Properties

Label 784.2.x.j.557.1
Level $784$
Weight $2$
Character 784.557
Analytic conductor $6.260$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,2,Mod(165,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 4 x^{14} + 4 x^{13} - 13 x^{12} + 32 x^{11} - 4 x^{10} - 34 x^{9} + 121 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.1
Root \(-1.40526 + 0.158880i\) of defining polynomial
Character \(\chi\) \(=\) 784.557
Dual form 784.2.x.j.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27404 - 0.613848i) q^{2} +(-2.68432 + 0.719263i) q^{3} +(1.24638 + 1.56414i) q^{4} +(-0.857592 - 0.229791i) q^{5} +(3.86147 + 0.731395i) q^{6} +(-0.627801 - 2.75787i) q^{8} +(4.09018 - 2.36147i) q^{9} +(0.951553 + 0.819195i) q^{10} +(1.36269 + 5.08562i) q^{11} +(-4.47072 - 3.30218i) q^{12} +(-2.22066 - 2.22066i) q^{13} +2.46733 q^{15} +(-0.893069 + 3.89903i) q^{16} +(1.62780 - 2.81943i) q^{17} +(-6.66066 + 0.497865i) q^{18} +(0.671653 - 2.50664i) q^{19} +(-0.709460 - 1.62780i) q^{20} +(1.38567 - 7.31580i) q^{22} +(6.62774 - 3.82653i) q^{23} +(3.66886 + 6.95147i) q^{24} +(-3.64747 - 2.10587i) q^{25} +(1.46607 + 4.19237i) q^{26} +(-3.38567 + 3.38567i) q^{27} +(-1.53721 - 1.53721i) q^{29} +(-3.14349 - 1.51457i) q^{30} +(-1.22066 + 2.11425i) q^{31} +(3.53122 - 4.41933i) q^{32} +(-7.31580 - 12.6713i) q^{33} +(-3.80460 + 2.59286i) q^{34} +(8.79159 + 3.45433i) q^{36} +(1.72139 + 0.461245i) q^{37} +(-2.39441 + 2.78128i) q^{38} +(7.55822 + 4.36374i) q^{39} +(-0.0953379 + 2.50939i) q^{40} +7.77589i q^{41} +(-7.51575 + 7.51575i) q^{43} +(-6.25620 + 8.47006i) q^{44} +(-4.05035 + 1.08529i) q^{45} +(-10.7930 + 0.806742i) q^{46} +(5.55792 + 9.62661i) q^{47} +(-0.407138 - 11.1086i) q^{48} +(3.35436 + 4.92196i) q^{50} +(-2.34163 + 8.73909i) q^{51} +(0.705636 - 6.24122i) q^{52} +(1.07250 + 4.00262i) q^{53} +(6.39179 - 2.23521i) q^{54} -4.67452i q^{55} +7.21173i q^{57} +(1.01486 + 2.90209i) q^{58} +(2.50344 + 9.34298i) q^{59} +(3.07524 + 3.85926i) q^{60} +(-1.23431 + 4.60651i) q^{61} +(2.85301 - 1.94435i) q^{62} +(-7.21173 + 3.46279i) q^{64} +(1.39413 + 2.41471i) q^{65} +(1.54238 + 20.6346i) q^{66} +(-1.26436 + 0.338785i) q^{67} +(6.43885 - 0.967979i) q^{68} +(-15.0387 + 15.0387i) q^{69} -12.1113i q^{71} +(-9.08045 - 9.79767i) q^{72} +(-5.55501 - 3.20719i) q^{73} +(-1.91000 - 1.64432i) q^{74} +(11.3057 + 3.02934i) q^{75} +(4.75787 - 2.07367i) q^{76} +(-6.95084 - 10.1992i) q^{78} +(3.64128 + 6.30687i) q^{79} +(1.66185 - 3.13856i) q^{80} +(-0.431344 + 0.747110i) q^{81} +(4.77322 - 9.90684i) q^{82} +(1.96506 + 1.96506i) q^{83} +(-2.04387 + 2.04387i) q^{85} +(14.1889 - 4.96187i) q^{86} +(5.23203 + 