Properties

Label 3150.2.bp.a.1349.4
Level $3150$
Weight $2$
Character 3150.1349
Analytic conductor $25.153$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3150,2,Mod(899,3150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3150, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3150.899");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3150.bp (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.1528766367\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 630)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1349.4
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3150.1349
Dual form 3150.2.bp.a.899.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(2.63896 + 0.189469i) q^{7} +1.00000 q^{8} +(-3.44829 + 1.99087i) q^{11} +0.0681483 q^{13} +(-1.48356 + 2.19067i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-6.34607 + 3.66390i) q^{17} +(1.76260 + 1.01764i) q^{19} -3.98174i q^{22} +(1.86603 - 3.23205i) q^{23} +(-0.0340742 + 0.0590182i) q^{26} +(-1.15539 - 2.38014i) q^{28} -0.898979i q^{29} +(-4.18154 + 2.41421i) q^{31} +(-0.500000 - 0.866025i) q^{32} -7.32780i q^{34} +(-3.52312 - 2.03407i) q^{37} +(-1.76260 + 1.01764i) q^{38} -1.68921 q^{41} -0.964724i q^{43} +(3.44829 + 1.99087i) q^{44} +(1.86603 + 3.23205i) q^{46} +(-1.43890 - 0.830749i) q^{47} +(6.92820 + 1.00000i) q^{49} +(-0.0340742 - 0.0590182i) q^{52} +(-6.61339 - 11.4547i) q^{53} +(2.63896 + 0.189469i) q^{56} +(0.778539 + 0.449490i) q^{58} +(-5.32112 - 9.21645i) q^{59} +(6.51299 + 3.76028i) q^{61} -4.82843i q^{62} +1.00000 q^{64} +(-9.23435 + 5.33145i) q^{67} +(6.34607 + 3.66390i) q^{68} +9.93426i q^{71} +(-5.82843 - 10.0951i) q^{73} +(3.52312 - 2.03407i) q^{74} -2.03528i q^{76} +(-9.47710 + 4.60048i) q^{77} +(8.77489 - 15.1986i) q^{79} +(0.844605 - 1.46290i) q^{82} +14.3490i q^{83} +(0.835475 + 0.482362i) q^{86} +(-3.44829 + 1.99087i) q^{88} +(-0.913956 + 1.58302i) q^{89} +(0.179841 + 0.0129120i) q^{91} -3.73205 q^{92} +(1.43890 - 0.830749i) q^{94} -17.1502 q^{97} +(-4.33013 + 5.50000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} - 24 q^{11} + 16 q^{13} - 4 q^{16} - 24 q^{17} + 8 q^{23} - 8 q^{26} - 4 q^{32} - 32 q^{41} + 24 q^{44} + 8 q^{46} - 12 q^{47} - 8 q^{52} - 4 q^{53} - 24 q^{59} + 8 q^{64}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(2801\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.63896 + 0.189469i 0.997433 + 0.0716124i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −3.44829 + 1.99087i −1.03970 + 0.600270i −0.919748 0.392510i \(-0.871607\pi\)
−0.119950 + 0.992780i \(0.538273\pi\)
\(12\) 0 0
\(13\) 0.0681483 0.0189010 0.00945048 0.999955i \(-0.496992\pi\)
0.00945048 + 0.999955i \(0.496992\pi\)
\(14\) −1.48356 + 2.19067i −0.396499 + 0.585481i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −6.34607 + 3.66390i −1.53915 + 0.888627i −0.540258 + 0.841499i \(0.681673\pi\)
−0.998889 + 0.0471274i \(0.984993\pi\)
\(18\) 0 0
\(19\) 1.76260 + 1.01764i 0.404368 + 0.233462i 0.688367 0.725362i \(-0.258328\pi\)
−0.283999 + 0.958825i \(0.591661\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.98174i 0.848910i
\(23\) 1.86603 3.23205i 0.389093 0.673929i −0.603235 0.797564i \(-0.706122\pi\)
0.992328 + 0.123635i \(0.0394551\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.0340742 + 0.0590182i −0.00668250 + 0.0115744i
\(27\) 0 0
\(28\) −1.15539 2.38014i −0.218349 0.449804i
\(29\) 0.898979i 0.166936i −0.996510 0.0834681i \(-0.973400\pi\)
0.996510 0.0834681i \(-0.0265997\pi\)
\(30\) 0 0
\(31\) −4.18154 + 2.41421i −0.751027 + 0.433606i −0.826065 0.563575i \(-0.809426\pi\)
0.0750380 + 0.997181i \(0.476092\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 7.32780i 1.25671i
\(35\) 0 0
\(36\) 0 0
\(37\) −3.52312 2.03407i −0.579197 0.334400i 0.181617 0.983369i \(-0.441867\pi\)
−0.760814 + 0.648970i \(0.775200\pi\)
\(38\) −1.76260 + 1.01764i −0.285932 + 0.165083i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.68921 −0.263810 −0.131905 0.991262i \(-0.542109\pi\)
−0.131905 + 0.991262i \(0.542109\pi\)
\(42\) 0 0
\(43\) 0.964724i 0.147119i −0.997291 0.0735595i \(-0.976564\pi\)
0.997291 0.0735595i \(-0.0234359\pi\)
\(44\) 3.44829 + 1.99087i 0.519849 + 0.300135i
\(45\) 0 0
\(46\) 1.86603 + 3.23205i 0.275130 + 0.476540i
\(47\) −1.43890 0.830749i −0.209885 0.121177i 0.391373 0.920232i \(-0.372000\pi\)
−0.601258 + 0.799055i \(0.705334\pi\)
\(48\) 0 0
\(49\) 6.92820 + 1.00000i 0.989743 + 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.0340742 0.0590182i −0.00472524 0.00818435i
\(53\) −6.61339 11.4547i −0.908419 1.57343i −0.816260 0.577684i \(-0.803957\pi\)
−0.0921588 0.995744i \(-0.529377\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.63896 + 0.189469i 0.352646 + 0.0253188i
\(57\) 0 0
\(58\) 0.778539 + 0.449490i 0.102227 + 0.0590209i
\(59\) −5.32112 9.21645i −0.692751 1.19988i −0.970933 0.239352i \(-0.923065\pi\)
0.278182 0.960528i \(-0.410268\pi\)
\(60\) 0 0
\(61\) 6.51299 + 3.76028i 0.833903 + 0.481454i 0.855187 0.518319i \(-0.173442\pi\)
−0.0212839 + 0.999773i \(0.506775\pi\)
\(62\) 4.82843i 0.613211i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −9.23435 + 5.33145i −1.12816 + 0.651341i −0.943470 0.331457i \(-0.892460\pi\)
−0.184685 + 0.982798i \(0.559126\pi\)
\(68\) 6.34607 + 3.66390i 0.769573 + 0.444313i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.93426i 1.17898i 0.807776 + 0.589490i \(0.200671\pi\)
−0.807776 + 0.589490i \(0.799329\pi\)
\(72\) 0 0
\(73\) −5.82843 10.0951i −0.682166 1.18155i −0.974319 0.225174i \(-0.927705\pi\)
0.292153 0.956372i \(-0.405628\pi\)
\(74\) 3.52312 2.03407i 0.409554 0.236456i
