Properties

Label 4410.2.b.e.881.5
Level $4410$
Weight $2$
Character 4410.881
Analytic conductor $35.214$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4410,2,Mod(881,4410)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4410, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4410.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4410 = 2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4410.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(35.2140272914\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.5
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 4410.881
Dual form 4410.2.b.e.881.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +1.00000 q^{5} -1.00000i q^{8} +1.00000i q^{10} -3.98174i q^{11} -0.0681483i q^{13} +1.00000 q^{16} +7.32780 q^{17} +2.03528i q^{19} -1.00000 q^{20} +3.98174 q^{22} +3.73205i q^{23} +1.00000 q^{25} +0.0681483 q^{26} +0.898979i q^{29} -4.82843i q^{31} +1.00000i q^{32} +7.32780i q^{34} -4.06815 q^{37} -2.03528 q^{38} -1.00000i q^{40} -1.68921 q^{41} -0.964724 q^{43} +3.98174i q^{44} -3.73205 q^{46} -1.66150 q^{47} +1.00000i q^{50} +0.0681483i q^{52} -13.2268i q^{53} -3.98174i q^{55} -0.898979 q^{58} -10.6422 q^{59} -7.52056i q^{61} +4.82843 q^{62} -1.00000 q^{64} -0.0681483i q^{65} +10.6629 q^{67} -7.32780 q^{68} +9.93426i q^{71} -11.6569i q^{73} -4.06815i q^{74} -2.03528i q^{76} +17.5498 q^{79} +1.00000 q^{80} -1.68921i q^{82} +14.3490 q^{83} +7.32780 q^{85} -0.964724i q^{86} -3.98174 q^{88} -1.82791 q^{89} -3.73205i q^{92} -1.66150i q^{94} +2.03528i q^{95} -17.1502i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 8 q^{5} + 8 q^{16} - 8 q^{20} + 8 q^{25} + 16 q^{26} - 48 q^{37} - 8 q^{38} - 32 q^{41} - 16 q^{43} - 16 q^{46} - 16 q^{47} + 32 q^{58} - 48 q^{59} + 16 q^{62} - 8 q^{64} + 48 q^{67} + 48 q^{79}+ \cdots - 32 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4410\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(2647\) \(3431\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) − 3.98174i − 1.20054i −0.799798 0.600270i \(-0.795060\pi\)
0.799798 0.600270i \(-0.204940\pi\)
\(12\) 0 0
\(13\) − 0.0681483i − 0.0189010i −0.999955 0.00945048i \(-0.996992\pi\)
0.999955 0.00945048i \(-0.00300822\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 7.32780 1.77725 0.888627 0.458631i \(-0.151660\pi\)
0.888627 + 0.458631i \(0.151660\pi\)
\(18\) 0 0
\(19\) 2.03528i 0.466924i 0.972366 + 0.233462i \(0.0750055\pi\)
−0.972366 + 0.233462i \(0.924994\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 3.98174 0.848910
\(23\) 3.73205i 0.778186i 0.921198 + 0.389093i \(0.127212\pi\)
−0.921198 + 0.389093i \(0.872788\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.0681483 0.0133650
\(27\) 0 0
\(28\) 0 0
\(29\) 0.898979i 0.166936i 0.996510 + 0.0834681i \(0.0265997\pi\)
−0.996510 + 0.0834681i \(0.973400\pi\)
\(30\) 0 0
\(31\) − 4.82843i − 0.867211i −0.901103 0.433606i \(-0.857241\pi\)
0.901103 0.433606i \(-0.142759\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 7.32780i 1.25671i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.06815 −0.668799 −0.334400 0.942431i \(-0.608534\pi\)
−0.334400 + 0.942431i \(0.608534\pi\)
\(38\) −2.03528 −0.330165
\(39\) 0 0
\(40\) − 1.00000i − 0.158114i
\(41\) −1.68921 −0.263810 −0.131905 0.991262i \(-0.542109\pi\)
−0.131905 + 0.991262i \(0.542109\pi\)
\(42\) 0 0
\(43\) −0.964724 −0.147119 −0.0735595 0.997291i \(-0.523436\pi\)
−0.0735595 + 0.997291i \(0.523436\pi\)
\(44\) 3.98174i 0.600270i
\(45\) 0 0
\(46\) −3.73205 −0.550261
\(47\) −1.66150 −0.242354 −0.121177 0.992631i \(-0.538667\pi\)
−0.121177 + 0.992631i \(0.538667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) 0.0681483i 0.00945048i
\(53\) − 13.2268i − 1.81684i −0.418060 0.908419i \(-0.637290\pi\)
0.418060 0.908419i \(-0.362710\pi\)
\(54\) 0 0
\(55\) − 3.98174i − 0.536898i
\(56\) 0 0
\(57\) 0 0
\(58\) −0.898979 −0.118042
\(59\) −10.6422 −1.38550 −0.692751 0.721177i \(-0.743601\pi\)
−0.692751 + 0.721177i \(0.743601\pi\)
\(60\) 0 0
\(61\) − 7.52056i − 0.962909i −0.876471 0.481454i \(-0.840109\pi\)
0.876471 0.481454i \(-0.159891\pi\)
\(62\) 4.82843 0.613211
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) − 0.0681483i − 0.00845276i
\(66\) 0 0
\(67\) 10.6629 1.30268 0.651341 0.758785i \(-0.274207\pi\)
0.651341 + 0.758785i \(0.274207\pi\)
\(68\) −7.32780 −0.888627
\(69\) 0 0
\(70\) 0 0
\(71\) 9.93426i 1.17898i 0.807776 + 0.589490i \(0.200671\pi\)
−0.807776 + 0.589490i \(0.799329\pi\)
\(72\) 0 0
\(73\) − 11.6569i − 1.36433i −0.731198 0.682166i \(-0.761038\pi\)
0.731198 0.682166i \(-0.238962\pi\)
\(74\) − 4.06815i − 0.472913i
\(75\) 0 0
