Properties

Label 444.2.i.b
Level $444$
Weight $2$
Character orbit 444.i
Analytic conductor $3.545$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [444,2,Mod(121,444)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(444, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("444.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{37})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_1 q^{5} - 3 \beta_{2} q^{7} + (\beta_{2} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{3} + \beta_1 q^{5} - 3 \beta_{2} q^{7} + (\beta_{2} - 1) q^{9} + ( - \beta_{3} + 2) q^{11} + ( - \beta_{2} + \beta_1) q^{13} + (\beta_{3} + \beta_1 - 1) q^{15} + (3 \beta_{2} - 3) q^{17} + ( - 3 \beta_{2} + \beta_1) q^{19} + ( - 3 \beta_{2} + 3) q^{21} + ( - \beta_{3} - 3) q^{23} + (\beta_{3} + 4 \beta_{2} + \beta_1 - 5) q^{25} - q^{27} + (2 \beta_{3} + 3) q^{29} + (2 \beta_{3} - 2) q^{31} + (\beta_{2} + \beta_1) q^{33} + ( - 3 \beta_{3} - 3 \beta_1 + 3) q^{35} + (2 \beta_{3} - \beta_{2} + 2 \beta_1 - 1) q^{37} + (\beta_{3} - \beta_{2} + \beta_1) q^{39} + ( - 5 \beta_{2} - \beta_1) q^{41} + ( - \beta_{3} + 10) q^{43} + (\beta_{3} - 1) q^{45} + ( - 2 \beta_{3} + 5) q^{47} + (2 \beta_{2} - 2) q^{49} - 3 q^{51} + ( - 2 \beta_{3} - 7 \beta_{2} + \cdots + 9) q^{53}+ \cdots + (\beta_{3} + \beta_{2} + \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + q^{5} - 6 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} + q^{5} - 6 q^{7} - 2 q^{9} + 6 q^{11} - q^{13} - q^{15} - 6 q^{17} - 5 q^{19} + 6 q^{21} - 14 q^{23} - 9 q^{25} - 4 q^{27} + 16 q^{29} - 4 q^{31} + 3 q^{33} + 3 q^{35} + q^{39} - 11 q^{41} + 38 q^{43} - 2 q^{45} + 16 q^{47} - 4 q^{49} - 12 q^{51} + 16 q^{53} + 20 q^{55} + 5 q^{57} - 17 q^{59} + 6 q^{61} + 12 q^{63} - 18 q^{65} - 5 q^{67} - 7 q^{69} - 12 q^{71} - 16 q^{73} - 18 q^{75} - 9 q^{77} - 17 q^{79} - 2 q^{81} + 4 q^{83} - 6 q^{85} + 8 q^{87} + 10 q^{89} - 3 q^{91} - 2 q^{93} - 16 q^{95} - 2 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 10x^{2} + 9x + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 10\nu^{2} - 10\nu + 81 ) / 90 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 19 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 9\beta_{2} + \beta _1 - 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 10\beta_{3} - 19 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
−1.27069 2.20090i
1.77069 + 3.06693i
−1.27069 + 2.20090i
1.77069 3.06693i
0 0.500000 + 0.866025i 0 −1.27069 2.20090i 0 −1.50000 2.59808i 0 −0.500000 + 0.866025i 0
121.2 0 0.500000 + 0.866025i 0 1.77069 + 3.06693i 0 −1.50000 2.59808i 0 −0.500000 + 0.866025i 0
433.1 0 0.500000 0.866025i 0 −1.27069 + 2.20090i 0 −1.50000 + 2.59808i 0 −0.500000 0.866025i 0
433.2 0 0.500000 0.866025i 0 1.77069 3.06693i 0 −1.50000 + 2.59808i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 444.2.i.b 4
3.b odd 2 1 1332.2.j.d 4
4.b odd 2 1 1776.2.q.i 4
37.c even 3 1 inner 444.2.i.b 4
111.i odd 6 1 1332.2.j.d 4
148.i odd 6 1 1776.2.q.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
444.2.i.b 4 1.a even 1 1 trivial
444.2.i.b 4 37.c even 3 1 inner
1332.2.j.d 4 3.b odd 2 1
1332.2.j.d 4 111.i odd 6 1
1776.2.q.i 4 4.b odd 2 1
1776.2.q.i 4 148.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - T_{5}^{3} + 10T_{5}^{2} + 9T_{5} + 81 \) acting on \(S_{2}^{\mathrm{new}}(444, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{3} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T - 7)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + T^{3} + \cdots + 81 \) Copy content Toggle raw display
$17$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 5 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( (T^{2} + 7 T + 3)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T - 21)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T - 36)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 37T^{2} + 1369 \) Copy content Toggle raw display
$41$ \( T^{4} + 11 T^{3} + \cdots + 441 \) Copy content Toggle raw display
$43$ \( (T^{2} - 19 T + 81)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T - 21)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 16 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$59$ \( T^{4} + 17 T^{3} + \cdots + 3969 \) Copy content Toggle raw display
$61$ \( T^{4} - 6 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$67$ \( T^{4} + 5 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$71$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 8 T - 132)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 17 T^{3} + \cdots + 3969 \) Copy content Toggle raw display
$83$ \( T^{4} - 4 T^{3} + \cdots + 20736 \) Copy content Toggle raw display
$89$ \( T^{4} - 10 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$97$ \( (T^{2} + T - 231)^{2} \) Copy content Toggle raw display
show more
show less