\(75\) 0 0
\(76\) 2.03528i 0.233462i
\(77\) −9.47710 + 4.60048i −1.08002 + 0.524273i
\(78\) 0 0
\(79\) 8.77489 15.1986i 0.987252 1.70997i 0.355787 0.934567i \(-0.384213\pi\)
0.631465 0.775404i \(-0.282454\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0.844605 1.46290i 0.0932711 0.161550i
\(83\) 14.3490i 1.57501i 0.616311 + 0.787503i \(0.288626\pi\)
−0.616311 + 0.787503i \(0.711374\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.835475 + 0.482362i 0.0900916 + 0.0520144i
\(87\) 0 0
\(88\) −3.44829 + 1.99087i −0.367589 + 0.212227i
\(89\) −0.913956 + 1.58302i −0.0968791 + 0.167800i −0.910391 0.413748i \(-0.864219\pi\)
0.813512 + 0.581548i \(0.197553\pi\)
\(90\) 0 0
\(91\) 0.179841 + 0.0129120i 0.0188524 + 0.00135354i
\(92\) −3.73205 −0.389093
\(93\) 0 0
\(94\) 1.43890 0.830749i 0.148411 0.0856852i
\(95\) 0 0
\(96\) 0 0
\(97\) −17.1502 −1.74134 −0.870668 0.491870i \(-0.836313\pi\)
−0.870668 + 0.491870i \(0.836313\pi\)
\(98\) −4.33013 + 5.50000i −0.437409 + 0.555584i
\(99\) 0 0
\(100\) 0 0
\(101\) 3.36773 + 5.83307i 0.335101 + 0.580412i 0.983504 0.180885i \(-0.0578962\pi\)
−0.648403 + 0.761297i \(0.724563\pi\)
\(102\) 0 0
\(103\) −0.260021 + 0.450370i −0.0256206 + 0.0443762i −0.878551 0.477648i \(-0.841490\pi\)
0.852931 + 0.522024i \(0.174823\pi\)
\(104\) 0.0681483 0.00668250
\(105\) 0 0
\(106\) 13.2268 1.28470
\(107\) −3.06350 + 5.30614i −0.296160 + 0.512964i −0.975254 0.221087i \(-0.929040\pi\)
0.679094 + 0.734051i \(0.262373\pi\)
\(108\) 0 0
\(109\) 6.77729 + 11.7386i 0.649147 + 1.12436i 0.983327 + 0.181846i \(0.0582074\pi\)
−0.334180 + 0.942509i \(0.608459\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.48356 + 2.19067i −0.140184 + 0.206999i
\(113\) −11.6982 −1.10047 −0.550236 0.835009i \(-0.685462\pi\)
−0.550236 + 0.835009i \(0.685462\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.778539 + 0.449490i −0.0722855 + 0.0417341i
\(117\) 0 0
\(118\) 10.6422 0.979698
\(119\) −17.4412 + 8.46651i −1.59883 + 0.776123i
\(120\) 0 0
\(121\) 2.42713 4.20390i 0.220648 0.382173i
\(122\) −6.51299 + 3.76028i −0.589659 + 0.340440i
\(123\) 0 0
\(124\) 4.18154 + 2.41421i 0.375513 + 0.216803i
\(125\) 0 0
\(126\) 0 0
\(127\) 10.7530i 0.954173i −0.878856 0.477086i \(-0.841693\pi\)
0.878856 0.477086i \(-0.158307\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −1.85457 + 3.21221i −0.162035 + 0.280653i −0.935598 0.353066i \(-0.885139\pi\)
0.773564 + 0.633719i \(0.218472\pi\)
\(132\) 0 0
\(133\) 4.45862 + 3.01946i 0.386611 + 0.261821i
\(134\) 10.6629i 0.921135i
\(135\) 0 0
\(136\) −6.34607 + 3.66390i −0.544171 + 0.314177i
\(137\) 6.76028 + 11.7091i 0.577570 + 1.00038i 0.995757 + 0.0920192i \(0.0293321\pi\)
−0.418188 + 0.908361i \(0.637335\pi\)
\(138\) 0 0
\(139\) 9.06251i 0.768672i 0.923193 + 0.384336i \(0.125570\pi\)
−0.923193 + 0.384336i \(0.874430\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.60332 4.96713i −0.721974 0.416832i
\(143\) −0.234995 + 0.135674i −0.0196513 + 0.0113457i
\(144\) 0 0
\(145\) 0 0
\(146\) 11.6569 0.964728
\(147\) 0 0
\(148\) 4.06815i 0.334400i
\(149\) −13.2385 7.64324i −1.08454 0.626158i −0.152421 0.988316i \(-0.548707\pi\)
−0.932117 + 0.362157i \(0.882040\pi\)
\(150\) 0 0
\(151\) 4.93942 + 8.55532i 0.401964 + 0.696222i 0.993963 0.109717i \(-0.0349944\pi\)
−0.591999 + 0.805939i \(0.701661\pi\)
\(152\) 1.76260 + 1.01764i 0.142966 + 0.0825413i
\(153\) 0 0
\(154\) 0.754415 10.5076i 0.0607925 0.846730i
\(155\) 0 0
\(156\) 0 0
\(157\) −7.14418 12.3741i −0.570168 0.987560i −0.996548 0.0830157i \(-0.973545\pi\)
0.426380 0.904544i \(-0.359788\pi\)
\(158\) 8.77489 + 15.1986i 0.698093 + 1.20913i
\(159\) 0 0
\(160\) 0 0
\(161\) 5.53674 8.17569i 0.436356 0.644335i
\(162\) 0 0
\(163\) −8.64083 4.98879i −0.676802 0.390752i 0.121847 0.992549i \(-0.461118\pi\)
−0.798649 + 0.601797i \(0.794452\pi\)
\(164\) 0.844605 + 1.46290i 0.0659526 + 0.114233i
\(165\) 0 0
\(166\) −12.4266 7.17449i −0.964490 0.556849i
\(167\) 13.7778i 1.06616i −0.846065 0.533079i \(-0.821035\pi\)
0.846065 0.533079i \(-0.178965\pi\)
\(168\) 0 0
\(169\) −12.9954 −0.999643
\(170\) 0 0
\(171\) 0 0
\(172\) −0.835475 + 0.482362i −0.0637044 + 0.0367798i
\(173\) 7.16442 + 4.13638i 0.544701 + 0.314483i 0.746982 0.664844i \(-0.231502\pi\)
−0.202281 + 0.979327i \(0.564836\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.98174i 0.300135i
\(177\) 0 0
\(178\) −0.913956 1.58302i −0.0685039 0.118652i
\(179\) −9.97501 + 5.75908i −0.745568 + 0.430454i −0.824090 0.566459i \(-0.808313\pi\)
0.0785226 + 0.996912i \(0.474980\pi\)
\(180\) 0 0
\(181\) 16.5924i 1.23330i −0.787237 0.616650i \(-0.788489\pi\)
0.787237 0.616650i \(-0.211511\pi\)
\(182\) −0.101102 + 0.149291i −0.00749421 + 0.0110662i
\(183\) 0 0
\(184\) 1.86603 3.23205i 0.137565 0.238270i
\(185\) 0 0
\(186\) 0 0
\(187\) 14.5887 25.2684i 1.06683 1.84781i
\(188\) 1.66150i 0.121177i
\(189\) 0 0
\(190\) 0 0
\(191\) −15.9640 9.21682i −1.15511 0.666905i −0.204986 0.978765i \(-0.565715\pi\)
−0.950128 + 0.311859i \(0.899048\pi\)
\(192\) 0 0
\(193\) −5.50643 + 3.17914i −0.396361 + 0.228839i −0.684913 0.728625i \(-0.740160\pi\)
0.288552 + 0.957464i \(0.406826\pi\)
\(194\) 8.57509 14.8525i 0.615656 1.06635i
\(195\) 0 0
\(196\) −2.59808 6.50000i −0.185577 0.464286i
\(197\) −12.8389 −0.914734 −0.457367 0.889278i \(-0.651208\pi\)
−0.457367 + 0.889278i \(0.651208\pi\)
\(198\) 0 0
\(199\) 8.33950 4.81481i 0.591171 0.341313i −0.174389 0.984677i \(-0.555795\pi\)
0.765561 + 0.643364i \(0.222462\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −6.73545 −0.473905
