Properties

Label 144.4.a.d
Level 144144
Weight 44
Character orbit 144.a
Self dual yes
Analytic conductor 8.4968.496
Analytic rank 11
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,4,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 144=2432 144 = 2^{4} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.496275040838.49627504083
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 9)
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q20q770q1356q19125q25308q31+110q37+520q43+57q49+182q61+880q67+1190q73884q79+1400q911330q97+O(q100) q - 20 q^{7} - 70 q^{13} - 56 q^{19} - 125 q^{25} - 308 q^{31} + 110 q^{37} + 520 q^{43} + 57 q^{49} + 182 q^{61} + 880 q^{67} + 1190 q^{73} - 884 q^{79} + 1400 q^{91} - 1330 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 0 0 −20.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.4.a.d 1
3.b odd 2 1 CM 144.4.a.d 1
4.b odd 2 1 9.4.a.a 1
8.b even 2 1 576.4.a.l 1
8.d odd 2 1 576.4.a.m 1
12.b even 2 1 9.4.a.a 1
20.d odd 2 1 225.4.a.d 1
20.e even 4 2 225.4.b.g 2
24.f even 2 1 576.4.a.m 1
24.h odd 2 1 576.4.a.l 1
28.d even 2 1 441.4.a.f 1
28.f even 6 2 441.4.e.j 2
28.g odd 6 2 441.4.e.i 2
36.f odd 6 2 81.4.c.b 2
36.h even 6 2 81.4.c.b 2
44.c even 2 1 1089.4.a.g 1
52.b odd 2 1 1521.4.a.g 1
60.h even 2 1 225.4.a.d 1
60.l odd 4 2 225.4.b.g 2
84.h odd 2 1 441.4.a.f 1
84.j odd 6 2 441.4.e.j 2
84.n even 6 2 441.4.e.i 2
132.d odd 2 1 1089.4.a.g 1
156.h even 2 1 1521.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.4.a.a 1 4.b odd 2 1
9.4.a.a 1 12.b even 2 1
81.4.c.b 2 36.f odd 6 2
81.4.c.b 2 36.h even 6 2
144.4.a.d 1 1.a even 1 1 trivial
144.4.a.d 1 3.b odd 2 1 CM
225.4.a.d 1 20.d odd 2 1
225.4.a.d 1 60.h even 2 1
225.4.b.g 2 20.e even 4 2
225.4.b.g 2 60.l odd 4 2
441.4.a.f 1 28.d even 2 1
441.4.a.f 1 84.h odd 2 1
441.4.e.i 2 28.g odd 6 2
441.4.e.i 2 84.n even 6 2
441.4.e.j 2 28.f even 6 2
441.4.e.j 2 84.j odd 6 2
576.4.a.l 1 8.b even 2 1
576.4.a.l 1 24.h odd 2 1
576.4.a.m 1 8.d odd 2 1
576.4.a.m 1 24.f even 2 1
1089.4.a.g 1 44.c even 2 1
1089.4.a.g 1 132.d odd 2 1
1521.4.a.g 1 52.b odd 2 1
1521.4.a.g 1 156.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5 T_{5} acting on S4new(Γ0(144))S_{4}^{\mathrm{new}}(\Gamma_0(144)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+20 T + 20 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+70 T + 70 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+56 T + 56 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T+308 T + 308 Copy content Toggle raw display
3737 T110 T - 110 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T520 T - 520 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T182 T - 182 Copy content Toggle raw display
6767 T880 T - 880 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T1190 T - 1190 Copy content Toggle raw display
7979 T+884 T + 884 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T+1330 T + 1330 Copy content Toggle raw display
show more
show less