Properties

Label 1100.6.b.a
Level 11001100
Weight 66
Character orbit 1100.b
Analytic conductor 176.422176.422
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1100,6,Mod(749,1100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1100.749");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 1100=225211 1100 = 2^{2} \cdot 5^{2} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 1100.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 176.422201794176.422201794
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+7iq3+50iq7+194q9+121q11380iq13+1154iq17+1824q19350q21+3591iq23+3059iq278032q292945q31+847iq336979iq37++23474q99+O(q100) q + 7 i q^{3} + 50 i q^{7} + 194 q^{9} + 121 q^{11} - 380 i q^{13} + 1154 i q^{17} + 1824 q^{19} - 350 q^{21} + 3591 i q^{23} + 3059 i q^{27} - 8032 q^{29} - 2945 q^{31} + 847 i q^{33} - 6979 i q^{37} + \cdots + 23474 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+388q9+242q11+3648q19700q2116064q295890q31+5320q391040q41+28614q4916156q51+63558q59+68312q6150274q6929942q71++46948q99+O(q100) 2 q + 388 q^{9} + 242 q^{11} + 3648 q^{19} - 700 q^{21} - 16064 q^{29} - 5890 q^{31} + 5320 q^{39} - 1040 q^{41} + 28614 q^{49} - 16156 q^{51} + 63558 q^{59} + 68312 q^{61} - 50274 q^{69} - 29942 q^{71}+ \cdots + 46948 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1100Z)×\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times.

nn 101101 177177 551551
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
749.1
1.00000i
1.00000i
0 7.00000i 0 0 0 50.0000i 0 194.000 0
749.2 0 7.00000i 0 0 0 50.0000i 0 194.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1100.6.b.a 2
5.b even 2 1 inner 1100.6.b.a 2
5.c odd 4 1 44.6.a.a 1
5.c odd 4 1 1100.6.a.a 1
15.e even 4 1 396.6.a.e 1
20.e even 4 1 176.6.a.a 1
40.i odd 4 1 704.6.a.d 1
40.k even 4 1 704.6.a.g 1
55.e even 4 1 484.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.6.a.a 1 5.c odd 4 1
176.6.a.a 1 20.e even 4 1
396.6.a.e 1 15.e even 4 1
484.6.a.b 1 55.e even 4 1
704.6.a.d 1 40.i odd 4 1
704.6.a.g 1 40.k even 4 1
1100.6.a.a 1 5.c odd 4 1
1100.6.b.a 2 1.a even 1 1 trivial
1100.6.b.a 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+49 T_{3}^{2} + 49 acting on S6new(1100,[χ])S_{6}^{\mathrm{new}}(1100, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+49 T^{2} + 49 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+2500 T^{2} + 2500 Copy content Toggle raw display
1111 (T121)2 (T - 121)^{2} Copy content Toggle raw display
1313 T2+144400 T^{2} + 144400 Copy content Toggle raw display
1717 T2+1331716 T^{2} + 1331716 Copy content Toggle raw display
1919 (T1824)2 (T - 1824)^{2} Copy content Toggle raw display
2323 T2+12895281 T^{2} + 12895281 Copy content Toggle raw display
2929 (T+8032)2 (T + 8032)^{2} Copy content Toggle raw display
3131 (T+2945)2 (T + 2945)^{2} Copy content Toggle raw display
3737 T2+48706441 T^{2} + 48706441 Copy content Toggle raw display
4141 (T+520)2 (T + 520)^{2} Copy content Toggle raw display
4343 T2+6180196 T^{2} + 6180196 Copy content Toggle raw display
4747 T2+47886400 T^{2} + 47886400 Copy content Toggle raw display
5353 T2+188183524 T^{2} + 188183524 Copy content Toggle raw display
5959 (T31779)2 (T - 31779)^{2} Copy content Toggle raw display
6161 (T34156)2 (T - 34156)^{2} Copy content Toggle raw display
6767 T2+3782619009 T^{2} + 3782619009 Copy content Toggle raw display
7171 (T+14971)2 (T + 14971)^{2} Copy content Toggle raw display
7373 T2+1328165136 T^{2} + 1328165136 Copy content Toggle raw display
7979 (T28538)2 (T - 28538)^{2} Copy content Toggle raw display
8383 T2+6003460324 T^{2} + 6003460324 Copy content Toggle raw display
8989 (T+36271)2 (T + 36271)^{2} Copy content Toggle raw display
9797 T2+2479940401 T^{2} + 2479940401 Copy content Toggle raw display
show more
show less