Properties

Label 44.6.a.a
Level 4444
Weight 66
Character orbit 44.a
Self dual yes
Analytic conductor 7.0577.057
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [44,6,Mod(1,44)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(44, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("44.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 44=2211 44 = 2^{2} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 44.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.056888071777.05688807177
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+7q379q550q7194q9+121q11380q13553q151154q171824q19350q21+3591q23+3116q253059q27+8032q292945q31+847q33+23474q99+O(q100) q + 7 q^{3} - 79 q^{5} - 50 q^{7} - 194 q^{9} + 121 q^{11} - 380 q^{13} - 553 q^{15} - 1154 q^{17} - 1824 q^{19} - 350 q^{21} + 3591 q^{23} + 3116 q^{25} - 3059 q^{27} + 8032 q^{29} - 2945 q^{31} + 847 q^{33}+ \cdots - 23474 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 7.00000 0 −79.0000 0 −50.0000 0 −194.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1111 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 44.6.a.a 1
3.b odd 2 1 396.6.a.e 1
4.b odd 2 1 176.6.a.a 1
5.b even 2 1 1100.6.a.a 1
5.c odd 4 2 1100.6.b.a 2
8.b even 2 1 704.6.a.d 1
8.d odd 2 1 704.6.a.g 1
11.b odd 2 1 484.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.6.a.a 1 1.a even 1 1 trivial
176.6.a.a 1 4.b odd 2 1
396.6.a.e 1 3.b odd 2 1
484.6.a.b 1 11.b odd 2 1
704.6.a.d 1 8.b even 2 1
704.6.a.g 1 8.d odd 2 1
1100.6.a.a 1 5.b even 2 1
1100.6.b.a 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T37 T_{3} - 7 acting on S6new(Γ0(44))S_{6}^{\mathrm{new}}(\Gamma_0(44)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T7 T - 7 Copy content Toggle raw display
55 T+79 T + 79 Copy content Toggle raw display
77 T+50 T + 50 Copy content Toggle raw display
1111 T121 T - 121 Copy content Toggle raw display
1313 T+380 T + 380 Copy content Toggle raw display
1717 T+1154 T + 1154 Copy content Toggle raw display
1919 T+1824 T + 1824 Copy content Toggle raw display
2323 T3591 T - 3591 Copy content Toggle raw display
2929 T8032 T - 8032 Copy content Toggle raw display
3131 T+2945 T + 2945 Copy content Toggle raw display
3737 T6979 T - 6979 Copy content Toggle raw display
4141 T+520 T + 520 Copy content Toggle raw display
4343 T+2486 T + 2486 Copy content Toggle raw display
4747 T+6920 T + 6920 Copy content Toggle raw display
5353 T+13718 T + 13718 Copy content Toggle raw display
5959 T+31779 T + 31779 Copy content Toggle raw display
6161 T34156 T - 34156 Copy content Toggle raw display
6767 T+61503 T + 61503 Copy content Toggle raw display
7171 T+14971 T + 14971 Copy content Toggle raw display
7373 T+36444 T + 36444 Copy content Toggle raw display
7979 T+28538 T + 28538 Copy content Toggle raw display
8383 T77482 T - 77482 Copy content Toggle raw display
8989 T36271 T - 36271 Copy content Toggle raw display
9797 T+49799 T + 49799 Copy content Toggle raw display
show more
show less