Properties

Label 4400.2.a.bu.1.1
Level $4400$
Weight $2$
Character 4400.1
Self dual yes
Analytic conductor $35.134$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4400,2,Mod(1,4400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4400.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1100)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.79129\) of defining polynomial
Character \(\chi\) \(=\) 4400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.79129 q^{3} +4.79129 q^{7} +0.208712 q^{9} +1.00000 q^{11} -1.00000 q^{13} -3.79129 q^{17} +2.58258 q^{19} -8.58258 q^{21} -0.791288 q^{23} +5.00000 q^{27} +2.20871 q^{29} -0.582576 q^{31} -1.79129 q^{33} +6.58258 q^{37} +1.79129 q^{39} -10.5826 q^{41} +10.0000 q^{43} +10.5826 q^{47} +15.9564 q^{49} +6.79129 q^{51} -2.37386 q^{53} -4.62614 q^{57} +1.41742 q^{59} +8.79129 q^{61} +1.00000 q^{63} +4.00000 q^{67} +1.41742 q^{69} -16.7477 q^{71} -3.20871 q^{73} +4.79129 q^{77} -16.5390 q^{79} -9.58258 q^{81} -12.9564 q^{83} -3.95644 q^{87} +3.79129 q^{89} -4.79129 q^{91} +1.04356 q^{93} -10.7913 q^{97} +0.208712 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 5 q^{7} + 5 q^{9} + 2 q^{11} - 2 q^{13} - 3 q^{17} - 4 q^{19} - 8 q^{21} + 3 q^{23} + 10 q^{27} + 9 q^{29} + 8 q^{31} + q^{33} + 4 q^{37} - q^{39} - 12 q^{41} + 20 q^{43} + 12 q^{47} + 9 q^{49}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.79129 −1.03420 −0.517100 0.855925i \(-0.672989\pi\)
−0.517100 + 0.855925i \(0.672989\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.79129 1.81094 0.905468 0.424414i \(-0.139520\pi\)
0.905468 + 0.424414i \(0.139520\pi\)
\(8\) 0 0
\(9\) 0.208712 0.0695707
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.79129 −0.919522 −0.459761 0.888043i \(-0.652065\pi\)
−0.459761 + 0.888043i \(0.652065\pi\)
\(18\) 0 0
\(19\) 2.58258 0.592483 0.296242 0.955113i \(-0.404267\pi\)
0.296242 + 0.955113i \(0.404267\pi\)
\(20\) 0 0
\(21\) −8.58258 −1.87287
\(22\) 0 0
\(23\) −0.791288 −0.164995 −0.0824975 0.996591i \(-0.526290\pi\)
−0.0824975 + 0.996591i \(0.526290\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 2.20871 0.410148 0.205074 0.978747i \(-0.434257\pi\)
0.205074 + 0.978747i \(0.434257\pi\)
\(30\) 0 0
\(31\) −0.582576 −0.104634 −0.0523168 0.998631i \(-0.516661\pi\)
−0.0523168 + 0.998631i \(0.516661\pi\)
\(32\) 0 0
\(33\) −1.79129 −0.311823
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.58258 1.08217 0.541084 0.840968i \(-0.318014\pi\)
0.541084 + 0.840968i \(0.318014\pi\)
\(38\) 0 0
\(39\) 1.79129 0.286836
\(40\) 0 0
\(41\) −10.5826 −1.65272 −0.826360 0.563142i \(-0.809593\pi\)
−0.826360 + 0.563142i \(0.809593\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.5826 1.54363 0.771814 0.635849i \(-0.219350\pi\)
0.771814 + 0.635849i \(0.219350\pi\)
\(48\) 0 0
\(49\) 15.9564 2.27949
\(50\) 0 0
\(51\) 6.79129 0.950971
\(52\) 0 0
\(53\) −2.37386 −0.326075 −0.163038 0.986620i \(-0.552129\pi\)
−0.163038 + 0.986620i \(0.552129\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.62614 −0.612747
\(58\) 0 0
\(59\) 1.41742 0.184533 0.0922665 0.995734i \(-0.470589\pi\)
0.0922665 + 0.995734i \(0.470589\pi\)
\(60\) 0 0
\(61\) 8.79129 1.12561 0.562805 0.826590i \(-0.309722\pi\)
0.562805 + 0.826590i \(0.309722\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 1.41742 0.170638
\(70\) 0 0
\(71\) −16.7477 −1.98759 −0.993795 0.111229i \(-0.964521\pi\)
−0.993795 + 0.111229i \(0.964521\pi\)
\(72\) 0 0
\(73\) −3.20871 −0.375551 −0.187776 0.982212i \(-0.560128\pi\)
−0.187776 + 0.982212i \(0.560128\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.79129 0.546018
\(78\) 0 0
\(79\) −16.5390 −1.86078 −0.930392 0.366565i \(-0.880534\pi\)
−0.930392 + 0.366565i \(0.880534\pi\)
\(80\) 0 0
\(81\) −9.58258 −1.06473
\(82\) 0 0
\(83\) −12.9564 −1.42215 −0.711077 0.703114i \(-0.751792\pi\)
−0.711077 + 0.703114i \(0.751792\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.95644 −0.424175
\(88\) 0 0
