Properties

Label 441.4.e.j
Level $441$
Weight $4$
Character orbit 441.e
Analytic conductor $26.020$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,4,Mod(226,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.226");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 441.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0198423125\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 8 \zeta_{6} + 8) q^{4} + 70 q^{13} - 64 \zeta_{6} q^{16} + 56 \zeta_{6} q^{19} + ( - 125 \zeta_{6} + 125) q^{25} + ( - 308 \zeta_{6} + 308) q^{31} - 110 \zeta_{6} q^{37} - 520 q^{43} + ( - 560 \zeta_{6} + 560) q^{52} + \cdots + 1330 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{4} + 140 q^{13} - 64 q^{16} + 56 q^{19} + 125 q^{25} + 308 q^{31} - 110 q^{37} - 1040 q^{43} + 560 q^{52} + 182 q^{61} - 1024 q^{64} + 880 q^{67} + 1190 q^{73} + 896 q^{76} - 884 q^{79} + 2660 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 4.00000 + 6.92820i 0 0 0 0 0 0
361.1 0 0 4.00000 6.92820i 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.4.e.j 2
3.b odd 2 1 CM 441.4.e.j 2
7.b odd 2 1 441.4.e.i 2
7.c even 3 1 441.4.a.f 1
7.c even 3 1 inner 441.4.e.j 2
7.d odd 6 1 9.4.a.a 1
7.d odd 6 1 441.4.e.i 2
21.c even 2 1 441.4.e.i 2
21.g even 6 1 9.4.a.a 1
21.g even 6 1 441.4.e.i 2
21.h odd 6 1 441.4.a.f 1
21.h odd 6 1 inner 441.4.e.j 2
28.f even 6 1 144.4.a.d 1
35.i odd 6 1 225.4.a.d 1
35.k even 12 2 225.4.b.g 2
56.j odd 6 1 576.4.a.m 1
56.m even 6 1 576.4.a.l 1
63.i even 6 1 81.4.c.b 2
63.k odd 6 1 81.4.c.b 2
63.s even 6 1 81.4.c.b 2
63.t odd 6 1 81.4.c.b 2
77.i even 6 1 1089.4.a.g 1
84.j odd 6 1 144.4.a.d 1
91.s odd 6 1 1521.4.a.g 1
105.p even 6 1 225.4.a.d 1
105.w odd 12 2 225.4.b.g 2
168.ba even 6 1 576.4.a.m 1
168.be odd 6 1 576.4.a.l 1
231.k odd 6 1 1089.4.a.g 1
273.ba even 6 1 1521.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.a.a 1 7.d odd 6 1
9.4.a.a 1 21.g even 6 1
81.4.c.b 2 63.i even 6 1
81.4.c.b 2 63.k odd 6 1
81.4.c.b 2 63.s even 6 1
81.4.c.b 2 63.t odd 6 1
144.4.a.d 1 28.f even 6 1
144.4.a.d 1 84.j odd 6 1
225.4.a.d 1 35.i odd 6 1
225.4.a.d 1 105.p even 6 1
225.4.b.g 2 35.k even 12 2
225.4.b.g 2 105.w odd 12 2
441.4.a.f 1 7.c even 3 1
441.4.a.f 1 21.h odd 6 1
441.4.e.i 2 7.b odd 2 1
441.4.e.i 2 7.d odd 6 1
441.4.e.i 2 21.c even 2 1
441.4.e.i 2 21.g even 6 1
441.4.e.j 2 1.a even 1 1 trivial
441.4.e.j 2 3.b odd 2 1 CM
441.4.e.j 2 7.c even 3 1 inner
441.4.e.j 2 21.h odd 6 1 inner
576.4.a.l 1 56.m even 6 1
576.4.a.l 1 168.be odd 6 1
576.4.a.m 1 56.j odd 6 1
576.4.a.m 1 168.ba even 6 1
1089.4.a.g 1 77.i even 6 1
1089.4.a.g 1 231.k odd 6 1
1521.4.a.g 1 91.s odd 6 1
1521.4.a.g 1 273.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(441, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{13} - 70 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 70)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 56T + 3136 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 308T + 94864 \) Copy content Toggle raw display
$37$ \( T^{2} + 110T + 12100 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 520)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 182T + 33124 \) Copy content Toggle raw display
$67$ \( T^{2} - 880T + 774400 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 1190 T + 1416100 \) Copy content Toggle raw display
$79$ \( T^{2} + 884T + 781456 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T - 1330)^{2} \) Copy content Toggle raw display
show more
show less