0.611898 0.790937i \(-0.290406\pi\)
\(8\) 2.58843i 0.915147i
\(9\) −1.00000 −0.333333
\(10\) 0.0581566 + 1.68605i 0.0183907 + 0.533177i
\(11\) 0.596817 0.179947 0.0899736 0.995944i \(-0.471322\pi\)
0.0899736 + 0.995944i \(0.471322\pi\)
\(12\) 1.43077i 0.413027i
\(13\) 2.18524i 0.606077i −0.952978 0.303039i \(-0.901999\pi\)
0.952978 0.303039i \(-0.0980011\pi\)
\(14\) −3.15766 −0.843919
\(15\) −0.0770824 2.23474i −0.0199026 0.577007i
\(16\) 0.908639 0.227160
\(17\) 2.81314i 0.682286i −0.940011 0.341143i \(-0.889186\pi\)
0.940011 0.341143i \(-0.110814\pi\)
\(18\) 0.754474i 0.177831i
\(19\) −0.528904 −0.121339 −0.0606694 0.998158i \(-0.519324\pi\)
−0.0606694 + 0.998158i \(0.519324\pi\)
\(20\) −3.19740 + 0.110287i −0.714959 + 0.0246609i
\(21\) 4.18524 0.913295
\(22\) 0.450283i 0.0960007i
\(23\) 0.590044i 0.123033i 0.998106 + 0.0615163i \(0.0195936\pi\)
−0.998106 + 0.0615163i \(0.980406\pi\)
\(24\) 2.58843 0.528360
\(25\) 4.98812 0.344518i 0.997623 0.0689036i
\(26\) −1.64871 −0.323338
\(27\) 1.00000i 0.192450i
\(28\) 5.98812i 1.13165i
\(29\) −1.00000 −0.185695
\(30\) −1.68605 + 0.0581566i −0.307830 + 0.0106179i
\(31\) 8.02005 1.44044 0.720222 0.693744i \(-0.244040\pi\)
0.720222 + 0.693744i \(0.244040\pi\)
\(32\) 5.86240i 1.03633i
\(33\) 0.596817i 0.103893i
\(34\) −2.12244 −0.363995
\(35\) 0.322608 + 9.35293i 0.0545308 + 1.58093i
\(36\) −1.43077 −0.238462
\(37\) 2.52465i 0.415050i 0.978230 + 0.207525i \(0.0665408\pi\)
−0.978230 + 0.207525i \(0.933459\pi\)
\(38\) 0.399044i 0.0647335i
\(39\) 2.18524 0.349919
\(40\) 0.199522 + 5.78446i 0.0315472 + 0.914603i
\(41\) 1.57110 0.245365 0.122683 0.992446i \(-0.460850\pi\)
0.122683 + 0.992446i \(0.460850\pi\)
\(42\) 3.15766i 0.487237i
\(43\) 6.98484i 1.06518i −0.846374 0.532589i \(-0.821219\pi\)
0.846374 0.532589i \(-0.178781\pi\)
\(44\) 0.853908 0.128731
\(45\) 2.23474 0.0770824i 0.333135 0.0114908i
\(46\) 0.445173 0.0656372
\(47\) 2.57524i 0.375638i 0.982204 + 0.187819i \(0.0601418\pi\)
−0.982204 + 0.187819i \(0.939858\pi\)
\(48\) 0.908639i 0.131151i
\(49\) −10.5163 −1.50232
\(50\) −0.259930 3.76340i −0.0367596 0.532226i
\(51\) 2.81314 0.393918
\(52\) 3.12658i 0.433578i
\(53\) 10.3878i 1.42688i 0.700719 + 0.713438i \(0.252863\pi\)
−0.700719 + 0.713438i \(0.747137\pi\)
\(54\) −0.754474 −0.102671
\(55\) −1.33373 + 0.0460041i −0.179840 + 0.00620319i
\(56\) −10.8332 −1.44765
\(57\) 0.528904i 0.0700550i
\(58\) 0.754474i 0.0990673i
\(59\) −13.9168 −1.81181 −0.905907 0.423477i \(-0.860810\pi\)
−0.905907 + 0.423477i \(0.860810\pi\)
\(60\) −0.110287 3.19740i −0.0142380 0.412782i
\(61\) −11.1942 −1.43327 −0.716633 0.697450i \(-0.754318\pi\)
−0.716633 + 0.697450i \(0.754318\pi\)
\(62\) 6.05092i 0.768468i
\(63\) 4.18524i 0.527291i
\(64\) −2.60575 −0.325718
\(65\) 0.168444 + 4.88345i 0.0208929 + 0.605717i
\(66\) 0.450283 0.0554260
\(67\) 0.614139i 0.0750290i −0.999296 0.0375145i \(-0.988056\pi\)
0.999296 0.0375145i \(-0.0119440\pi\)
\(68\) 4.02495i 0.488097i
\(69\) −0.590044 −0.0710330
\(70\) 7.05654 0.243400i 0.843418 0.0290918i
\(71\) 9.28010 1.10134 0.550672 0.834721i \(-0.314371\pi\)
0.550672 + 0.834721i \(0.314371\pi\)
\(72\) 2.58843i 0.305049i
\(73\) 9.59116i 1.12256i 0.827626 + 0.561280i \(0.189691\pi\)
−0.827626 + 0.561280i \(0.810309\pi\)
\(74\) 1.90478 0.221427
\(75\) 0.344518 + 4.98812i 0.0397815 + 0.575978i
\(76\) −0.756739 −0.0868039
\(77\) 2.49783i 0.284654i
\(78\) 1.64871i 0.186680i
\(79\) 10.3396 1.16330 0.581649 0.813440i \(-0.302408\pi\)
0.581649 + 0.813440i \(0.302408\pi\)
\(80\) −2.03057 + 0.0700400i −0.227025 + 0.00783071i
\(81\) 1.00000 0.111111
\(82\) 1.18536i 0.130901i
\(83\) 3.92531i 0.430859i 0.976519 + 0.215430i \(0.0691152\pi\)
−0.976519 + 0.215430i \(0.930885\pi\)
\(84\) 5.98812 0.653357
\(85\) 0.216843 + 6.28663i 0.0235200 + 0.681881i
\(86\) −5.26988 −0.568265
\(87\) 1.00000i 0.107211i
\(88\) 1.54482i 0.164678i
\(89\) 12.3352 1.30752 0.653762 0.756700i \(-0.273190\pi\)
0.653762 + 0.756700i \(0.273190\pi\)
\(90\) −0.0581566 1.68605i −0.00613025 0.177726i
\(91\) −9.14577 −0.958738
\(92\) 0.844217i 0.0880157i
\(93\) 8.02005i 0.831641i
\(94\) 1.94295 0.200400
\(95\) 1.18196 0.0407692i 0.121267 0.00418283i
\(96\) 5.86240 0.598328
\(97\) 3.21794i 0.326732i −0.986566 0.163366i \(-0.947765\pi\)
0.986566 0.163366i \(-0.0522352\pi\)
\(98\) 7.93424i 0.801480i
\(99\) −0.596817 −0.0599824
\(100\) 7.13684 0.492926i 0.713684 0.0492926i
\(101\) 9.31726 0.927102 0.463551 0.886070i \(-0.346575\pi\)
0.463551 + 0.886070i \(0.346575\pi\)
\(102\) 2.12244i 0.210153i
\(103\) 20.1574i 1.98617i 0.117393 + 0.993085i \(0.462546\pi\)
−0.117393 + 0.993085i \(0.537454\pi\)
\(104\) −5.65634 −0.554650
\(105\) −9.35293 + 0.322608i −0.912752 + 0.0314834i
\(106\) 7.83733 0.761229
\(107\) 1.58569i 0.153295i −0.997058 0.0766475i \(-0.975578\pi\)
0.997058 0.0766475i \(-0.0244216\pi\)
\(108\) 1.43077i 0.137676i
\(109\) 7.91051 0.757690 0.378845 0.925460i \(-0.376321\pi\)
0.378845 + 0.925460i \(0.376321\pi\)
\(110\) 0.0347089 + 1.00627i 0.00330936 + 0.0959436i
\(111\) −2.52465 −0.239629
\(112\) 3.80287i 0.359338i
\(113\) 3.07328i 0.289110i −0.989497 0.144555i \(-0.953825\pi\)
0.989497 0.144555i \(-0.0461750\pi\)
\(114\) −0.399044 −0.0373739
\(115\) −0.0454820 1.31859i −0.00424122 0.122960i
\(116\) −1.43077 −0.132844
\(117\) 2.18524i 0.202026i
\(118\) 10.4999i 0.966591i
\(119\) −11.7737 −1.07929
\(120\) −5.78446 + 0.199522i −0.528046 + 0.0182138i
\(121\) −10.6438 −0.967619
\(122\) 8.44571i 0.764639i
\(123\) 1.57110i 0.141662i
\(124\) 11.4748 1.03047
