Properties

Label 448.2.m.c.337.4
Level $448$
Weight $2$
Character 448.337
Analytic conductor $3.577$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,2,Mod(113,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.214798336.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 2x^{5} + 9x^{4} - 4x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 337.4
Root \(-0.565036 + 1.29643i\) of defining polynomial
Character \(\chi\) \(=\) 448.337
Dual form 448.2.m.c.113.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.96506 + 1.96506i) q^{3} +(-0.627801 + 0.627801i) q^{5} -1.00000i q^{7} +4.72294i q^{9} +(-3.72294 + 3.72294i) q^{11} +(2.22066 + 2.22066i) q^{13} -2.46733 q^{15} +3.25560 q^{17} +(1.83499 + 1.83499i) q^{19} +(1.96506 - 1.96506i) q^{21} -7.65306i q^{23} +4.21173i q^{25} +(-3.38567 + 3.38567i) q^{27} +(-1.53721 - 1.53721i) q^{29} +2.44133 q^{31} -14.6316 q^{33} +(0.627801 + 0.627801i) q^{35} +(-1.26015 + 1.26015i) q^{37} +8.72748i q^{39} -7.77589i q^{41} +(7.51575 - 7.51575i) q^{43} +(-2.96506 - 2.96506i) q^{45} -11.1158 q^{47} -1.00000 q^{49} +(6.39746 + 6.39746i) q^{51} +(2.93012 - 2.93012i) q^{53} -4.67452i q^{55} +7.21173i q^{57} +(6.83953 - 6.83953i) q^{59} +(3.37220 + 3.37220i) q^{61} +4.72294 q^{63} -2.78827 q^{65} +(-0.925579 - 0.925579i) q^{67} +(15.0387 - 15.0387i) q^{69} +12.1113i q^{71} -6.41438i q^{73} +(-8.27631 + 8.27631i) q^{75} +(3.72294 + 3.72294i) q^{77} +7.28255 q^{79} +0.862688 q^{81} +(1.96506 + 1.96506i) q^{83} +(-2.04387 + 2.04387i) q^{85} -6.04143i q^{87} +0.665433i q^{89} +(2.22066 - 2.22066i) q^{91} +(4.79736 + 4.79736i) q^{93} -2.30401 q^{95} -8.34450 q^{97} +(-17.5832 - 17.5832i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} + 8 q^{15} + 24 q^{17} + 12 q^{19} - 12 q^{27} - 16 q^{29} - 16 q^{31} - 24 q^{33} + 4 q^{35} + 16 q^{37} + 32 q^{43} - 8 q^{45} - 24 q^{47} - 8 q^{49} - 8 q^{51} - 8 q^{53} + 28 q^{59} + 28 q^{61}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.96506 + 1.96506i 1.13453 + 1.13453i 0.989415 + 0.145114i \(0.0463549\pi\)
0.145114 + 0.989415i \(0.453645\pi\)
\(4\) 0 0
\(5\) −0.627801 + 0.627801i −0.280761 + 0.280761i −0.833412 0.552651i \(-0.813616\pi\)
0.552651 + 0.833412i \(0.313616\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 4.72294i 1.57431i
\(10\) 0 0
\(11\) −3.72294 + 3.72294i −1.12251 + 1.12251i −0.131144 + 0.991363i \(0.541865\pi\)
−0.991363 + 0.131144i \(0.958135\pi\)
\(12\) 0 0
\(13\) 2.22066 + 2.22066i 0.615901 + 0.615901i 0.944477 0.328576i \(-0.106569\pi\)
−0.328576 + 0.944477i \(0.606569\pi\)
\(14\) 0 0
\(15\) −2.46733 −0.637063
\(16\) 0 0
\(17\) 3.25560 0.789599 0.394800 0.918767i \(-0.370814\pi\)
0.394800 + 0.918767i \(0.370814\pi\)
\(18\) 0 0
\(19\) 1.83499 + 1.83499i 0.420975 + 0.420975i 0.885539 0.464564i \(-0.153789\pi\)
−0.464564 + 0.885539i \(0.653789\pi\)
\(20\) 0 0
\(21\) 1.96506 1.96506i 0.428812 0.428812i
\(22\) 0 0
\(23\) 7.65306i 1.59577i −0.602808 0.797887i \(-0.705951\pi\)
0.602808 0.797887i \(-0.294049\pi\)
\(24\) 0 0
\(25\) 4.21173i 0.842347i
\(26\) 0 0
\(27\) −3.38567 + 3.38567i −0.651573 + 0.651573i
\(28\) 0 0
\(29\) −1.53721 1.53721i −0.285453 0.285453i 0.549826 0.835279i \(-0.314694\pi\)
−0.835279 + 0.549826i \(0.814694\pi\)
\(30\) 0 0
\(31\) 2.44133 0.438475 0.219238 0.975672i \(-0.429643\pi\)
0.219238 + 0.975672i \(0.429643\pi\)
\(32\) 0 0
\(33\) −14.6316 −2.54703
\(34\) 0 0
\(35\) 0.627801 + 0.627801i 0.106118 + 0.106118i
\(36\) 0 0
\(37\) −1.26015 + 1.26015i −0.207167 + 0.207167i −0.803062 0.595895i \(-0.796797\pi\)
0.595895 + 0.803062i \(0.296797\pi\)
\(38\) 0 0
\(39\) 8.72748i 1.39752i
\(40\) 0 0
\(41\) 7.77589i 1.21439i −0.794553 0.607195i \(-0.792295\pi\)
0.794553 0.607195i \(-0.207705\pi\)
\(42\) 0 0
\(43\) 7.51575 7.51575i 1.14614 1.14614i 0.158836 0.987305i \(-0.449226\pi\)
0.987305 0.158836i \(-0.0507740\pi\)
\(44\) 0 0
\(45\) −2.96506 2.96506i −0.442005 0.442005i
\(46\) 0 0
\(47\) −11.1158 −1.62141 −0.810707 0.585453i \(-0.800917\pi\)
−0.810707 + 0.585453i \(0.800917\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 6.39746 + 6.39746i 0.895823 + 0.895823i
\(52\) 0 0
\(53\) 2.93012 2.93012i 0.402483 0.402483i −0.476624 0.879107i \(-0.658140\pi\)
0.879107 + 0.476624i \(0.158140\pi\)
\(54\) 0 0
\(55\) 4.67452i 0.630312i
\(56\) 0 0
\(57\) 7.21173i 0.955217i
\(58\) 0 0
\(59\) 6.83953 6.83953i 0.890431 0.890431i −0.104132 0.994563i \(-0.533206\pi\)
0.994563 + 0.104132i \(0.0332065\pi\)
\(60\) 0 0
\(61\) 3.37220 + 3.37220i 0.431766 + 0.431766i 0.889229 0.457463i \(-0.151242\pi\)
−0.457463 + 0.889229i \(0.651242\pi\)
\(62\) 0 0
\(63\) 4.72294 0.595034
\(64\) 0 0
\(65\) −2.78827 −0.345842
\(66\) 0 0
\(67\) −0.925579 0.925579i −0.113077 0.113077i 0.648304 0.761382i \(-0.275479\pi\)
−0.761382 + 0.648304i \(0.775479\pi\)
\(68\) 0 0
\(69\) 15.0387 15.0387i 1.81045 1.81045i
\(70\) 0 0
\(71\) 12.1113i 1.43735i 0.695348 + 0.718674i \(0.255250\pi\)
−0.695348 + 0.718674i \(0.744750\pi\)
\(72\) 0 0
\(73\) 6.41438i 0.750746i −0.926874 0.375373i \(-0.877515\pi\)
0.926874 0.375373i \(-0.122485\pi\)