\(89\) 3.79129 0.401876 0.200938 0.979604i \(-0.435601\pi\)
0.200938 + 0.979604i \(0.435601\pi\)
\(90\) 0 0
\(91\) −4.79129 −0.502263
\(92\) 0 0
\(93\) 1.04356 0.108212
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.7913 −1.09569 −0.547845 0.836580i \(-0.684552\pi\)
−0.547845 + 0.836580i \(0.684552\pi\)
\(98\) 0 0
\(99\) 0.208712 0.0209764
\(100\) 0 0
\(101\) −3.62614 −0.360814 −0.180407 0.983592i \(-0.557741\pi\)
−0.180407 + 0.983592i \(0.557741\pi\)
\(102\) 0 0
\(103\) 16.9564 1.67077 0.835384 0.549667i \(-0.185245\pi\)
0.835384 + 0.549667i \(0.185245\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.74773 0.749001 0.374501 0.927227i \(-0.377814\pi\)
0.374501 + 0.927227i \(0.377814\pi\)
\(108\) 0 0
\(109\) −0.208712 −0.0199910 −0.00999550 0.999950i \(-0.503182\pi\)
−0.00999550 + 0.999950i \(0.503182\pi\)
\(110\) 0 0
\(111\) −11.7913 −1.11918
\(112\) 0 0
\(113\) 10.5826 0.995525 0.497762 0.867313i \(-0.334155\pi\)
0.497762 + 0.867313i \(0.334155\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.208712 −0.0192954
\(118\) 0 0
\(119\) −18.1652 −1.66520
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 18.9564 1.70924
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.62614 −0.233032 −0.116516 0.993189i \(-0.537173\pi\)
−0.116516 + 0.993189i \(0.537173\pi\)
\(128\) 0 0
\(129\) −17.9129 −1.57714
\(130\) 0 0
\(131\) 14.3739 1.25585 0.627925 0.778274i \(-0.283904\pi\)
0.627925 + 0.778274i \(0.283904\pi\)
\(132\) 0 0
\(133\) 12.3739 1.07295
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.5390 1.75477 0.877383 0.479790i \(-0.159287\pi\)
0.877383 + 0.479790i \(0.159287\pi\)
\(138\) 0 0
\(139\) 17.7477 1.50534 0.752671 0.658396i \(-0.228765\pi\)
0.752671 + 0.658396i \(0.228765\pi\)
\(140\) 0 0
\(141\) −18.9564 −1.59642
\(142\) 0 0
\(143\) −1.00000 −0.0836242
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −28.5826 −2.35745
\(148\) 0 0
\(149\) −15.1652 −1.24238 −0.621189 0.783661i \(-0.713350\pi\)
−0.621189 + 0.783661i \(0.713350\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) −0.791288 −0.0639718
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.16515 −0.0929892 −0.0464946 0.998919i \(-0.514805\pi\)
−0.0464946 + 0.998919i \(0.514805\pi\)
\(158\) 0 0
\(159\) 4.25227 0.337227
\(160\) 0 0
\(161\) −3.79129 −0.298795
\(162\) 0 0
\(163\) 7.62614 0.597325 0.298663 0.954359i \(-0.403459\pi\)
0.298663 + 0.954359i \(0.403459\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.41742 0.573978 0.286989 0.957934i \(-0.407346\pi\)
0.286989 + 0.957934i \(0.407346\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0.539015 0.0412195
\(172\) 0 0
\(173\) 13.7477 1.04522 0.522610 0.852572i \(-0.324958\pi\)
0.522610 + 0.852572i \(0.324958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.53901 −0.190844
\(178\) 0 0
\(179\) 19.1216 1.42921 0.714607 0.699526i \(-0.246605\pi\)
0.714607 + 0.699526i \(0.246605\pi\)
\(180\) 0 0
\(181\) 10.3739 0.771083 0.385542 0.922690i \(-0.374015\pi\)
0.385542 + 0.922690i \(0.374015\pi\)
\(182\) 0 0
\(183\) −15.7477 −1.16411
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.79129 −0.277246
\(188\) 0 0
\(189\) 23.9564 1.74257
\(190\) 0 0
\(191\) −21.7913 −1.57676 −0.788381 0.615187i \(-0.789080\pi\)
−0.788381 + 0.615187i \(0.789080\pi\)
\(192\) 0 0
\(193\) 11.1652 0.803685 0.401843 0.915709i \(-0.368370\pi\)
0.401843 + 0.915709i \(0.368370\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.53901 −0.394638 −0.197319 0.980339i \(-0.563224\pi\)
−0.197319 + 0.980339i \(0.563224\pi\)
\(198\) 0 0
\(199\) 15.3739 1.08982 0.544912 0.838493i \(-0.316563\pi\)
0.544912 + 0.838493i \(0.316563\pi\)
\(200\) 0 0
\(201\) −7.16515 −0.505391
\(202\) 0 0
\(203\) 10.5826 0.742751
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.165151 −0.0114788
\(208\) 0 0
\(209\) 2.58258 0.178640
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 0 0
\(213\) 30.0000 2.05557