\(125\) −11.1206 + 1.15440i −0.994655 + 0.103253i
\(126\) 3.15766 0.281306
\(127\) 12.9254i 1.14694i 0.819225 + 0.573472i \(0.194404\pi\)
−0.819225 + 0.573472i \(0.805596\pi\)
\(128\) 9.75882i 0.862566i
\(129\) 6.98484 0.614980
\(130\) 3.68443 0.127086i 0.323146 0.0111462i
\(131\) −5.69473 −0.497551 −0.248775 0.968561i \(-0.580028\pi\)
−0.248775 + 0.968561i \(0.580028\pi\)
\(132\) 0.853908i 0.0743231i
\(133\) 2.21359i 0.191943i
\(134\) −0.463352 −0.0400275
\(135\) 0.0770824 + 2.23474i 0.00663419 + 0.192336i
\(136\) −7.28160 −0.624392
\(137\) 18.7274i 1.59999i −0.600005 0.799996i \(-0.704835\pi\)
0.600005 0.799996i \(-0.295165\pi\)
\(138\) 0.445173i 0.0378956i
\(139\) −1.34376 −0.113976 −0.0569880 0.998375i \(-0.518150\pi\)
−0.0569880 + 0.998375i \(0.518150\pi\)
\(140\) 0.461578 + 13.3819i 0.0390105 + 1.13098i
\(141\) −2.57524 −0.216875
\(142\) 7.00159i 0.587560i
\(143\) 1.30419i 0.109062i
\(144\) −0.908639 −0.0757199
\(145\) 2.23474 0.0770824i 0.185585 0.00640134i
\(146\) 7.23628 0.598879
\(147\) 10.5163i 0.867366i
\(148\) 3.61219i 0.296920i
\(149\) 15.9925 1.31016 0.655079 0.755561i \(-0.272635\pi\)
0.655079 + 0.755561i \(0.272635\pi\)
\(150\) 3.76340 0.259930i 0.307281 0.0212232i
\(151\) 17.9595 1.46152 0.730760 0.682635i \(-0.239166\pi\)
0.730760 + 0.682635i \(0.239166\pi\)
\(152\) 1.36903i 0.111043i
\(153\) 2.81314i 0.227429i
\(154\) −1.88454 −0.151861
\(155\) −17.9227 + 0.618205i −1.43959 + 0.0496554i
\(156\) 3.12658 0.250327
\(157\) 6.78158i 0.541229i −0.962688 0.270615i \(-0.912773\pi\)
0.962688 0.270615i \(-0.0872269\pi\)
\(158\) 7.80097i 0.620612i
\(159\) −10.3878 −0.823807
\(160\) 0.451887 + 13.1009i 0.0357248 + 1.03572i
\(161\) 2.46948 0.194622
\(162\) 0.754474i 0.0592771i
\(163\) 20.9951i 1.64447i 0.569151 + 0.822233i \(0.307272\pi\)
−0.569151 + 0.822233i \(0.692728\pi\)
\(164\) 2.24789 0.175531
\(165\) −0.0460041 1.33373i −0.00358141 0.103831i
\(166\) 2.96155 0.229861
\(167\) 14.9135i 1.15404i 0.816730 + 0.577020i \(0.195784\pi\)
−0.816730 + 0.577020i \(0.804216\pi\)
\(168\) 10.8332i 0.835799i
\(169\) 8.22471 0.632670
\(170\) 4.74310 0.163603i 0.363779 0.0125478i
\(171\) 0.528904 0.0404463
\(172\) 9.99369i 0.762011i
\(173\) 10.8685i 0.826318i −0.910659 0.413159i \(-0.864425\pi\)
0.910659 0.413159i \(-0.135575\pi\)
\(174\) −0.754474 −0.0571965
\(175\) −1.44189 20.8765i −0.108997 1.57811i
\(176\) 0.542291 0.0408767
\(177\) 13.9168i 1.04605i
\(178\) 9.30655i 0.697556i
\(179\) −1.26613 −0.0946349 −0.0473175 0.998880i \(-0.515067\pi\)
−0.0473175 + 0.998880i \(0.515067\pi\)
\(180\) 3.19740 0.110287i 0.238320 0.00822031i
\(181\) −5.80673 −0.431611 −0.215805 0.976436i \(-0.569238\pi\)
−0.215805 + 0.976436i \(0.569238\pi\)
\(182\) 6.90025i 0.511480i
\(183\) 11.1942i 0.827497i
\(184\) 1.52729 0.112593
\(185\) −0.194606 5.64194i −0.0143077 0.414803i
\(186\) 6.05092 0.443675
\(187\) 1.67893i 0.122776i
\(188\) 3.68458i 0.268725i
\(189\) −4.18524 −0.304432
\(190\) −0.0307593 0.891759i −0.00223151 0.0646950i
\(191\) 15.3358 1.10966 0.554830 0.831964i \(-0.312783\pi\)
0.554830 + 0.831964i \(0.312783\pi\)
\(192\) 2.60575i 0.188054i
\(193\) 16.4946i 1.18731i −0.804721 0.593653i \(-0.797685\pi\)
0.804721 0.593653i \(-0.202315\pi\)
\(194\) −2.42785 −0.174310
\(195\) −4.88345 + 0.168444i −0.349711 + 0.0120625i
\(196\) −15.0463 −1.07474
\(197\) 24.2353i 1.72670i −0.504609 0.863348i \(-0.668363\pi\)
0.504609 0.863348i \(-0.331637\pi\)
\(198\) 0.450283i 0.0320002i
\(199\) −17.4875 −1.23965 −0.619826 0.784739i \(-0.712797\pi\)
−0.619826 + 0.784739i \(0.712797\pi\)
\(200\) −0.891759 12.9114i −0.0630569 0.912972i
\(201\) 0.614139 0.0433180
\(202\) 7.02963i 0.494603i
\(203\) 4.18524i 0.293746i
\(204\) 4.02495 0.281803
\(205\) −3.51101 + 0.121104i −0.245219 + 0.00845830i
\(206\) 15.2083 1.05961
\(207\) 0.590044i 0.0410109i
\(208\) 1.98560i 0.137676i
\(209\) −0.315659 −0.0218346
\(210\) 0.243400 + 7.05654i 0.0167962 + 0.486947i
\(211\) −26.0504 −1.79338 −0.896692 0.442655i \(-0.854037\pi\)
−0.896692 + 0.442655i \(0.854037\pi\)
\(212\) 14.8626i 1.02076i
\(213\) 9.28010i 0.635862i
\(214\) −1.19637 −0.0817819
\(215\) 0.538408 + 15.6093i 0.0367191 + 1.06454i
\(216\) −2.58843 −0.176120
\(217\) 33.5659i 2.27860i
\(218\) 5.96827i 0.404223i
\(219\) −9.59116 −0.648110
\(220\) −1.90826 + 0.0658212i −0.128655 + 0.00443767i
\(221\) −6.14739 −0.413518
\(222\) 1.90478i 0.127841i
\(223\) 10.7895i 0.722519i 0.932465 + 0.361259i \(0.117653\pi\)
−0.932465 + 0.361259i \(0.882347\pi\)
\(224\) −24.5356 −1.63935
\(225\) −4.98812 + 0.344518i −0.332541 + 0.0229679i
\(226\) −2.31871 −0.154238
\(227\) 6.99182i 0.464063i 0.972708 + 0.232032i \(0.0745373\pi\)
−0.972708 + 0.232032i \(0.925463\pi\)
\(228\) 0.756739i 0.0501163i
\(229\) 20.9503 1.38444 0.692218 0.721689i \(-0.256634\pi\)
0.692218 + 0.721689i \(0.256634\pi\)
\(230\) −0.994845 + 0.0343150i −0.0655981 + 0.00226266i
\(231\) 2.49783 0.164345
\(232\) 2.58843i 0.169938i
\(233\) 3.85567i 0.252593i −0.991993 0.126297i \(-0.959691\pi\)
0.991993 0.126297i \(-0.0403091\pi\)
\(234\) 1.64871 0.107779
\(235\) −0.198506 5.75500i −0.0129491 0.375415i
\(236\) −19.9117 −1.29614
\(237\) 10.3396i 0.671630i
\(238\) 8.88293i 0.575795i
\(239\) 25.3084 1.63706 0.818532 0.574461i \(-0.194788\pi\)
0.818532 + 0.574461i \(0.194788\pi\)
\(240\) −0.0700400 2.03057i −0.00452106 0.131073i
\(241\) −22.8510 −1.47196 −0.735981 0.677002i \(-0.763279\pi\)
−0.735981 + 0.677002i \(0.763279\pi\)
\(242\) 8.03048i 0.516219i
\(243\) 1.00000i 0.0641500i
\(244\) −16.0163 −1.02534