\(74\) 0 0
\(75\) −8.27631 + 8.27631i −0.955667 + 0.955667i
\(76\) 0 0
\(77\) 3.72294 + 3.72294i 0.424268 + 0.424268i
\(78\) 0 0
\(79\) 7.28255 0.819351 0.409675 0.912231i \(-0.365642\pi\)
0.409675 + 0.912231i \(0.365642\pi\)
\(80\) 0 0
\(81\) 0.862688 0.0958543
\(82\) 0 0
\(83\) 1.96506 + 1.96506i 0.215694 + 0.215694i 0.806681 0.590987i \(-0.201262\pi\)
−0.590987 + 0.806681i \(0.701262\pi\)
\(84\) 0 0
\(85\) −2.04387 + 2.04387i −0.221689 + 0.221689i
\(86\) 0 0
\(87\) 6.04143i 0.647709i
\(88\) 0 0
\(89\) 0.665433i 0.0705358i 0.999378 + 0.0352679i \(0.0112284\pi\)
−0.999378 + 0.0352679i \(0.988772\pi\)
\(90\) 0 0
\(91\) 2.22066 2.22066i 0.232789 0.232789i
\(92\) 0 0
\(93\) 4.79736 + 4.79736i 0.497463 + 0.497463i
\(94\) 0 0
\(95\) −2.30401 −0.236387
\(96\) 0 0
\(97\) −8.34450 −0.847256 −0.423628 0.905836i \(-0.639244\pi\)
−0.423628 + 0.905836i \(0.639244\pi\)
\(98\) 0 0
\(99\) −17.5832 17.5832i −1.76718 1.76718i
\(100\) 0 0
\(101\) −3.37944 + 3.37944i −0.336267 + 0.336267i −0.854960 0.518694i \(-0.826419\pi\)
0.518694 + 0.854960i \(0.326419\pi\)
\(102\) 0 0
\(103\) 19.2218i 1.89398i −0.321268 0.946988i \(-0.604109\pi\)
0.321268 0.946988i \(-0.395891\pi\)
\(104\) 0 0
\(105\) 2.46733i 0.240787i
\(106\) 0 0
\(107\) −2.46733 + 2.46733i −0.238526 + 0.238526i −0.816240 0.577713i \(-0.803945\pi\)
0.577713 + 0.816240i \(0.303945\pi\)
\(108\) 0 0
\(109\) 2.44587 + 2.44587i 0.234272 + 0.234272i 0.814473 0.580201i \(-0.197026\pi\)
−0.580201 + 0.814473i \(0.697026\pi\)
\(110\) 0 0
\(111\) −4.95253 −0.470073
\(112\) 0 0
\(113\) 3.35149 0.315281 0.157641 0.987497i \(-0.449611\pi\)
0.157641 + 0.987497i \(0.449611\pi\)
\(114\) 0 0
\(115\) 4.80460 + 4.80460i 0.448031 + 0.448031i
\(116\) 0 0
\(117\) −10.4880 + 10.4880i −0.969620 + 0.969620i
\(118\) 0 0
\(119\) 3.25560i 0.298440i
\(120\) 0 0
\(121\) 16.7205i 1.52004i
\(122\) 0 0
\(123\) 15.2801 15.2801i 1.37776 1.37776i
\(124\) 0 0
\(125\) −5.78313 5.78313i −0.517259 0.517259i
\(126\) 0 0
\(127\) 5.55623 0.493036 0.246518 0.969138i \(-0.420714\pi\)
0.246518 + 0.969138i \(0.420714\pi\)
\(128\) 0 0
\(129\) 29.5378 2.60066
\(130\) 0 0
\(131\) −9.67108 9.67108i −0.844966 0.844966i 0.144534 0.989500i \(-0.453832\pi\)
−0.989500 + 0.144534i \(0.953832\pi\)
\(132\) 0 0
\(133\) 1.83499 1.83499i 0.159114 0.159114i
\(134\) 0 0
\(135\) 4.25106i 0.365873i
\(136\) 0 0
\(137\) 4.92558i 0.420821i −0.977613 0.210410i \(-0.932520\pi\)
0.977613 0.210410i \(-0.0674800\pi\)
\(138\) 0 0
\(139\) −7.58393 + 7.58393i −0.643261 + 0.643261i −0.951356 0.308095i \(-0.900309\pi\)
0.308095 + 0.951356i \(0.400309\pi\)
\(140\) 0 0
\(141\) −21.8433 21.8433i −1.83954 1.83954i
\(142\) 0 0
\(143\) −16.5348 −1.38271
\(144\) 0 0
\(145\) 1.93012 0.160288
\(146\) 0 0
\(147\) −1.96506 1.96506i −0.162076 0.162076i
\(148\) 0 0
\(149\) −2.69599 + 2.69599i −0.220864 + 0.220864i −0.808862 0.587998i \(-0.799916\pi\)
0.587998 + 0.808862i \(0.299916\pi\)
\(150\) 0 0
\(151\) 2.16426i 0.176125i 0.996115 + 0.0880625i \(0.0280675\pi\)
−0.996115 + 0.0880625i \(0.971932\pi\)
\(152\) 0 0
\(153\) 15.3760i 1.24308i
\(154\) 0 0
\(155\) −1.53267 + 1.53267i −0.123107 + 0.123107i
\(156\) 0 0
\(157\) 3.94266 + 3.94266i 0.314658 + 0.314658i 0.846711 0.532053i \(-0.178579\pi\)
−0.532053 + 0.846711i \(0.678579\pi\)
\(158\) 0 0
\(159\) 11.5157 0.913258
\(160\) 0 0
\(161\) −7.65306 −0.603146
\(162\) 0 0
\(163\) 8.23414 + 8.23414i 0.644947 + 0.644947i 0.951768 0.306820i \(-0.0992650\pi\)
−0.306820 + 0.951768i \(0.599265\pi\)
\(164\) 0 0
\(165\) 9.18572 9.18572i 0.715108 0.715108i
\(166\) 0 0
\(167\) 12.4649i 0.964562i 0.876016 + 0.482281i \(0.160192\pi\)
−0.876016 + 0.482281i \(0.839808\pi\)
\(168\) 0 0
\(169\) 3.13731i 0.241332i
\(170\) 0 0
\(171\) −8.66653 + 8.66653i −0.662746 + 0.662746i
\(172\) 0 0
\(173\) −13.9267 13.9267i −1.05883 1.05883i −0.998158 0.0606678i \(-0.980677\pi\)
−0.0606678 0.998158i \(-0.519323\pi\)
\(174\) 0 0
\(175\) 4.21173 0.318377
\(176\) 0 0
\(177\) 26.8802 2.02044
\(178\) 0 0
\(179\) −0.977595 0.977595i −0.0730689 0.0730689i 0.669628 0.742697i \(-0.266454\pi\)
−0.742697 + 0.669628i \(0.766454\pi\)
\(180\) 0 0
\(181\) −16.0038 + 16.0038i −1.18955 + 1.18955i −0.212362 + 0.977191i \(0.568115\pi\)
−0.977191 + 0.212362i \(0.931885\pi\)
\(182\) 0 0
\(183\) 13.2532i 0.979702i
\(184\) 0 0
\(185\) 1.58224i 0.116329i
\(186\) 0 0
\(187\) −12.1204 + 12.1204i −0.886331 + 0.886331i
\(188\) 0 0
\(189\) 3.38567 + 3.38567i 0.246272 + 0.246272i
\(190\) 0 0
\(191\) −2.51120 −0.181704 −0.0908521 0.995864i \(-0.528959\pi\)
−0.0908521 + 0.995864i \(0.528959\pi\)
\(192\) 0 0
\(193\) 10.0944 0.726610 0.363305 0.931670i \(-0.381648\pi\)
0.363305 + 0.931670i \(0.381648\pi\)
\(194\) 0 0
\(195\) −5.47912 5.47912i −0.392368 0.392368i
\(196\) 0 0
\(197\) −13.5617 + 13.5617i −0.966232 + 0.966232i −0.999448 0.0332158i \(-0.989425\pi\)
0.0332158 + 0.999448i \(0.489425\pi\)
\(198\) 0 0
\(199\) 5.61257i 0.397865i 0.980013 + 0.198932i \(0.0637474\pi\)
−0.980013 + 0.198932i \(0.936253\pi\)
\(200\) 0 0
\(201\) 3.63764i 0.256579i
\(202\) 0 0