\(203\) 0.170328 2.37237i 0.0119547 0.166508i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.260021 0.450370i −0.0181165 0.0313787i
\(207\) 0 0
\(208\) −0.0340742 + 0.0590182i −0.00236262 + 0.00409218i
\(209\) −8.10394 −0.560561
\(210\) 0 0
\(211\) −14.5619 −1.00248 −0.501241 0.865308i \(-0.667123\pi\)
−0.501241 + 0.865308i \(0.667123\pi\)
\(212\) −6.61339 + 11.4547i −0.454210 + 0.786714i
\(213\) 0 0
\(214\) −3.06350 5.30614i −0.209417 0.362721i
\(215\) 0 0
\(216\) 0 0
\(217\) −11.4923 + 5.57874i −0.780150 + 0.378709i
\(218\) −13.5546 −0.918033
\(219\) 0 0
\(220\) 0 0
\(221\) −0.432474 + 0.249689i −0.0290913 + 0.0167959i
\(222\) 0 0
\(223\) −23.6609 −1.58445 −0.792227 0.610227i \(-0.791078\pi\)
−0.792227 + 0.610227i \(0.791078\pi\)
\(224\) −1.15539 2.38014i −0.0771980 0.159030i
\(225\) 0 0
\(226\) 5.84909 10.1309i 0.389076 0.673899i
\(227\) 7.48288 4.32024i 0.496656 0.286744i −0.230676 0.973031i \(-0.574094\pi\)
0.727332 + 0.686286i \(0.240760\pi\)
\(228\) 0 0
\(229\) 12.1896 + 7.03768i 0.805513 + 0.465063i 0.845395 0.534141i \(-0.179365\pi\)
−0.0398824 + 0.999204i \(0.512698\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.898979i 0.0590209i
\(233\) 10.0988 17.4916i 0.661593 1.14591i −0.318604 0.947888i \(-0.603214\pi\)
0.980197 0.198025i \(-0.0634527\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5.32112 + 9.21645i −0.346375 + 0.599940i
\(237\) 0 0
\(238\) 1.38839 19.3378i 0.0899959 1.25348i
\(239\) 23.5040i 1.52035i −0.649721 0.760173i \(-0.725114\pi\)
0.649721 0.760173i \(-0.274886\pi\)
\(240\) 0 0
\(241\) −12.8765 + 7.43426i −0.829449 + 0.478883i −0.853664 0.520824i \(-0.825625\pi\)
0.0242151 + 0.999707i \(0.492291\pi\)
\(242\) 2.42713 + 4.20390i 0.156022 + 0.270237i
\(243\) 0 0
\(244\) 7.52056i 0.481454i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.120118 + 0.0693504i 0.00764295 + 0.00441266i
\(248\) −4.18154 + 2.41421i −0.265528 + 0.153303i
\(249\) 0 0
\(250\) 0 0
\(251\) 4.31736 0.272509 0.136255 0.990674i \(-0.456493\pi\)
0.136255 + 0.990674i \(0.456493\pi\)
\(252\) 0 0
\(253\) 14.8601i 0.934244i
\(254\) 9.31236 + 5.37649i 0.584309 + 0.337351i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.18570 + 2.41662i 0.261097 + 0.150744i 0.624835 0.780757i \(-0.285166\pi\)
−0.363738 + 0.931501i \(0.618500\pi\)
\(258\) 0 0
\(259\) −8.91197 6.03536i −0.553763 0.375019i
\(260\) 0 0
\(261\) 0 0
\(262\) −1.85457 3.21221i −0.114576 0.198451i
\(263\) −3.33245 5.77197i −0.205488 0.355915i 0.744800 0.667287i \(-0.232545\pi\)
−0.950288 + 0.311372i \(0.899211\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.84424 + 2.35155i −0.297019 + 0.144183i
\(267\) 0 0
\(268\) 9.23435 + 5.33145i 0.564078 + 0.325670i
\(269\) 15.8700 + 27.4877i 0.967612 + 1.67595i 0.702426 + 0.711757i \(0.252100\pi\)
0.265186 + 0.964197i \(0.414567\pi\)
\(270\) 0 0
\(271\) 15.1244 + 8.73205i 0.918739 + 0.530434i 0.883233 0.468935i \(-0.155362\pi\)
0.0355066 + 0.999369i \(0.488696\pi\)
\(272\) 7.32780i 0.444313i
\(273\) 0 0
\(274\) −13.5206 −0.816807
\(275\) 0 0
\(276\) 0 0
\(277\) 20.3557 11.7524i 1.22305 0.706130i 0.257486 0.966282i \(-0.417106\pi\)
0.965568 + 0.260152i \(0.0837726\pi\)
\(278\) −7.84836 4.53125i −0.470714 0.271767i
\(279\) 0 0
\(280\) 0 0
\(281\) 15.4159i 0.919635i 0.888013 + 0.459817i \(0.152085\pi\)
−0.888013 + 0.459817i \(0.847915\pi\)
\(282\) 0 0
\(283\) −13.8554 23.9983i −0.823619 1.42655i −0.902970 0.429703i \(-0.858618\pi\)
0.0793517 0.996847i \(-0.474715\pi\)
\(284\) 8.60332 4.96713i 0.510513 0.294745i
\(285\) 0 0
\(286\) 0.271349i 0.0160452i
\(287\) −4.45776 0.320053i −0.263133 0.0188921i
\(288\) 0 0
\(289\) 18.3484 31.7803i 1.07932 1.86943i
\(290\) 0 0
\(291\) 0 0
\(292\) −5.82843 + 10.0951i −0.341083 + 0.590773i
\(293\) 2.84377i 0.166135i −0.996544 0.0830673i \(-0.973528\pi\)
0.996544 0.0830673i \(-0.0264717\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −3.52312 2.03407i −0.204777 0.118228i
\(297\) 0 0
\(298\) 13.2385 7.64324i 0.766884 0.442761i
\(299\) 0.127167 0.220259i 0.00735423 0.0127379i
\(300\) 0 0
\(301\) 0.182785 2.54587i 0.0105355 0.146741i
\(302\) −9.87883 −0.568463
\(303\) 0 0
\(304\) −1.76260 + 1.01764i −0.101092 + 0.0583655i
\(305\) 0 0
\(306\) 0 0
\(307\) 2.52180 0.143927 0.0719634 0.997407i \(-0.477074\pi\)
0.0719634 + 0.997407i \(0.477074\pi\)
\(308\) 8.72268 + 5.90717i 0.497021 + 0.336592i
\(309\) 0 0
\(310\) 0 0
\(311\) −5.49697 9.52104i −0.311705 0.539889i 0.667027 0.745034i \(-0.267567\pi\)
−0.978732 + 0.205145i \(0.934233\pi\)
\(312\) 0 0
\(313\) −12.4731 + 21.6040i −0.705020 + 1.22113i 0.261665 + 0.965159i \(0.415729\pi\)
−0.966684 + 0.255971i \(0.917605\pi\)
\(314\) 14.2884 0.806339
\(315\) 0 0
\(316\) −17.5498 −0.987252
\(317\) −7.53465 + 13.0504i −0.423188 + 0.732984i −0.996249 0.0865290i \(-0.972422\pi\)
0.573061 + 0.819513i \(0.305756\pi\)
\(318\) 0 0
\(319\) 1.78975 + 3.09994i 0.100207 + 0.173563i
\(320\) 0 0
\(321\) 0 0
\(322\) 4.31199 + 8.88280i 0.240298 + 0.495019i
\(323\) −14.9141 −0.829843
\(324\) 0 0
\(325\) 0 0
\(326\) 8.64083 4.98879i 0.478572 0.276303i
\(327\) 0 0
\(328\) −1.68921 −0.0932711
\(329\) −3.63980 2.46494i −0.200668 0.135896i
\(330\) 0 0
\(331\) −15.0904 + 26.1373i −0.829444 + 1.43664i 0.0690315 + 0.997614i \(0.478009\pi\)
−0.898475 + 0.439024i \(0.855324\pi\)
\(332\) 12.4266 7.17449i 0.681997 0.393751i
\(333\) 0 0
\(334\) 11.9319 + 6.88891i 0.652886 + 0.376944i
\(335\) 0 0
\(336\) 0 0
\(337\) 21.5911i 1.17614i 0.808809 + 0.588071i \(0.200113\pi\)
−0.808809 + 0.588071i \(0.799887\pi\)
\(338\) 6.49768 11.2543i 0.353427 0.612154i
\(339\) 0 0
\(340\) 0 0
\(341\) 9.61277 16.6498i 0.520561 0.901638i
\(342\) 0 0