\(245\) 23.5011 0.810618i 1.50143 0.0517885i
\(246\) 1.18536 0.0755756
\(247\) 1.15578i 0.0735407i
\(248\) 20.7593i 1.31822i
\(249\) −3.92531 −0.248757
\(250\) 0.870967 + 8.39019i 0.0550848 + 0.530642i
\(251\) −7.37025 −0.465206 −0.232603 0.972572i \(-0.574724\pi\)
−0.232603 + 0.972572i \(0.574724\pi\)
\(252\) 5.98812i 0.377216i
\(253\) 0.352149i 0.0221394i
\(254\) 9.75188 0.611888
\(255\) −6.28663 + 0.216843i −0.393684 + 0.0135793i
\(256\) −12.5743 −0.785892
\(257\) 3.21575i 0.200593i 0.994958 + 0.100296i \(0.0319791\pi\)
−0.994958 + 0.100296i \(0.968021\pi\)
\(258\) 5.26988i 0.328088i
\(259\) 10.5663 0.656557
\(260\) 0.241004 + 6.98709i 0.0149464 + 0.433321i
\(261\) 1.00000 0.0618984
\(262\) 4.29652i 0.265440i
\(263\) 16.0190i 0.987774i −0.869526 0.493887i \(-0.835576\pi\)
0.869526 0.493887i \(-0.164424\pi\)
\(264\) 1.54482 0.0950769
\(265\) −0.800717 23.2140i −0.0491876 1.42603i
\(266\) 1.67010 0.102400
\(267\) 12.3352i 0.754899i
\(268\) 0.878691i 0.0536746i
\(269\) 19.9820 1.21832 0.609161 0.793047i \(-0.291506\pi\)
0.609161 + 0.793047i \(0.291506\pi\)
\(270\) 1.68605 0.0581566i 0.102610 0.00353930i
\(271\) −8.72743 −0.530153 −0.265077 0.964227i \(-0.585397\pi\)
−0.265077 + 0.964227i \(0.585397\pi\)
\(272\) 2.55613i 0.154988i
\(273\) 9.14577i 0.553527i
\(274\) −14.1294 −0.853585
\(275\) 2.97699 0.205614i 0.179520 0.0123990i
\(276\) −0.844217 −0.0508159
\(277\) 30.5856i 1.83771i 0.394594 + 0.918856i \(0.370885\pi\)
−0.394594 + 0.918856i \(0.629115\pi\)
\(278\) 1.01383i 0.0608055i
\(279\) −8.02005 −0.480148
\(280\) 24.2094 0.835048i 1.44679 0.0499037i
\(281\) 30.2570 1.80498 0.902490 0.430712i \(-0.141737\pi\)
0.902490 + 0.430712i \(0.141737\pi\)
\(282\) 1.94295i 0.115701i
\(283\) 9.35107i 0.555863i −0.960601 0.277932i \(-0.910351\pi\)
0.960601 0.277932i \(-0.0896489\pi\)
\(284\) 13.2777 0.787885
\(285\) 0.0407692 + 1.18196i 0.00241496 + 0.0700134i
\(286\) −0.983978 −0.0581838
\(287\) 6.57545i 0.388137i
\(288\) 5.86240i 0.345445i
\(289\) 9.08625 0.534485
\(290\) −0.0581566 1.68605i −0.00341508 0.0990084i
\(291\) 3.21794 0.188639
\(292\) 13.7227i 0.803062i
\(293\) 8.47749i 0.495260i −0.968855 0.247630i \(-0.920348\pi\)
0.968855 0.247630i \(-0.0796518\pi\)
\(294\) −7.93424 −0.462734
\(295\) 31.1004 1.07274i 1.81074 0.0624574i
\(296\) 6.53487 0.379832
\(297\) 0.596817i 0.0346309i
\(298\) 12.0659i 0.698961i
\(299\) 1.28939 0.0745673
\(300\) 0.492926 + 7.13684i 0.0284591 + 0.412046i
\(301\) −29.2332 −1.68498
\(302\) 13.5499i 0.779711i
\(303\) 9.31726i 0.535263i
\(304\) −0.480582 −0.0275633
\(305\) 25.0161 0.862873i 1.43242 0.0494080i
\(306\) 2.12244 0.121332
\(307\) 19.8740i 1.13427i −0.823625 0.567135i \(-0.808052\pi\)
0.823625 0.567135i \(-0.191948\pi\)
\(308\) 3.57381i 0.203637i
\(309\) −20.1574 −1.14672
\(310\) 0.466419 + 13.5222i 0.0264908 + 0.768011i
\(311\) −12.5476 −0.711507 −0.355754 0.934580i \(-0.615776\pi\)
−0.355754 + 0.934580i \(0.615776\pi\)
\(312\) 5.65634i 0.320227i
\(313\) 2.82942i 0.159928i −0.996798 0.0799640i \(-0.974519\pi\)
0.996798 0.0799640i \(-0.0254805\pi\)
\(314\) −5.11653 −0.288742
\(315\) −0.322608 9.35293i −0.0181769 0.526978i
\(316\) 14.7936 0.832205
\(317\) 6.27390i 0.352377i −0.984356 0.176189i \(-0.943623\pi\)
0.984356 0.176189i \(-0.0563769\pi\)
\(318\) 7.83733i 0.439496i
\(319\) −0.596817 −0.0334154
\(320\) 5.82316 0.200857i 0.325525 0.0112283i
\(321\) 1.58569 0.0885049
\(322\) 1.86316i 0.103830i
\(323\) 1.48788i 0.0827878i
\(324\) 1.43077 0.0794872
\(325\) −0.752856 10.9002i −0.0417609 0.604637i
\(326\) 15.8403 0.877312
\(327\) 7.91051i 0.437452i
\(328\) 4.06669i 0.224545i
\(329\) 10.7780 0.594211
\(330\) −1.00627 + 0.0347089i −0.0553931 + 0.00191066i
\(331\) −4.47271 −0.245843 −0.122921 0.992416i \(-0.539226\pi\)
−0.122921 + 0.992416i \(0.539226\pi\)
\(332\) 5.61622i 0.308230i
\(333\) 2.52465i 0.138350i
\(334\) 11.2518 0.615673
\(335\) 0.0473393 + 1.37244i 0.00258642 + 0.0749844i
\(336\) 3.80287 0.207464
\(337\) 3.62191i 0.197298i 0.995122 + 0.0986489i \(0.0314521\pi\)
−0.995122 + 0.0986489i \(0.968548\pi\)
\(338\) 6.20533i 0.337526i
\(339\) 3.07328 0.166918
\(340\) 0.310253 + 8.99472i 0.0168258 + 0.487807i
\(341\) 4.78651 0.259204
\(342\) 0.399044i 0.0215778i
\(343\) 14.7164i 0.794611i
\(344\) −18.0797 −0.974794
\(345\) 1.31859 0.0454820i 0.0709907 0.00244867i
\(346\) −8.20002 −0.440836
\(347\) 34.4636i 1.85010i 0.379844 + 0.925051i \(0.375978\pi\)
−0.379844 + 0.925051i \(0.624022\pi\)
\(348\) 1.43077i 0.0766973i
\(349\) 18.0401 0.965665 0.482832 0.875713i \(-0.339608\pi\)
0.482832 + 0.875713i \(0.339608\pi\)
\(350\) −15.7508 + 1.08787i −0.841914 + 0.0581491i
\(351\) −2.18524 −0.116640
\(352\) 3.49878i 0.186486i
\(353\) 7.60470i 0.404757i 0.979307 + 0.202379i \(0.0648672\pi\)
−0.979307 + 0.202379i \(0.935133\pi\)
\(354\) −10.4999 −0.558062
\(355\) −20.7386 + 0.715332i −1.10069 + 0.0379659i
\(356\) 17.6488 0.935382
\(357\) 11.7737i 0.623129i
\(358\) 0.955261i 0.0504871i
\(359\) 2.32286 0.122596 0.0612980 0.998120i \(-0.480476\pi\)
0.0612980 + 0.998120i \(0.480476\pi\)
\(360\) −0.199522 5.78446i −0.0105157 0.304868i
\(361\) −18.7203 −0.985277
\(362\) 4.38103i 0.230262i
\(363\) 10.6438i 0.558655i
\(364\) −13.0855 −0.685866
\(365\) −0.739309 21.4337i −0.0386972 1.12189i
\(366\) −8.44571 −0.441464
\(367\) 6.38930i 0.333519i 0.985998 + 0.166759i \(0.0533303\pi\)
−0.985998 + 0.166759i \(0.946670\pi\)
\(368\) 0.536137i 0.0279481i
\(369\) −1.57110 −0.0817884
\(370\) −4.25669 + 0.146825i −0.221295 + 0.00763308i