\(203\) −1.53721 + 1.53721i −0.107891 + 0.107891i
\(204\) 0 0
\(205\) 4.88171 + 4.88171i 0.340953 + 0.340953i
\(206\) 0 0
\(207\) 36.1449 2.51224
\(208\) 0 0
\(209\) −13.6631 −0.945096
\(210\) 0 0
\(211\) −3.86025 3.86025i −0.265750 0.265750i 0.561635 0.827385i \(-0.310173\pi\)
−0.827385 + 0.561635i \(0.810173\pi\)
\(212\) 0 0
\(213\) −23.7995 + 23.7995i −1.63071 + 1.63071i
\(214\) 0 0
\(215\) 9.43678i 0.643583i
\(216\) 0 0
\(217\) 2.44133i 0.165728i
\(218\) 0 0
\(219\) 12.6046 12.6046i 0.851743 0.851743i
\(220\) 0 0
\(221\) 7.22959 + 7.22959i 0.486315 + 0.486315i
\(222\) 0 0
\(223\) 12.5348 0.839390 0.419695 0.907665i \(-0.362137\pi\)
0.419695 + 0.907665i \(0.362137\pi\)
\(224\) 0 0
\(225\) −19.8917 −1.32612
\(226\) 0 0
\(227\) 15.7043 + 15.7043i 1.04233 + 1.04233i 0.999063 + 0.0432692i \(0.0137773\pi\)
0.0432692 + 0.999063i \(0.486223\pi\)
\(228\) 0 0
\(229\) 7.29508 7.29508i 0.482073 0.482073i −0.423720 0.905793i \(-0.639276\pi\)
0.905793 + 0.423720i \(0.139276\pi\)
\(230\) 0 0
\(231\) 14.6316i 0.962688i
\(232\) 0 0
\(233\) 0.182680i 0.0119678i −0.999982 0.00598388i \(-0.998095\pi\)
0.999982 0.00598388i \(-0.00190474\pi\)
\(234\) 0 0
\(235\) 6.97854 6.97854i 0.455230 0.455230i
\(236\) 0 0
\(237\) 14.3107 + 14.3107i 0.929577 + 0.929577i
\(238\) 0 0
\(239\) −0.261087 −0.0168883 −0.00844417 0.999964i \(-0.502688\pi\)
−0.00844417 + 0.999964i \(0.502688\pi\)
\(240\) 0 0
\(241\) 7.53022 0.485064 0.242532 0.970143i \(-0.422022\pi\)
0.242532 + 0.970143i \(0.422022\pi\)
\(242\) 0 0
\(243\) 11.8523 + 11.8523i 0.760323 + 0.760323i
\(244\) 0 0
\(245\) 0.627801 0.627801i 0.0401087 0.0401087i
\(246\) 0 0
\(247\) 8.14978i 0.518558i
\(248\) 0 0
\(249\) 7.72294i 0.489421i
\(250\) 0 0
\(251\) 2.22521 2.22521i 0.140454 0.140454i −0.633384 0.773838i \(-0.718335\pi\)
0.773838 + 0.633384i \(0.218335\pi\)
\(252\) 0 0
\(253\) 28.4918 + 28.4918i 1.79127 + 1.79127i
\(254\) 0 0
\(255\) −8.03266 −0.503024
\(256\) 0 0
\(257\) −2.81428 −0.175550 −0.0877748 0.996140i \(-0.527976\pi\)
−0.0877748 + 0.996140i \(0.527976\pi\)
\(258\) 0 0
\(259\) 1.26015 + 1.26015i 0.0783016 + 0.0783016i
\(260\) 0 0
\(261\) 7.26015 7.26015i 0.449392 0.449392i
\(262\) 0 0
\(263\) 8.52568i 0.525716i 0.964835 + 0.262858i \(0.0846651\pi\)
−0.964835 + 0.262858i \(0.915335\pi\)
\(264\) 0 0
\(265\) 3.67907i 0.226003i
\(266\) 0 0
\(267\) −1.30762 + 1.30762i −0.0800249 + 0.0800249i
\(268\) 0 0
\(269\) −11.5177 11.5177i −0.702246 0.702246i 0.262646 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(270\) 0 0
\(271\) −26.7375 −1.62419 −0.812094 0.583527i \(-0.801672\pi\)
−0.812094 + 0.583527i \(0.801672\pi\)
\(272\) 0 0
\(273\) 8.72748 0.528211
\(274\) 0 0
\(275\) −15.6800 15.6800i −0.945540 0.945540i
\(276\) 0 0
\(277\) 9.06744 9.06744i 0.544809 0.544809i −0.380126 0.924935i \(-0.624119\pi\)
0.924935 + 0.380126i \(0.124119\pi\)
\(278\) 0 0
\(279\) 11.5302i 0.690296i
\(280\) 0 0
\(281\) 28.4095i 1.69477i 0.530980 + 0.847384i \(0.321824\pi\)
−0.530980 + 0.847384i \(0.678176\pi\)
\(282\) 0 0
\(283\) −5.34106 + 5.34106i −0.317493 + 0.317493i −0.847803 0.530311i \(-0.822075\pi\)
0.530311 + 0.847803i \(0.322075\pi\)
\(284\) 0 0
\(285\) −4.52753 4.52753i −0.268188 0.268188i
\(286\) 0 0
\(287\) −7.77589 −0.458996
\(288\) 0 0
\(289\) −6.40106 −0.376533
\(290\) 0 0
\(291\) −16.3975 16.3975i −0.961236 0.961236i
\(292\) 0 0
\(293\) −8.64751 + 8.64751i −0.505193 + 0.505193i −0.913047 0.407854i \(-0.866277\pi\)
0.407854 + 0.913047i \(0.366277\pi\)
\(294\) 0 0
\(295\) 8.58773i 0.499997i
\(296\) 0 0
\(297\) 25.2093i 1.46279i
\(298\) 0 0
\(299\) 16.9949 16.9949i 0.982838 0.982838i
\(300\) 0 0
\(301\) −7.51575 7.51575i −0.433200 0.433200i
\(302\) 0 0
\(303\) −13.2816 −0.763009
\(304\) 0 0
\(305\) −4.23414 −0.242446
\(306\) 0 0
\(307\) −22.9681 22.9681i −1.31086 1.31086i −0.920782 0.390077i \(-0.872448\pi\)
−0.390077 0.920782i \(-0.627552\pi\)
\(308\) 0 0
\(309\) 37.7720 37.7720i 2.14877 2.14877i
\(310\) 0 0
\(311\) 26.5457i 1.50527i −0.658437 0.752635i \(-0.728782\pi\)
0.658437 0.752635i \(-0.271218\pi\)
\(312\) 0 0
\(313\) 20.1854i 1.14095i −0.821317 0.570473i \(-0.806760\pi\)
0.821317 0.570473i \(-0.193240\pi\)
\(314\) 0 0
\(315\) −2.96506 + 2.96506i −0.167062 + 0.167062i
\(316\) 0 0
\(317\) −0.930123 0.930123i −0.0522409 0.0522409i 0.680504 0.732745i \(-0.261761\pi\)
−0.732745 + 0.680504i \(0.761761\pi\)
\(318\) 0 0
\(319\) 11.4459 0.640846
\(320\) 0 0
\(321\) −9.69693 −0.541230
\(322\) 0 0
\(323\) 5.97399 + 5.97399i 0.332402 + 0.332402i
\(324\) 0 0
\(325\) −9.35284 + 9.35284i −0.518802 + 0.518802i
\(326\) 0 0
\(327\) 9.61257i 0.531577i
\(328\) 0 0
\(329\) 11.1158i 0.612837i
\(330\) 0 0
\(331\) −10.4413 + 10.4413i −0.573907 + 0.573907i −0.933218 0.359311i \(-0.883012\pi\)
0.359311 + 0.933218i \(0.383012\pi\)
\(332\) 0 0
\(333\) −5.95159 5.95159i −0.326145 0.326145i
\(334\) 0 0
\(335\) 1.16216 0.0634955
\(336\) 0 0
\(337\) −27.6212 −1.50462 −0.752312 0.658807i \(-0.771061\pi\)
−0.752312 + 0.658807i \(0.771061\pi\)
\(338\) 0 0
\(339\) 6.58588 + 6.58588i 0.357696 + 0.357696i
