Properties

Label 4400.2.b.s.4049.3
Level $4400$
Weight $2$
Character 4400.4049
Analytic conductor $35.134$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4400,2,Mod(4049,4400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4400.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4400 = 2^{4} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4400.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.1341768894\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{21})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 11x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1100)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.3
Root \(1.79129i\) of defining polynomial
Character \(\chi\) \(=\) 4400.4049
Dual form 4400.2.b.s.4049.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.79129i q^{3} +4.79129i q^{7} -0.208712 q^{9} +1.00000 q^{11} +1.00000i q^{13} -3.79129i q^{17} -2.58258 q^{19} -8.58258 q^{21} +0.791288i q^{23} +5.00000i q^{27} -2.20871 q^{29} -0.582576 q^{31} +1.79129i q^{33} +6.58258i q^{37} -1.79129 q^{39} -10.5826 q^{41} -10.0000i q^{43} +10.5826i q^{47} -15.9564 q^{49} +6.79129 q^{51} +2.37386i q^{53} -4.62614i q^{57} -1.41742 q^{59} +8.79129 q^{61} -1.00000i q^{63} +4.00000i q^{67} -1.41742 q^{69} -16.7477 q^{71} +3.20871i q^{73} +4.79129i q^{77} +16.5390 q^{79} -9.58258 q^{81} +12.9564i q^{83} -3.95644i q^{87} -3.79129 q^{89} -4.79129 q^{91} -1.04356i q^{93} -10.7913i q^{97} -0.208712 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{9} + 4 q^{11} + 8 q^{19} - 16 q^{21} - 18 q^{29} + 16 q^{31} + 2 q^{39} - 24 q^{41} - 18 q^{49} + 18 q^{51} - 24 q^{59} + 26 q^{61} - 24 q^{69} - 12 q^{71} + 2 q^{79} - 20 q^{81} - 6 q^{89}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4400\mathbb{Z}\right)^\times\).

\(n\) \(177\) \(1201\) \(2751\) \(3301\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.79129i 1.03420i 0.855925 + 0.517100i \(0.172989\pi\)
−0.855925 + 0.517100i \(0.827011\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.79129i 1.81094i 0.424414 + 0.905468i \(0.360480\pi\)
−0.424414 + 0.905468i \(0.639520\pi\)
\(8\) 0 0
\(9\) −0.208712 −0.0695707
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.79129i − 0.919522i −0.888043 0.459761i \(-0.847935\pi\)
0.888043 0.459761i \(-0.152065\pi\)
\(18\) 0 0
\(19\) −2.58258 −0.592483 −0.296242 0.955113i \(-0.595733\pi\)
−0.296242 + 0.955113i \(0.595733\pi\)
\(20\) 0 0
\(21\) −8.58258 −1.87287
\(22\) 0 0
\(23\) 0.791288i 0.164995i 0.996591 + 0.0824975i \(0.0262896\pi\)
−0.996591 + 0.0824975i \(0.973710\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) −2.20871 −0.410148 −0.205074 0.978747i \(-0.565743\pi\)
−0.205074 + 0.978747i \(0.565743\pi\)
\(30\) 0 0
\(31\) −0.582576 −0.104634 −0.0523168 0.998631i \(-0.516661\pi\)
−0.0523168 + 0.998631i \(0.516661\pi\)
\(32\) 0 0
\(33\) 1.79129i 0.311823i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.58258i 1.08217i 0.840968 + 0.541084i \(0.181986\pi\)
−0.840968 + 0.541084i \(0.818014\pi\)
\(38\) 0 0
\(39\) −1.79129 −0.286836
\(40\) 0 0
\(41\) −10.5826 −1.65272 −0.826360 0.563142i \(-0.809593\pi\)
−0.826360 + 0.563142i \(0.809593\pi\)
\(42\) 0 0
\(43\) − 10.0000i − 1.52499i −0.646997 0.762493i \(-0.723975\pi\)
0.646997 0.762493i \(-0.276025\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.5826i 1.54363i 0.635849 + 0.771814i \(0.280650\pi\)
−0.635849 + 0.771814i \(0.719350\pi\)
\(48\) 0 0
\(49\) −15.9564 −2.27949
\(50\) 0 0
\(51\) 6.79129 0.950971
\(52\) 0 0
\(53\) 2.37386i 0.326075i 0.986620 + 0.163038i \(0.0521292\pi\)
−0.986620 + 0.163038i \(0.947871\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 4.62614i − 0.612747i
\(58\) 0 0
\(59\) −1.41742 −0.184533 −0.0922665 0.995734i \(-0.529411\pi\)
−0.0922665 + 0.995734i \(0.529411\pi\)
\(60\) 0 0
\(61\) 8.79129 1.12561 0.562805 0.826590i \(-0.309722\pi\)
0.562805 + 0.826590i \(0.309722\pi\)
\(62\) 0 0
\(63\) − 1.00000i − 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) −1.41742 −0.170638
\(70\) 0 0
\(71\) −16.7477 −1.98759 −0.993795 0.111229i \(-0.964521\pi\)
−0.993795 + 0.111229i \(0.964521\pi\)
\(72\) 0 0