\(343\) 18.0938 + 3.95164i 0.976972 + 0.213368i
\(344\) 0.964724i 0.0520144i
\(345\) 0 0
\(346\) −7.16442 + 4.13638i −0.385161 + 0.222373i
\(347\) 11.5921 + 20.0781i 0.622297 + 1.07785i 0.989057 + 0.147534i \(0.0471336\pi\)
−0.366760 + 0.930316i \(0.619533\pi\)
\(348\) 0 0
\(349\) 10.7287i 0.574292i 0.957887 + 0.287146i \(0.0927064\pi\)
−0.957887 + 0.287146i \(0.907294\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.44829 + 1.99087i 0.183794 + 0.106114i
\(353\) 7.57561 4.37378i 0.403209 0.232793i −0.284659 0.958629i \(-0.591880\pi\)
0.687868 + 0.725836i \(0.258547\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.82791 0.0968791
\(357\) 0 0
\(358\) 11.5182i 0.608753i
\(359\) −22.3059 12.8783i −1.17726 0.679691i −0.221881 0.975074i \(-0.571220\pi\)
−0.955379 + 0.295382i \(0.904553\pi\)
\(360\) 0 0
\(361\) −7.42883 12.8671i −0.390991 0.677216i
\(362\) 14.3694 + 8.29618i 0.755239 + 0.436037i
\(363\) 0 0
\(364\) −0.0787382 0.162203i −0.00412700 0.00850172i
\(365\) 0 0
\(366\) 0 0
\(367\) −9.96885 17.2665i −0.520369 0.901306i −0.999720 0.0236826i \(-0.992461\pi\)
0.479350 0.877624i \(-0.340872\pi\)
\(368\) 1.86603 + 3.23205i 0.0972733 + 0.168482i
\(369\) 0 0
\(370\) 0 0
\(371\) −15.2822 31.4816i −0.793410 1.63444i
\(372\) 0 0
\(373\) −0.893327 0.515762i −0.0462547 0.0267052i 0.476694 0.879069i \(-0.341835\pi\)
−0.522949 + 0.852364i \(0.675168\pi\)
\(374\) 14.5887 + 25.2684i 0.754364 + 1.30660i
\(375\) 0 0
\(376\) −1.43890 0.830749i −0.0742056 0.0428426i
\(377\) 0.0612640i 0.00315525i
\(378\) 0 0
\(379\) −5.09497 −0.261711 −0.130855 0.991401i \(-0.541772\pi\)
−0.130855 + 0.991401i \(0.541772\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 15.9640 9.21682i 0.816789 0.471573i
\(383\) 7.33307 + 4.23375i 0.374702 + 0.216335i 0.675511 0.737350i \(-0.263923\pi\)
−0.300808 + 0.953685i \(0.597256\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.35827i 0.323628i
\(387\) 0 0
\(388\) 8.57509 + 14.8525i 0.435334 + 0.754021i
\(389\) 4.97229 2.87075i 0.252105 0.145553i −0.368623 0.929579i \(-0.620171\pi\)
0.620728 + 0.784026i \(0.286837\pi\)
\(390\) 0 0
\(391\) 27.3477i 1.38303i
\(392\) 6.92820 + 1.00000i 0.349927 + 0.0505076i
\(393\) 0 0
\(394\) 6.41946 11.1188i 0.323407 0.560158i
\(395\) 0 0
\(396\) 0 0
\(397\) 8.43791 14.6149i 0.423487 0.733501i −0.572791 0.819701i \(-0.694139\pi\)
0.996278 + 0.0862009i \(0.0274727\pi\)
\(398\) 9.62962i 0.482689i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.63572 + 0.944382i 0.0816838 + 0.0471602i 0.540286 0.841482i \(-0.318316\pi\)
−0.458602 + 0.888642i \(0.651650\pi\)
\(402\) 0 0
\(403\) −0.284965 + 0.164525i −0.0141951 + 0.00819556i
\(404\) 3.36773 5.83307i 0.167551 0.290206i
\(405\) 0 0
\(406\) 1.96937 + 1.33369i 0.0977381 + 0.0661901i
\(407\) 16.1983 0.802920
\(408\) 0 0
\(409\) −28.5617 + 16.4901i −1.41228 + 0.815382i −0.995603 0.0936705i \(-0.970140\pi\)
−0.416681 + 0.909053i \(0.636807\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.520042 0.0256206
\(413\) −12.2960 25.3300i −0.605046 1.24641i
\(414\) 0 0
\(415\) 0 0
\(416\) −0.0340742 0.0590182i −0.00167062 0.00289361i
\(417\) 0 0
\(418\) 4.05197 7.01822i 0.198188 0.343272i
\(419\) 0.300470 0.0146789 0.00733945 0.999973i \(-0.497664\pi\)
0.00733945 + 0.999973i \(0.497664\pi\)
\(420\) 0 0
\(421\) 28.8625 1.40667 0.703335 0.710858i \(-0.251693\pi\)
0.703335 + 0.710858i \(0.251693\pi\)
\(422\) 7.28094 12.6110i 0.354431 0.613892i
\(423\) 0 0
\(424\) −6.61339 11.4547i −0.321175 0.556291i
\(425\) 0 0
\(426\) 0 0
\(427\) 16.4751 + 11.1572i 0.797284 + 0.539936i
\(428\) 6.12701 0.296160
\(429\) 0 0
\(430\) 0 0
\(431\) 29.0895 16.7948i 1.40119 0.808978i 0.406677 0.913572i \(-0.366688\pi\)
0.994515 + 0.104594i \(0.0333543\pi\)
\(432\) 0 0
\(433\) 11.2207 0.539234 0.269617 0.962968i \(-0.413103\pi\)
0.269617 + 0.962968i \(0.413103\pi\)
\(434\) 0.914836 12.7420i 0.0439135 0.611636i
\(435\) 0 0
\(436\) 6.77729 11.7386i 0.324574 0.562178i
\(437\) 6.57812 3.79788i 0.314674 0.181677i
\(438\) 0 0
\(439\) 14.6075 + 8.43363i 0.697177 + 0.402515i 0.806295 0.591513i \(-0.201469\pi\)
−0.109118 + 0.994029i \(0.534803\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.499378i 0.0237530i
\(443\) −1.02823 + 1.78094i −0.0488526 + 0.0846152i −0.889418 0.457095i \(-0.848890\pi\)
0.840565 + 0.541711i \(0.182223\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 11.8305 20.4910i 0.560189 0.970276i
\(447\) 0 0
\(448\) 2.63896 + 0.189469i 0.124679 + 0.00895155i
\(449\) 12.5892i 0.594122i −0.954858 0.297061i \(-0.903994\pi\)
0.954858 0.297061i \(-0.0960065\pi\)
\(450\) 0 0
\(451\) 5.82489 3.36300i 0.274283 0.158357i
\(452\) 5.84909 + 10.1309i 0.275118 + 0.476519i
\(453\) 0 0
\(454\) 8.64048i 0.405518i
\(455\) 0 0
\(456\) 0 0
\(457\) 30.2701 + 17.4765i 1.41598 + 0.817515i 0.995942 0.0899930i \(-0.0286845\pi\)
0.420035 + 0.907508i \(0.362018\pi\)
\(458\) −12.1896 + 7.03768i −0.569584 + 0.328849i
\(459\) 0 0
\(460\) 0 0
\(461\) −23.3750 −1.08868 −0.544341 0.838864i \(-0.683220\pi\)
−0.544341 + 0.838864i \(0.683220\pi\)
\(462\) 0 0
\(463\) 6.35693i 0.295431i −0.989030 0.147716i \(-0.952808\pi\)
0.989030 0.147716i \(-0.0471921\pi\)
\(464\) 0.778539 + 0.449490i 0.0361428 + 0.0208670i
\(465\) 0 0
\(466\) 10.0988 + 17.4916i 0.467817 + 0.810283i
\(467\) 6.74907 + 3.89658i 0.312310 + 0.180312i 0.647960 0.761675i \(-0.275623\pi\)
−0.335650 + 0.941987i \(0.608956\pi\)
\(468\) 0 0
\(469\) −25.3792 + 12.3199i −1.17190 + 0.568878i
\(470\) 0 0
\(471\) 0 0
\(472\) −5.32112 9.21645i −0.244924 0.424222i
\(473\) 1.92064 + 3.32665i 0.0883111 + 0.152959i
\(474\) 0 0
\(475\) 0 0