\(340\) 0 0
\(341\) −9.08890 + 9.08890i −0.492191 + 0.492191i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 18.8827i 1.01661i
\(346\) 0 0
\(347\) −8.35359 + 8.35359i −0.448444 + 0.448444i −0.894837 0.446393i \(-0.852708\pi\)
0.446393 + 0.894837i \(0.352708\pi\)
\(348\) 0 0
\(349\) −7.97685 7.97685i −0.426991 0.426991i 0.460611 0.887602i \(-0.347630\pi\)
−0.887602 + 0.460611i \(0.847630\pi\)
\(350\) 0 0
\(351\) −15.0369 −0.802609
\(352\) 0 0
\(353\) −10.7623 −0.572817 −0.286409 0.958108i \(-0.592461\pi\)
−0.286409 + 0.958108i \(0.592461\pi\)
\(354\) 0 0
\(355\) −7.60348 7.60348i −0.403551 0.403551i
\(356\) 0 0
\(357\) 6.39746 6.39746i 0.338589 0.338589i
\(358\) 0 0
\(359\) 17.9725i 0.948552i −0.880376 0.474276i \(-0.842710\pi\)
0.880376 0.474276i \(-0.157290\pi\)
\(360\) 0 0
\(361\) 12.2656i 0.645560i
\(362\) 0 0
\(363\) 32.8568 32.8568i 1.72453 1.72453i
\(364\) 0 0
\(365\) 4.02695 + 4.02695i 0.210780 + 0.210780i
\(366\) 0 0
\(367\) 16.7091 0.872206 0.436103 0.899897i \(-0.356358\pi\)
0.436103 + 0.899897i \(0.356358\pi\)
\(368\) 0 0
\(369\) 36.7250 1.91183
\(370\) 0 0
\(371\) −2.93012 2.93012i −0.152124 0.152124i
\(372\) 0 0
\(373\) −15.5786 + 15.5786i −0.806631 + 0.806631i −0.984122 0.177491i \(-0.943202\pi\)
0.177491 + 0.984122i \(0.443202\pi\)
\(374\) 0 0
\(375\) 22.7284i 1.17369i
\(376\) 0 0
\(377\) 6.82725i 0.351621i
\(378\) 0 0
\(379\) −23.6361 + 23.6361i −1.21411 + 1.21411i −0.244443 + 0.969664i \(0.578605\pi\)
−0.969664 + 0.244443i \(0.921395\pi\)
\(380\) 0 0
\(381\) 10.9183 + 10.9183i 0.559364 + 0.559364i
\(382\) 0 0
\(383\) −9.83330 −0.502458 −0.251229 0.967928i \(-0.580835\pi\)
−0.251229 + 0.967928i \(0.580835\pi\)
\(384\) 0 0
\(385\) −4.67452 −0.238236
\(386\) 0 0
\(387\) 35.4964 + 35.4964i 1.80438 + 1.80438i
\(388\) 0 0
\(389\) 10.3490 10.3490i 0.524717 0.524717i −0.394275 0.918992i \(-0.629004\pi\)
0.918992 + 0.394275i \(0.129004\pi\)
\(390\) 0 0
\(391\) 24.9153i 1.26002i
\(392\) 0 0
\(393\) 38.0085i 1.91728i
\(394\) 0 0
\(395\) −4.57199 + 4.57199i −0.230042 + 0.230042i
\(396\) 0 0
\(397\) 18.0543 + 18.0543i 0.906120 + 0.906120i 0.995957 0.0898366i \(-0.0286345\pi\)
−0.0898366 + 0.995957i \(0.528634\pi\)
\(398\) 0 0
\(399\) 7.21173 0.361038
\(400\) 0 0
\(401\) 18.8064 0.939149 0.469575 0.882893i \(-0.344407\pi\)
0.469575 + 0.882893i \(0.344407\pi\)
\(402\) 0 0
\(403\) 5.42136 + 5.42136i 0.270057 + 0.270057i
\(404\) 0 0
\(405\) −0.541596 + 0.541596i −0.0269121 + 0.0269121i
\(406\) 0 0
\(407\) 9.38288i 0.465092i
\(408\) 0 0
\(409\) 29.6077i 1.46401i 0.681301 + 0.732003i \(0.261414\pi\)
−0.681301 + 0.732003i \(0.738586\pi\)
\(410\) 0 0
\(411\) 9.67907 9.67907i 0.477433 0.477433i
\(412\) 0 0
\(413\) −6.83953 6.83953i −0.336551 0.336551i
\(414\) 0 0
\(415\) −2.46733 −0.121117
\(416\) 0 0
\(417\) −29.8058 −1.45960
\(418\) 0 0
\(419\) −1.15229 1.15229i −0.0562929 0.0562929i 0.678400 0.734693i \(-0.262674\pi\)
−0.734693 + 0.678400i \(0.762674\pi\)
\(420\) 0 0
\(421\) 19.7275 19.7275i 0.961459 0.961459i −0.0378258 0.999284i \(-0.512043\pi\)
0.999284 + 0.0378258i \(0.0120432\pi\)
\(422\) 0 0
\(423\) 52.4994i 2.55261i
\(424\) 0 0
\(425\) 13.7117i 0.665116i
\(426\) 0 0
\(427\) 3.37220 3.37220i 0.163192 0.163192i
\(428\) 0 0
\(429\) −32.4918 32.4918i −1.56872 1.56872i
\(430\) 0 0
\(431\) −20.3960 −0.982439 −0.491219 0.871036i \(-0.663449\pi\)
−0.491219 + 0.871036i \(0.663449\pi\)
\(432\) 0 0
\(433\) 28.3107 1.36052 0.680262 0.732969i \(-0.261866\pi\)
0.680262 + 0.732969i \(0.261866\pi\)
\(434\) 0 0
\(435\) 3.79281 + 3.79281i 0.181851 + 0.181851i
\(436\) 0 0
\(437\) 14.0433 14.0433i 0.671781 0.671781i
\(438\) 0 0
\(439\) 4.57231i 0.218224i 0.994029 + 0.109112i \(0.0348008\pi\)
−0.994029 + 0.109112i \(0.965199\pi\)
\(440\) 0 0
\(441\) 4.72294i 0.224902i
\(442\) 0 0
\(443\) −7.13371 + 7.13371i −0.338933 + 0.338933i −0.855966 0.517033i \(-0.827037\pi\)
0.517033 + 0.855966i \(0.327037\pi\)
\(444\) 0 0
\(445\) −0.417759 0.417759i −0.0198037 0.0198037i
\(446\) 0 0
\(447\) −10.5956 −0.501153
\(448\) 0 0
\(449\) 13.0695 0.616790 0.308395 0.951258i \(-0.400208\pi\)
0.308395 + 0.951258i \(0.400208\pi\)
\(450\) 0 0
\(451\) 28.9491 + 28.9491i 1.36316 + 1.36316i
\(452\) 0 0
\(453\) −4.25291 + 4.25291i −0.199819 + 0.199819i
\(454\) 0 0
\(455\) 2.78827i 0.130716i
\(456\) 0 0
\(457\) 31.9117i 1.49277i −0.665516 0.746383i \(-0.731789\pi\)
0.665516 0.746383i \(-0.268211\pi\)
\(458\) 0 0
\(459\) −11.0224 + 11.0224i −0.514482 + 0.514482i
\(460\) 0 0
\(461\) −11.2878 11.2878i −0.525727 0.525727i 0.393568 0.919295i \(-0.371241\pi\)
−0.919295 + 0.393568i \(0.871241\pi\)
\(462\) 0 0
\(463\) 21.0406 0.977839 0.488919 0.872329i \(-0.337391\pi\)
0.488919 + 0.872329i \(0.337391\pi\)
\(464\) 0 0
\(465\) −6.02357 −0.279336
\(466\) 0 0
\(467\) 6.75518 + 6.75518i 0.312592 + 0.312592i 0.845913 0.533321i \(-0.179056\pi\)
−0.533321 + 0.845913i \(0.679056\pi\)
\(468\) 0 0
\(469\) −0.925579 + 0.925579i −0.0427393 + 0.0427393i
\(470\) 0 0
\(471\) 15.4951i 0.713978i
\(472\) 0 0
\(473\) 55.9613i 2.57310i
\(474\) 0 0
