Properties

Label 435.2.q.d
Level 435435
Weight 22
Character orbit 435.q
Analytic conductor 3.4733.473
Analytic rank 00
Dimension 3636
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [435,2,Mod(41,435)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(435, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("435.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 435=3529 435 = 3 \cdot 5 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 435.q (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.473492487933.47349248793
Analytic rank: 00
Dimension: 3636
Relative dimension: 1818 over Q(i)\Q(i)
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 36q+4q2+2q3+36q58q6+8q74q8+4q10+12q11+10q1228q14+2q1560q16+20q17+32q18+16q1912q21+24q24+36q25++32q99+O(q100) 36 q + 4 q^{2} + 2 q^{3} + 36 q^{5} - 8 q^{6} + 8 q^{7} - 4 q^{8} + 4 q^{10} + 12 q^{11} + 10 q^{12} - 28 q^{14} + 2 q^{15} - 60 q^{16} + 20 q^{17} + 32 q^{18} + 16 q^{19} - 12 q^{21} + 24 q^{24} + 36 q^{25}+ \cdots + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
41.1 −1.93705 + 1.93705i 1.50032 0.865476i 5.50431i 1.00000 −1.22972 + 4.58265i 1.59227 6.78801 + 6.78801i 1.50190 2.59698i −1.93705 + 1.93705i
41.2 −1.82725 + 1.82725i −0.389527 + 1.68768i 4.67770i 1.00000 −2.37206 3.79558i 1.47752 4.89284 + 4.89284i −2.69654 1.31480i −1.82725 + 1.82725i
41.3 −1.34488 + 1.34488i 1.17986 1.26804i 1.61741i 1.00000 0.118585 + 3.29214i −4.79407 −0.514537 0.514537i −0.215844 2.99223i −1.34488 + 1.34488i
41.4 −1.05880 + 1.05880i 1.69213 + 0.369716i 0.242102i 1.00000 −2.18308 + 1.40017i 1.34177 −1.86126 1.86126i 2.72662 + 1.25122i −1.05880 + 1.05880i
41.5 −1.00351 + 1.00351i −1.62379 + 0.602757i 0.0140454i 1.00000 1.02461 2.23435i 4.09600 −1.99292 1.99292i 2.27337 1.95750i −1.00351 + 1.00351i
41.6 −0.780332 + 0.780332i −0.476047 + 1.66535i 0.782165i 1.00000 −0.928048 1.67100i 0.394466 −2.17101 2.17101i −2.54676 1.58557i −0.780332 + 0.780332i
41.7 −0.602690 + 0.602690i −1.20419 1.24496i 1.27353i 1.00000 1.47608 + 0.0245761i 0.173231 −1.97292 1.97292i −0.0998697 + 2.99834i −0.602690 + 0.602690i
41.8 −0.0236294 + 0.0236294i 1.03028 + 1.39231i 1.99888i 1.00000 −0.0572444 0.00855463i 3.42666 −0.0944913 0.0944913i −0.877056 + 2.86893i −0.0236294 + 0.0236294i
41.9 0.203088 0.203088i 0.407389 1.68346i 1.91751i 1.00000 −0.259155 0.424627i 4.71926 0.795601 + 0.795601i −2.66807 1.37164i 0.203088 0.203088i
41.10 0.264256 0.264256i 1.60964 0.639569i 1.86034i 1.00000 0.256348 0.594368i −1.21376 1.02012 + 1.02012i 2.18190 2.05896i 0.264256 0.264256i
41.11 0.398500 0.398500i 0.654884 + 1.60347i 1.68239i 1.00000 0.899957 + 0.378013i −4.31678 1.46744 + 1.46744i −2.14225 + 2.10018i 0.398500 0.398500i
41.12 0.602660 0.602660i −1.60971 + 0.639395i 1.27360i 1.00000 −0.584771 + 1.35545i −0.244261 1.97287 + 1.97287i 2.18235 2.05849i 0.602660 0.602660i
41.13 0.998333 0.998333i −1.31362 1.12890i 0.00666265i 1.00000 −2.43844 + 0.184414i 2.30961 2.00332 + 2.00332i 0.451185 + 2.96588i 0.998333 0.998333i
41.14 1.39967 1.39967i −1.39384 + 1.02821i 1.91814i 1.00000 −0.511758 + 3.39006i −0.338767 0.114580 + 0.114580i 0.885569 2.86632i 1.39967 1.39967i
41.15 1.48187 1.48187i 0.154682 + 1.72513i 2.39186i 1.00000 2.78563 + 2.32719i 2.93783 −0.580678 0.580678i −2.95215 + 0.533693i 1.48187 1.48187i
41.16 1.48848 1.48848i 1.06719 1.36422i 2.43117i 1.00000 −0.442117 3.61912i −1.31013 −0.641785 0.641785i −0.722191 2.91178i 1.48848 1.48848i
41.17 1.85345 1.85345i −1.61221 0.633081i 4.87058i 1.00000 −4.16154 + 1.81476i −4.54343 −5.32050 5.32050i 2.19842 + 2.04131i 1.85345 1.85345i
41.18 1.88783 1.88783i 1.32654 + 1.11368i 5.12777i 1.00000 4.60672 0.401834i −1.70742 −5.90468 5.90468i 0.519415 + 2.95469i 1.88783 1.88783i
191.1 −1.93705 1.93705i 1.50032 + 0.865476i 5.50431i 1.00000 −1.22972 4.58265i 1.59227 6.78801 6.78801i 1.50190 + 2.59698i −1.93705 1.93705i
191.2 −1.82725 1.82725i −0.389527 1.68768i 4.67770i 1.00000 −2.37206 + 3.79558i 1.47752 4.89284 4.89284i −2.69654 + 1.31480i −1.82725 1.82725i
See all 36 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 41.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
87.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.2.q.d yes 36
3.b odd 2 1 435.2.q.c 36
29.c odd 4 1 435.2.q.c 36
87.f even 4 1 inner 435.2.q.d yes 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.q.c 36 3.b odd 2 1
435.2.q.c 36 29.c odd 4 1
435.2.q.d yes 36 1.a even 1 1 trivial
435.2.q.d yes 36 87.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2364T235+8T2344T233+125T232500T231+1008T230++16 T_{2}^{36} - 4 T_{2}^{35} + 8 T_{2}^{34} - 4 T_{2}^{33} + 125 T_{2}^{32} - 500 T_{2}^{31} + 1008 T_{2}^{30} + \cdots + 16 acting on S2new(435,[χ])S_{2}^{\mathrm{new}}(435, [\chi]). Copy content Toggle raw display