\(76\) − 2.03528i − 0.233462i
\(77\) 0 0
\(78\) 0 0
\(79\) 17.5498 1.97450 0.987252 0.159163i \(-0.0508795\pi\)
0.987252 + 0.159163i \(0.0508795\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) − 1.68921i − 0.186542i
\(83\) 14.3490 1.57501 0.787503 0.616311i \(-0.211374\pi\)
0.787503 + 0.616311i \(0.211374\pi\)
\(84\) 0 0
\(85\) 7.32780 0.794812
\(86\) − 0.964724i − 0.104029i
\(87\) 0 0
\(88\) −3.98174 −0.424455
\(89\) −1.82791 −0.193758 −0.0968791 0.995296i \(-0.530886\pi\)
−0.0968791 + 0.995296i \(0.530886\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 3.73205i − 0.389093i
\(93\) 0 0
\(94\) − 1.66150i − 0.171370i
\(95\) 2.03528i 0.208815i
\(96\) 0 0
\(97\) − 17.1502i − 1.74134i −0.491870 0.870668i \(-0.663687\pi\)
0.491870 0.870668i \(-0.336313\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −6.73545 −0.670202 −0.335101 0.942182i \(-0.608771\pi\)
−0.335101 + 0.942182i \(0.608771\pi\)
\(102\) 0 0
\(103\) − 0.520042i − 0.0512413i −0.999672 0.0256206i \(-0.991844\pi\)
0.999672 0.0256206i \(-0.00815619\pi\)
\(104\) −0.0681483 −0.00668250
\(105\) 0 0
\(106\) 13.2268 1.28470
\(107\) 6.12701i 0.592320i 0.955138 + 0.296160i \(0.0957062\pi\)
−0.955138 + 0.296160i \(0.904294\pi\)
\(108\) 0 0
\(109\) 13.5546 1.29829 0.649147 0.760663i \(-0.275126\pi\)
0.649147 + 0.760663i \(0.275126\pi\)
\(110\) 3.98174 0.379644
\(111\) 0 0
\(112\) 0 0
\(113\) 11.6982i 1.10047i 0.835009 + 0.550236i \(0.185462\pi\)
−0.835009 + 0.550236i \(0.814538\pi\)
\(114\) 0 0
\(115\) 3.73205i 0.348016i
\(116\) − 0.898979i − 0.0834681i
\(117\) 0 0
\(118\) − 10.6422i − 0.979698i
\(119\) 0 0
\(120\) 0 0
\(121\) −4.85425 −0.441296
\(122\) 7.52056 0.680879
\(123\) 0 0
\(124\) 4.82843i 0.433606i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 10.7530 0.954173 0.477086 0.878856i \(-0.341693\pi\)
0.477086 + 0.878856i \(0.341693\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0.0681483 0.00597701
\(131\) 3.70915 0.324070 0.162035 0.986785i \(-0.448194\pi\)
0.162035 + 0.986785i \(0.448194\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.6629i 0.921135i
\(135\) 0 0
\(136\) − 7.32780i − 0.628354i
\(137\) − 13.5206i − 1.15514i −0.816341 0.577570i \(-0.804001\pi\)
0.816341 0.577570i \(-0.195999\pi\)
\(138\) 0 0
\(139\) − 9.06251i − 0.768672i −0.923193 0.384336i \(-0.874430\pi\)
0.923193 0.384336i \(-0.125570\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.93426 −0.833664
\(143\) −0.271349 −0.0226913
\(144\) 0 0
\(145\) 0.898979i 0.0746562i
\(146\) 11.6569 0.964728
\(147\) 0 0
\(148\) 4.06815 0.334400
\(149\) − 15.2865i − 1.25232i −0.779696 0.626158i \(-0.784626\pi\)
0.779696 0.626158i \(-0.215374\pi\)
\(150\) 0 0
\(151\) −9.87883 −0.803928 −0.401964 0.915656i \(-0.631672\pi\)
−0.401964 + 0.915656i \(0.631672\pi\)
\(152\) 2.03528 0.165083
\(153\) 0 0
\(154\) 0 0
\(155\) − 4.82843i − 0.387829i
\(156\) 0 0
\(157\) 14.2884i 1.14034i 0.821528 + 0.570168i \(0.193122\pi\)
−0.821528 + 0.570168i \(0.806878\pi\)
\(158\) 17.5498i 1.39619i
\(159\) 0 0
\(160\) 1.00000i 0.0790569i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.97758 0.781504 0.390752 0.920496i \(-0.372215\pi\)
0.390752 + 0.920496i \(0.372215\pi\)
\(164\) 1.68921 0.131905
\(165\) 0 0
\(166\) 14.3490i 1.11370i
\(167\) 13.7778 1.06616 0.533079 0.846065i \(-0.321035\pi\)
0.533079 + 0.846065i \(0.321035\pi\)
\(168\) 0 0
\(169\) 12.9954 0.999643
\(170\) 7.32780i 0.562017i
\(171\) 0 0
\(172\) 0.964724 0.0735595
\(173\) −8.27276 −0.628966 −0.314483 0.949263i \(-0.601831\pi\)
−0.314483 + 0.949263i \(0.601831\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 3.98174i − 0.300135i
\(177\) 0 0
\(178\) − 1.82791i − 0.137008i
\(179\) 11.5182i 0.860907i 0.902613 + 0.430454i \(0.141646\pi\)
−0.902613 + 0.430454i \(0.858354\pi\)
\(180\) 0 0
\(181\) − 16.5924i − 1.23330i −0.787237 0.616650i \(-0.788489\pi\)
0.787237 0.616650i \(-0.211511\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.73205 0.275130
\(185\) −4.06815 −0.299096
\(186\) 0 0
\(187\) − 29.1774i − 2.13366i
\(188\) 1.66150 0.121177
\(189\) 0 0
\(190\) −2.03528 −0.147654
\(191\) 18.4336i 1.33381i 0.745142 + 0.666905i \(0.232382\pi\)
−0.745142 + 0.666905i \(0.767618\pi\)
\(192\) 0 0
\(193\) −6.35827 −0.457679 −0.228839 0.973464i \(-0.573493\pi\)
−0.228839 + 0.973464i \(0.573493\pi\)
\(194\) 17.1502 1.23131
\(195\) 0 0
\(196\) 0 0
\(197\) − 12.8389i − 0.914734i −0.889278 0.457367i \(-0.848792\pi\)
0.889278 0.457367i \(-0.151208\pi\)
\(198\) 0 0
\(199\) − 9.62962i − 0.682626i −0.939950 0.341313i \(-0.889128\pi\)
0.939950 0.341313i \(-0.110872\pi\)
\(200\) − 1.00000i − 0.0707107i
\(201\) 0 0
\(202\) − 6.73545i − 0.473905i
\(203\) 0 0