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.79129 −0.189485
\(218\) 0 0
\(219\) 5.74773 0.388395
\(220\) 0 0
\(221\) 3.79129 0.255030
\(222\) 0 0
\(223\) 11.4174 0.764567 0.382284 0.924045i \(-0.375138\pi\)
0.382284 + 0.924045i \(0.375138\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.5390 1.36322 0.681611 0.731715i \(-0.261280\pi\)
0.681611 + 0.731715i \(0.261280\pi\)
\(228\) 0 0
\(229\) −21.3739 −1.41242 −0.706212 0.708000i \(-0.749598\pi\)
−0.706212 + 0.708000i \(0.749598\pi\)
\(230\) 0 0
\(231\) −8.58258 −0.564692
\(232\) 0 0
\(233\) 11.2087 0.734307 0.367154 0.930160i \(-0.380332\pi\)
0.367154 + 0.930160i \(0.380332\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 29.6261 1.92442
\(238\) 0 0
\(239\) 6.79129 0.439292 0.219646 0.975580i \(-0.429510\pi\)
0.219646 + 0.975580i \(0.429510\pi\)
\(240\) 0 0
\(241\) 18.1216 1.16731 0.583657 0.812000i \(-0.301621\pi\)
0.583657 + 0.812000i \(0.301621\pi\)
\(242\) 0 0
\(243\) 2.16515 0.138895
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.58258 −0.164325
\(248\) 0 0
\(249\) 23.2087 1.47079
\(250\) 0 0
\(251\) −20.5390 −1.29641 −0.648206 0.761465i \(-0.724480\pi\)
−0.648206 + 0.761465i \(0.724480\pi\)
\(252\) 0 0
\(253\) −0.791288 −0.0497478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 31.5390 1.95974
\(260\) 0 0
\(261\) 0.460985 0.0285343
\(262\) 0 0
\(263\) −5.83485 −0.359792 −0.179896 0.983686i \(-0.557576\pi\)
−0.179896 + 0.983686i \(0.557576\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.79129 −0.415620
\(268\) 0 0
\(269\) 29.7042 1.81109 0.905547 0.424245i \(-0.139460\pi\)
0.905547 + 0.424245i \(0.139460\pi\)
\(270\) 0 0
\(271\) 11.7477 0.713624 0.356812 0.934176i \(-0.383864\pi\)
0.356812 + 0.934176i \(0.383864\pi\)
\(272\) 0 0
\(273\) 8.58258 0.519441
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.582576 0.0350036 0.0175018 0.999847i \(-0.494429\pi\)
0.0175018 + 0.999847i \(0.494429\pi\)
\(278\) 0 0
\(279\) −0.121591 −0.00727944
\(280\) 0 0
\(281\) 13.7477 0.820121 0.410060 0.912058i \(-0.365508\pi\)
0.410060 + 0.912058i \(0.365508\pi\)
\(282\) 0 0
\(283\) −19.7042 −1.17129 −0.585646 0.810567i \(-0.699159\pi\)
−0.585646 + 0.810567i \(0.699159\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −50.7042 −2.99297
\(288\) 0 0
\(289\) −2.62614 −0.154479
\(290\) 0 0
\(291\) 19.3303 1.13316
\(292\) 0 0
\(293\) −21.1652 −1.23648 −0.618241 0.785989i \(-0.712154\pi\)
−0.618241 + 0.785989i \(0.712154\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.00000 0.290129
\(298\) 0 0
\(299\) 0.791288 0.0457614
\(300\) 0 0
\(301\) 47.9129 2.76165
\(302\) 0 0
\(303\) 6.49545 0.373154
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 31.7913 1.81442 0.907212 0.420673i \(-0.138206\pi\)
0.907212 + 0.420673i \(0.138206\pi\)
\(308\) 0 0
\(309\) −30.3739 −1.72791
\(310\) 0 0
\(311\) 24.1652 1.37028 0.685140 0.728411i \(-0.259741\pi\)
0.685140 + 0.728411i \(0.259741\pi\)
\(312\) 0 0
\(313\) −20.7477 −1.17273 −0.586365 0.810047i \(-0.699442\pi\)
−0.586365 + 0.810047i \(0.699442\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.37386 0.301826 0.150913 0.988547i \(-0.451779\pi\)
0.150913 + 0.988547i \(0.451779\pi\)
\(318\) 0 0
\(319\) 2.20871 0.123664
\(320\) 0 0
\(321\) −13.8784 −0.774617
\(322\) 0 0
\(323\) −9.79129 −0.544802
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.373864 0.0206747
\(328\) 0 0
\(329\) 50.7042 2.79541
\(330\) 0 0
\(331\) 19.3303 1.06249 0.531245 0.847218i \(-0.321724\pi\)
0.531245 + 0.847218i \(0.321724\pi\)
\(332\) 0 0
\(333\) 1.37386 0.0752873
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 0 0
\(339\) −18.9564 −1.02957
\(340\) 0 0
\(341\) −0.582576 −0.0315482
\(342\) 0 0
\(343\) 42.9129 2.31708
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.3739 −1.41582 −0.707912 0.706301i \(-0.750362\pi\)
−0.707912 + 0.706301i \(0.750362\pi\)
\(348\) 0 0
\(349\) −5.41742 −0.289988 −0.144994 0.989433i \(-0.546316\pi\)
