Properties

Label 144.4.a.d
Level $144$
Weight $4$
Character orbit 144.a
Self dual yes
Analytic conductor $8.496$
Analytic rank $1$
Dimension $1$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,4,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.49627504083\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 20 q^{7} - 70 q^{13} - 56 q^{19} - 125 q^{25} - 308 q^{31} + 110 q^{37} + 520 q^{43} + 57 q^{49} + 182 q^{61} + 880 q^{67} + 1190 q^{73} - 884 q^{79} + 1400 q^{91} - 1330 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 −20.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.4.a.d 1
3.b odd 2 1 CM 144.4.a.d 1
4.b odd 2 1 9.4.a.a 1
8.b even 2 1 576.4.a.l 1
8.d odd 2 1 576.4.a.m 1
12.b even 2 1 9.4.a.a 1
20.d odd 2 1 225.4.a.d 1
20.e even 4 2 225.4.b.g 2
24.f even 2 1 576.4.a.m 1
24.h odd 2 1 576.4.a.l 1
28.d even 2 1 441.4.a.f 1
28.f even 6 2 441.4.e.j 2
28.g odd 6 2 441.4.e.i 2
36.f odd 6 2 81.4.c.b 2
36.h even 6 2 81.4.c.b 2
44.c even 2 1 1089.4.a.g 1
52.b odd 2 1 1521.4.a.g 1
60.h even 2 1 225.4.a.d 1
60.l odd 4 2 225.4.b.g 2
84.h odd 2 1 441.4.a.f 1
84.j odd 6 2 441.4.e.j 2
84.n even 6 2 441.4.e.i 2
132.d odd 2 1 1089.4.a.g 1
156.h even 2 1 1521.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.a.a 1 4.b odd 2 1
9.4.a.a 1 12.b even 2 1
81.4.c.b 2 36.f odd 6 2
81.4.c.b 2 36.h even 6 2
144.4.a.d 1 1.a even 1 1 trivial
144.4.a.d 1 3.b odd 2 1 CM
225.4.a.d 1 20.d odd 2 1
225.4.a.d 1 60.h even 2 1
225.4.b.g 2 20.e even 4 2
225.4.b.g 2 60.l odd 4 2
441.4.a.f 1 28.d even 2 1
441.4.a.f 1 84.h odd 2 1
441.4.e.i 2 28.g odd 6 2
441.4.e.i 2 84.n even 6 2
441.4.e.j 2 28.f even 6 2
441.4.e.j 2 84.j odd 6 2
576.4.a.l 1 8.b even 2 1
576.4.a.l 1 24.h odd 2 1
576.4.a.m 1 8.d odd 2 1
576.4.a.m 1 24.f even 2 1
1089.4.a.g 1 44.c even 2 1
1089.4.a.g 1 132.d odd 2 1
1521.4.a.g 1 52.b odd 2 1
1521.4.a.g 1 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 20 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 70 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 56 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T + 308 \) Copy content Toggle raw display
$37$ \( T - 110 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T - 520 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T - 182 \) Copy content Toggle raw display
$67$ \( T - 880 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1190 \) Copy content Toggle raw display
$79$ \( T + 884 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 1330 \) Copy content Toggle raw display
show more
show less