\(204\) 0 0
\(205\) −1.68921 −0.117980
\(206\) 0.520042 0.0362331
\(207\) 0 0
\(208\) − 0.0681483i − 0.00472524i
\(209\) 8.10394 0.560561
\(210\) 0 0
\(211\) −14.5619 −1.00248 −0.501241 0.865308i \(-0.667123\pi\)
−0.501241 + 0.865308i \(0.667123\pi\)
\(212\) 13.2268i 0.908419i
\(213\) 0 0
\(214\) −6.12701 −0.418834
\(215\) −0.964724 −0.0657936
\(216\) 0 0
\(217\) 0 0
\(218\) 13.5546i 0.918033i
\(219\) 0 0
\(220\) 3.98174i 0.268449i
\(221\) − 0.499378i − 0.0335918i
\(222\) 0 0
\(223\) 23.6609i 1.58445i 0.610227 + 0.792227i \(0.291078\pi\)
−0.610227 + 0.792227i \(0.708922\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −11.6982 −0.778152
\(227\) −8.64048 −0.573489 −0.286744 0.958007i \(-0.592573\pi\)
−0.286744 + 0.958007i \(0.592573\pi\)
\(228\) 0 0
\(229\) 14.0754i 0.930126i 0.885278 + 0.465063i \(0.153968\pi\)
−0.885278 + 0.465063i \(0.846032\pi\)
\(230\) −3.73205 −0.246084
\(231\) 0 0
\(232\) 0.898979 0.0590209
\(233\) 20.1976i 1.32319i 0.749863 + 0.661593i \(0.230119\pi\)
−0.749863 + 0.661593i \(0.769881\pi\)
\(234\) 0 0
\(235\) −1.66150 −0.108384
\(236\) 10.6422 0.692751
\(237\) 0 0
\(238\) 0 0
\(239\) 23.5040i 1.52035i 0.649721 + 0.760173i \(0.274886\pi\)
−0.649721 + 0.760173i \(0.725114\pi\)
\(240\) 0 0
\(241\) − 14.8685i − 0.957765i −0.877879 0.478883i \(-0.841042\pi\)
0.877879 0.478883i \(-0.158958\pi\)
\(242\) − 4.85425i − 0.312043i
\(243\) 0 0
\(244\) 7.52056i 0.481454i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.138701 0.00882531
\(248\) −4.82843 −0.306605
\(249\) 0 0
\(250\) 1.00000i 0.0632456i
\(251\) 4.31736 0.272509 0.136255 0.990674i \(-0.456493\pi\)
0.136255 + 0.990674i \(0.456493\pi\)
\(252\) 0 0
\(253\) 14.8601 0.934244
\(254\) 10.7530i 0.674702i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 4.83324 0.301489 0.150744 0.988573i \(-0.451833\pi\)
0.150744 + 0.988573i \(0.451833\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.0681483i 0.00422638i
\(261\) 0 0
\(262\) 3.70915i 0.229152i
\(263\) − 6.66490i − 0.410975i −0.978660 0.205488i \(-0.934122\pi\)
0.978660 0.205488i \(-0.0658780\pi\)
\(264\) 0 0
\(265\) − 13.2268i − 0.812515i
\(266\) 0 0
\(267\) 0 0
\(268\) −10.6629 −0.651341
\(269\) 31.7400 1.93522 0.967612 0.252441i \(-0.0812333\pi\)
0.967612 + 0.252441i \(0.0812333\pi\)
\(270\) 0 0
\(271\) − 17.4641i − 1.06087i −0.847726 0.530434i \(-0.822029\pi\)
0.847726 0.530434i \(-0.177971\pi\)
\(272\) 7.32780 0.444313
\(273\) 0 0
\(274\) 13.5206 0.816807
\(275\) − 3.98174i − 0.240108i
\(276\) 0 0
\(277\) −23.5047 −1.41226 −0.706130 0.708082i \(-0.749561\pi\)
−0.706130 + 0.708082i \(0.749561\pi\)
\(278\) 9.06251 0.543533
\(279\) 0 0
\(280\) 0 0
\(281\) 15.4159i 0.919635i 0.888013 + 0.459817i \(0.152085\pi\)
−0.888013 + 0.459817i \(0.847915\pi\)
\(282\) 0 0
\(283\) − 27.7108i − 1.64724i −0.567144 0.823619i \(-0.691952\pi\)
0.567144 0.823619i \(-0.308048\pi\)
\(284\) − 9.93426i − 0.589490i
\(285\) 0 0
\(286\) − 0.271349i − 0.0160452i
\(287\) 0 0
\(288\) 0 0
\(289\) 36.6967 2.15863
\(290\) −0.898979 −0.0527899
\(291\) 0 0
\(292\) 11.6569i 0.682166i
\(293\) −2.84377 −0.166135 −0.0830673 0.996544i \(-0.526472\pi\)
−0.0830673 + 0.996544i \(0.526472\pi\)
\(294\) 0 0
\(295\) −10.6422 −0.619615
\(296\) 4.06815i 0.236456i
\(297\) 0 0
\(298\) 15.2865 0.885522
\(299\) 0.254333 0.0147085
\(300\) 0 0
\(301\) 0 0
\(302\) − 9.87883i − 0.568463i
\(303\) 0 0
\(304\) 2.03528i 0.116731i
\(305\) − 7.52056i − 0.430626i
\(306\) 0 0
\(307\) 2.52180i 0.143927i 0.997407 + 0.0719634i \(0.0229265\pi\)
−0.997407 + 0.0719634i \(0.977074\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.82843 0.274236
\(311\) 10.9939 0.623410 0.311705 0.950179i \(-0.399100\pi\)
0.311705 + 0.950179i \(0.399100\pi\)
\(312\) 0 0
\(313\) − 24.9461i − 1.41004i −0.709188 0.705020i \(-0.750938\pi\)
0.709188 0.705020i \(-0.249062\pi\)
\(314\) −14.2884 −0.806339
\(315\) 0 0
\(316\) −17.5498 −0.987252
\(317\) 15.0693i 0.846377i 0.906042 + 0.423188i \(0.139089\pi\)
−0.906042 + 0.423188i \(0.860911\pi\)
\(318\) 0 0
\(319\) 3.57950 0.200414
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 14.9141i 0.829843i
\(324\) 0 0
\(325\) − 0.0681483i − 0.00378019i
\(326\) 9.97758i 0.552607i
\(327\) 0 0
\(328\) 1.68921i 0.0932711i
\(329\) 0 0
\(330\) 0 0
\(331\) 30.1808 1.65889 0.829444 0.558590i \(-0.188658\pi\)
0.829444 + 0.558590i \(0.188658\pi\)
\(332\) −14.3490 −0.787503
\(333\) 0 0
\(334\) 13.7778i 0.753888i
\(335\) 10.6629 0.582577
\(336\) 0 0
\(337\) −21.5911 −1.17614 −0.588071 0.808809i \(-0.700113\pi\)
−0.588071 + 0.808809i \(0.700113\pi\)
\(338\) 12.9954i 0.706854i
\(339\) 0 0
\(340\) −7.32780 −0.397406
\(341\) −19.2255 −1.04112
\(342\) 0 0