−0.144994 + 0.989433i \(0.546316\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) −0.165151 −0.00879012 −0.00439506 0.999990i \(-0.501399\pi\)
−0.00439506 + 0.999990i \(0.501399\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 32.5390 1.72215
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −12.3303 −0.648963
\(362\) 0 0
\(363\) −1.79129 −0.0940182
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −22.3739 −1.16791 −0.583953 0.811787i \(-0.698495\pi\)
−0.583953 + 0.811787i \(0.698495\pi\)
\(368\) 0 0
\(369\) −2.20871 −0.114981
\(370\) 0 0
\(371\) −11.3739 −0.590502
\(372\) 0 0
\(373\) 17.3303 0.897329 0.448665 0.893700i \(-0.351900\pi\)
0.448665 + 0.893700i \(0.351900\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.20871 −0.113754
\(378\) 0 0
\(379\) 31.0000 1.59236 0.796182 0.605058i \(-0.206850\pi\)
0.796182 + 0.605058i \(0.206850\pi\)
\(380\) 0 0
\(381\) 4.70417 0.241002
\(382\) 0 0
\(383\) 18.0000 0.919757 0.459879 0.887982i \(-0.347893\pi\)
0.459879 + 0.887982i \(0.347893\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.08712 0.106094
\(388\) 0 0
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) 0 0
\(393\) −25.7477 −1.29880
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.7913 0.591788 0.295894 0.955221i \(-0.404383\pi\)
0.295894 + 0.955221i \(0.404383\pi\)
\(398\) 0 0
\(399\) −22.1652 −1.10965
\(400\) 0 0
\(401\) −33.1652 −1.65619 −0.828094 0.560589i \(-0.810575\pi\)
−0.828094 + 0.560589i \(0.810575\pi\)
\(402\) 0 0
\(403\) 0.582576 0.0290202
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.58258 0.326286
\(408\) 0 0
\(409\) 17.0000 0.840596 0.420298 0.907386i \(-0.361926\pi\)
0.420298 + 0.907386i \(0.361926\pi\)
\(410\) 0 0
\(411\) −36.7913 −1.81478
\(412\) 0 0
\(413\) 6.79129 0.334177
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −31.7913 −1.55683
\(418\) 0 0
\(419\) −27.0000 −1.31904 −0.659518 0.751689i \(-0.729240\pi\)
−0.659518 + 0.751689i \(0.729240\pi\)
\(420\) 0 0
\(421\) 11.6261 0.566623 0.283312 0.959028i \(-0.408567\pi\)
0.283312 + 0.959028i \(0.408567\pi\)
\(422\) 0 0
\(423\) 2.20871 0.107391
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 42.1216 2.03841
\(428\) 0 0
\(429\) 1.79129 0.0864842
\(430\) 0 0
\(431\) 34.9129 1.68169 0.840847 0.541273i \(-0.182057\pi\)
0.840847 + 0.541273i \(0.182057\pi\)
\(432\) 0 0
\(433\) 23.3303 1.12118 0.560591 0.828093i \(-0.310574\pi\)
0.560591 + 0.828093i \(0.310574\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.04356 −0.0977568
\(438\) 0 0
\(439\) 10.9564 0.522922 0.261461 0.965214i \(-0.415796\pi\)
0.261461 + 0.965214i \(0.415796\pi\)
\(440\) 0 0
\(441\) 3.33030 0.158586
\(442\) 0 0
\(443\) −31.5826 −1.50053 −0.750267 0.661135i \(-0.770075\pi\)
−0.750267 + 0.661135i \(0.770075\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 27.1652 1.28487
\(448\) 0 0
\(449\) 30.7913 1.45313 0.726565 0.687097i \(-0.241115\pi\)
0.726565 + 0.687097i \(0.241115\pi\)
\(450\) 0 0
\(451\) −10.5826 −0.498314
\(452\) 0 0
\(453\) 8.95644 0.420810
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.373864 −0.0174886 −0.00874430 0.999962i \(-0.502783\pi\)
−0.00874430 + 0.999962i \(0.502783\pi\)
\(458\) 0 0
\(459\) −18.9564 −0.884811
\(460\) 0 0
\(461\) 30.4955 1.42031 0.710157 0.704043i \(-0.248624\pi\)
0.710157 + 0.704043i \(0.248624\pi\)
\(462\) 0 0
\(463\) 29.7477 1.38249 0.691247 0.722619i \(-0.257062\pi\)
0.691247 + 0.722619i \(0.257062\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.41742 −0.0655906 −0.0327953 0.999462i \(-0.510441\pi\)
−0.0327953 + 0.999462i \(0.510441\pi\)
\(468\) 0 0
\(469\) 19.1652 0.884964
\(470\) 0 0
\(471\) 2.08712 0.0961695
\(472\) 0 0
\(473\) 10.0000 0.459800
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.495454 −0.0226853
\(478\) 0 0
\(479\) 18.1652 0.829987 0.414993 0.909824i \(-0.363784\pi\)
0.414993 + 0.909824i \(0.363784\pi\)
\(480\) 0 0
\(481\) −6.58258 −0.300140
\(482\) 0 0
\(483\) 6.79129 0.309014