\(475\) −7.72848 + 7.72848i −0.354607 + 0.354607i
\(476\) 0 0
\(477\) 13.8388 + 13.8388i 0.633634 + 0.633634i
\(478\) 0 0
\(479\) 10.5328 0.481254 0.240627 0.970618i \(-0.422647\pi\)
0.240627 + 0.970618i \(0.422647\pi\)
\(480\) 0 0
\(481\) −5.59672 −0.255188
\(482\) 0 0
\(483\) −15.0387 15.0387i −0.684286 0.684286i
\(484\) 0 0
\(485\) 5.23868 5.23868i 0.237876 0.237876i
\(486\) 0 0
\(487\) 3.45941i 0.156761i −0.996924 0.0783803i \(-0.975025\pi\)
0.996924 0.0783803i \(-0.0249749\pi\)
\(488\) 0 0
\(489\) 32.3612i 1.46342i
\(490\) 0 0
\(491\) −0.356972 + 0.356972i −0.0161099 + 0.0161099i −0.715116 0.699006i \(-0.753626\pi\)
0.699006 + 0.715116i \(0.253626\pi\)
\(492\) 0 0
\(493\) −5.00454 5.00454i −0.225393 0.225393i
\(494\) 0 0
\(495\) 22.0775 0.992308
\(496\) 0 0
\(497\) 12.1113 0.543266
\(498\) 0 0
\(499\) −16.3040 16.3040i −0.729868 0.729868i 0.240725 0.970593i \(-0.422615\pi\)
−0.970593 + 0.240725i \(0.922615\pi\)
\(500\) 0 0
\(501\) −24.4943 + 24.4943i −1.09432 + 1.09432i
\(502\) 0 0
\(503\) 27.6867i 1.23449i 0.786772 + 0.617243i \(0.211751\pi\)
−0.786772 + 0.617243i \(0.788249\pi\)
\(504\) 0 0
\(505\) 4.24323i 0.188821i
\(506\) 0 0
\(507\) 6.16501 6.16501i 0.273798 0.273798i
\(508\) 0 0
\(509\) −24.0183 24.0183i −1.06459 1.06459i −0.997765 0.0668266i \(-0.978713\pi\)
−0.0668266 0.997765i \(-0.521287\pi\)
\(510\) 0 0
\(511\) −6.41438 −0.283755
\(512\) 0 0
\(513\) −12.4253 −0.548593
\(514\) 0 0
\(515\) 12.0674 + 12.0674i 0.531755 + 0.531755i
\(516\) 0 0
\(517\) 41.3836 41.3836i 1.82005 1.82005i
\(518\) 0 0
\(519\) 54.7336i 2.40254i
\(520\) 0 0
\(521\) 19.5484i 0.856431i −0.903677 0.428216i \(-0.859142\pi\)
0.903677 0.428216i \(-0.140858\pi\)
\(522\) 0 0
\(523\) 7.20189 7.20189i 0.314917 0.314917i −0.531894 0.846811i \(-0.678520\pi\)
0.846811 + 0.531894i \(0.178520\pi\)
\(524\) 0 0
\(525\) 8.27631 + 8.27631i 0.361208 + 0.361208i
\(526\) 0 0
\(527\) 7.94798 0.346220
\(528\) 0 0
\(529\) −35.5693 −1.54649
\(530\) 0 0
\(531\) 32.3027 + 32.3027i 1.40182 + 1.40182i
\(532\) 0 0
\(533\) 17.2676 17.2676i 0.747944 0.747944i
\(534\) 0 0
\(535\) 3.09799i 0.133938i
\(536\) 0 0
\(537\) 3.84207i 0.165798i
\(538\) 0 0
\(539\) 3.72294 3.72294i 0.160358 0.160358i
\(540\) 0 0
\(541\) −1.57325 1.57325i −0.0676393 0.0676393i 0.672478 0.740117i \(-0.265230\pi\)
−0.740117 + 0.672478i \(0.765230\pi\)
\(542\) 0 0
\(543\) −62.8969 −2.69916
\(544\) 0 0
\(545\) −3.07104 −0.131549
\(546\) 0 0
\(547\) 6.76891 + 6.76891i 0.289418 + 0.289418i 0.836850 0.547432i \(-0.184395\pi\)
−0.547432 + 0.836850i \(0.684395\pi\)
\(548\) 0 0
\(549\) −15.9267 + 15.9267i −0.679734 + 0.679734i
\(550\) 0 0
\(551\) 5.64153i 0.240337i
\(552\) 0 0
\(553\) 7.28255i 0.309686i
\(554\) 0 0
\(555\) 3.10920 3.10920i 0.131978 0.131978i
\(556\) 0 0
\(557\) 3.32093 + 3.32093i 0.140712 + 0.140712i 0.773954 0.633242i \(-0.218276\pi\)
−0.633242 + 0.773954i \(0.718276\pi\)
\(558\) 0 0
\(559\) 33.3799 1.41182
\(560\) 0 0
\(561\) −47.6346 −2.01114
\(562\) 0 0
\(563\) −18.7697 18.7697i −0.791047 0.791047i 0.190618 0.981664i \(-0.438951\pi\)
−0.981664 + 0.190618i \(0.938951\pi\)
\(564\) 0 0
\(565\) −2.10406 + 2.10406i −0.0885187 + 0.0885187i
\(566\) 0 0
\(567\) 0.862688i 0.0362295i
\(568\) 0 0
\(569\) 23.4973i 0.985059i −0.870296 0.492530i \(-0.836072\pi\)
0.870296 0.492530i \(-0.163928\pi\)
\(570\) 0 0
\(571\) −24.9670 + 24.9670i −1.04484 + 1.04484i −0.0458902 + 0.998946i \(0.514612\pi\)
−0.998946 + 0.0458902i \(0.985388\pi\)
\(572\) 0 0
\(573\) −4.93467 4.93467i −0.206149 0.206149i
\(574\) 0 0
\(575\) 32.2326 1.34419
\(576\) 0 0
\(577\) −14.4181 −0.600232 −0.300116 0.953903i \(-0.597025\pi\)
−0.300116 + 0.953903i \(0.597025\pi\)
\(578\) 0 0
\(579\) 19.8361 + 19.8361i 0.824360 + 0.824360i
\(580\) 0 0
\(581\) 1.96506 1.96506i 0.0815245 0.0815245i
\(582\) 0 0
\(583\) 21.8173i 0.903581i
\(584\) 0 0
\(585\) 13.1688i 0.544463i
\(586\) 0 0
\(587\) 13.2110 13.2110i 0.545276 0.545276i −0.379795 0.925071i \(-0.624005\pi\)
0.925071 + 0.379795i \(0.124005\pi\)
\(588\) 0 0
\(589\) 4.47981 + 4.47981i 0.184587 + 0.184587i
\(590\) 0 0
\(591\) −53.2992 −2.19244
\(592\) 0 0
\(593\) 16.3859 0.672889 0.336445 0.941703i \(-0.390775\pi\)
0.336445 + 0.941703i \(0.390775\pi\)
\(594\) 0 0
\(595\) 2.04387 + 2.04387i 0.0837904 + 0.0837904i
\(596\) 0 0
\(597\) −11.0291 + 11.0291i −0.451389 + 0.451389i
\(598\) 0 0
\(599\) 34.0042i 1.38937i 0.719312 + 0.694687i \(0.244457\pi\)
−0.719312 + 0.694687i \(0.755543\pi\)
\(600\) 0 0
\(601\) 3.33457i 0.136020i −0.997685 0.0680099i \(-0.978335\pi\)
0.997685 0.0680099i \(-0.0216649\pi\)
\(602\) 0 0
\(603\) 4.37145 4.37145i 0.178019 0.178019i
\(604\) 0 0
\(605\) 10.4971 + 10.4971i 0.426769 + 0.426769i
\(606\) 0 0
\(607\) 10.4737 0.425113 0.212556 0.977149i \(-0.431821\pi\)
0.212556 + 0.977149i \(0.431821\pi\)
\(608\) 0 0
\(609\) −6.04143 −0.244811
\(610\) 0 0
\(611\) −24.6846 24.6846i −0.998630 0.998630i
\(612\) 0 0
\(613\) −8.99756 + 8.99756i −0.363408 + 0.363408i −0.865066 0.501658i \(-0.832724\pi\)
0.501658 + 0.865066i \(0.332724\pi\)
\(614\) 0 0
\(615\) 19.1857i 0.773643i