\(343\) 0 0
\(344\) 0.964724i 0.0520144i
\(345\) 0 0
\(346\) − 8.27276i − 0.444746i
\(347\) − 23.1842i − 1.24459i −0.782781 0.622297i \(-0.786200\pi\)
0.782781 0.622297i \(-0.213800\pi\)
\(348\) 0 0
\(349\) − 10.7287i − 0.574292i −0.957887 0.287146i \(-0.907294\pi\)
0.957887 0.287146i \(-0.0927064\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.98174 0.212227
\(353\) 8.74756 0.465585 0.232793 0.972526i \(-0.425214\pi\)
0.232793 + 0.972526i \(0.425214\pi\)
\(354\) 0 0
\(355\) 9.93426i 0.527256i
\(356\) 1.82791 0.0968791
\(357\) 0 0
\(358\) −11.5182 −0.608753
\(359\) − 25.7566i − 1.35938i −0.733498 0.679691i \(-0.762114\pi\)
0.733498 0.679691i \(-0.237886\pi\)
\(360\) 0 0
\(361\) 14.8577 0.781982
\(362\) 16.5924 0.872075
\(363\) 0 0
\(364\) 0 0
\(365\) − 11.6569i − 0.610148i
\(366\) 0 0
\(367\) 19.9377i 1.04074i 0.853941 + 0.520369i \(0.174206\pi\)
−0.853941 + 0.520369i \(0.825794\pi\)
\(368\) 3.73205i 0.194547i
\(369\) 0 0
\(370\) − 4.06815i − 0.211493i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.03152 0.0534103 0.0267052 0.999643i \(-0.491498\pi\)
0.0267052 + 0.999643i \(0.491498\pi\)
\(374\) 29.1774 1.50873
\(375\) 0 0
\(376\) 1.66150i 0.0856852i
\(377\) 0.0612640 0.00315525
\(378\) 0 0
\(379\) 5.09497 0.261711 0.130855 0.991401i \(-0.458228\pi\)
0.130855 + 0.991401i \(0.458228\pi\)
\(380\) − 2.03528i − 0.104407i
\(381\) 0 0
\(382\) −18.4336 −0.943147
\(383\) −8.46750 −0.432669 −0.216335 0.976319i \(-0.569410\pi\)
−0.216335 + 0.976319i \(0.569410\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 6.35827i − 0.323628i
\(387\) 0 0
\(388\) 17.1502i 0.870668i
\(389\) − 5.74150i − 0.291106i −0.989350 0.145553i \(-0.953504\pi\)
0.989350 0.145553i \(-0.0464961\pi\)
\(390\) 0 0
\(391\) 27.3477i 1.38303i
\(392\) 0 0
\(393\) 0 0
\(394\) 12.8389 0.646815
\(395\) 17.5498 0.883025
\(396\) 0 0
\(397\) − 16.8758i − 0.846973i −0.905902 0.423487i \(-0.860806\pi\)
0.905902 0.423487i \(-0.139194\pi\)
\(398\) 9.62962 0.482689
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) − 1.88876i − 0.0943203i −0.998887 0.0471602i \(-0.984983\pi\)
0.998887 0.0471602i \(-0.0150171\pi\)
\(402\) 0 0
\(403\) −0.329049 −0.0163911
\(404\) 6.73545 0.335101
\(405\) 0 0
\(406\) 0 0
\(407\) 16.1983i 0.802920i
\(408\) 0 0
\(409\) 32.9802i 1.63076i 0.578923 + 0.815382i \(0.303473\pi\)
−0.578923 + 0.815382i \(0.696527\pi\)
\(410\) − 1.68921i − 0.0834242i
\(411\) 0 0
\(412\) 0.520042i 0.0256206i
\(413\) 0 0
\(414\) 0 0
\(415\) 14.3490 0.704364
\(416\) 0.0681483 0.00334125
\(417\) 0 0
\(418\) 8.10394i 0.396377i
\(419\) −0.300470 −0.0146789 −0.00733945 0.999973i \(-0.502336\pi\)
−0.00733945 + 0.999973i \(0.502336\pi\)
\(420\) 0 0
\(421\) 28.8625 1.40667 0.703335 0.710858i \(-0.251693\pi\)
0.703335 + 0.710858i \(0.251693\pi\)
\(422\) − 14.5619i − 0.708862i
\(423\) 0 0
\(424\) −13.2268 −0.642349
\(425\) 7.32780 0.355451
\(426\) 0 0
\(427\) 0 0
\(428\) − 6.12701i − 0.296160i
\(429\) 0 0
\(430\) − 0.964724i − 0.0465231i
\(431\) 33.5897i 1.61796i 0.587839 + 0.808978i \(0.299979\pi\)
−0.587839 + 0.808978i \(0.700021\pi\)
\(432\) 0 0
\(433\) − 11.2207i − 0.539234i −0.962968 0.269617i \(-0.913103\pi\)
0.962968 0.269617i \(-0.0868971\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −13.5546 −0.649147
\(437\) −7.59575 −0.363354
\(438\) 0 0
\(439\) 16.8673i 0.805031i 0.915413 + 0.402515i \(0.131864\pi\)
−0.915413 + 0.402515i \(0.868136\pi\)
\(440\) −3.98174 −0.189822
\(441\) 0 0
\(442\) 0.499378 0.0237530
\(443\) − 2.05646i − 0.0977052i −0.998806 0.0488526i \(-0.984444\pi\)
0.998806 0.0488526i \(-0.0155565\pi\)
\(444\) 0 0
\(445\) −1.82791 −0.0866513
\(446\) −23.6609 −1.12038
\(447\) 0 0
\(448\) 0 0
\(449\) 12.5892i 0.594122i 0.954858 + 0.297061i \(0.0960065\pi\)
−0.954858 + 0.297061i \(0.903994\pi\)
\(450\) 0 0
\(451\) 6.72600i 0.316715i
\(452\) − 11.6982i − 0.550236i
\(453\) 0 0
\(454\) − 8.64048i − 0.405518i
\(455\) 0 0
\(456\) 0 0
\(457\) 34.9529 1.63503 0.817515 0.575907i \(-0.195351\pi\)
0.817515 + 0.575907i \(0.195351\pi\)
\(458\) −14.0754 −0.657698
\(459\) 0 0
\(460\) − 3.73205i − 0.174008i
\(461\) −23.3750 −1.08868 −0.544341 0.838864i \(-0.683220\pi\)
−0.544341 + 0.838864i \(0.683220\pi\)
\(462\) 0 0
\(463\) −6.35693 −0.295431 −0.147716 0.989030i \(-0.547192\pi\)
−0.147716 + 0.989030i \(0.547192\pi\)
\(464\) 0.898979i 0.0417341i
\(465\) 0 0
\(466\) −20.1976 −0.935634
\(467\) 7.79315 0.360624 0.180312 0.983609i \(-0.442289\pi\)
0.180312 + 0.983609i \(0.442289\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) − 1.66150i − 0.0766392i
\(471\) 0 0
\(472\) 10.6422i 0.489849i
\(473\) 3.84128i 0.176622i
\(474\) 0 0
\(475\) 2.03528i 0.0933849i