\(371\) 43.4755 2.25714
\(372\) 11.4748i 0.594943i
\(373\) 24.1627i 1.25110i −0.780185 0.625549i \(-0.784875\pi\)
0.780185 0.625549i \(-0.215125\pi\)
\(374\) −1.26671 −0.0654999
\(375\) −1.15440 11.1206i −0.0596131 0.574264i
\(376\) 6.66583 0.343764
\(377\) 2.18524i 0.112546i
\(378\) 3.15766i 0.162412i
\(379\) 29.2093 1.50038 0.750191 0.661222i \(-0.229962\pi\)
0.750191 + 0.661222i \(0.229962\pi\)
\(380\) 1.69111 0.0583312i 0.0867523 0.00299233i
\(381\) −12.9254 −0.662189
\(382\) 11.5705i 0.591997i
\(383\) 31.7731i 1.62353i 0.583983 + 0.811766i \(0.301493\pi\)
−0.583983 + 0.811766i \(0.698507\pi\)
\(384\) 9.75882 0.498003
\(385\) 0.192538 + 5.58199i 0.00981266 + 0.284484i
\(386\) −12.4447 −0.633420
\(387\) 6.98484i 0.355059i
\(388\) 4.60413i 0.233739i
\(389\) −23.7158 −1.20244 −0.601220 0.799084i \(-0.705318\pi\)
−0.601220 + 0.799084i \(0.705318\pi\)
\(390\) 0.127086 + 3.68443i 0.00643527 + 0.186569i
\(391\) 1.65988 0.0839435
\(392\) 27.2206i 1.37485i
\(393\) 5.69473i 0.287261i
\(394\) −18.2849 −0.921181
\(395\) −23.1063 + 0.797002i −1.16261 + 0.0401015i
\(396\) −0.853908 −0.0429105
\(397\) 32.8280i 1.64759i 0.566889 + 0.823794i \(0.308147\pi\)
−0.566889 + 0.823794i \(0.691853\pi\)
\(398\) 13.1938i 0.661347i
\(399\) −2.21359 −0.110818
\(400\) 4.53240 0.313042i 0.226620 0.0156521i
\(401\) −8.21905 −0.410440 −0.205220 0.978716i \(-0.565791\pi\)
−0.205220 + 0.978716i \(0.565791\pi\)
\(402\) 0.463352i 0.0231099i
\(403\) 17.5258i 0.873020i
\(404\) 13.3308 0.663234
\(405\) −2.23474 + 0.0770824i −0.111045 + 0.00383025i
\(406\) 3.15766 0.156712
\(407\) 1.50676i 0.0746871i
\(408\) 7.28160i 0.360493i
\(409\) −27.9114 −1.38013 −0.690065 0.723748i \(-0.742418\pi\)
−0.690065 + 0.723748i \(0.742418\pi\)
\(410\) 0.0913702 + 2.64896i 0.00451245 + 0.130823i
\(411\) 18.7274 0.923756
\(412\) 28.8406i 1.42088i
\(413\) 58.2452i 2.86606i
\(414\) −0.445173 −0.0218791
\(415\) −0.302572 8.77205i −0.0148527 0.430603i
\(416\) −12.8108 −0.628099
\(417\) 1.34376i 0.0658041i
\(418\) 0.238156i 0.0116486i
\(419\) −27.0379 −1.32089 −0.660445 0.750874i \(-0.729632\pi\)
−0.660445 + 0.750874i \(0.729632\pi\)
\(420\) −13.3819 + 0.461578i −0.652969 + 0.0225227i
\(421\) 3.79559 0.184986 0.0924928 0.995713i \(-0.470516\pi\)
0.0924928 + 0.995713i \(0.470516\pi\)
\(422\) 19.6544i 0.956759i
\(423\) 2.57524i 0.125213i
\(424\) 26.8881 1.30580
\(425\) −0.969177 14.0323i −0.0470120 0.680665i
\(426\) 7.00159 0.339228
\(427\) 46.8503i 2.26725i
\(428\) 2.26876i 0.109665i
\(429\) 1.30419 0.0629669
\(430\) 11.7768 0.406215i 0.567928 0.0195894i
\(431\) −0.405550 −0.0195347 −0.00976733 0.999952i \(-0.503109\pi\)
−0.00976733 + 0.999952i \(0.503109\pi\)
\(432\) 0.908639i 0.0437169i
\(433\) 25.5978i 1.23015i −0.788468 0.615075i \(-0.789126\pi\)
0.788468 0.615075i \(-0.210874\pi\)
\(434\) −25.3246 −1.21562
\(435\) 0.0770824 + 2.23474i 0.00369582 + 0.107148i
\(436\) 11.3181 0.542039
\(437\) 0.312077i 0.0149286i
\(438\) 7.23628i 0.345763i
\(439\) 26.2378 1.25226 0.626132 0.779717i \(-0.284637\pi\)
0.626132 + 0.779717i \(0.284637\pi\)
\(440\) 0.119078 + 3.45226i 0.00567683 + 0.164580i
\(441\) 10.5163 0.500774
\(442\) 4.63805i 0.220609i
\(443\) 26.5050i 1.25929i 0.776883 + 0.629645i \(0.216800\pi\)
−0.776883 + 0.629645i \(0.783200\pi\)
\(444\) −3.61219 −0.171427
\(445\) −27.5659 + 0.950823i −1.30675 + 0.0450733i
\(446\) 8.14040 0.385459
\(447\) 15.9925i 0.756420i
\(448\) 10.9057i 0.515245i
\(449\) −5.57064 −0.262895 −0.131447 0.991323i \(-0.541962\pi\)
−0.131447 + 0.991323i \(0.541962\pi\)
\(450\) 0.259930 + 3.76340i 0.0122532 + 0.177409i
\(451\) 0.937662 0.0441528
\(452\) 4.39715i 0.206825i
\(453\) 17.9595i 0.843809i
\(454\) 5.27514 0.247575
\(455\) 20.4384 0.704978i 0.958168 0.0330499i
\(456\) −1.36903 −0.0641106
\(457\) 25.3774i 1.18710i −0.804796 0.593551i \(-0.797725\pi\)
0.804796 0.593551i \(-0.202275\pi\)
\(458\) 15.8065i 0.738587i
\(459\) −2.81314 −0.131306
\(460\) −0.0650742 1.88660i −0.00303410 0.0879634i
\(461\) 2.20886 0.102877 0.0514384 0.998676i \(-0.483619\pi\)
0.0514384 + 0.998676i \(0.483619\pi\)
\(462\) 1.88454i 0.0876769i
\(463\) 7.56591i 0.351618i 0.984424 + 0.175809i \(0.0562541\pi\)
−0.984424 + 0.175809i \(0.943746\pi\)
\(464\) −0.908639 −0.0421825
\(465\) −0.618205 17.9227i −0.0286686 0.831146i
\(466\) −2.90900 −0.134757
\(467\) 19.9056i 0.921120i −0.887629 0.460560i \(-0.847649\pi\)
0.887629 0.460560i \(-0.152351\pi\)
\(468\) 3.12658i 0.144526i
\(469\) −2.57032 −0.118686
\(470\) −4.34199 + 0.149767i −0.200281 + 0.00690826i
\(471\) 6.78158 0.312479
\(472\) 36.0226i 1.65808i
\(473\) 4.16867i 0.191676i
\(474\) 7.80097 0.358311
\(475\) −2.63823 + 0.182217i −0.121050 + 0.00836068i
\(476\) −16.8454 −0.772108
\(477\) 10.3878i 0.475625i
\(478\) 19.0945i 0.873363i
\(479\) −10.3910 −0.474778 −0.237389 0.971415i \(-0.576292\pi\)
−0.237389 + 0.971415i \(0.576292\pi\)
\(480\) −13.1009 + 0.451887i −0.597973 + 0.0206257i
\(481\) 5.51698 0.251552
\(482\) 17.2405i 0.785282i
\(483\) 2.46948i 0.112365i
\(484\) −15.2288 −0.692220
\(485\) 0.248046 + 7.19126i 0.0112632 + 0.326538i
\(486\) 0.754474 0.0342236
\(487\) 10.0574i 0.455744i −0.973691 0.227872i \(-0.926823\pi\)
0.973691 0.227872i \(-0.0731768\pi\)
\(488\) 28.9753i 1.31165i
\(489\) −20.9951 −0.949433
\(490\) −0.611590 17.7310i −0.0276288 0.801003i
\(491\) −0.193599 −0.00873699 −0.00436849 0.999990i \(-0.501391\pi\)
−0.00436849 + 0.999990i \(0.501391\pi\)
\(492\) 2.24789i 0.101343i
\(493\) 2.81314i 0.126697i
\(494\) 0.872008 0.0392335
\(495\) 1.33373 0.0460041i 0.0599467 0.00206773i