\(616\) 0 0
\(617\) 2.93899i 0.118319i 0.998249 + 0.0591597i \(0.0188421\pi\)
−0.998249 + 0.0591597i \(0.981158\pi\)
\(618\) 0 0
\(619\) −7.24761 + 7.24761i −0.291306 + 0.291306i −0.837596 0.546290i \(-0.816040\pi\)
0.546290 + 0.837596i \(0.316040\pi\)
\(620\) 0 0
\(621\) 25.9108 + 25.9108i 1.03976 + 1.03976i
\(622\) 0 0
\(623\) 0.665433 0.0266600
\(624\) 0 0
\(625\) −13.7974 −0.551894
\(626\) 0 0
\(627\) −26.8488 26.8488i −1.07224 1.07224i
\(628\) 0 0
\(629\) −4.10253 + 4.10253i −0.163579 + 0.163579i
\(630\) 0 0
\(631\) 9.59471i 0.381959i −0.981594 0.190980i \(-0.938834\pi\)
0.981594 0.190980i \(-0.0611665\pi\)
\(632\) 0 0
\(633\) 15.1712i 0.603003i
\(634\) 0 0
\(635\) −3.48821 + 3.48821i −0.138425 + 0.138425i
\(636\) 0 0
\(637\) −2.22066 2.22066i −0.0879859 0.0879859i
\(638\) 0 0
\(639\) −57.2009 −2.26283
\(640\) 0 0
\(641\) −15.8289 −0.625202 −0.312601 0.949885i \(-0.601200\pi\)
−0.312601 + 0.949885i \(0.601200\pi\)
\(642\) 0 0
\(643\) −10.3033 10.3033i −0.406321 0.406321i 0.474132 0.880454i \(-0.342762\pi\)
−0.880454 + 0.474132i \(0.842762\pi\)
\(644\) 0 0
\(645\) −18.5439 + 18.5439i −0.730164 + 0.730164i
\(646\) 0 0
\(647\) 10.5272i 0.413866i −0.978355 0.206933i \(-0.933652\pi\)
0.978355 0.206933i \(-0.0663482\pi\)
\(648\) 0 0
\(649\) 50.9263i 1.99903i
\(650\) 0 0
\(651\) 4.79736 4.79736i 0.188023 0.188023i
\(652\) 0 0
\(653\) 23.6147 + 23.6147i 0.924114 + 0.924114i 0.997317 0.0732033i \(-0.0233222\pi\)
−0.0732033 + 0.997317i \(0.523322\pi\)
\(654\) 0 0
\(655\) 12.1430 0.474467
\(656\) 0 0
\(657\) 30.2947 1.18191
\(658\) 0 0
\(659\) 14.9087 + 14.9087i 0.580759 + 0.580759i 0.935112 0.354353i \(-0.115299\pi\)
−0.354353 + 0.935112i \(0.615299\pi\)
\(660\) 0 0
\(661\) 22.2104 22.2104i 0.863884 0.863884i −0.127903 0.991787i \(-0.540824\pi\)
0.991787 + 0.127903i \(0.0408245\pi\)
\(662\) 0 0
\(663\) 28.4132i 1.10348i
\(664\) 0 0
\(665\) 2.30401i 0.0893458i
\(666\) 0 0
\(667\) −11.7644 + 11.7644i −0.455518 + 0.455518i
\(668\) 0 0
\(669\) 24.6316 + 24.6316i 0.952312 + 0.952312i
\(670\) 0 0
\(671\) −25.1090 −0.969321
\(672\) 0 0
\(673\) 45.9274 1.77037 0.885186 0.465237i \(-0.154031\pi\)
0.885186 + 0.465237i \(0.154031\pi\)
\(674\) 0 0
\(675\) −14.2596 14.2596i −0.548851 0.548851i
\(676\) 0 0
\(677\) 30.9708 30.9708i 1.19030 1.19030i 0.213323 0.976982i \(-0.431571\pi\)
0.976982 0.213323i \(-0.0684286\pi\)
\(678\) 0 0
\(679\) 8.34450i 0.320233i
\(680\) 0 0
\(681\) 61.7199i 2.36511i
\(682\) 0 0
\(683\) 12.6125 12.6125i 0.482603 0.482603i −0.423359 0.905962i \(-0.639149\pi\)
0.905962 + 0.423359i \(0.139149\pi\)
\(684\) 0 0
\(685\) 3.09228 + 3.09228i 0.118150 + 0.118150i
\(686\) 0 0
\(687\) 28.6706 1.09385
\(688\) 0 0
\(689\) 13.0136 0.495780
\(690\) 0 0
\(691\) −23.0900 23.0900i −0.878385 0.878385i 0.114983 0.993368i \(-0.463319\pi\)
−0.993368 + 0.114983i \(0.963319\pi\)
\(692\) 0 0
\(693\) −17.5832 + 17.5832i −0.667930 + 0.667930i
\(694\) 0 0
\(695\) 9.52239i 0.361205i
\(696\) 0 0
\(697\) 25.3152i 0.958882i
\(698\) 0 0
\(699\) 0.358977 0.358977i 0.0135778 0.0135778i
\(700\) 0 0
\(701\) 23.1180 + 23.1180i 0.873153 + 0.873153i 0.992815 0.119662i \(-0.0381810\pi\)
−0.119662 + 0.992815i \(0.538181\pi\)
\(702\) 0 0
\(703\) −4.62471 −0.174424
\(704\) 0 0
\(705\) 27.4265 1.03294
\(706\) 0 0
\(707\) 3.37944 + 3.37944i 0.127097 + 0.127097i
\(708\) 0 0
\(709\) −29.5978 + 29.5978i −1.11157 + 1.11157i −0.118628 + 0.992939i \(0.537850\pi\)
−0.992939 + 0.118628i \(0.962150\pi\)
\(710\) 0 0
\(711\) 34.3950i 1.28991i
\(712\) 0 0
\(713\) 18.6836i 0.699707i
\(714\) 0 0
\(715\) 10.3805 10.3805i 0.388210 0.388210i
\(716\) 0 0
\(717\) −0.513053 0.513053i −0.0191603 0.0191603i
\(718\) 0 0
\(719\) 47.9973 1.79000 0.894999 0.446068i \(-0.147176\pi\)
0.894999 + 0.446068i \(0.147176\pi\)
\(720\) 0 0
\(721\) −19.2218 −0.715856
\(722\) 0 0
\(723\) 14.7974 + 14.7974i 0.550320 + 0.550320i
\(724\) 0 0
\(725\) 6.47432 6.47432i 0.240450 0.240450i
\(726\) 0 0
\(727\) 35.3027i 1.30931i −0.755930 0.654653i \(-0.772815\pi\)
0.755930 0.654653i \(-0.227185\pi\)
\(728\) 0 0
\(729\) 43.9928i 1.62936i
\(730\) 0 0
\(731\) 24.4683 24.4683i 0.904992 0.904992i
\(732\) 0 0
\(733\) −6.33921 6.33921i −0.234144 0.234144i 0.580276 0.814420i \(-0.302945\pi\)
−0.814420 + 0.580276i \(0.802945\pi\)
\(734\) 0 0
\(735\) 2.46733 0.0910090
\(736\) 0 0
\(737\) 6.89174 0.253861
\(738\) 0 0
\(739\) −0.840283 0.840283i −0.0309103 0.0309103i 0.691483 0.722393i \(-0.256958\pi\)
−0.722393 + 0.691483i \(0.756958\pi\)
\(740\) 0 0
\(741\) −16.0148 + 16.0148i −0.588319 + 0.588319i
\(742\) 0 0
\(743\) 46.9253i 1.72152i 0.509008 + 0.860762i \(0.330012\pi\)
−0.509008 + 0.860762i \(0.669988\pi\)
\(744\) 0 0
\(745\) 3.38508i 0.124020i
\(746\) 0 0
\(747\) −9.28086 + 9.28086i −0.339569 + 0.339569i
\(748\) 0 0
\(749\) 2.46733 + 2.46733i 0.0901544 + 0.0901544i
\(750\) 0 0
\(751\) 11.5182 0.420305 0.210152 0.977669i \(-0.432604\pi\)
0.210152 + 0.977669i \(0.432604\pi\)
\(752\) 0 0
\(753\) 8.74534 0.318698
\(754\) 0 0
\(755\) −1.35872 1.35872i −0.0494491 0.0494491i
\(756\) 0 0