\(476\) 0 0
\(477\) 0 0
\(478\) −23.5040 −1.07505
\(479\) 27.5040 1.25669 0.628344 0.777935i \(-0.283733\pi\)
0.628344 + 0.777935i \(0.283733\pi\)
\(480\) 0 0
\(481\) 0.277238i 0.0126409i
\(482\) 14.8685 0.677242
\(483\) 0 0
\(484\) 4.85425 0.220648
\(485\) − 17.1502i − 0.778750i
\(486\) 0 0
\(487\) 35.4468 1.60625 0.803124 0.595812i \(-0.203170\pi\)
0.803124 + 0.595812i \(0.203170\pi\)
\(488\) −7.52056 −0.340440
\(489\) 0 0
\(490\) 0 0
\(491\) 1.64349i 0.0741695i 0.999312 + 0.0370848i \(0.0118072\pi\)
−0.999312 + 0.0370848i \(0.988193\pi\)
\(492\) 0 0
\(493\) 6.58755i 0.296688i
\(494\) 0.138701i 0.00624044i
\(495\) 0 0
\(496\) − 4.82843i − 0.216803i
\(497\) 0 0
\(498\) 0 0
\(499\) −34.7330 −1.55486 −0.777430 0.628969i \(-0.783477\pi\)
−0.777430 + 0.628969i \(0.783477\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 4.31736i 0.192693i
\(503\) −28.9613 −1.29132 −0.645660 0.763625i \(-0.723418\pi\)
−0.645660 + 0.763625i \(0.723418\pi\)
\(504\) 0 0
\(505\) −6.73545 −0.299724
\(506\) 14.8601i 0.660610i
\(507\) 0 0
\(508\) −10.7530 −0.477086
\(509\) −21.4621 −0.951291 −0.475646 0.879637i \(-0.657786\pi\)
−0.475646 + 0.879637i \(0.657786\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 4.83324i 0.213185i
\(515\) − 0.520042i − 0.0229158i
\(516\) 0 0
\(517\) 6.61565i 0.290956i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.0681483 −0.00298850
\(521\) −40.2436 −1.76310 −0.881552 0.472087i \(-0.843501\pi\)
−0.881552 + 0.472087i \(0.843501\pi\)
\(522\) 0 0
\(523\) − 29.6889i − 1.29820i −0.760701 0.649102i \(-0.775145\pi\)
0.760701 0.649102i \(-0.224855\pi\)
\(524\) −3.70915 −0.162035
\(525\) 0 0
\(526\) 6.66490 0.290603
\(527\) − 35.3818i − 1.54125i
\(528\) 0 0
\(529\) 9.07180 0.394426
\(530\) 13.2268 0.574535
\(531\) 0 0
\(532\) 0 0
\(533\) 0.115117i 0.00498627i
\(534\) 0 0
\(535\) 6.12701i 0.264894i
\(536\) − 10.6629i − 0.460567i
\(537\) 0 0
\(538\) 31.7400i 1.36841i
\(539\) 0 0
\(540\) 0 0
\(541\) −17.2583 −0.741992 −0.370996 0.928635i \(-0.620984\pi\)
−0.370996 + 0.928635i \(0.620984\pi\)
\(542\) 17.4641 0.750147
\(543\) 0 0
\(544\) 7.32780i 0.314177i
\(545\) 13.5546 0.580615
\(546\) 0 0
\(547\) −17.9703 −0.768354 −0.384177 0.923260i \(-0.625515\pi\)
−0.384177 + 0.923260i \(0.625515\pi\)
\(548\) 13.5206i 0.577570i
\(549\) 0 0
\(550\) 3.98174 0.169782
\(551\) −1.82967 −0.0779466
\(552\) 0 0
\(553\) 0 0
\(554\) − 23.5047i − 0.998619i
\(555\) 0 0
\(556\) 9.06251i 0.384336i
\(557\) 45.2546i 1.91750i 0.284256 + 0.958748i \(0.408253\pi\)
−0.284256 + 0.958748i \(0.591747\pi\)
\(558\) 0 0
\(559\) 0.0657443i 0.00278069i
\(560\) 0 0
\(561\) 0 0
\(562\) −15.4159 −0.650280
\(563\) −15.8667 −0.668703 −0.334351 0.942448i \(-0.608517\pi\)
−0.334351 + 0.942448i \(0.608517\pi\)
\(564\) 0 0
\(565\) 11.6982i 0.492146i
\(566\) 27.7108 1.16477
\(567\) 0 0
\(568\) 9.93426 0.416832
\(569\) − 0.0605496i − 0.00253837i −0.999999 0.00126918i \(-0.999596\pi\)
0.999999 0.00126918i \(-0.000403994\pi\)
\(570\) 0 0
\(571\) −13.5649 −0.567674 −0.283837 0.958873i \(-0.591607\pi\)
−0.283837 + 0.958873i \(0.591607\pi\)
\(572\) 0.271349 0.0113457
\(573\) 0 0
\(574\) 0 0
\(575\) 3.73205i 0.155637i
\(576\) 0 0
\(577\) − 43.6768i − 1.81829i −0.416481 0.909144i \(-0.636737\pi\)
0.416481 0.909144i \(-0.363263\pi\)
\(578\) 36.6967i 1.52638i
\(579\) 0 0
\(580\) − 0.898979i − 0.0373281i
\(581\) 0 0
\(582\) 0 0
\(583\) −52.6656 −2.18119
\(584\) −11.6569 −0.482364
\(585\) 0 0
\(586\) − 2.84377i − 0.117475i
\(587\) 45.4100 1.87427 0.937135 0.348967i \(-0.113468\pi\)
0.937135 + 0.348967i \(0.113468\pi\)
\(588\) 0 0
\(589\) 9.82718 0.404922
\(590\) − 10.6422i − 0.438134i
\(591\) 0 0
\(592\) −4.06815 −0.167200
\(593\) −25.7012 −1.05542 −0.527711 0.849424i \(-0.676950\pi\)
−0.527711 + 0.849424i \(0.676950\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.2865i 0.626158i
\(597\) 0 0
\(598\) 0.254333i 0.0104005i
\(599\) − 26.5982i − 1.08677i −0.839483 0.543386i \(-0.817142\pi\)
0.839483 0.543386i \(-0.182858\pi\)
\(600\) 0 0
\(601\) − 12.9681i − 0.528979i −0.964389 0.264489i \(-0.914797\pi\)
0.964389 0.264489i \(-0.0852034\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 9.87883 0.401964
\(605\) −4.85425 −0.197353
\(606\) 0 0
\(607\) 16.3115i 0.662064i 0.943620 + 0.331032i \(0.107397\pi\)
−0.943620 + 0.331032i \(0.892603\pi\)
\(608\) −2.03528 −0.0825413
\(609\) 0 0
\(610\) 7.52056 0.304498
\(611\) 0.113228i 0.00458073i
\(612\) 0 0
\(613\) −14.3879 −0.581122 −0.290561 0.956856i \(-0.593842\pi\)
−0.290561 + 0.956856i \(0.593842\pi\)
\(614\) −2.52180 −0.101772
\(615\) 0 0
\(616\) 0 0
\(617\) − 8.65760i − 0.348542i −0.984698 0.174271i \(-0.944243\pi\)
