Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,2,Mod(37,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([0, 32]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.37");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.bb (of order \(21\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.52140272914\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{21})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −1.56648 | + | 1.06801i | 0 | 0.582537 | − | 1.48428i | −1.18685 | − | 0.366095i | 0 | 2.57942 | + | 0.588735i | −0.171072 | − | 0.749515i | 0 | 2.25017 | − | 0.694086i | ||||||
37.2 | 1.56648 | − | 1.06801i | 0 | 0.582537 | − | 1.48428i | 1.18685 | + | 0.366095i | 0 | 2.57942 | + | 0.588735i | 0.171072 | + | 0.749515i | 0 | 2.25017 | − | 0.694086i | ||||||
46.1 | −0.613977 | + | 1.56439i | 0 | −0.604237 | − | 0.560650i | 3.47262 | + | 2.36759i | 0 | −1.14795 | + | 2.38374i | −1.78020 | + | 0.857299i | 0 | −5.83593 | + | 3.97887i | ||||||
46.2 | 0.613977 | − | 1.56439i | 0 | −0.604237 | − | 0.560650i | −3.47262 | − | 2.36759i | 0 | −1.14795 | + | 2.38374i | 1.78020 | − | 0.857299i | 0 | −5.83593 | + | 3.97887i | ||||||
100.1 | −0.511849 | − | 0.157884i | 0 | −1.41542 | − | 0.965014i | −4.32038 | + | 0.651193i | 0 | 2.06853 | + | 1.64960i | 1.24006 | + | 1.55498i | 0 | 2.31420 | + | 0.348809i | ||||||
100.2 | 0.511849 | + | 0.157884i | 0 | −1.41542 | − | 0.965014i | 4.32038 | − | 0.651193i | 0 | 2.06853 | + | 1.64960i | −1.24006 | − | 1.55498i | 0 | 2.31420 | + | 0.348809i | ||||||
109.1 | −1.40321 | + | 1.30199i | 0 | 0.124363 | − | 1.65951i | 0.913329 | − | 2.32712i | 0 | 2.06853 | + | 1.64960i | −0.400813 | − | 0.502603i | 0 | 1.74829 | + | 4.45458i | ||||||
109.2 | 1.40321 | − | 1.30199i | 0 | 0.124363 | − | 1.65951i | −0.913329 | + | 2.32712i | 0 | 2.06853 | + | 1.64960i | 0.400813 | + | 0.502603i | 0 | 1.74829 | + | 4.45458i | ||||||
163.1 | −0.613977 | − | 1.56439i | 0 | −0.604237 | + | 0.560650i | 3.47262 | − | 2.36759i | 0 | −1.14795 | − | 2.38374i | −1.78020 | − | 0.857299i | 0 | −5.83593 | − | 3.97887i | ||||||
163.2 | 0.613977 | + | 1.56439i | 0 | −0.604237 | + | 0.560650i | −3.47262 | + | 2.36759i | 0 | −1.14795 | − | 2.38374i | 1.78020 | + | 0.857299i | 0 | −5.83593 | − | 3.97887i | ||||||
172.1 | −0.511849 | + | 0.157884i | 0 | −1.41542 | + | 0.965014i | −4.32038 | − | 0.651193i | 0 | 2.06853 | − | 1.64960i | 1.24006 | − | 1.55498i | 0 | 2.31420 | − | 0.348809i | ||||||
172.2 | 0.511849 | − | 0.157884i | 0 | −1.41542 | + | 0.965014i | 4.32038 | + | 0.651193i | 0 | 2.06853 | − | 1.64960i | −1.24006 | + | 1.55498i | 0 | 2.31420 | − | 0.348809i | ||||||
235.1 | −2.32588 | − | 0.350570i | 0 | 3.37568 | + | 1.04126i | 0.248330 | + | 3.31374i | 0 | −1.14795 | − | 2.38374i | −3.24795 | − | 1.56413i | 0 | 0.584111 | − | 7.79442i | ||||||
235.2 | 2.32588 | + | 0.350570i | 0 | 3.37568 | + | 1.04126i | −0.248330 | − | 3.31374i | 0 | −1.14795 | − | 2.38374i | 3.24795 | + | 1.56413i | 0 | 0.584111 | − | 7.79442i | ||||||
289.1 | −2.32588 | + | 0.350570i | 0 | 3.37568 | − | 1.04126i | 0.248330 | − | 3.31374i | 0 | −1.14795 | + | 2.38374i | −3.24795 | + | 1.56413i | 0 | 0.584111 | + | 7.79442i | ||||||
289.2 | 2.32588 | − | 0.350570i | 0 | 3.37568 | − | 1.04126i | −0.248330 | + | 3.31374i | 0 | −1.14795 | + | 2.38374i | 3.24795 | − | 1.56413i | 0 | 0.584111 | + | 7.79442i | ||||||
298.1 | −1.56648 | − | 1.06801i | 0 | 0.582537 | + | 1.48428i | −1.18685 | + | 0.366095i | 0 | 2.57942 | − | 0.588735i | −0.171072 | + | 0.749515i | 0 | 2.25017 | + | 0.694086i | ||||||
298.2 | 1.56648 | + | 1.06801i | 0 | 0.582537 | + | 1.48428i | 1.18685 | − | 0.366095i | 0 | 2.57942 | − | 0.588735i | 0.171072 | − | 0.749515i | 0 | 2.25017 | + | 0.694086i | ||||||
352.1 | −1.40321 | − | 1.30199i | 0 | 0.124363 | + | 1.65951i | 0.913329 | + | 2.32712i | 0 | 2.06853 | − | 1.64960i | −0.400813 | + | 0.502603i | 0 | 1.74829 | − | 4.45458i | ||||||
352.2 | 1.40321 | + | 1.30199i | 0 | 0.124363 | + | 1.65951i | −0.913329 | − | 2.32712i | 0 | 2.06853 | − | 1.64960i | 0.400813 | − | 0.502603i | 0 | 1.74829 | − | 4.45458i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
49.g | even | 21 | 1 | inner |
147.n | odd | 42 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.2.bb.b | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 441.2.bb.b | ✓ | 24 |
49.g | even | 21 | 1 | inner | 441.2.bb.b | ✓ | 24 |
147.n | odd | 42 | 1 | inner | 441.2.bb.b | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
441.2.bb.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
441.2.bb.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
441.2.bb.b | ✓ | 24 | 49.g | even | 21 | 1 | inner |
441.2.bb.b | ✓ | 24 | 147.n | odd | 42 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 28 T_{2}^{20} + 35 T_{2}^{18} - 119 T_{2}^{16} - 511 T_{2}^{14} + 10059 T_{2}^{12} + \cdots + 90601 \) acting on \(S_{2}^{\mathrm{new}}(441, [\chi])\).