Properties

Label 444.2.i.b
Level 444444
Weight 22
Character orbit 444.i
Analytic conductor 3.5453.545
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [444,2,Mod(121,444)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(444, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("444.121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 444=22337 444 = 2^{2} \cdot 3 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 444.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.545357849743.54535784974
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,37)\Q(\sqrt{-3}, \sqrt{37})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+10x2+9x+81 x^{4} - x^{3} + 10x^{2} + 9x + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+β1q53β2q7+(β21)q9+(β3+2)q11+(β2+β1)q13+(β3+β11)q15+(3β23)q17++(β3+β2+β12)q99+O(q100) q + \beta_{2} q^{3} + \beta_1 q^{5} - 3 \beta_{2} q^{7} + (\beta_{2} - 1) q^{9} + ( - \beta_{3} + 2) q^{11} + ( - \beta_{2} + \beta_1) q^{13} + (\beta_{3} + \beta_1 - 1) q^{15} + (3 \beta_{2} - 3) q^{17}+ \cdots + (\beta_{3} + \beta_{2} + \beta_1 - 2) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q3+q56q72q9+6q11q13q156q175q19+6q2114q239q254q27+16q294q31+3q33+3q35+q3911q41+3q99+O(q100) 4 q + 2 q^{3} + q^{5} - 6 q^{7} - 2 q^{9} + 6 q^{11} - q^{13} - q^{15} - 6 q^{17} - 5 q^{19} + 6 q^{21} - 14 q^{23} - 9 q^{25} - 4 q^{27} + 16 q^{29} - 4 q^{31} + 3 q^{33} + 3 q^{35} + q^{39} - 11 q^{41}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+10x2+9x+81 x^{4} - x^{3} + 10x^{2} + 9x + 81 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+10ν210ν+81)/90 ( -\nu^{3} + 10\nu^{2} - 10\nu + 81 ) / 90 Copy content Toggle raw display
β3\beta_{3}== (ν3+19)/10 ( \nu^{3} + 19 ) / 10 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+9β2+β110 \beta_{3} + 9\beta_{2} + \beta _1 - 10 Copy content Toggle raw display
ν3\nu^{3}== 10β319 10\beta_{3} - 19 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/444Z)×\left(\mathbb{Z}/444\mathbb{Z}\right)^\times.

nn 149149 223223 409409
χ(n)\chi(n) 11 11 β2-\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
121.1
−1.27069 2.20090i
1.77069 + 3.06693i
−1.27069 + 2.20090i
1.77069 3.06693i
0 0.500000 + 0.866025i 0 −1.27069 2.20090i 0 −1.50000 2.59808i 0 −0.500000 + 0.866025i 0
121.2 0 0.500000 + 0.866025i 0 1.77069 + 3.06693i 0 −1.50000 2.59808i 0 −0.500000 + 0.866025i 0
433.1 0 0.500000 0.866025i 0 −1.27069 + 2.20090i 0 −1.50000 + 2.59808i 0 −0.500000 0.866025i 0
433.2 0 0.500000 0.866025i 0 1.77069 3.06693i 0 −1.50000 + 2.59808i 0 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 444.2.i.b 4
3.b odd 2 1 1332.2.j.d 4
4.b odd 2 1 1776.2.q.i 4
37.c even 3 1 inner 444.2.i.b 4
111.i odd 6 1 1332.2.j.d 4
148.i odd 6 1 1776.2.q.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
444.2.i.b 4 1.a even 1 1 trivial
444.2.i.b 4 37.c even 3 1 inner
1332.2.j.d 4 3.b odd 2 1
1332.2.j.d 4 111.i odd 6 1
1776.2.q.i 4 4.b odd 2 1
1776.2.q.i 4 148.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54T53+10T52+9T5+81 T_{5}^{4} - T_{5}^{3} + 10T_{5}^{2} + 9T_{5} + 81 acting on S2new(444,[χ])S_{2}^{\mathrm{new}}(444, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
55 T4T3++81 T^{4} - T^{3} + \cdots + 81 Copy content Toggle raw display
77 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
1111 (T23T7)2 (T^{2} - 3 T - 7)^{2} Copy content Toggle raw display
1313 T4+T3++81 T^{4} + T^{3} + \cdots + 81 Copy content Toggle raw display
1717 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
1919 T4+5T3++9 T^{4} + 5 T^{3} + \cdots + 9 Copy content Toggle raw display
2323 (T2+7T+3)2 (T^{2} + 7 T + 3)^{2} Copy content Toggle raw display
2929 (T28T21)2 (T^{2} - 8 T - 21)^{2} Copy content Toggle raw display
3131 (T2+2T36)2 (T^{2} + 2 T - 36)^{2} Copy content Toggle raw display
3737 T4+37T2+1369 T^{4} + 37T^{2} + 1369 Copy content Toggle raw display
4141 T4+11T3++441 T^{4} + 11 T^{3} + \cdots + 441 Copy content Toggle raw display
4343 (T219T+81)2 (T^{2} - 19 T + 81)^{2} Copy content Toggle raw display
4747 (T28T21)2 (T^{2} - 8 T - 21)^{2} Copy content Toggle raw display
5353 T416T3++729 T^{4} - 16 T^{3} + \cdots + 729 Copy content Toggle raw display
5959 T4+17T3++3969 T^{4} + 17 T^{3} + \cdots + 3969 Copy content Toggle raw display
6161 T46T3++784 T^{4} - 6 T^{3} + \cdots + 784 Copy content Toggle raw display
6767 T4+5T3++9 T^{4} + 5 T^{3} + \cdots + 9 Copy content Toggle raw display
7171 (T2+6T+36)2 (T^{2} + 6 T + 36)^{2} Copy content Toggle raw display
7373 (T2+8T132)2 (T^{2} + 8 T - 132)^{2} Copy content Toggle raw display
7979 T4+17T3++3969 T^{4} + 17 T^{3} + \cdots + 3969 Copy content Toggle raw display
8383 T44T3++20736 T^{4} - 4 T^{3} + \cdots + 20736 Copy content Toggle raw display
8989 T410T3++144 T^{4} - 10 T^{3} + \cdots + 144 Copy content Toggle raw display
9797 (T2+T231)2 (T^{2} + T - 231)^{2} Copy content Toggle raw display
show more
show less