0.984698 0.174271i \(-0.0557569\pi\)
\(618\) 0 0
\(619\) 44.8553i 1.80289i 0.432896 + 0.901444i \(0.357492\pi\)
−0.432896 + 0.901444i \(0.642508\pi\)
\(620\) 4.82843i 0.193914i
\(621\) 0 0
\(622\) 10.9939i 0.440817i
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 24.9461 0.997049
\(627\) 0 0
\(628\) − 14.2884i − 0.570168i
\(629\) −29.8106 −1.18863
\(630\) 0 0
\(631\) −38.1878 −1.52023 −0.760116 0.649788i \(-0.774858\pi\)
−0.760116 + 0.649788i \(0.774858\pi\)
\(632\) − 17.5498i − 0.698093i
\(633\) 0 0
\(634\) −15.0693 −0.598479
\(635\) 10.7530 0.426719
\(636\) 0 0
\(637\) 0 0
\(638\) 3.57950i 0.141714i
\(639\) 0 0
\(640\) − 1.00000i − 0.0395285i
\(641\) − 8.55094i − 0.337742i −0.985638 0.168871i \(-0.945988\pi\)
0.985638 0.168871i \(-0.0540121\pi\)
\(642\) 0 0
\(643\) − 2.75058i − 0.108472i −0.998528 0.0542361i \(-0.982728\pi\)
0.998528 0.0542361i \(-0.0172724\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −14.9141 −0.586788
\(647\) −27.7626 −1.09146 −0.545731 0.837961i \(-0.683748\pi\)
−0.545731 + 0.837961i \(0.683748\pi\)
\(648\) 0 0
\(649\) 42.3746i 1.66335i
\(650\) 0.0681483 0.00267300
\(651\) 0 0
\(652\) −9.97758 −0.390752
\(653\) − 14.1199i − 0.552553i −0.961078 0.276277i \(-0.910899\pi\)
0.961078 0.276277i \(-0.0891006\pi\)
\(654\) 0 0
\(655\) 3.70915 0.144928
\(656\) −1.68921 −0.0659526
\(657\) 0 0
\(658\) 0 0
\(659\) − 9.92570i − 0.386650i −0.981135 0.193325i \(-0.938073\pi\)
0.981135 0.193325i \(-0.0619272\pi\)
\(660\) 0 0
\(661\) 18.3631i 0.714241i 0.934058 + 0.357121i \(0.116241\pi\)
−0.934058 + 0.357121i \(0.883759\pi\)
\(662\) 30.1808i 1.17301i
\(663\) 0 0
\(664\) − 14.3490i − 0.556849i
\(665\) 0 0
\(666\) 0 0
\(667\) −3.35504 −0.129908
\(668\) −13.7778 −0.533079
\(669\) 0 0
\(670\) 10.6629i 0.411944i
\(671\) −29.9449 −1.15601
\(672\) 0 0
\(673\) −32.6050 −1.25683 −0.628415 0.777878i \(-0.716296\pi\)
−0.628415 + 0.777878i \(0.716296\pi\)
\(674\) − 21.5911i − 0.831658i
\(675\) 0 0
\(676\) −12.9954 −0.499821
\(677\) 18.3385 0.704804 0.352402 0.935849i \(-0.385365\pi\)
0.352402 + 0.935849i \(0.385365\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) − 7.32780i − 0.281008i
\(681\) 0 0
\(682\) − 19.2255i − 0.736184i
\(683\) − 24.4770i − 0.936587i −0.883573 0.468294i \(-0.844869\pi\)
0.883573 0.468294i \(-0.155131\pi\)
\(684\) 0 0
\(685\) − 13.5206i − 0.516594i
\(686\) 0 0
\(687\) 0 0
\(688\) −0.964724 −0.0367798
\(689\) −0.901383 −0.0343400
\(690\) 0 0
\(691\) 18.3734i 0.698957i 0.936944 + 0.349479i \(0.113641\pi\)
−0.936944 + 0.349479i \(0.886359\pi\)
\(692\) 8.27276 0.314483
\(693\) 0 0
\(694\) 23.1842 0.880061
\(695\) − 9.06251i − 0.343761i
\(696\) 0 0
\(697\) −12.3782 −0.468858
\(698\) 10.7287 0.406085
\(699\) 0 0
\(700\) 0 0
\(701\) − 14.2399i − 0.537834i −0.963163 0.268917i \(-0.913334\pi\)
0.963163 0.268917i \(-0.0866658\pi\)
\(702\) 0 0
\(703\) − 8.27981i − 0.312279i
\(704\) 3.98174i 0.150067i
\(705\) 0 0
\(706\) 8.74756i 0.329219i
\(707\) 0 0
\(708\) 0 0
\(709\) 37.5171 1.40898 0.704492 0.709712i \(-0.251175\pi\)
0.704492 + 0.709712i \(0.251175\pi\)
\(710\) −9.93426 −0.372826
\(711\) 0 0
\(712\) 1.82791i 0.0685039i
\(713\) 18.0199 0.674852
\(714\) 0 0
\(715\) −0.271349 −0.0101479
\(716\) − 11.5182i − 0.430454i
\(717\) 0 0
\(718\) 25.7566 0.961229
\(719\) 5.31467 0.198204 0.0991019 0.995077i \(-0.468403\pi\)
0.0991019 + 0.995077i \(0.468403\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 14.8577i 0.552945i
\(723\) 0 0
\(724\) 16.5924i 0.616650i
\(725\) 0.898979i 0.0333873i
\(726\) 0 0
\(727\) 2.93413i 0.108821i 0.998519 + 0.0544104i \(0.0173279\pi\)
−0.998519 + 0.0544104i \(0.982672\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 11.6569 0.431440
\(731\) −7.06931 −0.261468
\(732\) 0 0
\(733\) − 13.6482i − 0.504108i −0.967713 0.252054i \(-0.918894\pi\)
0.967713 0.252054i \(-0.0811061\pi\)
\(734\) −19.9377 −0.735914
\(735\) 0 0
\(736\) −3.73205 −0.137565
\(737\) − 42.4569i − 1.56392i
\(738\) 0 0
\(739\) 31.3300 1.15249 0.576246 0.817277i \(-0.304517\pi\)
0.576246 + 0.817277i \(0.304517\pi\)
\(740\) 4.06815 0.149548
\(741\) 0 0
\(742\) 0 0
\(743\) − 4.72061i − 0.173182i −0.996244 0.0865911i \(-0.972403\pi\)
0.996244 0.0865911i \(-0.0275974\pi\)
\(744\) 0 0
\(745\) − 15.2865i − 0.560053i
\(746\) 1.03152i 0.0377668i
\(747\) 0 0
\(748\) 29.1774i 1.06683i
\(749\) 0 0
\(750\) 0 0
\(751\) −25.6788 −0.937032 −0.468516 0.883455i \(-0.655211\pi\)
−0.468516 + 0.883455i \(0.655211\pi\)
\(752\) −1.66150 −0.0605886
\(753\) 0 0
\(754\) 0.0612640i 0.00223110i
\(755\) −9.87883 −0.359527
\(756\) 0 0
\(757\) −37.8781 −1.37670 −0.688352 0.725377i \(-0.741665\pi\)
−0.688352 + 0.725377i \(0.741665\pi\)