\(496\) 7.28733 0.327211
\(497\) 38.8395i 1.74219i
\(498\) 2.96155i 0.132710i
\(499\) −13.6181 −0.609630 −0.304815 0.952412i \(-0.598595\pi\)
−0.304815 + 0.952412i \(0.598595\pi\)
\(500\) −15.9110 + 1.65169i −0.711561 + 0.0738656i
\(501\) −14.9135 −0.666285
\(502\) 5.56066i 0.248185i
\(503\) 30.7553i 1.37131i −0.727926 0.685655i \(-0.759516\pi\)
0.727926 0.685655i \(-0.240484\pi\)
\(504\) 10.8332 0.482549
\(505\) −20.8216 + 0.718197i −0.926551 + 0.0319593i
\(506\) 0.265687 0.0118112
\(507\) 8.22471i 0.365272i
\(508\) 18.4933i 0.820506i
\(509\) 1.01272 0.0448881 0.0224441 0.999748i \(-0.492855\pi\)
0.0224441 + 0.999748i \(0.492855\pi\)
\(510\) 0.163603 + 4.74310i 0.00724445 + 0.210028i
\(511\) 40.1413 1.77575
\(512\) 10.0307i 0.443298i
\(513\) 0.528904i 0.0233517i
\(514\) 2.42620 0.107015
\(515\) −1.55378 45.0466i −0.0684679 1.98499i
\(516\) 9.99369 0.439948
\(517\) 1.53695i 0.0675950i
\(518\) 7.97198i 0.350269i
\(519\) 10.8685 0.477075
\(520\) 12.6404 0.436004i 0.554320 0.0191200i
\(521\) 6.02284 0.263865 0.131933 0.991259i \(-0.457882\pi\)
0.131933 + 0.991259i \(0.457882\pi\)
\(522\) 0.754474i 0.0330224i
\(523\) 20.3870i 0.891460i 0.895167 + 0.445730i \(0.147056\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(524\) −8.14784 −0.355940
\(525\) 20.8765 1.44189i 0.911124 0.0629293i
\(526\) −12.0859 −0.526971
\(527\) 22.5615i 0.982795i
\(528\) 0.542291i 0.0236002i
\(529\) 22.6518 0.984863
\(530\) −17.5144 + 0.604120i −0.760776 + 0.0262413i
\(531\) 13.9168 0.603938
\(532\) 3.16714i 0.137313i
\(533\) 3.43324i 0.148710i
\(534\) 9.30655 0.402734
\(535\) 0.122229 + 3.54361i 0.00528443 + 0.153204i
\(536\) −1.58965 −0.0686625
\(537\) 1.26613i 0.0546375i
\(538\) 15.0759i 0.649967i
\(539\) −6.27629 −0.270339
\(540\) 0.110287 + 3.19740i 0.00474600 + 0.137594i
\(541\) −16.4420 −0.706895 −0.353448 0.935454i \(-0.614991\pi\)
−0.353448 + 0.935454i \(0.614991\pi\)
\(542\) 6.58461i 0.282833i
\(543\) 5.80673i 0.249191i
\(544\) −16.4917 −0.707077
\(545\) −17.6779 + 0.609761i −0.757239 + 0.0261193i
\(546\) −6.90025 −0.295303
\(547\) 28.2531i 1.20802i 0.796979 + 0.604008i \(0.206430\pi\)
−0.796979 + 0.604008i \(0.793570\pi\)
\(548\) 26.7946i 1.14461i
\(549\) 11.1942 0.477756
\(550\) −0.155131 2.24606i −0.00661479 0.0957725i
\(551\) 0.528904 0.0225321
\(552\) 1.52729i 0.0650056i
\(553\) 43.2738i 1.84019i
\(554\) 23.0760 0.980407
\(555\) 5.64194 0.194606i 0.239487 0.00826057i
\(556\) −1.92261 −0.0815367
\(557\) 36.3662i 1.54089i −0.637508 0.770443i \(-0.720035\pi\)
0.637508 0.770443i \(-0.279965\pi\)
\(558\) 6.05092i 0.256156i
\(559\) −15.2636 −0.645580
\(560\) 0.293135 + 8.49843i 0.0123872 + 0.359124i
\(561\) 1.67893 0.0708845
\(562\) 22.8281i 0.962945i
\(563\) 5.24750i 0.221156i −0.993867 0.110578i \(-0.964730\pi\)
0.993867 0.110578i \(-0.0352701\pi\)
\(564\) −3.68458 −0.155149
\(565\) 0.236896 + 6.86798i 0.00996627 + 0.288938i
\(566\) −7.05514 −0.296550
\(567\) 4.18524i 0.175764i
\(568\) 24.0208i 1.00789i
\(569\) −17.3773 −0.728495 −0.364248 0.931302i \(-0.618674\pi\)
−0.364248 + 0.931302i \(0.618674\pi\)
\(570\) 0.891759 0.0307593i 0.0373517 0.00128836i
\(571\) −22.2889 −0.932760 −0.466380 0.884584i \(-0.654442\pi\)
−0.466380 + 0.884584i \(0.654442\pi\)
\(572\) 1.86600i 0.0780212i
\(573\) 15.3358i 0.640663i
\(574\) −4.96101 −0.207068
\(575\) 0.203281 + 2.94321i 0.00847740 + 0.122740i
\(576\) 2.60575 0.108573
\(577\) 26.1738i 1.08963i −0.838556 0.544816i \(-0.816600\pi\)
0.838556 0.544816i \(-0.183400\pi\)
\(578\) 6.85534i 0.285145i
\(579\) 16.4946 0.685491
\(580\) 3.19740 0.110287i 0.132765 0.00457942i
\(581\) 16.4284 0.681564
\(582\) 2.42785i 0.100638i
\(583\) 6.19962i 0.256762i
\(584\) 24.8260 1.02731
\(585\) −0.168444 4.88345i −0.00696429 0.201906i
\(586\) −6.39604 −0.264218
\(587\) 26.4002i 1.08965i 0.838549 + 0.544827i \(0.183405\pi\)
−0.838549 + 0.544827i \(0.816595\pi\)
\(588\) 15.0463i 0.620501i
\(589\) −4.24184 −0.174782
\(590\) −0.809355 23.4645i −0.0333206 0.966017i
\(591\) 24.2353 0.996908
\(592\) 2.29400i 0.0942826i
\(593\) 19.4942i 0.800532i 0.916399 + 0.400266i \(0.131082\pi\)
−0.916399 + 0.400266i \(0.868918\pi\)
\(594\) −0.450283 −0.0184753
\(595\) 26.3111 0.907542i 1.07865 0.0372056i
\(596\) 22.8816 0.937266
\(597\) 17.4875i 0.715714i
\(598\) 0.972811i 0.0397812i
\(599\) −20.9453 −0.855800 −0.427900 0.903826i \(-0.640746\pi\)
−0.427900 + 0.903826i \(0.640746\pi\)
\(600\) 12.9114 0.891759i 0.527104 0.0364059i
\(601\) 14.3956 0.587208 0.293604 0.955927i \(-0.405145\pi\)
0.293604 + 0.955927i \(0.405145\pi\)
\(602\) 22.0557i 0.898924i
\(603\) 0.614139i 0.0250097i
\(604\) 25.6958 1.04555
\(605\) 23.7861 0.820450i 0.967044 0.0333560i
\(606\) 7.02963 0.285559
\(607\) 8.53979i 0.346620i 0.984867 + 0.173310i \(0.0554462\pi\)
−0.984867 + 0.173310i \(0.944554\pi\)
\(608\) 3.10064i 0.125748i
\(609\) −4.18524 −0.169595
\(610\) −0.651016 18.8740i −0.0263588 0.764184i
\(611\) 5.62753 0.227666
\(612\) 4.02495i 0.162699i
\(613\) 36.7173i 1.48300i 0.670954 + 0.741499i \(0.265885\pi\)
−0.670954 + 0.741499i \(0.734115\pi\)
\(614\) −14.9944 −0.605125
\(615\) −0.121104 3.51101i −0.00488340 0.141578i
\(616\) −6.46544 −0.260500
\(617\) 45.1304i 1.81688i 0.418014 + 0.908441i \(0.362726\pi\)
−0.418014 + 0.908441i \(0.637274\pi\)
\(618\) 15.2083i 0.611766i
\(619\) 18.9737 0.762618 0.381309 0.924448i \(-0.375473\pi\)
0.381309 + 0.924448i \(0.375473\pi\)
\(620\) −25.6433 + 0.884508i −1.02986 + 0.0355227i
\(621\) 0.590044 0.0236777
\(622\) 9.46681i 0.379585i