\(476\) 16.0528 + 10.8713i 0.735779 + 0.498284i
\(477\) 0 0
\(478\) 20.3550 + 11.7520i 0.931018 + 0.537523i
\(479\) 13.7520 + 23.8191i 0.628344 + 1.08832i 0.987884 + 0.155194i \(0.0496004\pi\)
−0.359540 + 0.933130i \(0.617066\pi\)
\(480\) 0 0
\(481\) −0.240095 0.138619i −0.0109474 0.00632047i
\(482\) 14.8685i 0.677242i
\(483\) 0 0
\(484\) −4.85425 −0.220648
\(485\) 0 0
\(486\) 0 0
\(487\) −30.6978 + 17.7234i −1.39105 + 0.803124i −0.993432 0.114427i \(-0.963497\pi\)
−0.397619 + 0.917551i \(0.630164\pi\)
\(488\) 6.51299 + 3.76028i 0.294829 + 0.170220i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.64349i 0.0741695i 0.999312 + 0.0370848i \(0.0118072\pi\)
−0.999312 + 0.0370848i \(0.988193\pi\)
\(492\) 0 0
\(493\) 3.29377 + 5.70498i 0.148344 + 0.256939i
\(494\) −0.120118 + 0.0693504i −0.00540438 + 0.00312022i
\(495\) 0 0
\(496\) 4.82843i 0.216803i
\(497\) −1.88223 + 26.2161i −0.0844296 + 1.17595i
\(498\) 0 0
\(499\) −17.3665 + 30.0796i −0.777430 + 1.34655i 0.155988 + 0.987759i \(0.450144\pi\)
−0.933418 + 0.358790i \(0.883189\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.15868 + 3.73894i −0.0963465 + 0.166877i
\(503\) 28.9613i 1.29132i −0.763625 0.645660i \(-0.776582\pi\)
0.763625 0.645660i \(-0.223418\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.8692 7.43003i −0.572105 0.330305i
\(507\) 0 0
\(508\) −9.31236 + 5.37649i −0.413169 + 0.238543i
\(509\) −10.7311 + 18.5867i −0.475646 + 0.823842i −0.999611 0.0278973i \(-0.991119\pi\)
0.523965 + 0.851740i \(0.324452\pi\)
\(510\) 0 0
\(511\) −13.4683 27.7449i −0.595801 1.22736i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −4.18570 + 2.41662i −0.184624 + 0.106592i
\(515\) 0 0
\(516\) 0 0
\(517\) 6.61565 0.290956
\(518\) 9.68276 4.70032i 0.425436 0.206520i
\(519\) 0 0
\(520\) 0 0
\(521\) 20.1218 + 34.8520i 0.881552 + 1.52689i 0.849616 + 0.527403i \(0.176834\pi\)
0.0319362 + 0.999490i \(0.489833\pi\)
\(522\) 0 0
\(523\) −14.8444 + 25.7113i −0.649102 + 1.12428i 0.334235 + 0.942490i \(0.391522\pi\)
−0.983338 + 0.181789i \(0.941811\pi\)
\(524\) 3.70915 0.162035
\(525\) 0 0
\(526\) 6.66490 0.290603
\(527\) 17.6909 30.6415i 0.770627 1.33477i
\(528\) 0 0
\(529\) 4.53590 + 7.85641i 0.197213 + 0.341583i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.385621 5.37101i 0.0167188 0.232863i
\(533\) −0.115117 −0.00498627
\(534\) 0 0
\(535\) 0 0
\(536\) −9.23435 + 5.33145i −0.398863 + 0.230284i
\(537\) 0 0
\(538\) −31.7400 −1.36841
\(539\) −25.8813 + 10.3449i −1.11479 + 0.445585i
\(540\) 0 0
\(541\) 8.62914 14.9461i 0.370996 0.642584i −0.618723 0.785609i \(-0.712350\pi\)
0.989719 + 0.143026i \(0.0456831\pi\)
\(542\) −15.1244 + 8.73205i −0.649647 + 0.375074i
\(543\) 0 0
\(544\) 6.34607 + 3.66390i 0.272085 + 0.157089i
\(545\) 0 0
\(546\) 0 0
\(547\) 17.9703i 0.768354i 0.923260 + 0.384177i \(0.125515\pi\)
−0.923260 + 0.384177i \(0.874485\pi\)
\(548\) 6.76028 11.7091i 0.288785 0.500190i
\(549\) 0 0
\(550\) 0 0
\(551\) 0.914836 1.58454i 0.0389733 0.0675038i
\(552\) 0 0
\(553\) 26.0362 38.4458i 1.10717 1.63488i
\(554\) 23.5047i 0.998619i
\(555\) 0 0
\(556\) 7.84836 4.53125i 0.332845 0.192168i
\(557\) −22.6273 39.1916i −0.958748 1.66060i −0.725547 0.688172i \(-0.758413\pi\)
−0.233201 0.972428i \(-0.574920\pi\)
\(558\) 0 0
\(559\) 0.0657443i 0.00278069i
\(560\) 0 0
\(561\) 0 0
\(562\) −13.3506 7.70794i −0.563159 0.325140i
\(563\) −13.7410 + 7.93336i −0.579114 + 0.334351i −0.760781 0.649009i \(-0.775184\pi\)
0.181667 + 0.983360i \(0.441851\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 27.7108 1.16477
\(567\) 0 0
\(568\) 9.93426i 0.416832i
\(569\) −0.0524375 0.0302748i −0.00219829 0.00126918i 0.498900 0.866659i \(-0.333737\pi\)
−0.501099 + 0.865390i \(0.667071\pi\)
\(570\) 0 0
\(571\) 6.78245 + 11.7476i 0.283837 + 0.491620i 0.972326 0.233626i \(-0.0750592\pi\)
−0.688490 + 0.725246i \(0.741726\pi\)
\(572\) 0.234995 + 0.135674i 0.00982564 + 0.00567284i
\(573\) 0 0
\(574\) 2.50605 3.70050i 0.104601 0.154456i
\(575\) 0 0
\(576\) 0 0
\(577\) 21.8384 + 37.8252i 0.909144 + 1.57468i 0.815256 + 0.579101i \(0.196596\pi\)
0.0938887 + 0.995583i \(0.470070\pi\)
\(578\) 18.3484 + 31.7803i 0.763191 + 1.32189i
\(579\) 0 0
\(580\) 0 0
\(581\) −2.71868 + 37.8664i −0.112790 + 1.57096i
\(582\) 0 0
\(583\) 45.6098 + 26.3328i 1.88896 + 1.09059i
\(584\) −5.82843 10.0951i −0.241182 0.417740i
\(585\) 0 0
\(586\) 2.46278 + 1.42188i 0.101736 + 0.0587375i
\(587\) 45.4100i 1.87427i −0.348967 0.937135i \(-0.613468\pi\)
0.348967 0.937135i \(-0.386532\pi\)
\(588\) 0 0
\(589\) −9.82718 −0.404922
\(590\) 0 0
\(591\) 0 0
\(592\) 3.52312 2.03407i 0.144799 0.0835999i
\(593\) 22.2579 + 12.8506i 0.914022 + 0.527711i 0.881723 0.471767i \(-0.156384\pi\)
0.0322991 + 0.999478i \(0.489717\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.2865i 0.626158i
\(597\) 0 0
\(598\) 0.127167 + 0.220259i 0.00520023 + 0.00900706i
\(599\) 23.0347 13.2991i 0.941173 0.543386i 0.0508450 0.998707i \(-0.483809\pi\)
0.890328 + 0.455320i \(0.150475\pi\)
\(600\) 0 0
\(601\) 12.9681i 0.528979i −0.964389 0.264489i \(-0.914797\pi\)
0.964389 0.264489i \(-0.0852034\pi\)
\(602\) 2.11339 + 1.43123i 0.0861354 + 0.0583326i
\(603\) 0 0
\(604\) 4.93942 8.55532i 0.200982 0.348111i
\(605\) 0 0
\(606\) 0 0
\(607\) −8.15576 + 14.1262i −0.331032 + 0.573364i −0.982714 0.185128i \(-0.940730\pi\)
0.651682 + 0.758492i \(0.274063\pi\)
\(608\) 2.03528i 0.0825413i
\(609\) 0 0
\(610\) 0 0
\(611\) −0.0980586 0.0566142i −0.00396703 0.00229036i
\(612\) 0 0
\(613\) −12.4603 + 7.19395i −0.503267 + 0.290561i −0.730062 0.683381i \(-0.760509\pi\)
0.226795 + 0.973943i \(0.427175\pi\)