\(73\) 3.20871i 0.375551i 0.982212 + 0.187776i \(0.0601278\pi\)
−0.982212 + 0.187776i \(0.939872\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.79129i 0.546018i
\(78\) 0 0
\(79\) 16.5390 1.86078 0.930392 0.366565i \(-0.119466\pi\)
0.930392 + 0.366565i \(0.119466\pi\)
\(80\) 0 0
\(81\) −9.58258 −1.06473
\(82\) 0 0
\(83\) 12.9564i 1.42215i 0.703114 + 0.711077i \(0.251792\pi\)
−0.703114 + 0.711077i \(0.748208\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.95644i − 0.424175i
\(88\) 0 0
\(89\) −3.79129 −0.401876 −0.200938 0.979604i \(-0.564399\pi\)
−0.200938 + 0.979604i \(0.564399\pi\)
\(90\) 0 0
\(91\) −4.79129 −0.502263
\(92\) 0 0
\(93\) − 1.04356i − 0.108212i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.7913i − 1.09569i −0.836580 0.547845i \(-0.815448\pi\)
0.836580 0.547845i \(-0.184552\pi\)
\(98\) 0 0
\(99\) −0.208712 −0.0209764
\(100\) 0 0
\(101\) −3.62614 −0.360814 −0.180407 0.983592i \(-0.557741\pi\)
−0.180407 + 0.983592i \(0.557741\pi\)
\(102\) 0 0
\(103\) − 16.9564i − 1.67077i −0.549667 0.835384i \(-0.685245\pi\)
0.549667 0.835384i \(-0.314755\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.74773i 0.749001i 0.927227 + 0.374501i \(0.122186\pi\)
−0.927227 + 0.374501i \(0.877814\pi\)
\(108\) 0 0
\(109\) 0.208712 0.0199910 0.00999550 0.999950i \(-0.496818\pi\)
0.00999550 + 0.999950i \(0.496818\pi\)
\(110\) 0 0
\(111\) −11.7913 −1.11918
\(112\) 0 0
\(113\) − 10.5826i − 0.995525i −0.867313 0.497762i \(-0.834155\pi\)
0.867313 0.497762i \(-0.165845\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 0.208712i − 0.0192954i
\(118\) 0 0
\(119\) 18.1652 1.66520
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) − 18.9564i − 1.70924i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 2.62614i − 0.233032i −0.993189 0.116516i \(-0.962827\pi\)
0.993189 0.116516i \(-0.0371726\pi\)
\(128\) 0 0
\(129\) 17.9129 1.57714
\(130\) 0 0
\(131\) 14.3739 1.25585 0.627925 0.778274i \(-0.283904\pi\)
0.627925 + 0.778274i \(0.283904\pi\)
\(132\) 0 0
\(133\) − 12.3739i − 1.07295i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 20.5390i 1.75477i 0.479790 + 0.877383i \(0.340713\pi\)
−0.479790 + 0.877383i \(0.659287\pi\)
\(138\) 0 0
\(139\) −17.7477 −1.50534 −0.752671 0.658396i \(-0.771235\pi\)
−0.752671 + 0.658396i \(0.771235\pi\)
\(140\) 0 0
\(141\) −18.9564 −1.59642
\(142\) 0 0
\(143\) 1.00000i 0.0836242i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 28.5826i − 2.35745i
\(148\) 0 0
\(149\) 15.1652 1.24238 0.621189 0.783661i \(-0.286650\pi\)
0.621189 + 0.783661i \(0.286650\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) 0.791288i 0.0639718i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1.16515i − 0.0929892i −0.998919 0.0464946i \(-0.985195\pi\)
0.998919 0.0464946i \(-0.0148050\pi\)
\(158\) 0 0
\(159\) −4.25227 −0.337227
\(160\) 0 0
\(161\) −3.79129 −0.298795
\(162\) 0 0
\(163\) − 7.62614i − 0.597325i −0.954359 0.298663i \(-0.903459\pi\)
0.954359 0.298663i \(-0.0965405\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.41742i 0.573978i 0.957934 + 0.286989i \(0.0926542\pi\)
−0.957934 + 0.286989i \(0.907346\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0.539015 0.0412195
\(172\) 0 0
\(173\) − 13.7477i − 1.04522i −0.852572 0.522610i \(-0.824958\pi\)
0.852572 0.522610i \(-0.175042\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2.53901i − 0.190844i
\(178\) 0 0
\(179\) −19.1216 −1.42921 −0.714607 0.699526i \(-0.753395\pi\)
−0.714607 + 0.699526i \(0.753395\pi\)
\(180\) 0 0
\(181\) 10.3739 0.771083 0.385542 0.922690i \(-0.374015\pi\)
0.385542 + 0.922690i \(0.374015\pi\)
\(182\) 0 0
\(183\) 15.7477i 1.16411i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 3.79129i − 0.277246i
\(188\) 0 0
\(189\) −23.9564 −1.74257
\(190\) 0 0
\(191\) −21.7913 −1.57676 −0.788381 0.615187i \(-0.789080\pi\)
−0.788381 + 0.615187i \(0.789080\pi\)
\(192\) 0 0
\(193\) − 11.1652i − 0.803685i −0.915709 0.401843i \(-0.868370\pi\)
0.915709 0.401843i \(-0.131630\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.53901i − 0.394638i −0.980339 0.197319i \(-0.936776\pi\)
0.980339 0.197319i \(-0.0632235\pi\)
\(198\) 0 0