\(758\) 5.09497i 0.185058i
\(759\) 0 0
\(760\) 2.03528 0.0738272
\(761\) 20.7066 0.750615 0.375308 0.926900i \(-0.377537\pi\)
0.375308 + 0.926900i \(0.377537\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 18.4336i − 0.666905i
\(765\) 0 0
\(766\) − 8.46750i − 0.305943i
\(767\) 0.725251i 0.0261873i
\(768\) 0 0
\(769\) 3.34563i 0.120647i 0.998179 + 0.0603233i \(0.0192132\pi\)
−0.998179 + 0.0603233i \(0.980787\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.35827 0.228839
\(773\) 28.7264 1.03322 0.516609 0.856221i \(-0.327194\pi\)
0.516609 + 0.856221i \(0.327194\pi\)
\(774\) 0 0
\(775\) − 4.82843i − 0.173442i
\(776\) −17.1502 −0.615656
\(777\) 0 0
\(778\) 5.74150 0.205843
\(779\) − 3.43801i − 0.123180i
\(780\) 0 0
\(781\) 39.5556 1.41541
\(782\) −27.3477 −0.977953
\(783\) 0 0
\(784\) 0 0
\(785\) 14.2884i 0.509974i
\(786\) 0 0
\(787\) − 5.49030i − 0.195708i −0.995201 0.0978541i \(-0.968802\pi\)
0.995201 0.0978541i \(-0.0311978\pi\)
\(788\) 12.8389i 0.457367i
\(789\) 0 0
\(790\) 17.5498i 0.624393i
\(791\) 0 0
\(792\) 0 0
\(793\) −0.512514 −0.0181999
\(794\) 16.8758 0.598901
\(795\) 0 0
\(796\) 9.62962i 0.341313i
\(797\) −50.8854 −1.80245 −0.901227 0.433347i \(-0.857332\pi\)
−0.901227 + 0.433347i \(0.857332\pi\)
\(798\) 0 0
\(799\) −12.1751 −0.430725
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 1.88876 0.0666945
\(803\) −46.4146 −1.63793
\(804\) 0 0
\(805\) 0 0
\(806\) − 0.329049i − 0.0115903i
\(807\) 0 0
\(808\) 6.73545i 0.236952i
\(809\) 2.08433i 0.0732812i 0.999329 + 0.0366406i \(0.0116657\pi\)
−0.999329 + 0.0366406i \(0.988334\pi\)
\(810\) 0 0
\(811\) 27.0199i 0.948797i 0.880310 + 0.474398i \(0.157334\pi\)
−0.880310 + 0.474398i \(0.842666\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16.1983 −0.567750
\(815\) 9.97758 0.349499
\(816\) 0 0
\(817\) − 1.96348i − 0.0686934i
\(818\) −32.9802 −1.15312
\(819\) 0 0
\(820\) 1.68921 0.0589898
\(821\) − 9.30787i − 0.324847i −0.986721 0.162423i \(-0.948069\pi\)
0.986721 0.162423i \(-0.0519311\pi\)
\(822\) 0 0
\(823\) −40.5186 −1.41239 −0.706195 0.708018i \(-0.749590\pi\)
−0.706195 + 0.708018i \(0.749590\pi\)
\(824\) −0.520042 −0.0181165
\(825\) 0 0
\(826\) 0 0
\(827\) − 14.0131i − 0.487284i −0.969865 0.243642i \(-0.921658\pi\)
0.969865 0.243642i \(-0.0783423\pi\)
\(828\) 0 0
\(829\) 21.7707i 0.756129i 0.925779 + 0.378064i \(0.123410\pi\)
−0.925779 + 0.378064i \(0.876590\pi\)
\(830\) 14.3490i 0.498061i
\(831\) 0 0
\(832\) 0.0681483i 0.00236262i
\(833\) 0 0
\(834\) 0 0
\(835\) 13.7778 0.476801
\(836\) −8.10394 −0.280281
\(837\) 0 0
\(838\) − 0.300470i − 0.0103796i
\(839\) −53.7026 −1.85402 −0.927009 0.375039i \(-0.877629\pi\)
−0.927009 + 0.375039i \(0.877629\pi\)
\(840\) 0 0
\(841\) 28.1918 0.972132
\(842\) 28.8625i 0.994666i
\(843\) 0 0
\(844\) 14.5619 0.501241
\(845\) 12.9954 0.447054
\(846\) 0 0
\(847\) 0 0
\(848\) − 13.2268i − 0.454210i
\(849\) 0 0
\(850\) 7.32780i 0.251342i
\(851\) − 15.1825i − 0.520451i
\(852\) 0 0
\(853\) − 7.95355i − 0.272324i −0.990687 0.136162i \(-0.956523\pi\)
0.990687 0.136162i \(-0.0434768\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.12701 0.209417
\(857\) −2.29303 −0.0783283 −0.0391641 0.999233i \(-0.512470\pi\)
−0.0391641 + 0.999233i \(0.512470\pi\)
\(858\) 0 0
\(859\) 44.0003i 1.50127i 0.660716 + 0.750636i \(0.270253\pi\)
−0.660716 + 0.750636i \(0.729747\pi\)
\(860\) 0.964724 0.0328968
\(861\) 0 0
\(862\) −33.5897 −1.14407
\(863\) 33.1352i 1.12794i 0.825797 + 0.563968i \(0.190726\pi\)
−0.825797 + 0.563968i \(0.809274\pi\)
\(864\) 0 0
\(865\) −8.27276 −0.281282
\(866\) 11.2207 0.381296
\(867\) 0 0
\(868\) 0 0
\(869\) − 69.8787i − 2.37047i
\(870\) 0 0
\(871\) − 0.726659i − 0.0246219i
\(872\) − 13.5546i − 0.459016i
\(873\) 0 0
\(874\) − 7.59575i − 0.256930i
\(875\) 0 0
\(876\) 0 0
\(877\) −5.68871 −0.192094 −0.0960471 0.995377i \(-0.530620\pi\)
−0.0960471 + 0.995377i \(0.530620\pi\)
\(878\) −16.8673 −0.569243
\(879\) 0 0
\(880\) − 3.98174i − 0.134224i
\(881\) 22.4073 0.754923 0.377461 0.926025i \(-0.376797\pi\)
0.377461 + 0.926025i \(0.376797\pi\)
\(882\) 0 0
\(883\) −18.7564 −0.631204 −0.315602 0.948892i \(-0.602206\pi\)
−0.315602 + 0.948892i \(0.602206\pi\)
\(884\) 0.499378i 0.0167959i
\(885\) 0 0
\(886\) 2.05646 0.0690880
\(887\) −1.47090 −0.0493880 −0.0246940 0.999695i \(-0.507861\pi\)
−0.0246940 + 0.999695i \(0.507861\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 1.82791i − 0.0612717i
\(891\) 0 0
\(892\) − 23.6609i − 0.792227i
\(893\) − 3.38161i − 0.113161i
\(894\) 0 0
\(895\) 11.5182i 0.385009i
\(896\) 0 0
\(897\) 0 0
\(898\) −12.5892 −0.420108
\(899\) 4.34066 0.144769
\(900\) 0 0
\(901\) − 96.9233i − 3.22898i