\(757\) −14.6371 + 14.6371i −0.531994 + 0.531994i −0.921165 0.389172i \(-0.872761\pi\)
0.389172 + 0.921165i \(0.372761\pi\)
\(758\) 0 0
\(759\) 111.976i 4.06449i
\(760\) 0 0
\(761\) 6.74979i 0.244680i −0.992488 0.122340i \(-0.960960\pi\)
0.992488 0.122340i \(-0.0390398\pi\)
\(762\) 0 0
\(763\) 2.44587 2.44587i 0.0885465 0.0885465i
\(764\) 0 0
\(765\) −9.65306 9.65306i −0.349007 0.349007i
\(766\) 0 0
\(767\) 30.3766 1.09684
\(768\) 0 0
\(769\) −2.23508 −0.0805990 −0.0402995 0.999188i \(-0.512831\pi\)
−0.0402995 + 0.999188i \(0.512831\pi\)
\(770\) 0 0
\(771\) −5.53022 5.53022i −0.199166 0.199166i
\(772\) 0 0
\(773\) 16.6209 16.6209i 0.597813 0.597813i −0.341917 0.939730i \(-0.611076\pi\)
0.939730 + 0.341917i \(0.111076\pi\)
\(774\) 0 0
\(775\) 10.2822i 0.369348i
\(776\) 0 0
\(777\) 4.95253i 0.177671i
\(778\) 0 0
\(779\) 14.2687 14.2687i 0.511228 0.511228i
\(780\) 0 0
\(781\) −45.0896 45.0896i −1.61343 1.61343i
\(782\) 0 0
\(783\) 10.4090 0.371987
\(784\) 0 0
\(785\) −4.95040 −0.176688
\(786\) 0 0
\(787\) −4.01279 4.01279i −0.143040 0.143040i 0.631960 0.775001i \(-0.282251\pi\)
−0.775001 + 0.631960i \(0.782251\pi\)
\(788\) 0 0
\(789\) −16.7535 + 16.7535i −0.596440 + 0.596440i
\(790\) 0 0
\(791\) 3.35149i 0.119165i
\(792\) 0 0
\(793\) 14.9770i 0.531850i
\(794\) 0 0
\(795\) −7.22959 + 7.22959i −0.256407 + 0.256407i
\(796\) 0 0
\(797\) 26.5404 + 26.5404i 0.940110 + 0.940110i 0.998305 0.0581955i \(-0.0185347\pi\)
−0.0581955 + 0.998305i \(0.518535\pi\)
\(798\) 0 0
\(799\) −36.1888 −1.28027
\(800\) 0 0
\(801\) −3.14280 −0.111045
\(802\) 0 0
\(803\) 23.8803 + 23.8803i 0.842718 + 0.842718i
\(804\) 0 0
\(805\) 4.80460 4.80460i 0.169340 0.169340i
\(806\) 0 0
\(807\) 45.2659i 1.59344i
\(808\) 0 0
\(809\) 6.28804i 0.221076i 0.993872 + 0.110538i \(0.0352573\pi\)
−0.993872 + 0.110538i \(0.964743\pi\)
\(810\) 0 0
\(811\) −28.2328 + 28.2328i −0.991388 + 0.991388i −0.999963 0.00857565i \(-0.997270\pi\)
0.00857565 + 0.999963i \(0.497270\pi\)
\(812\) 0 0
\(813\) −52.5409 52.5409i −1.84269 1.84269i
\(814\) 0 0
\(815\) −10.3388 −0.362152
\(816\) 0 0
\(817\) 27.5826 0.964994
\(818\) 0 0
\(819\) 10.4880 + 10.4880i 0.366482 + 0.366482i
\(820\) 0 0
\(821\) −11.9785 + 11.9785i −0.418054 + 0.418054i −0.884532 0.466479i \(-0.845522\pi\)
0.466479 + 0.884532i \(0.345522\pi\)
\(822\) 0 0
\(823\) 37.3388i 1.30155i −0.759272 0.650774i \(-0.774445\pi\)
0.759272 0.650774i \(-0.225555\pi\)
\(824\) 0 0
\(825\) 61.6244i 2.14549i
\(826\) 0 0
\(827\) 5.32642 5.32642i 0.185218 0.185218i −0.608407 0.793625i \(-0.708191\pi\)
0.793625 + 0.608407i \(0.208191\pi\)
\(828\) 0 0
\(829\) −5.78119 5.78119i −0.200789 0.200789i 0.599549 0.800338i \(-0.295347\pi\)
−0.800338 + 0.599549i \(0.795347\pi\)
\(830\) 0 0
\(831\) 35.6361 1.23620
\(832\) 0 0
\(833\) −3.25560 −0.112800
\(834\) 0 0
\(835\) −7.82547 7.82547i −0.270811 0.270811i
\(836\) 0 0
\(837\) −8.26553 + 8.26553i −0.285699 + 0.285699i
\(838\) 0 0
\(839\) 7.20540i 0.248758i 0.992235 + 0.124379i \(0.0396939\pi\)
−0.992235 + 0.124379i \(0.960306\pi\)
\(840\) 0 0
\(841\) 24.2740i 0.837033i
\(842\) 0 0
\(843\) −55.8264 + 55.8264i −1.92276 + 1.92276i
\(844\) 0 0
\(845\) 1.96961 + 1.96961i 0.0677565 + 0.0677565i
\(846\) 0 0
\(847\) −16.7205 −0.574523
\(848\) 0 0
\(849\) −20.9910 −0.720410
\(850\) 0 0
\(851\) 9.64397 + 9.64397i 0.330591 + 0.330591i
\(852\) 0 0
\(853\) −13.0316 + 13.0316i −0.446192 + 0.446192i −0.894086 0.447894i \(-0.852174\pi\)
0.447894 + 0.894086i \(0.352174\pi\)
\(854\) 0 0
\(855\) 10.8817i 0.372147i
\(856\) 0 0
\(857\) 13.6289i 0.465556i −0.972530 0.232778i \(-0.925219\pi\)
0.972530 0.232778i \(-0.0747815\pi\)
\(858\) 0 0
\(859\) 31.9028 31.9028i 1.08851 1.08851i 0.0928263 0.995682i \(-0.470410\pi\)
0.995682 0.0928263i \(-0.0295901\pi\)
\(860\) 0 0
\(861\) −15.2801 15.2801i −0.520745 0.520745i
\(862\) 0 0
\(863\) 51.1845 1.74234 0.871171 0.490980i \(-0.163361\pi\)
0.871171 + 0.490980i \(0.163361\pi\)
\(864\) 0 0
\(865\) 17.4864 0.594554
\(866\) 0 0
\(867\) −12.5785 12.5785i −0.427188 0.427188i
\(868\) 0 0
\(869\) −27.1125 + 27.1125i −0.919727 + 0.919727i
\(870\) 0 0
\(871\) 4.11080i 0.139289i
\(872\) 0 0
\(873\) 39.4105i 1.33384i
\(874\) 0 0
\(875\) −5.78313 + 5.78313i −0.195506 + 0.195506i
\(876\) 0 0
\(877\) 21.4095 + 21.4095i 0.722947 + 0.722947i 0.969204 0.246257i \(-0.0792008\pi\)
−0.246257 + 0.969204i \(0.579201\pi\)
\(878\) 0 0
\(879\) −33.9858 −1.14631
\(880\) 0 0
\(881\) 29.7369 1.00186 0.500930 0.865488i \(-0.332991\pi\)
0.500930 + 0.865488i \(0.332991\pi\)
\(882\) 0 0
\(883\) −14.3040 14.3040i −0.481368 0.481368i 0.424200 0.905568i \(-0.360555\pi\)
−0.905568 + 0.424200i \(0.860555\pi\)
\(884\) 0 0
\(885\) −16.8754 + 16.8754i −0.567261 + 0.567261i
\(886\) 0 0
\(887\) 56.7057i 1.90399i −0.306113 0.951995i \(-0.599029\pi\)
0.306113 0.951995i \(-0.400971\pi\)
\(888\) 0 0
\(889\) 5.55623i 0.186350i
\(890\) 0 0
\(891\) −3.21173 + 3.21173i −0.107597 + 0.107597i
\(892\) 0 0
\(893\) −20.3975 20.3975i −0.682575 0.682575i
\(894\) 0 0
\(895\) 1.22747 0.0410298
\(896\) 0 0
\(897\) 66.7919 2.23012