\(614\) −1.26090 + 2.18394i −0.0508858 + 0.0881368i
\(615\) 0 0
\(616\) −9.47710 + 4.60048i −0.381843 + 0.185359i
\(617\) −8.65760 −0.348542 −0.174271 0.984698i \(-0.555757\pi\)
−0.174271 + 0.984698i \(0.555757\pi\)
\(618\) 0 0
\(619\) −38.8459 + 22.4277i −1.56135 + 0.901444i −0.564225 + 0.825621i \(0.690825\pi\)
−0.997121 + 0.0758230i \(0.975842\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 10.9939 0.440817
\(623\) −2.71182 + 4.00435i −0.108647 + 0.160431i
\(624\) 0 0
\(625\) 0 0
\(626\) −12.4731 21.6040i −0.498524 0.863469i
\(627\) 0 0
\(628\) −7.14418 + 12.3741i −0.285084 + 0.493780i
\(629\) 29.8106 1.18863
\(630\) 0 0
\(631\) −38.1878 −1.52023 −0.760116 0.649788i \(-0.774858\pi\)
−0.760116 + 0.649788i \(0.774858\pi\)
\(632\) 8.77489 15.1986i 0.349046 0.604566i
\(633\) 0 0
\(634\) −7.53465 13.0504i −0.299239 0.518298i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.472146 + 0.0681483i 0.0187071 + 0.00270014i
\(638\) −3.57950 −0.141714
\(639\) 0 0
\(640\) 0 0
\(641\) −7.40533 + 4.27547i −0.292493 + 0.168871i −0.639066 0.769152i \(-0.720679\pi\)
0.346573 + 0.938023i \(0.387345\pi\)
\(642\) 0 0
\(643\) 2.75058 0.108472 0.0542361 0.998528i \(-0.482728\pi\)
0.0542361 + 0.998528i \(0.482728\pi\)
\(644\) −9.84873 0.707107i −0.388094 0.0278639i
\(645\) 0 0
\(646\) 7.45705 12.9160i 0.293394 0.508173i
\(647\) 24.0431 13.8813i 0.945234 0.545731i 0.0536365 0.998561i \(-0.482919\pi\)
0.891597 + 0.452830i \(0.149585\pi\)
\(648\) 0 0
\(649\) 36.6975 + 21.1873i 1.44050 + 0.831675i
\(650\) 0 0
\(651\) 0 0
\(652\) 9.97758i 0.390752i
\(653\) −7.05994 + 12.2282i −0.276277 + 0.478525i −0.970456 0.241276i \(-0.922434\pi\)
0.694180 + 0.719802i \(0.255767\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.844605 1.46290i 0.0329763 0.0571166i
\(657\) 0 0
\(658\) 3.95460 1.91969i 0.154166 0.0748372i
\(659\) 9.92570i 0.386650i 0.981135 + 0.193325i \(0.0619272\pi\)
−0.981135 + 0.193325i \(0.938073\pi\)
\(660\) 0 0
\(661\) 15.9029 9.18154i 0.618551 0.357121i −0.157754 0.987478i \(-0.550425\pi\)
0.776305 + 0.630358i \(0.217092\pi\)
\(662\) −15.0904 26.1373i −0.586505 1.01586i
\(663\) 0 0
\(664\) 14.3490i 0.556849i
\(665\) 0 0
\(666\) 0 0
\(667\) −2.90555 1.67752i −0.112503 0.0649538i
\(668\) −11.9319 + 6.88891i −0.461660 + 0.266540i
\(669\) 0 0
\(670\) 0 0
\(671\) −29.9449 −1.15601
\(672\) 0 0
\(673\) 32.6050i 1.25683i −0.777878 0.628415i \(-0.783704\pi\)
0.777878 0.628415i \(-0.216296\pi\)
\(674\) −18.6984 10.7956i −0.720237 0.415829i
\(675\) 0 0
\(676\) 6.49768 + 11.2543i 0.249911 + 0.432858i
\(677\) 15.8816 + 9.16923i 0.610378 + 0.352402i 0.773113 0.634268i \(-0.218698\pi\)
−0.162735 + 0.986670i \(0.552032\pi\)
\(678\) 0 0
\(679\) −45.2586 3.24942i −1.73687 0.124701i
\(680\) 0 0
\(681\) 0 0
\(682\) 9.61277 + 16.6498i 0.368092 + 0.637554i
\(683\) −12.2385 21.1977i −0.468294 0.811108i 0.531050 0.847341i \(-0.321798\pi\)
−0.999343 + 0.0362323i \(0.988464\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −12.4691 + 13.6938i −0.476073 + 0.522834i
\(687\) 0 0
\(688\) 0.835475 + 0.482362i 0.0318522 + 0.0183899i
\(689\) −0.450692 0.780621i −0.0171700 0.0297393i
\(690\) 0 0
\(691\) −15.9118 9.18670i −0.605315 0.349479i 0.165815 0.986157i \(-0.446975\pi\)
−0.771129 + 0.636678i \(0.780308\pi\)
\(692\) 8.27276i 0.314483i
\(693\) 0 0
\(694\) −23.1842 −0.880061
\(695\) 0 0
\(696\) 0 0
\(697\) 10.7198 6.18910i 0.406043 0.234429i
\(698\) −9.29128 5.36433i −0.351680 0.203043i
\(699\) 0 0
\(700\) 0 0
\(701\) 14.2399i 0.537834i −0.963163 0.268917i \(-0.913334\pi\)
0.963163 0.268917i \(-0.0866658\pi\)
\(702\) 0 0
\(703\) −4.13990 7.17052i −0.156139 0.270441i
\(704\) −3.44829 + 1.99087i −0.129962 + 0.0750337i
\(705\) 0 0
\(706\) 8.74756i 0.329219i
\(707\) 7.78210 + 16.0313i 0.292676 + 0.602920i
\(708\) 0 0
\(709\) 18.7586 32.4908i 0.704492 1.22022i −0.262382 0.964964i \(-0.584508\pi\)
0.966874 0.255252i \(-0.0821586\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.913956 + 1.58302i −0.0342519 + 0.0593261i
\(713\) 18.0199i 0.674852i
\(714\) 0 0
\(715\) 0 0
\(716\) 9.97501 + 5.75908i 0.372784 + 0.215227i
\(717\) 0 0
\(718\) 22.3059 12.8783i 0.832449 0.480614i
\(719\) 2.65733 4.60264i 0.0991019 0.171649i −0.812211 0.583363i \(-0.801736\pi\)
0.911313 + 0.411714i \(0.135070\pi\)
\(720\) 0 0
\(721\) −0.771516 + 1.13924i −0.0287327 + 0.0424276i
\(722\) 14.8577 0.552945
\(723\) 0 0
\(724\) −14.3694 + 8.29618i −0.534035 + 0.308325i
\(725\) 0 0
\(726\) 0 0
\(727\) 2.93413 0.108821 0.0544104 0.998519i \(-0.482672\pi\)
0.0544104 + 0.998519i \(0.482672\pi\)
\(728\) 0.179841 + 0.0129120i 0.00666534 + 0.000478550i
\(729\) 0 0
\(730\) 0 0
\(731\) 3.53465 + 6.12220i 0.130734 + 0.226438i
\(732\) 0 0
\(733\) −6.82411 + 11.8197i −0.252054 + 0.436570i −0.964091 0.265571i \(-0.914439\pi\)
0.712037 + 0.702142i \(0.247773\pi\)
\(734\) 19.9377 0.735914
\(735\) 0 0
\(736\) −3.73205 −0.137565
\(737\) 21.2285 36.7688i 0.781960 1.35440i
\(738\) 0 0
\(739\) 15.6650 + 27.1325i 0.576246 + 0.998087i 0.995905 + 0.0904051i \(0.0288162\pi\)
−0.419659 + 0.907682i \(0.637851\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 34.9049 + 2.50606i 1.28140 + 0.0920004i
\(743\) 4.72061 0.173182 0.0865911 0.996244i \(-0.472403\pi\)
0.0865911 + 0.996244i \(0.472403\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.893327 0.515762i 0.0327070 0.0188834i
\(747\) 0 0
\(748\) −29.1774 −1.06683
\(749\) −9.08981 + 13.4223i −0.332134 + 0.490439i
\(750\) 0 0
\(751\) 12.8394 22.2385i 0.468516 0.811494i −0.530836 0.847474i \(-0.678122\pi\)
0.999352 + 0.0359807i \(0.0114555\pi\)
\(752\) 1.43890 0.830749i 0.0524713 0.0302943i