\(199\) −15.3739 −1.08982 −0.544912 0.838493i \(-0.683437\pi\)
−0.544912 + 0.838493i \(0.683437\pi\)
\(200\) 0 0
\(201\) −7.16515 −0.505391
\(202\) 0 0
\(203\) − 10.5826i − 0.742751i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 0.165151i − 0.0114788i
\(208\) 0 0
\(209\) −2.58258 −0.178640
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 0 0
\(213\) − 30.0000i − 2.05557i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.79129i − 0.189485i
\(218\) 0 0
\(219\) −5.74773 −0.388395
\(220\) 0 0
\(221\) 3.79129 0.255030
\(222\) 0 0
\(223\) − 11.4174i − 0.764567i −0.924045 0.382284i \(-0.875138\pi\)
0.924045 0.382284i \(-0.124862\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 20.5390i 1.36322i 0.731715 + 0.681611i \(0.238720\pi\)
−0.731715 + 0.681611i \(0.761280\pi\)
\(228\) 0 0
\(229\) 21.3739 1.41242 0.706212 0.708000i \(-0.250402\pi\)
0.706212 + 0.708000i \(0.250402\pi\)
\(230\) 0 0
\(231\) −8.58258 −0.564692
\(232\) 0 0
\(233\) − 11.2087i − 0.734307i −0.930160 0.367154i \(-0.880332\pi\)
0.930160 0.367154i \(-0.119668\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 29.6261i 1.92442i
\(238\) 0 0
\(239\) −6.79129 −0.439292 −0.219646 0.975580i \(-0.570490\pi\)
−0.219646 + 0.975580i \(0.570490\pi\)
\(240\) 0 0
\(241\) 18.1216 1.16731 0.583657 0.812000i \(-0.301621\pi\)
0.583657 + 0.812000i \(0.301621\pi\)
\(242\) 0 0
\(243\) − 2.16515i − 0.138895i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.58258i − 0.164325i
\(248\) 0 0
\(249\) −23.2087 −1.47079
\(250\) 0 0
\(251\) −20.5390 −1.29641 −0.648206 0.761465i \(-0.724480\pi\)
−0.648206 + 0.761465i \(0.724480\pi\)
\(252\) 0 0
\(253\) 0.791288i 0.0497478i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) −31.5390 −1.95974
\(260\) 0 0
\(261\) 0.460985 0.0285343
\(262\) 0 0
\(263\) 5.83485i 0.359792i 0.983686 + 0.179896i \(0.0575762\pi\)
−0.983686 + 0.179896i \(0.942424\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 6.79129i − 0.415620i
\(268\) 0 0
\(269\) −29.7042 −1.81109 −0.905547 0.424245i \(-0.860540\pi\)
−0.905547 + 0.424245i \(0.860540\pi\)
\(270\) 0 0
\(271\) 11.7477 0.713624 0.356812 0.934176i \(-0.383864\pi\)
0.356812 + 0.934176i \(0.383864\pi\)
\(272\) 0 0
\(273\) − 8.58258i − 0.519441i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.582576i 0.0350036i 0.999847 + 0.0175018i \(0.00557128\pi\)
−0.999847 + 0.0175018i \(0.994429\pi\)
\(278\) 0 0
\(279\) 0.121591 0.00727944
\(280\) 0 0
\(281\) 13.7477 0.820121 0.410060 0.912058i \(-0.365508\pi\)
0.410060 + 0.912058i \(0.365508\pi\)
\(282\) 0 0
\(283\) 19.7042i 1.17129i 0.810567 + 0.585646i \(0.199159\pi\)
−0.810567 + 0.585646i \(0.800841\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 50.7042i − 2.99297i
\(288\) 0 0
\(289\) 2.62614 0.154479
\(290\) 0 0
\(291\) 19.3303 1.13316
\(292\) 0 0
\(293\) 21.1652i 1.23648i 0.785989 + 0.618241i \(0.212154\pi\)
−0.785989 + 0.618241i \(0.787846\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.00000i 0.290129i
\(298\) 0 0
\(299\) −0.791288 −0.0457614
\(300\) 0 0
\(301\) 47.9129 2.76165
\(302\) 0 0
\(303\) − 6.49545i − 0.373154i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 31.7913i 1.81442i 0.420673 + 0.907212i \(0.361794\pi\)
−0.420673 + 0.907212i \(0.638206\pi\)
\(308\) 0 0
\(309\) 30.3739 1.72791
\(310\) 0 0
\(311\) 24.1652 1.37028 0.685140 0.728411i \(-0.259741\pi\)
0.685140 + 0.728411i \(0.259741\pi\)
\(312\) 0 0
\(313\) 20.7477i 1.17273i 0.810047 + 0.586365i \(0.199442\pi\)
−0.810047 + 0.586365i \(0.800558\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.37386i 0.301826i 0.988547 + 0.150913i \(0.0482214\pi\)
−0.988547 + 0.150913i \(0.951779\pi\)
\(318\) 0 0
\(319\) −2.20871 −0.123664
\(320\) 0 0
\(321\) −13.8784 −0.774617
\(322\) 0 0
\(323\) 9.79129i 0.544802i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0.373864i 0.0206747i
\(328\) 0 0
\(329\) −50.7042 −2.79541
\(330\) 0 0
\(331\) 19.3303 1.06249 0.531245 0.847218i \(-0.321724\pi\)
0.531245 + 0.847218i \(0.321724\pi\)
\(332\) 0 0
\(333\) − 1.37386i − 0.0752873i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 22.0000i − 1.19842i −0.800593 0.599208i \(-0.795482\pi\)