\(898\) 0 0
\(899\) −3.75283 3.75283i −0.125164 0.125164i
\(900\) 0 0
\(901\) 9.53931 9.53931i 0.317801 0.317801i
\(902\) 0 0
\(903\) 29.5378i 0.982957i
\(904\) 0 0
\(905\) 20.0944i 0.667960i
\(906\) 0 0
\(907\) 15.2487 15.2487i 0.506325 0.506325i −0.407071 0.913396i \(-0.633450\pi\)
0.913396 + 0.407071i \(0.133450\pi\)
\(908\) 0 0
\(909\) −15.9609 15.9609i −0.529389 0.529389i
\(910\) 0 0
\(911\) 7.88055 0.261094 0.130547 0.991442i \(-0.458327\pi\)
0.130547 + 0.991442i \(0.458327\pi\)
\(912\) 0 0
\(913\) −14.6316 −0.484235
\(914\) 0 0
\(915\) −8.32034 8.32034i −0.275062 0.275062i
\(916\) 0 0
\(917\) −9.67108 + 9.67108i −0.319367 + 0.319367i
\(918\) 0 0
\(919\) 2.11851i 0.0698832i 0.999389 + 0.0349416i \(0.0111245\pi\)
−0.999389 + 0.0349416i \(0.988875\pi\)
\(920\) 0 0
\(921\) 90.2675i 2.97442i
\(922\) 0 0
\(923\) −26.8951 + 26.8951i −0.885264 + 0.885264i
\(924\) 0 0
\(925\) −5.30740 5.30740i −0.174506 0.174506i
\(926\) 0 0
\(927\) 90.7831 2.98171
\(928\) 0 0
\(929\) −32.2066 −1.05667 −0.528333 0.849037i \(-0.677183\pi\)
−0.528333 + 0.849037i \(0.677183\pi\)
\(930\) 0 0
\(931\) −1.83499 1.83499i −0.0601393 0.0601393i
\(932\) 0 0
\(933\) 52.1640 52.1640i 1.70777 1.70777i
\(934\) 0 0
\(935\) 15.2184i 0.497694i
\(936\) 0 0
\(937\) 17.8409i 0.582836i 0.956596 + 0.291418i \(0.0941271\pi\)
−0.956596 + 0.291418i \(0.905873\pi\)
\(938\) 0 0
\(939\) 39.6655 39.6655i 1.29444 1.29444i
\(940\) 0 0
\(941\) −20.0164 20.0164i −0.652517 0.652517i 0.301082 0.953598i \(-0.402652\pi\)
−0.953598 + 0.301082i \(0.902652\pi\)
\(942\) 0 0
\(943\) −59.5094 −1.93789
\(944\) 0 0
\(945\) −4.25106 −0.138287
\(946\) 0 0
\(947\) −16.8118 16.8118i −0.546311 0.546311i 0.379061 0.925372i \(-0.376247\pi\)
−0.925372 + 0.379061i \(0.876247\pi\)
\(948\) 0 0
\(949\) 14.2442 14.2442i 0.462385 0.462385i
\(950\) 0 0
\(951\) 3.65550i 0.118538i
\(952\) 0 0
\(953\) 30.3038i 0.981636i 0.871262 + 0.490818i \(0.163302\pi\)
−0.871262 + 0.490818i \(0.836698\pi\)
\(954\) 0 0
\(955\) 1.57653 1.57653i 0.0510155 0.0510155i
\(956\) 0 0
\(957\) 22.4918 + 22.4918i 0.727058 + 0.727058i
\(958\) 0 0
\(959\) −4.92558 −0.159055
\(960\) 0 0
\(961\) −25.0399 −0.807740
\(962\) 0 0
\(963\) −11.6531 11.6531i −0.375515 0.375515i
\(964\) 0 0
\(965\) −6.33726 + 6.33726i −0.204004 + 0.204004i
\(966\) 0 0
\(967\) 13.3675i 0.429869i 0.976629 + 0.214934i \(0.0689537\pi\)
−0.976629 + 0.214934i \(0.931046\pi\)
\(968\) 0 0
\(969\) 23.4785i 0.754239i
\(970\) 0 0
\(971\) −9.35224 + 9.35224i −0.300128 + 0.300128i −0.841064 0.540936i \(-0.818070\pi\)
0.540936 + 0.841064i \(0.318070\pi\)
\(972\) 0 0
\(973\) 7.58393 + 7.58393i 0.243130 + 0.243130i
\(974\) 0 0
\(975\) −36.7578 −1.17719
\(976\) 0 0
\(977\) 53.2312 1.70302 0.851509 0.524340i \(-0.175688\pi\)
0.851509 + 0.524340i \(0.175688\pi\)
\(978\) 0 0
\(979\) −2.47736 2.47736i −0.0791769 0.0791769i
\(980\) 0 0
\(981\) −11.5517 + 11.5517i −0.368817 + 0.368817i
\(982\) 0 0
\(983\) 0.295483i 0.00942446i 0.999989 + 0.00471223i \(0.00149995\pi\)
−0.999989 + 0.00471223i \(0.998500\pi\)
\(984\) 0 0
\(985\) 17.0281i 0.542561i
\(986\) 0 0
\(987\) −21.8433 + 21.8433i −0.695281 + 0.695281i
\(988\) 0 0
\(989\) −57.5185 57.5185i −1.82898 1.82898i
\(990\) 0 0
\(991\) 42.0364 1.33533 0.667665 0.744461i \(-0.267294\pi\)
0.667665 + 0.744461i \(0.267294\pi\)
\(992\) 0 0
\(993\) −41.0357 −1.30223
\(994\) 0 0
\(995\) −3.52358 3.52358i −0.111705 0.111705i
\(996\) 0 0
\(997\) −32.5746 + 32.5746i −1.03165 + 1.03165i −0.0321655 + 0.999483i \(0.510240\pi\)
−0.999483 + 0.0321655i \(0.989760\pi\)
\(998\) 0 0
\(999\) 8.53289i 0.269969i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.m.c.337.4 8
4.3 odd 2 112.2.m.c.29.3 8
8.3 odd 2 896.2.m.e.673.4 8
8.5 even 2 896.2.m.f.673.1 8
16.3 odd 4 896.2.m.e.225.4 8
16.5 even 4 inner 448.2.m.c.113.4 8
16.11 odd 4 112.2.m.c.85.3 yes 8
16.13 even 4 896.2.m.f.225.1 8
28.3 even 6 784.2.x.j.765.3 16
28.11 odd 6 784.2.x.k.765.3 16
28.19 even 6 784.2.x.j.557.1 16
28.23 odd 6 784.2.x.k.557.1 16
28.27 even 2 784.2.m.g.589.3 8
32.5 even 8 7168.2.a.bd.1.1 8
32.11 odd 8 7168.2.a.bc.1.1 8
32.21 even 8 7168.2.a.bd.1.8 8
32.27 odd 8 7168.2.a.bc.1.8 8
112.11 odd 12 784.2.x.k.373.1 16
112.27 even 4 784.2.m.g.197.3 8
112.59 even 12 784.2.x.j.373.1 16
112.75 even 12 784.2.x.j.165.3 16
112.107 odd 12 784.2.x.k.165.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.c.29.3 8 4.3 odd 2
112.2.m.c.85.3 yes 8 16.11 odd 4
448.2.m.c.113.4 8 16.5 even 4 inner
448.2.m.c.337.4 8 1.1 even 1 trivial
784.2.m.g.197.3 8 112.27 even 4
784.2.m.g.589.3 8 28.27 even 2
784.2.x.j.165.3 16 112.75 even 12
784.2.x.j.373.1 16 112.59 even 12
784.2.x.j.557.1 16 28.19 even 6
784.2.x.j.765.3 16 28.3 even 6
784.2.x.k.165.3 16 112.107 odd 12
784.2.x.k.373.1 16 112.11 odd 12
784.2.x.k.557.1 16 28.23 odd 6
784.2.x.k.765.3 16 28.11 odd 6
896.2.m.e.225.4 8 16.3 odd 4
896.2.m.e.673.4 8 8.3 odd 2
896.2.m.f.225.1 8 16.13 even 4
896.2.m.f.673.1 8 8.5 even 2
7168.2.a.bc.1.1 8 32.11 odd 8
7168.2.a.bc.1.8 8 32.27 odd 8
7168.2.a.bd.1.1 8 32.5 even 8
7168.2.a.bd.1.8 8 32.21 even 8