\(623\) 51.6256i 2.06834i
\(624\) 1.98560 0.0794875
\(625\) 24.7626 3.43699i 0.990505 0.137480i
\(626\) −2.13472 −0.0853206
\(627\) 0.315659i 0.0126062i
\(628\) 9.70288i 0.387187i
\(629\) 7.10219 0.283183
\(630\) −7.05654 + 0.243400i −0.281139 + 0.00969728i
\(631\) −18.5514 −0.738518 −0.369259 0.929327i \(-0.620388\pi\)
−0.369259 + 0.929327i \(0.620388\pi\)
\(632\) 26.7633i 1.06459i
\(633\) 26.0504i 1.03541i
\(634\) −4.73349 −0.187991
\(635\) −0.996321 28.8849i −0.0395378 1.14626i
\(636\) −14.8626 −0.589339
\(637\) 22.9806i 0.910524i
\(638\) 0.450283i 0.0178269i
\(639\) −9.28010 −0.367115
\(640\) 0.752233 + 21.8084i 0.0297346 + 0.862054i
\(641\) −34.5735 −1.36557 −0.682785 0.730619i \(-0.739231\pi\)
−0.682785 + 0.730619i \(0.739231\pi\)
\(642\) 1.19637i 0.0472168i
\(643\) 6.58510i 0.259691i 0.991534 + 0.129846i \(0.0414482\pi\)
−0.991534 + 0.129846i \(0.958552\pi\)
\(644\) 3.53325 0.139230
\(645\) −15.6093 + 0.538408i −0.614615 + 0.0211998i
\(646\) 1.12257 0.0441668
\(647\) 10.0375i 0.394614i −0.980342 0.197307i \(-0.936780\pi\)
0.980342 0.197307i \(-0.0632196\pi\)
\(648\) 2.58843i 0.101683i
\(649\) −8.30579 −0.326031
\(650\) −8.22395 + 0.568010i −0.322570 + 0.0222792i
\(651\) 33.5659 1.31555
\(652\) 30.0392i 1.17643i
\(653\) 3.25188i 0.127256i 0.997974 + 0.0636280i \(0.0202671\pi\)
−0.997974 + 0.0636280i \(0.979733\pi\)
\(654\) 5.96827 0.233378
\(655\) 12.7262 0.438963i 0.497255 0.0171517i
\(656\) 1.42757 0.0557371
\(657\) 9.59116i 0.374187i
\(658\) 8.13173i 0.317008i
\(659\) 9.93148 0.386875 0.193438 0.981113i \(-0.438036\pi\)
0.193438 + 0.981113i \(0.438036\pi\)
\(660\) −0.0658212 1.90826i −0.00256209 0.0742790i
\(661\) −9.44925 −0.367533 −0.183767 0.982970i \(-0.558829\pi\)
−0.183767 + 0.982970i \(0.558829\pi\)
\(662\) 3.37455i 0.131155i
\(663\) 6.14739i 0.238745i
\(664\) 10.1604 0.394299
\(665\) −0.170629 4.94680i −0.00661670 0.191829i
\(666\) −1.90478 −0.0738088
\(667\) 0.590044i 0.0228466i
\(668\) 21.3377i 0.825582i
\(669\) −10.7895 −0.417146
\(670\) 1.03547 0.0357162i 0.0400037 0.00137984i
\(671\) −6.68088 −0.257912
\(672\) 24.5356i 0.946479i
\(673\) 11.1154i 0.428468i 0.976782 + 0.214234i \(0.0687254\pi\)
−0.976782 + 0.214234i \(0.931275\pi\)
\(674\) 2.73263 0.105257
\(675\) −0.344518 4.98812i −0.0132605 0.191993i
\(676\) 11.7677 0.452603
\(677\) 44.6045i 1.71429i 0.515075 + 0.857145i \(0.327764\pi\)
−0.515075 + 0.857145i \(0.672236\pi\)
\(678\) 2.31871i 0.0890495i
\(679\) −13.4679 −0.516849
\(680\) 16.2725 0.561283i 0.624021 0.0215242i
\(681\) −6.99182 −0.267927
\(682\) 3.61129i 0.138284i
\(683\) 0.490486i 0.0187679i 0.999956 + 0.00938396i \(0.00298705\pi\)
−0.999956 + 0.00938396i \(0.997013\pi\)
\(684\) 0.756739 0.0289346
\(685\) 1.44355 + 41.8509i 0.0551554 + 1.59904i
\(686\) 11.1031 0.423920
\(687\) 20.9503i 0.799304i
\(688\) 6.34669i 0.241965i
\(689\) 22.6999 0.864797
\(690\) −0.0343150 0.994845i −0.00130635 0.0378731i
\(691\) −6.72252 −0.255737 −0.127868 0.991791i \(-0.540814\pi\)
−0.127868 + 0.991791i \(0.540814\pi\)
\(692\) 15.5503i 0.591135i
\(693\) 2.49783i 0.0948845i
\(694\) 26.0019 0.987017
\(695\) 3.00295 0.103580i 0.113908 0.00392901i
\(696\) −2.58843 −0.0981140
\(697\) 4.41973i 0.167409i
\(698\) 13.6108i 0.515176i
\(699\) 3.85567 0.145835
\(700\) −2.06301 29.8694i −0.0779746 1.12896i
\(701\) −32.2913 −1.21963 −0.609813 0.792546i \(-0.708755\pi\)
−0.609813 + 0.792546i \(0.708755\pi\)
\(702\) 1.64871i 0.0622265i
\(703\) 1.33530i 0.0503617i
\(704\) −1.55515 −0.0586121
\(705\) 5.75500 0.198506i 0.216746 0.00747616i
\(706\) 5.73755 0.215936
\(707\) 38.9950i 1.46656i
\(708\) 19.9117i 0.748329i
\(709\) −9.75887 −0.366502 −0.183251 0.983066i \(-0.558662\pi\)
−0.183251 + 0.983066i \(0.558662\pi\)
\(710\) 0.539699 + 15.6467i 0.0202546 + 0.587211i
\(711\) −10.3396 −0.387766
\(712\) 31.9286i 1.19658i
\(713\) 4.73218i 0.177222i
\(714\) −8.88293 −0.332435
\(715\) 0.100530 + 2.91453i 0.00375961 + 0.108997i
\(716\) −1.81154 −0.0677004
\(717\) 25.3084i 0.945159i
\(718\) 1.75254i 0.0654042i
\(719\) −44.2063 −1.64862 −0.824308 0.566142i \(-0.808435\pi\)
−0.824308 + 0.566142i \(0.808435\pi\)
\(720\) 2.03057 0.0700400i 0.0756749 0.00261024i
\(721\) 84.3638 3.14187
\(722\) 14.1239i 0.525639i
\(723\) 22.8510i 0.849837i
\(724\) −8.30809 −0.308768
\(725\) −4.98812 + 0.344518i −0.185254 + 0.0127951i
\(726\) −8.03048 −0.298039
\(727\) 44.9849i 1.66840i −0.551463 0.834199i \(-0.685930\pi\)
0.551463 0.834199i \(-0.314070\pi\)
\(728\) 23.6732i 0.877385i
\(729\) −1.00000 −0.0370370
\(730\) −16.1712 + 0.557789i −0.598523 + 0.0206447i
\(731\) −19.6493 −0.726756
\(732\) 16.0163i 0.591979i
\(733\) 1.59233i 0.0588142i 0.999568 + 0.0294071i \(0.00936191\pi\)
−0.999568 + 0.0294071i \(0.990638\pi\)
\(734\) 4.82056 0.177930
\(735\) 0.810618 + 23.5011i 0.0299001 + 0.866851i
\(736\) 3.45907 0.127503
\(737\) 0.366529i 0.0135013i
\(738\) 1.18536i 0.0436336i
\(739\) 37.2457 1.37011 0.685053 0.728493i \(-0.259779\pi\)
0.685053 + 0.728493i \(0.259779\pi\)
\(740\) −0.278436 8.07231i −0.0102355 0.296744i
\(741\) −1.15578 −0.0424588
\(742\) 32.8011i 1.20417i
\(743\) 41.1086i 1.50813i 0.656800 + 0.754065i \(0.271909\pi\)
−0.656800 + 0.754065i \(0.728091\pi\)
\(744\) 20.7593 0.761073
\(745\) −35.7391 + 1.23274i −1.30938 + 0.0451641i
\(746\) −18.2301 −0.667452
\(747\) 3.92531i 0.143620i
\(748\) 2.40216i 0.0878317i
\(749\) −6.63652 −0.242493
\(750\) −8.39019 + 0.870967i −0.306366 + 0.0318032i
\(751\) −44.6707 −1.63006 −0.815029 0.579420i \(-0.803279\pi\)
−0.815029 + 0.579420i \(0.803279\pi\)