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.25227 0.102060 0.0510301 0.998697i \(-0.483750\pi\)
0.0510301 + 0.998697i \(0.483750\pi\)
\(488\) 0 0
\(489\) −13.6606 −0.617754
\(490\) 0 0
\(491\) 16.5826 0.748361 0.374181 0.927356i \(-0.377924\pi\)
0.374181 + 0.927356i \(0.377924\pi\)
\(492\) 0 0
\(493\) −8.37386 −0.377140
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −80.2432 −3.59940
\(498\) 0 0
\(499\) 7.95644 0.356179 0.178090 0.984014i \(-0.443008\pi\)
0.178090 + 0.984014i \(0.443008\pi\)
\(500\) 0 0
\(501\) −13.2867 −0.593608
\(502\) 0 0
\(503\) −25.5826 −1.14067 −0.570335 0.821412i \(-0.693187\pi\)
−0.570335 + 0.821412i \(0.693187\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 21.4955 0.954647
\(508\) 0 0
\(509\) −31.1216 −1.37944 −0.689720 0.724076i \(-0.742266\pi\)
−0.689720 + 0.724076i \(0.742266\pi\)
\(510\) 0 0
\(511\) −15.3739 −0.680100
\(512\) 0 0
\(513\) 12.9129 0.570118
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.5826 0.465421
\(518\) 0 0
\(519\) −24.6261 −1.08097
\(520\) 0 0
\(521\) −7.58258 −0.332199 −0.166099 0.986109i \(-0.553117\pi\)
−0.166099 + 0.986109i \(0.553117\pi\)
\(522\) 0 0
\(523\) 6.83485 0.298867 0.149434 0.988772i \(-0.452255\pi\)
0.149434 + 0.988772i \(0.452255\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.20871 0.0962130
\(528\) 0 0
\(529\) −22.3739 −0.972777
\(530\) 0 0
\(531\) 0.295834 0.0128381
\(532\) 0 0
\(533\) 10.5826 0.458382
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −34.2523 −1.47809
\(538\) 0 0
\(539\) 15.9564 0.687292
\(540\) 0 0
\(541\) −24.3739 −1.04791 −0.523957 0.851745i \(-0.675545\pi\)
−0.523957 + 0.851745i \(0.675545\pi\)
\(542\) 0 0
\(543\) −18.5826 −0.797455
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.37386 0.272527 0.136263 0.990673i \(-0.456491\pi\)
0.136263 + 0.990673i \(0.456491\pi\)
\(548\) 0 0
\(549\) 1.83485 0.0783094
\(550\) 0 0
\(551\) 5.70417 0.243006
\(552\) 0 0
\(553\) −79.2432 −3.36976
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.6606 1.17202 0.586009 0.810305i \(-0.300698\pi\)
0.586009 + 0.810305i \(0.300698\pi\)
\(558\) 0 0
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) 6.79129 0.286728
\(562\) 0 0
\(563\) −1.12159 −0.0472694 −0.0236347 0.999721i \(-0.507524\pi\)
−0.0236347 + 0.999721i \(0.507524\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −45.9129 −1.92816
\(568\) 0 0
\(569\) −3.95644 −0.165863 −0.0829313 0.996555i \(-0.526428\pi\)
−0.0829313 + 0.996555i \(0.526428\pi\)
\(570\) 0 0
\(571\) 32.2867 1.35116 0.675579 0.737288i \(-0.263894\pi\)
0.675579 + 0.737288i \(0.263894\pi\)
\(572\) 0 0
\(573\) 39.0345 1.63069
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10.9564 −0.456123 −0.228061 0.973647i \(-0.573239\pi\)
−0.228061 + 0.973647i \(0.573239\pi\)
\(578\) 0 0
\(579\) −20.0000 −0.831172
\(580\) 0 0
\(581\) −62.0780 −2.57543
\(582\) 0 0
\(583\) −2.37386 −0.0983154
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.95644 0.287123 0.143561 0.989641i \(-0.454145\pi\)
0.143561 + 0.989641i \(0.454145\pi\)
\(588\) 0 0
\(589\) −1.50455 −0.0619937
\(590\) 0 0
\(591\) 9.92197 0.408135
\(592\) 0 0
\(593\) −13.4174 −0.550988 −0.275494 0.961303i \(-0.588841\pi\)
−0.275494 + 0.961303i \(0.588841\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −27.5390 −1.12710
\(598\) 0 0
\(599\) 5.70417 0.233066 0.116533 0.993187i \(-0.462822\pi\)
0.116533 + 0.993187i \(0.462822\pi\)
\(600\) 0 0
\(601\) −3.53901 −0.144359 −0.0721797 0.997392i \(-0.522996\pi\)
−0.0721797 + 0.997392i \(0.522996\pi\)
\(602\) 0 0
\(603\) 0.834849 0.0339977
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.0000 1.38002 0.690009 0.723801i \(-0.257607\pi\)
0.690009 + 0.723801i \(0.257607\pi\)
\(608\) 0 0
\(609\) −18.9564 −0.768154
\(610\) 0 0
\(611\) −10.5826 −0.428125
\(612\) 0 0
\(613\) −44.4519 −1.79540 −0.897698 0.440612i \(-0.854761\pi\)
−0.897698 + 0.440612i \(0.854761\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.25227 −0.0504146 −0.0252073 0.999682i \(-0.508025\pi\)