\(753\) 0 0
\(754\) 0.0530562 + 0.0306320i 0.00193219 + 0.00111555i
\(755\) 0 0
\(756\) 0 0
\(757\) 37.8781i 1.37670i 0.725377 + 0.688352i \(0.241665\pi\)
−0.725377 + 0.688352i \(0.758335\pi\)
\(758\) 2.54748 4.41237i 0.0925288 0.160265i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.3533 + 17.9325i −0.375308 + 0.650052i −0.990373 0.138424i \(-0.955796\pi\)
0.615065 + 0.788476i \(0.289130\pi\)
\(762\) 0 0
\(763\) 15.6609 + 32.2618i 0.566963 + 1.16796i
\(764\) 18.4336i 0.666905i
\(765\) 0 0
\(766\) −7.33307 + 4.23375i −0.264955 + 0.152972i
\(767\) −0.362626 0.628086i −0.0130937 0.0226789i
\(768\) 0 0
\(769\) 3.34563i 0.120647i −0.998179 0.0603233i \(-0.980787\pi\)
0.998179 0.0603233i \(-0.0192132\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.50643 + 3.17914i 0.198181 + 0.114420i
\(773\) 24.8778 14.3632i 0.894793 0.516609i 0.0192861 0.999814i \(-0.493861\pi\)
0.875507 + 0.483205i \(0.160527\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −17.1502 −0.615656
\(777\) 0 0
\(778\) 5.74150i 0.205843i
\(779\) −2.97740 1.71901i −0.106677 0.0615898i
\(780\) 0 0
\(781\) −19.7778 34.2562i −0.707706 1.22578i
\(782\) −23.6838 13.6739i −0.846932 0.488977i
\(783\) 0 0
\(784\) −4.33013 + 5.50000i −0.154647 + 0.196429i
\(785\) 0 0
\(786\) 0 0
\(787\) 2.74515 + 4.75474i 0.0978541 + 0.169488i 0.910796 0.412856i \(-0.135469\pi\)
−0.812942 + 0.582345i \(0.802135\pi\)
\(788\) 6.41946 + 11.1188i 0.228684 + 0.396092i
\(789\) 0 0
\(790\) 0 0
\(791\) −30.8710 2.21644i −1.09765 0.0788075i
\(792\) 0 0
\(793\) 0.443850 + 0.256257i 0.0157616 + 0.00909995i
\(794\) 8.43791 + 14.6149i 0.299450 + 0.518663i
\(795\) 0 0
\(796\) −8.33950 4.81481i −0.295586 0.170656i
\(797\) 50.8854i 1.80245i 0.433347 + 0.901227i \(0.357332\pi\)
−0.433347 + 0.901227i \(0.642668\pi\)
\(798\) 0 0
\(799\) 12.1751 0.430725
\(800\) 0 0
\(801\) 0 0
\(802\) −1.63572 + 0.944382i −0.0577592 + 0.0333473i
\(803\) 40.1962 + 23.2073i 1.41849 + 0.818967i
\(804\) 0 0
\(805\) 0 0
\(806\) 0.329049i 0.0115903i
\(807\) 0 0
\(808\) 3.36773 + 5.83307i 0.118476 + 0.205207i
\(809\) −1.80508 + 1.04217i −0.0634634 + 0.0366406i −0.531396 0.847124i \(-0.678332\pi\)
0.467933 + 0.883764i \(0.344999\pi\)
\(810\) 0 0
\(811\) 27.0199i 0.948797i 0.880310 + 0.474398i \(0.157334\pi\)
−0.880310 + 0.474398i \(0.842666\pi\)
\(812\) −2.13970 + 1.03868i −0.0750886 + 0.0364504i
\(813\) 0 0
\(814\) −8.09915 + 14.0281i −0.283875 + 0.491686i
\(815\) 0 0
\(816\) 0 0
\(817\) 0.981740 1.70042i 0.0343467 0.0594903i
\(818\) 32.9802i 1.15312i
\(819\) 0 0
\(820\) 0 0
\(821\) 8.06085 + 4.65393i 0.281326 + 0.162423i 0.634023 0.773314i \(-0.281402\pi\)
−0.352698 + 0.935737i \(0.614736\pi\)
\(822\) 0 0
\(823\) −35.0901 + 20.2593i −1.22316 + 0.706195i −0.965591 0.260064i \(-0.916256\pi\)
−0.257573 + 0.966259i \(0.582923\pi\)
\(824\) −0.260021 + 0.450370i −0.00905826 + 0.0156894i
\(825\) 0 0
\(826\) 28.0844 + 2.01637i 0.977182 + 0.0701585i
\(827\) −14.0131 −0.487284 −0.243642 0.969865i \(-0.578342\pi\)
−0.243642 + 0.969865i \(0.578342\pi\)
\(828\) 0 0
\(829\) −18.8540 + 10.8854i −0.654827 + 0.378064i −0.790303 0.612716i \(-0.790077\pi\)
0.135476 + 0.990781i \(0.456744\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.0681483 0.00236262
\(833\) −47.6307 + 19.0382i −1.65031 + 0.659634i
\(834\) 0 0
\(835\) 0 0
\(836\) 4.05197 + 7.01822i 0.140140 + 0.242730i
\(837\) 0 0
\(838\) −0.150235 + 0.260214i −0.00518978 + 0.00898896i
\(839\) 53.7026 1.85402 0.927009 0.375039i \(-0.122371\pi\)
0.927009 + 0.375039i \(0.122371\pi\)
\(840\) 0 0
\(841\) 28.1918 0.972132
\(842\) −14.4312 + 24.9956i −0.497333 + 0.861406i
\(843\) 0 0
\(844\) 7.28094 + 12.6110i 0.250620 + 0.434087i
\(845\) 0 0
\(846\) 0 0
\(847\) 7.20159 10.6341i 0.247450 0.365391i
\(848\) 13.2268 0.454210
\(849\) 0 0
\(850\) 0 0
\(851\) −13.1485 + 7.59127i −0.450723 + 0.260225i
\(852\) 0 0
\(853\) 7.95355 0.272324 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(854\) −17.9000 + 8.68921i −0.612525 + 0.297339i
\(855\) 0 0
\(856\) −3.06350 + 5.30614i −0.104708 + 0.181360i
\(857\) 1.98582 1.14651i 0.0678343 0.0391641i −0.465699 0.884943i \(-0.654197\pi\)
0.533534 + 0.845779i \(0.320864\pi\)
\(858\) 0 0
\(859\) 38.1054 + 22.0002i 1.30014 + 0.750636i 0.980428 0.196879i \(-0.0630806\pi\)
0.319712 + 0.947515i \(0.396414\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 33.5897i 1.14407i
\(863\) 16.5676 28.6959i 0.563968 0.976821i −0.433177 0.901309i \(-0.642607\pi\)
0.997145 0.0755122i \(-0.0240592\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −5.61037 + 9.71744i −0.190648 + 0.330212i
\(867\) 0 0
\(868\) 10.5775 + 7.16328i 0.359024 + 0.243138i
\(869\) 69.8787i 2.37047i
\(870\) 0 0
\(871\) −0.629306 + 0.363330i −0.0213232 + 0.0123110i
\(872\) 6.77729 + 11.7386i 0.229508 + 0.397520i
\(873\) 0 0
\(874\) 7.59575i 0.256930i
\(875\) 0 0
\(876\) 0 0
\(877\) −4.92657 2.84436i −0.166358 0.0960471i 0.414509 0.910045i \(-0.363953\pi\)
−0.580868 + 0.813998i \(0.697287\pi\)
\(878\) −14.6075 + 8.43363i −0.492979 + 0.284621i
\(879\) 0 0
\(880\) 0 0
\(881\) 22.4073 0.754923 0.377461 0.926025i \(-0.376797\pi\)
0.377461 + 0.926025i \(0.376797\pi\)
\(882\) 0 0
\(883\) 18.7564i 0.631204i −0.948892 0.315602i \(-0.897794\pi\)
0.948892 0.315602i \(-0.102206\pi\)
\(884\) 0.432474 + 0.249689i 0.0145457 + 0.00839795i
\(885\) 0 0
\(886\) −1.02823 1.78094i −0.0345440 0.0598320i
\(887\) −1.27384 0.735451i −0.0427713 0.0246940i 0.478462 0.878108i \(-0.341194\pi\)
−0.521233 + 0.853414i \(0.674528\pi\)
\(888\) 0 0
\(889\) 2.03735 28.3767i 0.0683306 0.951723i
\(890\) 0 0
\(891\) 0 0