\(752\) 2.33997i 0.0853298i
\(753\) 7.37025i 0.268587i
\(754\) 1.64871 0.0600424
\(755\) −40.1347 + 1.38436i −1.46065 + 0.0503819i
\(756\) −5.98812 −0.217786
\(757\) 13.8828i 0.504577i −0.967652 0.252289i \(-0.918817\pi\)
0.967652 0.252289i \(-0.0811833\pi\)
\(758\) 22.0377i 0.800444i
\(759\) −0.352149 −0.0127822
\(760\) −0.105528 3.05942i −0.00382790 0.110977i
\(761\) −30.9137 −1.12062 −0.560310 0.828283i \(-0.689318\pi\)
−0.560310 + 0.828283i \(0.689318\pi\)
\(762\) 9.75188i 0.353273i
\(763\) 33.1074i 1.19857i
\(764\) 21.9420 0.793834
\(765\) −0.216843 6.28663i −0.00783999 0.227294i
\(766\) 23.9720 0.866144
\(767\) 30.4116i 1.09810i
\(768\) 12.5743i 0.453735i
\(769\) −31.1489 −1.12326 −0.561630 0.827389i \(-0.689825\pi\)
−0.561630 + 0.827389i \(0.689825\pi\)
\(770\) 4.21146 0.145265i 0.151771 0.00523499i
\(771\) −3.21575 −0.115812
\(772\) 23.5999i 0.849380i
\(773\) 25.7705i 0.926902i −0.886123 0.463451i \(-0.846611\pi\)
0.886123 0.463451i \(-0.153389\pi\)
\(774\) 5.26988 0.189422
\(775\) 40.0050 2.76305i 1.43702 0.0992518i
\(776\) −8.32940 −0.299008
\(777\) 10.5663i 0.379063i
\(778\) 17.8930i 0.641494i
\(779\) −0.830963 −0.0297723
\(780\) −6.98709 + 0.241004i −0.250178 + 0.00862933i
\(781\) 5.53852 0.198184
\(782\) 1.25233i 0.0447833i
\(783\) 1.00000i 0.0357371i
\(784\) −9.55548 −0.341267
\(785\) 0.522741 + 15.1551i 0.0186574 + 0.540908i
\(786\) −4.29652 −0.153252
\(787\) 26.2806i 0.936802i −0.883516 0.468401i \(-0.844830\pi\)
0.883516 0.468401i \(-0.155170\pi\)
\(788\) 34.6752i 1.23525i
\(789\) 16.0190 0.570292
\(790\) 0.601317 + 17.4331i 0.0213939 + 0.620243i
\(791\) −12.8624 −0.457335
\(792\) 1.54482i 0.0548927i
\(793\) 24.4620i 0.868671i
\(794\) 24.7678 0.878978
\(795\) 23.2140 0.800717i 0.823317 0.0283985i
\(796\) −25.0205 −0.886828
\(797\) 53.7239i 1.90300i −0.307650 0.951500i \(-0.599543\pi\)
0.307650 0.951500i \(-0.400457\pi\)
\(798\) 1.67010i 0.0591208i
\(799\) 7.24452 0.256293
\(800\) −2.01970 29.2423i −0.0714072 1.03387i
\(801\) −12.3352 −0.435841
\(802\) 6.20106i 0.218967i
\(803\) 5.72417i 0.202002i
\(804\) 0.878691 0.0309890
\(805\) −5.51864 + 0.190353i −0.194506 + 0.00670907i
\(806\) −13.2227 −0.465751
\(807\) 19.9820i 0.703398i
\(808\) 24.1170i 0.848434i
\(809\) 6.02488 0.211824 0.105912 0.994376i \(-0.466224\pi\)
0.105912 + 0.994376i \(0.466224\pi\)
\(810\) 0.0581566 + 1.68605i 0.00204342 + 0.0592418i
\(811\) −7.70554 −0.270578 −0.135289 0.990806i \(-0.543196\pi\)
−0.135289 + 0.990806i \(0.543196\pi\)
\(812\) 5.98812i 0.210142i
\(813\) 8.72743i 0.306084i
\(814\) 1.13681 0.0398451
\(815\) −1.61836 46.9187i −0.0566885 1.64349i
\(816\) 2.55613 0.0894823
\(817\) 3.69431i 0.129247i
\(818\) 21.0584i 0.736290i
\(819\) 9.14577 0.319579
\(820\) −5.02344 + 0.173273i −0.175426 + 0.00605094i
\(821\) 16.4338 0.573543 0.286772 0.957999i \(-0.407418\pi\)
0.286772 + 0.957999i \(0.407418\pi\)
\(822\) 14.1294i 0.492818i
\(823\) 45.4920i 1.58575i 0.609383 + 0.792876i \(0.291417\pi\)
−0.609383 + 0.792876i \(0.708583\pi\)
\(824\) 52.1760 1.81764
\(825\) 0.205614 + 2.97699i 0.00715857 + 0.103646i
\(826\) 43.9445 1.52902
\(827\) 33.1498i 1.15273i 0.817191 + 0.576367i \(0.195530\pi\)
−0.817191 + 0.576367i \(0.804470\pi\)
\(828\) 0.844217i 0.0293386i
\(829\) −27.9403 −0.970407 −0.485203 0.874401i \(-0.661254\pi\)
−0.485203 + 0.874401i \(0.661254\pi\)
\(830\) −6.61828 + 0.228283i −0.229724 + 0.00792382i
\(831\) −30.5856 −1.06100
\(832\) 5.69419i 0.197411i
\(833\) 29.5837i 1.02501i
\(834\) −1.01383 −0.0351060
\(835\) −1.14957 33.3277i −0.0397824 1.15335i
\(836\) −0.451635 −0.0156201
\(837\) 8.02005i 0.277214i
\(838\) 20.3994i 0.704686i
\(839\) −27.5639 −0.951610 −0.475805 0.879551i \(-0.657843\pi\)
−0.475805 + 0.879551i \(0.657843\pi\)
\(840\) 0.835048 + 24.2094i 0.0288119 + 0.835302i
\(841\) 1.00000 0.0344828
\(842\) 2.86367i 0.0986886i
\(843\) 30.2570i 1.04211i
\(844\) −37.2721 −1.28296
\(845\) −18.3801 + 0.633980i −0.632294 + 0.0218096i
\(846\) −1.94295 −0.0668001
\(847\) 44.5469i 1.53065i
\(848\) 9.43876i 0.324128i
\(849\) 9.35107 0.320928
\(850\) −10.5870 + 0.731219i −0.363130 + 0.0250806i
\(851\) −1.48966 −0.0510647
\(852\) 13.2777i 0.454886i
\(853\) 14.4467i 0.494645i −0.968933 0.247323i \(-0.920449\pi\)
0.968933 0.247323i \(-0.0795508\pi\)
\(854\) 35.3474 1.20956
\(855\) −1.18196 + 0.0407692i −0.0404222 + 0.00139428i
\(856\) −4.10445 −0.140287
\(857\) 20.6065i 0.703904i 0.936018 + 0.351952i \(0.114482\pi\)
−0.936018 + 0.351952i \(0.885518\pi\)
\(858\) 0.983978i 0.0335925i
\(859\) 22.6473 0.772717 0.386358 0.922349i \(-0.373733\pi\)
0.386358 + 0.922349i \(0.373733\pi\)
\(860\) 0.770337 + 22.3333i 0.0262683 + 0.761559i
\(861\) 6.57545 0.224091
\(862\) 0.305977i 0.0104216i
\(863\) 18.3880i 0.625935i −0.949764 0.312967i \(-0.898677\pi\)
0.949764 0.312967i \(-0.101323\pi\)
\(864\) −5.86240 −0.199443
\(865\) 0.837772 + 24.2883i 0.0284851 + 0.825827i
\(866\) −19.3129 −0.656278
\(867\) 9.08625i 0.308585i
\(868\) 48.0250i 1.63007i
\(869\) 6.17086 0.209332
\(870\) 1.68605 0.0581566i 0.0571625 0.00197169i
\(871\) −1.34204 −0.0454734
\(872\) 20.4758i 0.693397i
\(873\) 3.21794i 0.108911i
\(874\) −0.235454 −0.00796434
\(875\) 4.83146 + 46.5423i 0.163333 + 1.57342i
\(876\) −13.7227 −0.463648
\(877\) 20.7681i 0.701289i 0.936509 + 0.350645i \(0.114038\pi\)
−0.936509 + 0.350645i \(0.885962\pi\)
\(878\) 19.7958i 0.668075i
\(879\) 8.47749 0.285939
\(880\) −1.21188 + 0.0418011i −0.0408524 + 0.00140911i
\(881\) 25.7085 0.866140 0.433070 0.901360i \(-0.357430\pi\)