−0.0252073 + 0.999682i \(0.508025\pi\)
\(618\) 0 0
\(619\) −33.7477 −1.35644 −0.678218 0.734861i \(-0.737247\pi\)
−0.678218 + 0.734861i \(0.737247\pi\)
\(620\) 0 0
\(621\) −3.95644 −0.158766
\(622\) 0 0
\(623\) 18.1652 0.727771
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4.62614 −0.184750
\(628\) 0 0
\(629\) −24.9564 −0.995078
\(630\) 0 0
\(631\) 23.1216 0.920456 0.460228 0.887801i \(-0.347768\pi\)
0.460228 + 0.887801i \(0.347768\pi\)
\(632\) 0 0
\(633\) 8.95644 0.355987
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.9564 −0.632217
\(638\) 0 0
\(639\) −3.49545 −0.138278
\(640\) 0 0
\(641\) −42.1652 −1.66542 −0.832712 0.553707i \(-0.813213\pi\)
−0.832712 + 0.553707i \(0.813213\pi\)
\(642\) 0 0
\(643\) −11.4955 −0.453336 −0.226668 0.973972i \(-0.572783\pi\)
−0.226668 + 0.973972i \(0.572783\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.3303 0.602696 0.301348 0.953514i \(-0.402563\pi\)
0.301348 + 0.953514i \(0.402563\pi\)
\(648\) 0 0
\(649\) 1.41742 0.0556388
\(650\) 0 0
\(651\) 5.00000 0.195965
\(652\) 0 0
\(653\) −23.7042 −0.927616 −0.463808 0.885936i \(-0.653517\pi\)
−0.463808 + 0.885936i \(0.653517\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.669697 −0.0261274
\(658\) 0 0
\(659\) −32.5390 −1.26754 −0.633770 0.773522i \(-0.718493\pi\)
−0.633770 + 0.773522i \(0.718493\pi\)
\(660\) 0 0
\(661\) 21.4174 0.833041 0.416521 0.909126i \(-0.363249\pi\)
0.416521 + 0.909126i \(0.363249\pi\)
\(662\) 0 0
\(663\) −6.79129 −0.263752
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.74773 −0.0676723
\(668\) 0 0
\(669\) −20.4519 −0.790716
\(670\) 0 0
\(671\) 8.79129 0.339384
\(672\) 0 0
\(673\) 6.91288 0.266472 0.133236 0.991084i \(-0.457463\pi\)
0.133236 + 0.991084i \(0.457463\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.58258 0.291422 0.145711 0.989327i \(-0.453453\pi\)
0.145711 + 0.989327i \(0.453453\pi\)
\(678\) 0 0
\(679\) −51.7042 −1.98422
\(680\) 0 0
\(681\) −36.7913 −1.40985
\(682\) 0 0
\(683\) 10.9129 0.417570 0.208785 0.977962i \(-0.433049\pi\)
0.208785 + 0.977962i \(0.433049\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 38.2867 1.46073
\(688\) 0 0
\(689\) 2.37386 0.0904370
\(690\) 0 0
\(691\) −9.12159 −0.347002 −0.173501 0.984834i \(-0.555508\pi\)
−0.173501 + 0.984834i \(0.555508\pi\)
\(692\) 0 0
\(693\) 1.00000 0.0379869
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 40.1216 1.51971
\(698\) 0 0
\(699\) −20.0780 −0.759421
\(700\) 0 0
\(701\) 39.1652 1.47925 0.739624 0.673021i \(-0.235004\pi\)
0.739624 + 0.673021i \(0.235004\pi\)
\(702\) 0 0
\(703\) 17.0000 0.641167
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −17.3739 −0.653411
\(708\) 0 0
\(709\) −25.4955 −0.957502 −0.478751 0.877951i \(-0.658910\pi\)
−0.478751 + 0.877951i \(0.658910\pi\)
\(710\) 0 0
\(711\) −3.45189 −0.129456
\(712\) 0 0
\(713\) 0.460985 0.0172640
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.1652 −0.454316
\(718\) 0 0
\(719\) 48.4955 1.80858 0.904288 0.426924i \(-0.140403\pi\)
0.904288 + 0.426924i \(0.140403\pi\)
\(720\) 0 0
\(721\) 81.2432 3.02565
\(722\) 0 0
\(723\) −32.4610 −1.20724
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −18.1216 −0.672093 −0.336046 0.941845i \(-0.609090\pi\)
−0.336046 + 0.941845i \(0.609090\pi\)
\(728\) 0 0
\(729\) 24.8693 0.921086
\(730\) 0 0
\(731\) −37.9129 −1.40226
\(732\) 0 0
\(733\) −51.2432 −1.89271 −0.946355 0.323129i \(-0.895265\pi\)
−0.946355 + 0.323129i \(0.895265\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) −0.878409 −0.0323128 −0.0161564 0.999869i \(-0.505143\pi\)
−0.0161564 + 0.999869i \(0.505143\pi\)
\(740\) 0 0
\(741\) 4.62614 0.169945
\(742\) 0 0
\(743\) −35.2087 −1.29168 −0.645841 0.763472i \(-0.723493\pi\)
−0.645841 + 0.763472i \(0.723493\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −2.70417 −0.0989403
\(748\) 0 0
\(749\) 37.1216 1.35639
\(750\) 0 0
\(751\) −17.7913 −0.649213 −0.324607 0.945849i \(-0.605232\pi\)