0.800593 0.599208i \(-0.204518\pi\)
\(338\) 0 0
\(339\) 18.9564 1.02957
\(340\) 0 0
\(341\) −0.582576 −0.0315482
\(342\) 0 0
\(343\) − 42.9129i − 2.31708i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 26.3739i − 1.41582i −0.706301 0.707912i \(-0.749638\pi\)
0.706301 0.707912i \(-0.250362\pi\)
\(348\) 0 0
\(349\) 5.41742 0.289988 0.144994 0.989433i \(-0.453684\pi\)
0.144994 + 0.989433i \(0.453684\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 0.165151i 0.00879012i 0.999990 + 0.00439506i \(0.00139900\pi\)
−0.999990 + 0.00439506i \(0.998601\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 32.5390i 1.72215i
\(358\) 0 0
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −12.3303 −0.648963
\(362\) 0 0
\(363\) 1.79129i 0.0940182i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 22.3739i − 1.16791i −0.811787 0.583953i \(-0.801505\pi\)
0.811787 0.583953i \(-0.198495\pi\)
\(368\) 0 0
\(369\) 2.20871 0.114981
\(370\) 0 0
\(371\) −11.3739 −0.590502
\(372\) 0 0
\(373\) − 17.3303i − 0.897329i −0.893700 0.448665i \(-0.851900\pi\)
0.893700 0.448665i \(-0.148100\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.20871i − 0.113754i
\(378\) 0 0
\(379\) −31.0000 −1.59236 −0.796182 0.605058i \(-0.793150\pi\)
−0.796182 + 0.605058i \(0.793150\pi\)
\(380\) 0 0
\(381\) 4.70417 0.241002
\(382\) 0 0
\(383\) − 18.0000i − 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.08712i 0.106094i
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) 0 0
\(393\) 25.7477i 1.29880i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.7913i 0.591788i 0.955221 + 0.295894i \(0.0956175\pi\)
−0.955221 + 0.295894i \(0.904383\pi\)
\(398\) 0 0
\(399\) 22.1652 1.10965
\(400\) 0 0
\(401\) −33.1652 −1.65619 −0.828094 0.560589i \(-0.810575\pi\)
−0.828094 + 0.560589i \(0.810575\pi\)
\(402\) 0 0
\(403\) − 0.582576i − 0.0290202i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.58258i 0.326286i
\(408\) 0 0
\(409\) −17.0000 −0.840596 −0.420298 0.907386i \(-0.638074\pi\)
−0.420298 + 0.907386i \(0.638074\pi\)
\(410\) 0 0
\(411\) −36.7913 −1.81478
\(412\) 0 0
\(413\) − 6.79129i − 0.334177i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 31.7913i − 1.55683i
\(418\) 0 0
\(419\) 27.0000 1.31904 0.659518 0.751689i \(-0.270760\pi\)
0.659518 + 0.751689i \(0.270760\pi\)
\(420\) 0 0
\(421\) 11.6261 0.566623 0.283312 0.959028i \(-0.408567\pi\)
0.283312 + 0.959028i \(0.408567\pi\)
\(422\) 0 0
\(423\) − 2.20871i − 0.107391i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 42.1216i 2.03841i
\(428\) 0 0
\(429\) −1.79129 −0.0864842
\(430\) 0 0
\(431\) 34.9129 1.68169 0.840847 0.541273i \(-0.182057\pi\)
0.840847 + 0.541273i \(0.182057\pi\)
\(432\) 0 0
\(433\) − 23.3303i − 1.12118i −0.828093 0.560591i \(-0.810574\pi\)
0.828093 0.560591i \(-0.189426\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.04356i − 0.0977568i
\(438\) 0 0
\(439\) −10.9564 −0.522922 −0.261461 0.965214i \(-0.584204\pi\)
−0.261461 + 0.965214i \(0.584204\pi\)
\(440\) 0 0
\(441\) 3.33030 0.158586
\(442\) 0 0
\(443\) 31.5826i 1.50053i 0.661135 + 0.750267i \(0.270075\pi\)
−0.661135 + 0.750267i \(0.729925\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 27.1652i 1.28487i
\(448\) 0 0
\(449\) −30.7913 −1.45313 −0.726565 0.687097i \(-0.758885\pi\)
−0.726565 + 0.687097i \(0.758885\pi\)
\(450\) 0 0
\(451\) −10.5826 −0.498314
\(452\) 0 0
\(453\) − 8.95644i − 0.420810i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 0.373864i − 0.0174886i −0.999962 0.00874430i \(-0.997217\pi\)
0.999962 0.00874430i \(-0.00278343\pi\)
\(458\) 0 0
\(459\) 18.9564 0.884811
\(460\) 0 0
\(461\) 30.4955 1.42031 0.710157 0.704043i \(-0.248624\pi\)
0.710157 + 0.704043i \(0.248624\pi\)
\(462\) 0 0
\(463\) − 29.7477i − 1.38249i −0.722619 0.691247i \(-0.757062\pi\)
0.722619 0.691247i \(-0.242938\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.41742i − 0.0655906i −0.999462 0.0327953i \(-0.989559\pi\)
0.999462 0.0327953i \(-0.0104409\pi\)
\(468\) 0 0
\(469\) −19.1652 −0.884964
\(470\) 0 0
\(471\) 2.08712 0.0961695
\(472\) 0 0
\(473\) − 10.0000i − 0.459800i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.495454i − 0.0226853i