0.433070 + 0.901360i \(0.357430\pi\)
\(882\) 7.93424i 0.267160i
\(883\) 48.3574i 1.62736i 0.581315 + 0.813679i \(0.302539\pi\)
−0.581315 + 0.813679i \(0.697461\pi\)
\(884\) −8.79550 −0.295825
\(885\) 1.07274 + 31.1004i 0.0360598 + 1.04543i
\(886\) 19.9973 0.671824
\(887\) 48.7809i 1.63790i 0.573864 + 0.818951i \(0.305444\pi\)
−0.573864 + 0.818951i \(0.694556\pi\)
\(888\) 6.53487i 0.219296i
\(889\) 54.0960 1.81432
\(890\) 0.717371 + 20.7977i 0.0240463 + 0.697141i
\(891\) 0.596817 0.0199941
\(892\) 15.4373i 0.516879i
\(893\) 1.36206i 0.0455795i
\(894\) 12.0659 0.403545
\(895\) 2.82947 0.0975962i 0.0945787 0.00326228i
\(896\) −40.8430 −1.36447
\(897\) 1.28939i 0.0430515i
\(898\) 4.20291i 0.140253i
\(899\) −8.02005 −0.267484
\(900\) −7.13684 + 0.492926i −0.237895 + 0.0164309i
\(901\) 29.2223 0.973537
\(902\) 0.707442i 0.0235552i
\(903\) 29.2332i 0.972821i
\(904\) −7.95495 −0.264578
\(905\) 12.9765 0.447596i 0.431354 0.0148786i
\(906\) 13.5499 0.450166
\(907\) 10.8048i 0.358767i −0.983779 0.179383i \(-0.942590\pi\)
0.983779 0.179383i \(-0.0574103\pi\)
\(908\) 10.0037i 0.331984i
\(909\) −9.31726 −0.309034
\(910\) −0.531887 15.4203i −0.0176319 0.511176i
\(911\) 22.2530 0.737274 0.368637 0.929573i \(-0.379825\pi\)
0.368637 + 0.929573i \(0.379825\pi\)
\(912\) 0.480582i 0.0159137i
\(913\) 2.34269i 0.0775319i
\(914\) −19.1466 −0.633312
\(915\) 0.862873 + 25.0161i 0.0285257 + 0.827005i
\(916\) 29.9751 0.990404
\(917\) 23.8338i 0.787062i
\(918\) 2.12244i 0.0700509i
\(919\) −47.1476 −1.55526 −0.777628 0.628724i \(-0.783577\pi\)
−0.777628 + 0.628724i \(0.783577\pi\)
\(920\) −3.41308 + 0.117727i −0.112526 + 0.00388134i
\(921\) 19.8740 0.654871
\(922\) 1.66653i 0.0548841i
\(923\) 20.2793i 0.667500i
\(924\) 3.57381 0.117570
\(925\) 0.869788 + 12.5933i 0.0285984 + 0.414064i
\(926\) 5.70828 0.187586
\(927\) 20.1574i 0.662057i
\(928\) 5.86240i 0.192443i
\(929\) −13.0115 −0.426893 −0.213446 0.976955i \(-0.568469\pi\)
−0.213446 + 0.976955i \(0.568469\pi\)
\(930\) −13.5222 + 0.466419i −0.443411 + 0.0152945i
\(931\) 5.56209 0.182290
\(932\) 5.51657i 0.180701i
\(933\) 12.5476i 0.410789i
\(934\) −15.0182 −0.491412
\(935\) 0.129416 + 3.75197i 0.00423235 + 0.122703i
\(936\) 5.65634 0.184883
\(937\) 19.4077i 0.634021i −0.948422 0.317011i \(-0.897321\pi\)
0.948422 0.317011i \(-0.102679\pi\)
\(938\) 1.93924i 0.0633184i
\(939\) 2.82942 0.0923345
\(940\) −0.284016 8.23407i −0.00926358 0.268566i
\(941\) 16.3192 0.531990 0.265995 0.963974i \(-0.414299\pi\)
0.265995 + 0.963974i \(0.414299\pi\)
\(942\) 5.11653i 0.166705i
\(943\) 0.927021i 0.0301880i
\(944\) −12.6453 −0.411571
\(945\) 9.35293 0.322608i 0.304251 0.0104945i
\(946\) −3.14515 −0.102258
\(947\) 20.0894i 0.652819i −0.945229 0.326409i \(-0.894161\pi\)
0.945229 0.326409i \(-0.105839\pi\)
\(948\) 14.7936i 0.480474i
\(949\) 20.9590 0.680358
\(950\) 0.137478 + 1.99048i 0.00446037 + 0.0645796i
\(951\) 6.27390 0.203445
\(952\) 30.4753i 0.987709i
\(953\) 23.6518i 0.766158i 0.923716 + 0.383079i \(0.125136\pi\)
−0.923716 + 0.383079i \(0.874864\pi\)
\(954\) −7.83733 −0.253743
\(955\) −34.2715 + 1.18212i −1.10900 + 0.0382525i
\(956\) 36.2105 1.17113
\(957\) 0.596817i 0.0192924i
\(958\) 7.83975i 0.253291i
\(959\) −78.3788 −2.53098
\(960\) 0.200857 + 5.82316i 0.00648264 + 0.187942i
\(961\) 33.3212 1.07488
\(962\) 4.16241i 0.134202i
\(963\) 1.58569i 0.0510983i
\(964\) −32.6945 −1.05302
\(965\) 1.27144 + 36.8611i 0.0409291 + 1.18660i
\(966\) 1.86316 0.0599461
\(967\) 5.19177i 0.166956i 0.996510 + 0.0834780i \(0.0266028\pi\)
−0.996510 + 0.0834780i \(0.973397\pi\)
\(968\) 27.5507i 0.885513i
\(969\) −1.48788 −0.0477976
\(970\) 5.42561 0.187145i 0.174206 0.00600885i
\(971\) −31.0165 −0.995366 −0.497683 0.867359i \(-0.665816\pi\)
−0.497683 + 0.867359i \(0.665816\pi\)
\(972\) 1.43077i 0.0458919i
\(973\) 5.62395i 0.180296i
\(974\) −7.58804 −0.243137
\(975\) 10.9002 0.752856i 0.349087 0.0241107i
\(976\) −10.1715 −0.325580
\(977\) 35.0578i 1.12160i −0.827952 0.560798i \(-0.810494\pi\)
0.827952 0.560798i \(-0.189506\pi\)
\(978\) 15.8403i 0.506517i
\(979\) 7.36183 0.235285
\(980\) 33.6246 1.15981i 1.07410 0.0370487i
\(981\) −7.91051 −0.252563
\(982\) 0.146065i 0.00466113i
\(983\) 11.3717i 0.362702i −0.983418 0.181351i \(-0.941953\pi\)
0.983418 0.181351i \(-0.0580471\pi\)
\(984\) 4.06669 0.129641
\(985\) 1.86812 + 54.1596i 0.0595232 + 1.72567i
\(986\) 2.12244 0.0675922
\(987\) 10.7780i 0.343068i
\(988\) 1.65366i 0.0526099i
\(989\) 4.12136 0.131052
\(990\) −0.0347089 1.00627i −0.00110312 0.0319812i
\(991\) −20.5008 −0.651230 −0.325615 0.945503i \(-0.605571\pi\)
−0.325615 + 0.945503i \(0.605571\pi\)
\(992\) 47.0167i 1.49278i
\(993\) 4.47271i 0.141937i
\(994\) −29.3034 −0.929446
\(995\) 39.0799 1.34797i 1.23892 0.0427337i
\(996\) −5.61622 −0.177957
\(997\) 8.50559i 0.269375i −0.990888 0.134687i \(-0.956997\pi\)
0.990888 0.134687i \(-0.0430030\pi\)
\(998\) 10.2745i 0.325234i
\(999\) 2.52465 0.0798764
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.2.c.e.349.4 10
3.2 odd 2 1305.2.c.j.784.7 10
5.2 odd 4 2175.2.a.z.1.3 5
5.3 odd 4 2175.2.a.w.1.3 5
5.4 even 2 inner 435.2.c.e.349.7 yes 10
15.2 even 4 6525.2.a.bl.1.3 5
15.8 even 4 6525.2.a.bs.1.3 5
15.14 odd 2 1305.2.c.j.784.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.e.349.4 10 1.1 even 1 trivial
435.2.c.e.349.7 yes 10 5.4 even 2 inner
1305.2.c.j.784.4 10 15.14 odd 2
1305.2.c.j.784.7 10 3.2 odd 2
2175.2.a.w.1.3 5 5.3 odd 4
2175.2.a.z.1.3 5 5.2 odd 4
6525.2.a.bl.1.3 5 15.2 even 4
6525.2.a.bs.1.3 5 15.8 even 4