−0.324607 + 0.945849i \(0.605232\pi\)
\(752\) 0 0
\(753\) 36.7913 1.34075
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.3303 1.06603 0.533014 0.846106i \(-0.321059\pi\)
0.533014 + 0.846106i \(0.321059\pi\)
\(758\) 0 0
\(759\) 1.41742 0.0514492
\(760\) 0 0
\(761\) −6.33030 −0.229473 −0.114737 0.993396i \(-0.536602\pi\)
−0.114737 + 0.993396i \(0.536602\pi\)
\(762\) 0 0
\(763\) −1.00000 −0.0362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.41742 −0.0511802
\(768\) 0 0
\(769\) −14.2523 −0.513950 −0.256975 0.966418i \(-0.582726\pi\)
−0.256975 + 0.966418i \(0.582726\pi\)
\(770\) 0 0
\(771\) −32.2432 −1.16121
\(772\) 0 0
\(773\) 30.7913 1.10749 0.553743 0.832688i \(-0.313199\pi\)
0.553743 + 0.832688i \(0.313199\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −56.4955 −2.02676
\(778\) 0 0
\(779\) −27.3303 −0.979210
\(780\) 0 0
\(781\) −16.7477 −0.599281
\(782\) 0 0
\(783\) 11.0436 0.394665
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −9.74773 −0.347469 −0.173734 0.984793i \(-0.555583\pi\)
−0.173734 + 0.984793i \(0.555583\pi\)
\(788\) 0 0
\(789\) 10.4519 0.372097
\(790\) 0 0
\(791\) 50.7042 1.80283
\(792\) 0 0
\(793\) −8.79129 −0.312188
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.2867 −0.895702 −0.447851 0.894108i \(-0.647811\pi\)
−0.447851 + 0.894108i \(0.647811\pi\)
\(798\) 0 0
\(799\) −40.1216 −1.41940
\(800\) 0 0
\(801\) 0.791288 0.0279588
\(802\) 0 0
\(803\) −3.20871 −0.113233
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −53.2087 −1.87304
\(808\) 0 0
\(809\) 9.49545 0.333842 0.166921 0.985970i \(-0.446617\pi\)
0.166921 + 0.985970i \(0.446617\pi\)
\(810\) 0 0
\(811\) −17.6606 −0.620148 −0.310074 0.950712i \(-0.600354\pi\)
−0.310074 + 0.950712i \(0.600354\pi\)
\(812\) 0 0
\(813\) −21.0436 −0.738030
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 25.8258 0.903529
\(818\) 0 0
\(819\) −1.00000 −0.0349428
\(820\) 0 0
\(821\) −24.6606 −0.860661 −0.430331 0.902671i \(-0.641603\pi\)
−0.430331 + 0.902671i \(0.641603\pi\)
\(822\) 0 0
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.5826 0.680953 0.340476 0.940253i \(-0.389412\pi\)
0.340476 + 0.940253i \(0.389412\pi\)
\(828\) 0 0
\(829\) −15.0436 −0.522484 −0.261242 0.965273i \(-0.584132\pi\)
−0.261242 + 0.965273i \(0.584132\pi\)
\(830\) 0 0
\(831\) −1.04356 −0.0362007
\(832\) 0 0
\(833\) −60.4955 −2.09604
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.91288 −0.100684
\(838\) 0 0
\(839\) −26.7042 −0.921930 −0.460965 0.887418i \(-0.652497\pi\)
−0.460965 + 0.887418i \(0.652497\pi\)
\(840\) 0 0
\(841\) −24.1216 −0.831779
\(842\) 0 0
\(843\) −24.6261 −0.848169
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.79129 0.164631
\(848\) 0 0
\(849\) 35.2958 1.21135
\(850\) 0 0
\(851\) −5.20871 −0.178552
\(852\) 0 0
\(853\) −38.1216 −1.30526 −0.652629 0.757677i \(-0.726334\pi\)
−0.652629 + 0.757677i \(0.726334\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.4955 0.836749 0.418374 0.908275i \(-0.362600\pi\)
0.418374 + 0.908275i \(0.362600\pi\)
\(858\) 0 0
\(859\) 47.9129 1.63477 0.817383 0.576094i \(-0.195424\pi\)
0.817383 + 0.576094i \(0.195424\pi\)
\(860\) 0 0
\(861\) 90.8258 3.09533
\(862\) 0 0
\(863\) −9.33030 −0.317607 −0.158804 0.987310i \(-0.550764\pi\)
−0.158804 + 0.987310i \(0.550764\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.70417 0.159762
\(868\) 0 0
\(869\) −16.5390 −0.561048
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) −2.25227 −0.0762279
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 56.6606 1.91329 0.956646 0.291252i \(-0.0940718\pi\)
0.956646 + 0.291252i \(0.0940718\pi\)
\(878\) 0 0
\(879\) 37.9129 1.27877
\(880\) 0 0
\(881\) 43.1216 1.45280 0.726402 0.687270i \(-0.241191\pi\)
0.726402 + 0.687270i \(0.241191\pi\)
\(882\) 0 0
\(883\) −7.83485 −0.263664 −0.131832 0.991272i \(-0.542086\pi\)
−0.131832 + 0.991272i \(0.542086\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.66970 0.0896397 0.0448198 0.998995i \(-0.485729\pi\)