\(478\) 0 0
\(479\) −18.1652 −0.829987 −0.414993 0.909824i \(-0.636216\pi\)
−0.414993 + 0.909824i \(0.636216\pi\)
\(480\) 0 0
\(481\) −6.58258 −0.300140
\(482\) 0 0
\(483\) − 6.79129i − 0.309014i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.25227i 0.102060i 0.998697 + 0.0510301i \(0.0162504\pi\)
−0.998697 + 0.0510301i \(0.983750\pi\)
\(488\) 0 0
\(489\) 13.6606 0.617754
\(490\) 0 0
\(491\) 16.5826 0.748361 0.374181 0.927356i \(-0.377924\pi\)
0.374181 + 0.927356i \(0.377924\pi\)
\(492\) 0 0
\(493\) 8.37386i 0.377140i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 80.2432i − 3.59940i
\(498\) 0 0
\(499\) −7.95644 −0.356179 −0.178090 0.984014i \(-0.556992\pi\)
−0.178090 + 0.984014i \(0.556992\pi\)
\(500\) 0 0
\(501\) −13.2867 −0.593608
\(502\) 0 0
\(503\) 25.5826i 1.14067i 0.821412 + 0.570335i \(0.193187\pi\)
−0.821412 + 0.570335i \(0.806813\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 21.4955i 0.954647i
\(508\) 0 0
\(509\) 31.1216 1.37944 0.689720 0.724076i \(-0.257734\pi\)
0.689720 + 0.724076i \(0.257734\pi\)
\(510\) 0 0
\(511\) −15.3739 −0.680100
\(512\) 0 0
\(513\) − 12.9129i − 0.570118i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.5826i 0.465421i
\(518\) 0 0
\(519\) 24.6261 1.08097
\(520\) 0 0
\(521\) −7.58258 −0.332199 −0.166099 0.986109i \(-0.553117\pi\)
−0.166099 + 0.986109i \(0.553117\pi\)
\(522\) 0 0
\(523\) − 6.83485i − 0.298867i −0.988772 0.149434i \(-0.952255\pi\)
0.988772 0.149434i \(-0.0477450\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.20871i 0.0962130i
\(528\) 0 0
\(529\) 22.3739 0.972777
\(530\) 0 0
\(531\) 0.295834 0.0128381
\(532\) 0 0
\(533\) − 10.5826i − 0.458382i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 34.2523i − 1.47809i
\(538\) 0 0
\(539\) −15.9564 −0.687292
\(540\) 0 0
\(541\) −24.3739 −1.04791 −0.523957 0.851745i \(-0.675545\pi\)
−0.523957 + 0.851745i \(0.675545\pi\)
\(542\) 0 0
\(543\) 18.5826i 0.797455i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.37386i 0.272527i 0.990673 + 0.136263i \(0.0435093\pi\)
−0.990673 + 0.136263i \(0.956491\pi\)
\(548\) 0 0
\(549\) −1.83485 −0.0783094
\(550\) 0 0
\(551\) 5.70417 0.243006
\(552\) 0 0
\(553\) 79.2432i 3.36976i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.6606i 1.17202i 0.810305 + 0.586009i \(0.199302\pi\)
−0.810305 + 0.586009i \(0.800698\pi\)
\(558\) 0 0
\(559\) 10.0000 0.422955
\(560\) 0 0
\(561\) 6.79129 0.286728
\(562\) 0 0
\(563\) 1.12159i 0.0472694i 0.999721 + 0.0236347i \(0.00752386\pi\)
−0.999721 + 0.0236347i \(0.992476\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 45.9129i − 1.92816i
\(568\) 0 0
\(569\) 3.95644 0.165863 0.0829313 0.996555i \(-0.473572\pi\)
0.0829313 + 0.996555i \(0.473572\pi\)
\(570\) 0 0
\(571\) 32.2867 1.35116 0.675579 0.737288i \(-0.263894\pi\)
0.675579 + 0.737288i \(0.263894\pi\)
\(572\) 0 0
\(573\) − 39.0345i − 1.63069i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 10.9564i − 0.456123i −0.973647 0.228061i \(-0.926761\pi\)
0.973647 0.228061i \(-0.0732387\pi\)
\(578\) 0 0
\(579\) 20.0000 0.831172
\(580\) 0 0
\(581\) −62.0780 −2.57543
\(582\) 0 0
\(583\) 2.37386i 0.0983154i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.95644i 0.287123i 0.989641 + 0.143561i \(0.0458555\pi\)
−0.989641 + 0.143561i \(0.954145\pi\)
\(588\) 0 0
\(589\) 1.50455 0.0619937
\(590\) 0 0
\(591\) 9.92197 0.408135
\(592\) 0 0
\(593\) 13.4174i 0.550988i 0.961303 + 0.275494i \(0.0888413\pi\)
−0.961303 + 0.275494i \(0.911159\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 27.5390i − 1.12710i
\(598\) 0 0
\(599\) −5.70417 −0.233066 −0.116533 0.993187i \(-0.537178\pi\)
−0.116533 + 0.993187i \(0.537178\pi\)
\(600\) 0 0
\(601\) −3.53901 −0.144359 −0.0721797 0.997392i \(-0.522996\pi\)
−0.0721797 + 0.997392i \(0.522996\pi\)
\(602\) 0 0
\(603\) − 0.834849i − 0.0339977i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.0000i 1.38002i 0.723801 + 0.690009i \(0.242393\pi\)
−0.723801 + 0.690009i \(0.757607\pi\)
\(608\) 0 0
\(609\) 18.9564 0.768154
\(610\) 0 0
\(611\) −10.5826 −0.428125
\(612\) 0 0
\(613\) 44.4519i 1.79540i 0.440612 + 0.897698i \(0.354761\pi\)