\(892\) 11.8305 + 20.4910i 0.396113 + 0.686088i
\(893\) −1.69080 2.92856i −0.0565806 0.0980005i
\(894\) 0 0
\(895\) 0 0
\(896\) −1.48356 + 2.19067i −0.0495624 + 0.0731852i
\(897\) 0 0
\(898\) 10.9026 + 6.29461i 0.363824 + 0.210054i
\(899\) 2.17033 + 3.75912i 0.0723845 + 0.125374i
\(900\) 0 0
\(901\) 83.9380 + 48.4616i 2.79638 + 1.61449i
\(902\) 6.72600i 0.223951i
\(903\) 0 0
\(904\) −11.6982 −0.389076
\(905\) 0 0
\(906\) 0 0
\(907\) −16.3210 + 9.42294i −0.541930 + 0.312883i −0.745861 0.666102i \(-0.767962\pi\)
0.203931 + 0.978985i \(0.434628\pi\)
\(908\) −7.48288 4.32024i −0.248328 0.143372i
\(909\) 0 0
\(910\) 0 0
\(911\) 5.45859i 0.180851i −0.995903 0.0904256i \(-0.971177\pi\)
0.995903 0.0904256i \(-0.0288227\pi\)
\(912\) 0 0
\(913\) −28.5670 49.4794i −0.945428 1.63753i
\(914\) −30.2701 + 17.4765i −1.00125 + 0.578070i
\(915\) 0 0
\(916\) 14.0754i 0.465063i
\(917\) −5.50276 + 8.12552i −0.181717 + 0.268328i
\(918\) 0 0
\(919\) 14.9805 25.9470i 0.494162 0.855914i −0.505815 0.862642i \(-0.668808\pi\)
0.999977 + 0.00672796i \(0.00214159\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 11.6875 20.2433i 0.384907 0.666678i
\(923\) 0.677003i 0.0222838i
\(924\) 0 0
\(925\) 0 0
\(926\) 5.50526 + 3.17846i 0.180914 + 0.104451i
\(927\) 0 0
\(928\) −0.778539 + 0.449490i −0.0255568 + 0.0147552i
\(929\) 23.3931 40.5181i 0.767504 1.32936i −0.171408 0.985200i \(-0.554832\pi\)
0.938912 0.344156i \(-0.111835\pi\)
\(930\) 0 0
\(931\) 11.1940 + 8.81300i 0.366869 + 0.288835i
\(932\) −20.1976 −0.661593
\(933\) 0 0
\(934\) −6.74907 + 3.89658i −0.220836 + 0.127500i
\(935\) 0 0
\(936\) 0 0
\(937\) 19.1632 0.626036 0.313018 0.949747i \(-0.398660\pi\)
0.313018 + 0.949747i \(0.398660\pi\)
\(938\) 2.02029 28.1390i 0.0659647 0.918770i
\(939\) 0 0
\(940\) 0 0
\(941\) 25.2474 + 43.7299i 0.823043 + 1.42555i 0.903406 + 0.428787i \(0.141059\pi\)
−0.0803623 + 0.996766i \(0.525608\pi\)
\(942\) 0 0
\(943\) −3.15211 + 5.45962i −0.102647 + 0.177790i
\(944\) 10.6422 0.346375
\(945\) 0 0
\(946\) −3.84128 −0.124891
\(947\) −18.0309 + 31.2304i −0.585925 + 1.01485i 0.408834 + 0.912609i \(0.365936\pi\)
−0.994759 + 0.102244i \(0.967398\pi\)
\(948\) 0 0
\(949\) −0.397198 0.687967i −0.0128936 0.0223323i
\(950\) 0 0
\(951\) 0 0
\(952\) −17.4412 + 8.46651i −0.565272 + 0.274401i
\(953\) 29.7944 0.965137 0.482568 0.875858i \(-0.339704\pi\)
0.482568 + 0.875858i \(0.339704\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −20.3550 + 11.7520i −0.658329 + 0.380086i
\(957\) 0 0
\(958\) −27.5040 −0.888613
\(959\) 15.6216 + 32.1808i 0.504447 + 1.03917i
\(960\) 0 0
\(961\) −3.84315 + 6.65652i −0.123972 + 0.214727i
\(962\) 0.240095 0.138619i 0.00774097 0.00446925i
\(963\) 0 0
\(964\) 12.8765 + 7.43426i 0.414724 + 0.239441i
\(965\) 0 0
\(966\) 0 0
\(967\) 11.5198i 0.370453i 0.982696 + 0.185226i \(0.0593018\pi\)
−0.982696 + 0.185226i \(0.940698\pi\)
\(968\) 2.42713 4.20390i 0.0780108 0.135119i
\(969\) 0 0
\(970\) 0 0
\(971\) 21.2347 36.7795i 0.681453 1.18031i −0.293084 0.956087i \(-0.594682\pi\)
0.974537 0.224225i \(-0.0719849\pi\)
\(972\) 0 0
\(973\) −1.71706 + 23.9156i −0.0550465 + 0.766698i
\(974\) 35.4468i 1.13579i
\(975\) 0 0
\(976\) −6.51299 + 3.76028i −0.208476 + 0.120364i
\(977\) −9.08052 15.7279i −0.290512 0.503181i 0.683419 0.730026i \(-0.260492\pi\)
−0.973931 + 0.226845i \(0.927159\pi\)
\(978\) 0 0
\(979\) 7.27827i 0.232614i
\(980\) 0 0
\(981\) 0 0
\(982\) −1.42330 0.821743i −0.0454194 0.0262229i
\(983\) 10.7385 6.19988i 0.342505 0.197746i −0.318874 0.947797i \(-0.603305\pi\)
0.661379 + 0.750052i \(0.269971\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −6.58755 −0.209790
\(987\) 0 0
\(988\) 0.138701i 0.00441266i
\(989\) −3.11804 1.80020i −0.0991478 0.0572430i
\(990\) 0 0
\(991\) −10.8601 18.8102i −0.344981 0.597525i 0.640369 0.768067i \(-0.278781\pi\)
−0.985350 + 0.170543i \(0.945448\pi\)
\(992\) 4.18154 + 2.41421i 0.132764 + 0.0766514i
\(993\) 0 0
\(994\) −21.7627 14.7381i −0.690270 0.467464i
\(995\) 0 0
\(996\) 0 0
\(997\) 21.2381 + 36.7856i 0.672619 + 1.16501i 0.977159 + 0.212510i \(0.0681640\pi\)
−0.304540 + 0.952500i \(0.598503\pi\)
\(998\) −17.3665 30.0796i −0.549726 0.952154i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.bp.a.1349.4 8
3.2 odd 2 3150.2.bp.f.1349.4 8
5.2 odd 4 630.2.be.a.341.1 8
5.3 odd 4 3150.2.bf.b.1601.4 8
5.4 even 2 3150.2.bp.d.1349.1 8
7.3 odd 6 3150.2.bp.c.899.1 8
15.2 even 4 630.2.be.b.341.3 yes 8
15.8 even 4 3150.2.bf.c.1601.2 8
15.14 odd 2 3150.2.bp.c.1349.1 8
21.17 even 6 3150.2.bp.d.899.1 8
35.2 odd 12 4410.2.b.e.881.5 8
35.3 even 12 3150.2.bf.c.1151.2 8
35.12 even 12 4410.2.b.b.881.5 8
35.17 even 12 630.2.be.b.521.3 yes 8
35.24 odd 6 3150.2.bp.f.899.4 8
105.2 even 12 4410.2.b.b.881.4 8
105.17 odd 12 630.2.be.a.521.1 yes 8
105.38 odd 12 3150.2.bf.b.1151.4 8
105.47 odd 12 4410.2.b.e.881.4 8
105.59 even 6 inner 3150.2.bp.a.899.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
630.2.be.a.341.1 8 5.2 odd 4
630.2.be.a.521.1 yes 8 105.17 odd 12
630.2.be.b.341.3 yes 8 15.2 even 4
630.2.be.b.521.3 yes 8 35.17 even 12
3150.2.bf.b.1151.4 8 105.38 odd 12
3150.2.bf.b.1601.4 8 5.3 odd 4
3150.2.bf.c.1151.2 8 35.3 even 12
3150.2.bf.c.1601.2 8 15.8 even 4
3150.2.bp.a.899.4 8 105.59 even 6 inner
3150.2.bp.a.1349.4 8 1.1 even 1 trivial
3150.2.bp.c.899.1 8 7.3 odd 6
3150.2.bp.c.1349.1 8 15.14 odd 2
3150.2.bp.d.899.1 8 21.17 even 6
3150.2.bp.d.1349.1 8 5.4 even 2
3150.2.bp.f.899.4 8 35.24 odd 6
3150.2.bp.f.1349.4 8 3.2 odd 2
4410.2.b.b.881.4 8 105.2 even 12
4410.2.b.b.881.5 8 35.12 even 12
4410.2.b.e.881.4 8 105.47 odd 12
4410.2.b.e.881.5 8 35.2 odd 12