0.0448198 + 0.998995i \(0.485729\pi\)
\(888\) 0 0
\(889\) −12.5826 −0.422006
\(890\) 0 0
\(891\) −9.58258 −0.321028
\(892\) 0 0
\(893\) 27.3303 0.914574
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −1.41742 −0.0473264
\(898\) 0 0
\(899\) −1.28674 −0.0429152
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) −85.8258 −2.85610
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 40.6606 1.35011 0.675057 0.737766i \(-0.264119\pi\)
0.675057 + 0.737766i \(0.264119\pi\)
\(908\) 0 0
\(909\) −0.756819 −0.0251021
\(910\) 0 0
\(911\) −24.3303 −0.806099 −0.403049 0.915178i \(-0.632050\pi\)
−0.403049 + 0.915178i \(0.632050\pi\)
\(912\) 0 0
\(913\) −12.9564 −0.428796
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 68.8693 2.27427
\(918\) 0 0
\(919\) −47.1652 −1.55583 −0.777917 0.628367i \(-0.783724\pi\)
−0.777917 + 0.628367i \(0.783724\pi\)
\(920\) 0 0
\(921\) −56.9473 −1.87648
\(922\) 0 0
\(923\) 16.7477 0.551258
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.53901 0.116237
\(928\) 0 0
\(929\) −13.7477 −0.451048 −0.225524 0.974238i \(-0.572409\pi\)
−0.225524 + 0.974238i \(0.572409\pi\)
\(930\) 0 0
\(931\) 41.2087 1.35056
\(932\) 0 0
\(933\) −43.2867 −1.41714
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.8348 0.549971 0.274985 0.961448i \(-0.411327\pi\)
0.274985 + 0.961448i \(0.411327\pi\)
\(938\) 0 0
\(939\) 37.1652 1.21284
\(940\) 0 0
\(941\) 14.0780 0.458931 0.229465 0.973317i \(-0.426302\pi\)
0.229465 + 0.973317i \(0.426302\pi\)
\(942\) 0 0
\(943\) 8.37386 0.272691
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −40.9129 −1.32949 −0.664745 0.747070i \(-0.731460\pi\)
−0.664745 + 0.747070i \(0.731460\pi\)
\(948\) 0 0
\(949\) 3.20871 0.104159
\(950\) 0 0
\(951\) −9.62614 −0.312149
\(952\) 0 0
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −3.95644 −0.127894
\(958\) 0 0
\(959\) 98.4083 3.17777
\(960\) 0 0
\(961\) −30.6606 −0.989052
\(962\) 0 0
\(963\) 1.61704 0.0521085
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −11.4610 −0.368560 −0.184280 0.982874i \(-0.558995\pi\)
−0.184280 + 0.982874i \(0.558995\pi\)
\(968\) 0 0
\(969\) 17.5390 0.563434
\(970\) 0 0
\(971\) 3.95644 0.126968 0.0634841 0.997983i \(-0.479779\pi\)
0.0634841 + 0.997983i \(0.479779\pi\)
\(972\) 0 0
\(973\) 85.0345 2.72608
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.74773 0.0559147 0.0279574 0.999609i \(-0.491100\pi\)
0.0279574 + 0.999609i \(0.491100\pi\)
\(978\) 0 0
\(979\) 3.79129 0.121170
\(980\) 0 0
\(981\) −0.0435608 −0.00139079
\(982\) 0 0
\(983\) −24.6606 −0.786551 −0.393276 0.919421i \(-0.628658\pi\)
−0.393276 + 0.919421i \(0.628658\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −90.8258 −2.89102
\(988\) 0 0
\(989\) −7.91288 −0.251615
\(990\) 0 0
\(991\) 12.8693 0.408807 0.204404 0.978887i \(-0.434474\pi\)
0.204404 + 0.978887i \(0.434474\pi\)
\(992\) 0 0
\(993\) −34.6261 −1.09883
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.6261 0.843258 0.421629 0.906768i \(-0.361458\pi\)
0.421629 + 0.906768i \(0.361458\pi\)
\(998\) 0 0
\(999\) 32.9129 1.04132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.a.bu.1.1 2
4.3 odd 2 1100.2.a.g.1.2 2
5.2 odd 4 4400.2.b.s.4049.3 4
5.3 odd 4 4400.2.b.s.4049.2 4
5.4 even 2 4400.2.a.bi.1.2 2
12.11 even 2 9900.2.a.bh.1.1 2
20.3 even 4 1100.2.b.d.749.3 4
20.7 even 4 1100.2.b.d.749.2 4
20.19 odd 2 1100.2.a.h.1.1 yes 2
60.23 odd 4 9900.2.c.x.5149.4 4
60.47 odd 4 9900.2.c.x.5149.1 4
60.59 even 2 9900.2.a.bz.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.a.g.1.2 2 4.3 odd 2
1100.2.a.h.1.1 yes 2 20.19 odd 2
1100.2.b.d.749.2 4 20.7 even 4
1100.2.b.d.749.3 4 20.3 even 4
4400.2.a.bi.1.2 2 5.4 even 2
4400.2.a.bu.1.1 2 1.1 even 1 trivial
4400.2.b.s.4049.2 4 5.3 odd 4
4400.2.b.s.4049.3 4 5.2 odd 4
9900.2.a.bh.1.1 2 12.11 even 2
9900.2.a.bz.1.2 2 60.59 even 2
9900.2.c.x.5149.1 4 60.47 odd 4
9900.2.c.x.5149.4 4 60.23 odd 4