−0.440612 + 0.897698i \(0.645239\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 1.25227i − 0.0504146i −0.999682 0.0252073i \(-0.991975\pi\)
0.999682 0.0252073i \(-0.00802458\pi\)
\(618\) 0 0
\(619\) 33.7477 1.35644 0.678218 0.734861i \(-0.262753\pi\)
0.678218 + 0.734861i \(0.262753\pi\)
\(620\) 0 0
\(621\) −3.95644 −0.158766
\(622\) 0 0
\(623\) − 18.1652i − 0.727771i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 4.62614i − 0.184750i
\(628\) 0 0
\(629\) 24.9564 0.995078
\(630\) 0 0
\(631\) 23.1216 0.920456 0.460228 0.887801i \(-0.347768\pi\)
0.460228 + 0.887801i \(0.347768\pi\)
\(632\) 0 0
\(633\) − 8.95644i − 0.355987i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 15.9564i − 0.632217i
\(638\) 0 0
\(639\) 3.49545 0.138278
\(640\) 0 0
\(641\) −42.1652 −1.66542 −0.832712 0.553707i \(-0.813213\pi\)
−0.832712 + 0.553707i \(0.813213\pi\)
\(642\) 0 0
\(643\) 11.4955i 0.453336i 0.973972 + 0.226668i \(0.0727833\pi\)
−0.973972 + 0.226668i \(0.927217\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.3303i 0.602696i 0.953514 + 0.301348i \(0.0974366\pi\)
−0.953514 + 0.301348i \(0.902563\pi\)
\(648\) 0 0
\(649\) −1.41742 −0.0556388
\(650\) 0 0
\(651\) 5.00000 0.195965
\(652\) 0 0
\(653\) 23.7042i 0.927616i 0.885936 + 0.463808i \(0.153517\pi\)
−0.885936 + 0.463808i \(0.846483\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 0.669697i − 0.0261274i
\(658\) 0 0
\(659\) 32.5390 1.26754 0.633770 0.773522i \(-0.281507\pi\)
0.633770 + 0.773522i \(0.281507\pi\)
\(660\) 0 0
\(661\) 21.4174 0.833041 0.416521 0.909126i \(-0.363249\pi\)
0.416521 + 0.909126i \(0.363249\pi\)
\(662\) 0 0
\(663\) 6.79129i 0.263752i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.74773i − 0.0676723i
\(668\) 0 0
\(669\) 20.4519 0.790716
\(670\) 0 0
\(671\) 8.79129 0.339384
\(672\) 0 0
\(673\) − 6.91288i − 0.266472i −0.991084 0.133236i \(-0.957463\pi\)
0.991084 0.133236i \(-0.0425368\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.58258i 0.291422i 0.989327 + 0.145711i \(0.0465470\pi\)
−0.989327 + 0.145711i \(0.953453\pi\)
\(678\) 0 0
\(679\) 51.7042 1.98422
\(680\) 0 0
\(681\) −36.7913 −1.40985
\(682\) 0 0
\(683\) − 10.9129i − 0.417570i −0.977962 0.208785i \(-0.933049\pi\)
0.977962 0.208785i \(-0.0669508\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 38.2867i 1.46073i
\(688\) 0 0
\(689\) −2.37386 −0.0904370
\(690\) 0 0
\(691\) −9.12159 −0.347002 −0.173501 0.984834i \(-0.555508\pi\)
−0.173501 + 0.984834i \(0.555508\pi\)
\(692\) 0 0
\(693\) − 1.00000i − 0.0379869i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 40.1216i 1.51971i
\(698\) 0 0
\(699\) 20.0780 0.759421
\(700\) 0 0
\(701\) 39.1652 1.47925 0.739624 0.673021i \(-0.235004\pi\)
0.739624 + 0.673021i \(0.235004\pi\)
\(702\) 0 0
\(703\) − 17.0000i − 0.641167i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 17.3739i − 0.653411i
\(708\) 0 0
\(709\) 25.4955 0.957502 0.478751 0.877951i \(-0.341090\pi\)
0.478751 + 0.877951i \(0.341090\pi\)
\(710\) 0 0
\(711\) −3.45189 −0.129456
\(712\) 0 0
\(713\) − 0.460985i − 0.0172640i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 12.1652i − 0.454316i
\(718\) 0 0
\(719\) −48.4955 −1.80858 −0.904288 0.426924i \(-0.859597\pi\)
−0.904288 + 0.426924i \(0.859597\pi\)
\(720\) 0 0
\(721\) 81.2432 3.02565
\(722\) 0 0
\(723\) 32.4610i 1.20724i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 18.1216i − 0.672093i −0.941845 0.336046i \(-0.890910\pi\)
0.941845 0.336046i \(-0.109090\pi\)
\(728\) 0 0
\(729\) −24.8693 −0.921086
\(730\) 0 0
\(731\) −37.9129 −1.40226
\(732\) 0 0
\(733\) 51.2432i 1.89271i 0.323129 + 0.946355i \(0.395265\pi\)
−0.323129 + 0.946355i \(0.604735\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000i 0.147342i
\(738\) 0 0
\(739\) 0.878409 0.0323128 0.0161564 0.999869i \(-0.494857\pi\)
0.0161564 + 0.999869i \(0.494857\pi\)
\(740\) 0 0
\(741\) 4.62614 0.169945
\(742\) 0 0
\(743\) 35.2087i 1.29168i 0.763472 + 0.645841i \(0.223493\pi\)
−0.763472 + 0.645841i \(0.776507\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 2.70417i − 0.0989403i
\(748\) 0 0
\(749\) −37.1216 −1.35639