\(902\) −6.72600 −0.223951
\(903\) 0 0
\(904\) 11.6982 0.389076
\(905\) − 16.5924i − 0.551549i
\(906\) 0 0
\(907\) 18.8459 0.625767 0.312883 0.949792i \(-0.398705\pi\)
0.312883 + 0.949792i \(0.398705\pi\)
\(908\) 8.64048 0.286744
\(909\) 0 0
\(910\) 0 0
\(911\) − 5.45859i − 0.180851i −0.995903 0.0904256i \(-0.971177\pi\)
0.995903 0.0904256i \(-0.0288227\pi\)
\(912\) 0 0
\(913\) − 57.1339i − 1.89086i
\(914\) 34.9529i 1.15614i
\(915\) 0 0
\(916\) − 14.0754i − 0.465063i
\(917\) 0 0
\(918\) 0 0
\(919\) 29.9611 0.988324 0.494162 0.869370i \(-0.335475\pi\)
0.494162 + 0.869370i \(0.335475\pi\)
\(920\) 3.73205 0.123042
\(921\) 0 0
\(922\) − 23.3750i − 0.769814i
\(923\) 0.677003 0.0222838
\(924\) 0 0
\(925\) −4.06815 −0.133760
\(926\) − 6.35693i − 0.208902i
\(927\) 0 0
\(928\) −0.898979 −0.0295104
\(929\) 46.7863 1.53501 0.767504 0.641044i \(-0.221498\pi\)
0.767504 + 0.641044i \(0.221498\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) − 20.1976i − 0.661593i
\(933\) 0 0
\(934\) 7.79315i 0.255000i
\(935\) − 29.1774i − 0.954203i
\(936\) 0 0
\(937\) 19.1632i 0.626036i 0.949747 + 0.313018i \(0.101340\pi\)
−0.949747 + 0.313018i \(0.898660\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.66150 0.0541921
\(941\) −50.4949 −1.64609 −0.823043 0.567979i \(-0.807726\pi\)
−0.823043 + 0.567979i \(0.807726\pi\)
\(942\) 0 0
\(943\) − 6.30422i − 0.205294i
\(944\) −10.6422 −0.346375
\(945\) 0 0
\(946\) −3.84128 −0.124891
\(947\) 36.0618i 1.17185i 0.810365 + 0.585925i \(0.199269\pi\)
−0.810365 + 0.585925i \(0.800731\pi\)
\(948\) 0 0
\(949\) −0.794395 −0.0257872
\(950\) −2.03528 −0.0660331
\(951\) 0 0
\(952\) 0 0
\(953\) − 29.7944i − 0.965137i −0.875858 0.482568i \(-0.839704\pi\)
0.875858 0.482568i \(-0.160296\pi\)
\(954\) 0 0
\(955\) 18.4336i 0.596498i
\(956\) − 23.5040i − 0.760173i
\(957\) 0 0
\(958\) 27.5040i 0.888613i
\(959\) 0 0
\(960\) 0 0
\(961\) 7.68629 0.247945
\(962\) −0.277238 −0.00893850
\(963\) 0 0
\(964\) 14.8685i 0.478883i
\(965\) −6.35827 −0.204680
\(966\) 0 0
\(967\) −11.5198 −0.370453 −0.185226 0.982696i \(-0.559302\pi\)
−0.185226 + 0.982696i \(0.559302\pi\)
\(968\) 4.85425i 0.156022i
\(969\) 0 0
\(970\) 17.1502 0.550659
\(971\) −42.4693 −1.36291 −0.681453 0.731862i \(-0.738652\pi\)
−0.681453 + 0.731862i \(0.738652\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 35.4468i 1.13579i
\(975\) 0 0
\(976\) − 7.52056i − 0.240727i
\(977\) 18.1610i 0.581023i 0.956871 + 0.290512i \(0.0938255\pi\)
−0.956871 + 0.290512i \(0.906175\pi\)
\(978\) 0 0
\(979\) 7.27827i 0.232614i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.64349 −0.0524458
\(983\) 12.3998 0.395491 0.197746 0.980253i \(-0.436638\pi\)
0.197746 + 0.980253i \(0.436638\pi\)
\(984\) 0 0
\(985\) − 12.8389i − 0.409082i
\(986\) −6.58755 −0.209790
\(987\) 0 0
\(988\) −0.138701 −0.00441266
\(989\) − 3.60040i − 0.114486i
\(990\) 0 0
\(991\) 21.7201 0.689962 0.344981 0.938610i \(-0.387885\pi\)
0.344981 + 0.938610i \(0.387885\pi\)
\(992\) 4.82843 0.153303
\(993\) 0 0
\(994\) 0 0
\(995\) − 9.62962i − 0.305280i
\(996\) 0 0
\(997\) − 42.4763i − 1.34524i −0.739989 0.672619i \(-0.765169\pi\)
0.739989 0.672619i \(-0.234831\pi\)
\(998\) − 34.7330i − 1.09945i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4410.2.b.e.881.5 8
3.2 odd 2 4410.2.b.b.881.4 8
7.4 even 3 630.2.be.a.341.1 8
7.5 odd 6 630.2.be.b.521.3 yes 8
7.6 odd 2 4410.2.b.b.881.5 8
21.5 even 6 630.2.be.a.521.1 yes 8
21.11 odd 6 630.2.be.b.341.3 yes 8
21.20 even 2 inner 4410.2.b.e.881.4 8
35.4 even 6 3150.2.bf.b.1601.4 8
35.12 even 12 3150.2.bp.f.899.4 8
35.18 odd 12 3150.2.bp.a.1349.4 8
35.19 odd 6 3150.2.bf.c.1151.2 8
35.32 odd 12 3150.2.bp.d.1349.1 8
35.33 even 12 3150.2.bp.c.899.1 8
105.32 even 12 3150.2.bp.c.1349.1 8
105.47 odd 12 3150.2.bp.a.899.4 8
105.53 even 12 3150.2.bp.f.1349.4 8
105.68 odd 12 3150.2.bp.d.899.1 8
105.74 odd 6 3150.2.bf.c.1601.2 8
105.89 even 6 3150.2.bf.b.1151.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.be.a.341.1 8 7.4 even 3
630.2.be.a.521.1 yes 8 21.5 even 6
630.2.be.b.341.3 yes 8 21.11 odd 6
630.2.be.b.521.3 yes 8 7.5 odd 6
3150.2.bf.b.1151.4 8 105.89 even 6
3150.2.bf.b.1601.4 8 35.4 even 6
3150.2.bf.c.1151.2 8 35.19 odd 6
3150.2.bf.c.1601.2 8 105.74 odd 6
3150.2.bp.a.899.4 8 105.47 odd 12
3150.2.bp.a.1349.4 8 35.18 odd 12
3150.2.bp.c.899.1 8 35.33 even 12
3150.2.bp.c.1349.1 8 105.32 even 12
3150.2.bp.d.899.1 8 105.68 odd 12
3150.2.bp.d.1349.1 8 35.32 odd 12
3150.2.bp.f.899.4 8 35.12 even 12
3150.2.bp.f.1349.4 8 105.53 even 12
4410.2.b.b.881.4 8 3.2 odd 2
4410.2.b.b.881.5 8 7.6 odd 2
4410.2.b.e.881.4 8 21.20 even 2 inner
4410.2.b.e.881.5 8 1.1 even 1 trivial