\(750\) 0 0
\(751\) −17.7913 −0.649213 −0.324607 0.945849i \(-0.605232\pi\)
−0.324607 + 0.945849i \(0.605232\pi\)
\(752\) 0 0
\(753\) − 36.7913i − 1.34075i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.3303i 1.06603i 0.846106 + 0.533014i \(0.178941\pi\)
−0.846106 + 0.533014i \(0.821059\pi\)
\(758\) 0 0
\(759\) −1.41742 −0.0514492
\(760\) 0 0
\(761\) −6.33030 −0.229473 −0.114737 0.993396i \(-0.536602\pi\)
−0.114737 + 0.993396i \(0.536602\pi\)
\(762\) 0 0
\(763\) 1.00000i 0.0362024i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.41742i − 0.0511802i
\(768\) 0 0
\(769\) 14.2523 0.513950 0.256975 0.966418i \(-0.417274\pi\)
0.256975 + 0.966418i \(0.417274\pi\)
\(770\) 0 0
\(771\) −32.2432 −1.16121
\(772\) 0 0
\(773\) − 30.7913i − 1.10749i −0.832688 0.553743i \(-0.813199\pi\)
0.832688 0.553743i \(-0.186801\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 56.4955i − 2.02676i
\(778\) 0 0
\(779\) 27.3303 0.979210
\(780\) 0 0
\(781\) −16.7477 −0.599281
\(782\) 0 0
\(783\) − 11.0436i − 0.394665i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 9.74773i − 0.347469i −0.984793 0.173734i \(-0.944417\pi\)
0.984793 0.173734i \(-0.0555834\pi\)
\(788\) 0 0
\(789\) −10.4519 −0.372097
\(790\) 0 0
\(791\) 50.7042 1.80283
\(792\) 0 0
\(793\) 8.79129i 0.312188i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 25.2867i − 0.895702i −0.894108 0.447851i \(-0.852189\pi\)
0.894108 0.447851i \(-0.147811\pi\)
\(798\) 0 0
\(799\) 40.1216 1.41940
\(800\) 0 0
\(801\) 0.791288 0.0279588
\(802\) 0 0
\(803\) 3.20871i 0.113233i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 53.2087i − 1.87304i
\(808\) 0 0
\(809\) −9.49545 −0.333842 −0.166921 0.985970i \(-0.553383\pi\)
−0.166921 + 0.985970i \(0.553383\pi\)
\(810\) 0 0
\(811\) −17.6606 −0.620148 −0.310074 0.950712i \(-0.600354\pi\)
−0.310074 + 0.950712i \(0.600354\pi\)
\(812\) 0 0
\(813\) 21.0436i 0.738030i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 25.8258i 0.903529i
\(818\) 0 0
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) −24.6606 −0.860661 −0.430331 0.902671i \(-0.641603\pi\)
−0.430331 + 0.902671i \(0.641603\pi\)
\(822\) 0 0
\(823\) 8.00000i 0.278862i 0.990232 + 0.139431i \(0.0445274\pi\)
−0.990232 + 0.139431i \(0.955473\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.5826i 0.680953i 0.940253 + 0.340476i \(0.110588\pi\)
−0.940253 + 0.340476i \(0.889412\pi\)
\(828\) 0 0
\(829\) 15.0436 0.522484 0.261242 0.965273i \(-0.415868\pi\)
0.261242 + 0.965273i \(0.415868\pi\)
\(830\) 0 0
\(831\) −1.04356 −0.0362007
\(832\) 0 0
\(833\) 60.4955i 2.09604i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.91288i − 0.100684i
\(838\) 0 0
\(839\) 26.7042 0.921930 0.460965 0.887418i \(-0.347503\pi\)
0.460965 + 0.887418i \(0.347503\pi\)
\(840\) 0 0
\(841\) −24.1216 −0.831779
\(842\) 0 0
\(843\) 24.6261i 0.848169i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 4.79129i 0.164631i
\(848\) 0 0
\(849\) −35.2958 −1.21135
\(850\) 0 0
\(851\) −5.20871 −0.178552
\(852\) 0 0
\(853\) 38.1216i 1.30526i 0.757677 + 0.652629i \(0.226334\pi\)
−0.757677 + 0.652629i \(0.773666\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.4955i 0.836749i 0.908275 + 0.418374i \(0.137400\pi\)
−0.908275 + 0.418374i \(0.862600\pi\)
\(858\) 0 0
\(859\) −47.9129 −1.63477 −0.817383 0.576094i \(-0.804576\pi\)
−0.817383 + 0.576094i \(0.804576\pi\)
\(860\) 0 0
\(861\) 90.8258 3.09533
\(862\) 0 0
\(863\) 9.33030i 0.317607i 0.987310 + 0.158804i \(0.0507637\pi\)
−0.987310 + 0.158804i \(0.949236\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.70417i 0.159762i
\(868\) 0 0
\(869\) 16.5390 0.561048
\(870\) 0 0
\(871\) −4.00000 −0.135535
\(872\) 0 0
\(873\) 2.25227i 0.0762279i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 56.6606i 1.91329i 0.291252 + 0.956646i \(0.405928\pi\)
−0.291252 + 0.956646i \(0.594072\pi\)
\(878\) 0 0
\(879\) −37.9129 −1.27877
\(880\) 0 0
\(881\) 43.1216 1.45280 0.726402 0.687270i \(-0.241191\pi\)
0.726402 + 0.687270i \(0.241191\pi\)
\(882\) 0 0
\(883\) 7.83485i 0.263664i 0.991272 + 0.131832i \(0.0420859\pi\)
−0.991272 + 0.131832i \(0.957914\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.66970i 0.0896397i 0.998995 + 0.0448198i \(0.0142714\pi\)
−0.998995 + 0.0448198i \(0.985729\pi\)
\(888\) 0 0
\(889\) 12.5826 0.422006
\(890\) 0 0
\(891\) −9.58258 −0.321028
\(892\) 0 0
\(893\) − 27.3303i − 0.914574i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.41742i − 0.0473264i
\(898\) 0 0
\(899\) 1.28674 0.0429152
\(900\) 0 0
\(901\) 9.00000 0.299833
\(902\) 0 0
\(903\) 85.8258i 2.85610i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 40.6606i 1.35011i 0.737766 + 0.675057i \(0.235881\pi\)
−0.737766 + 0.675057i \(0.764119\pi\)
\(908\) 0 0
\(909\) 0.756819 0.0251021
\(910\) 0 0
\(911\) −24.3303 −0.806099 −0.403049 0.915178i \(-0.632050\pi\)
−0.403049 + 0.915178i \(0.632050\pi\)
\(912\) 0 0
\(913\) 12.9564i 0.428796i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 68.8693i 2.27427i
\(918\) 0 0
\(919\) 47.1652 1.55583 0.777917 0.628367i \(-0.216276\pi\)
0.777917 + 0.628367i \(0.216276\pi\)
\(920\) 0 0
\(921\) −56.9473 −1.87648
\(922\) 0 0
\(923\) − 16.7477i − 0.551258i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.53901i 0.116237i
\(928\) 0 0
\(929\) 13.7477 0.451048 0.225524 0.974238i \(-0.427591\pi\)
0.225524 + 0.974238i \(0.427591\pi\)
\(930\) 0 0
\(931\) 41.2087 1.35056
\(932\) 0 0
\(933\) 43.2867i 1.41714i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.8348i 0.549971i 0.961448 + 0.274985i \(0.0886730\pi\)
−0.961448 + 0.274985i \(0.911327\pi\)
\(938\) 0 0
\(939\) −37.1652 −1.21284
\(940\) 0 0
\(941\) 14.0780 0.458931 0.229465 0.973317i \(-0.426302\pi\)
0.229465 + 0.973317i \(0.426302\pi\)
\(942\) 0 0
\(943\) − 8.37386i − 0.272691i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 40.9129i − 1.32949i −0.747070 0.664745i \(-0.768540\pi\)
0.747070 0.664745i \(-0.231460\pi\)
\(948\) 0 0
\(949\) −3.20871 −0.104159
\(950\) 0 0
\(951\) −9.62614 −0.312149
\(952\) 0 0
\(953\) 42.0000i 1.36051i 0.732974 + 0.680257i \(0.238132\pi\)
−0.732974 + 0.680257i \(0.761868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 3.95644i − 0.127894i
\(958\) 0 0
\(959\) −98.4083 −3.17777
\(960\) 0 0
\(961\) −30.6606 −0.989052
\(962\) 0 0
\(963\) − 1.61704i − 0.0521085i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 11.4610i − 0.368560i −0.982874 0.184280i \(-0.941005\pi\)
0.982874 0.184280i \(-0.0589954\pi\)
\(968\) 0 0
\(969\) −17.5390 −0.563434
\(970\) 0 0
\(971\) 3.95644 0.126968 0.0634841 0.997983i \(-0.479779\pi\)
0.0634841 + 0.997983i \(0.479779\pi\)
\(972\) 0 0
\(973\) − 85.0345i − 2.72608i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.74773i 0.0559147i 0.999609 + 0.0279574i \(0.00890027\pi\)
−0.999609 + 0.0279574i \(0.991100\pi\)
\(978\) 0 0
\(979\) −3.79129 −0.121170
\(980\) 0 0
\(981\) −0.0435608 −0.00139079
\(982\) 0 0
\(983\) 24.6606i 0.786551i 0.919421 + 0.393276i \(0.128658\pi\)
−0.919421 + 0.393276i \(0.871342\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 90.8258i − 2.89102i
\(988\) 0 0
\(989\) 7.91288 0.251615
\(990\) 0 0
\(991\) 12.8693 0.408807 0.204404 0.978887i \(-0.434474\pi\)
0.204404 + 0.978887i \(0.434474\pi\)
\(992\) 0 0
\(993\) 34.6261i 1.09883i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.6261i 0.843258i 0.906768 + 0.421629i \(0.138542\pi\)
−0.906768 + 0.421629i \(0.861458\pi\)
\(998\) 0 0
\(999\) −32.9129 −1.04132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4400.2.b.s.4049.3 4
4.3 odd 2 1100.2.b.d.749.2 4
5.2 odd 4 4400.2.a.bi.1.2 2
5.3 odd 4 4400.2.a.bu.1.1 2
5.4 even 2 inner 4400.2.b.s.4049.2 4
12.11 even 2 9900.2.c.x.5149.1 4
20.3 even 4 1100.2.a.g.1.2 2
20.7 even 4 1100.2.a.h.1.1 yes 2
20.19 odd 2 1100.2.b.d.749.3 4
60.23 odd 4 9900.2.a.bh.1.1 2
60.47 odd 4 9900.2.a.bz.1.2 2
60.59 even 2 9900.2.c.x.5149.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.2.a.g.1.2 2 20.3 even 4
1100.2.a.h.1.1 yes 2 20.7 even 4
1100.2.b.d.749.2 4 4.3 odd 2
1100.2.b.d.749.3 4 20.19 odd 2
4400.2.a.bi.1.2 2 5.2 odd 4
4400.2.a.bu.1.1 2 5.3 odd 4
4400.2.b.s.4049.2 4 5.4 even 2 inner
4400.2.b.s.4049.3 4 1.1 even 1 trivial
9900.2.a.bh.1.1 2 60.23 odd 4
9900.2.a.bz.1.2 2 60.47 odd 4
9900.2.c.x.5149.1 4 12.11 even 2
9900.2.c.x.5149.4 4 60.59 even 2