3.02071i) q^{87} +(13.1700 - 6.95088i) q^{88} +(-0.576282 + 0.332717i) q^{89} +(5.82653 + 1.10359i) q^{90} +(14.2459 + 5.59741i) q^{92} +(1.75595 - 6.55331i) q^{93} +(-1.17177 - 15.6765i) q^{94} +(-1.15201 + 1.99533i) q^{95} +(-6.30029 + 14.4028i) q^{96} +8.34450 q^{97} +(17.5832 + 17.5832i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 4 q^{4} - 4 q^{5} + 32 q^{6} - 8 q^{8} + 12 q^{10} - 12 q^{12} - 16 q^{15} - 8 q^{16} + 24 q^{17} - 6 q^{18} - 12 q^{19} + 16 q^{20} - 8 q^{22} + 8 q^{26} - 24 q^{27} - 32 q^{29} - 20 q^{30}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27404 0.613848i −0.900886 0.434056i
\(3\) −2.68432 + 0.719263i −1.54980 + 0.415266i −0.929415 0.369035i \(-0.879688\pi\)
−0.620380 + 0.784301i \(0.713022\pi\)
\(4\) 1.24638 + 1.56414i 0.623190 + 0.782070i
\(5\) −0.857592 0.229791i −0.383527 0.102766i 0.0619040 0.998082i \(-0.480283\pi\)
−0.445431 + 0.895316i \(0.646949\pi\)
\(6\) 3.86147 + 0.731395i 1.57644 + 0.298591i
\(7\) 0 0
\(8\) −0.627801 2.75787i −0.221961 0.975056i
\(9\) 4.09018 2.36147i 1.36339 0.787156i
\(10\) 0.951553 + 0.819195i 0.300908 + 0.259052i
\(11\) 1.36269 + 5.08562i 0.410866 + 1.53337i 0.792974 + 0.609256i \(0.208532\pi\)
−0.382108 + 0.924118i \(0.624802\pi\)
\(12\) −4.47072 3.30218i −1.29059 0.953259i
\(13\) −2.22066 2.22066i −0.615901 0.615901i 0.328576 0.944477i \(-0.393431\pi\)
−0.944477 + 0.328576i \(0.893431\pi\)
\(14\) 0 0
\(15\) 2.46733 0.637063
\(16\) −0.893069 + 3.89903i −0.223267 + 0.974757i
\(17\) 1.62780 2.81943i 0.394800 0.683813i −0.598276 0.801290i \(-0.704147\pi\)
0.993076 + 0.117477i \(0.0374807\pi\)
\(18\) −6.66066 + 0.497865i −1.56993 + 0.117348i
\(19\) 0.671653 2.50664i 0.154088 0.575063i −0.845094 0.534618i \(-0.820456\pi\)
0.999182 0.0404454i \(-0.0128777\pi\)
\(20\) −0.709460 1.62780i −0.158640 0.363987i
\(21\) 0 0
\(22\) 1.38567 7.31580i 0.295427 1.55973i
\(23\) 6.62774 3.82653i 1.38198 0.797887i 0.389586 0.920990i \(-0.372618\pi\)
0.992394 + 0.123103i \(0.0392847\pi\)
\(24\) 3.66886 + 6.95147i 0.748902 + 1.41896i
\(25\) −3.64747 2.10587i −0.729494 0.421173i
\(26\) 1.46607 + 4.19237i 0.287521 + 0.822192i
\(27\) −3.38567 + 3.38567i −0.651573 + 0.651573i
\(28\) 0 0
\(29\) −1.53721 1.53721i −0.285453 0.285453i 0.549826 0.835279i \(-0.314694\pi\)
−0.835279 + 0.549826i \(0.814694\pi\)
\(30\) −3.14349 1.51457i −0.573921 0.276521i
\(31\) −1.22066 + 2.11425i −0.219238 + 0.379731i −0.954575 0.297970i \(-0.903690\pi\)
0.735338 + 0.677701i \(0.237024\pi\)
\(32\) 3.53122 4.41933i 0.624238 0.781234i
\(33\) −7.31580 12.6713i −1.27352 2.20580i
\(34\) −3.80460 + 2.59286i −0.652483 + 0.444672i
\(35\) 0 0
\(36\) 8.79159 + 3.45433i 1.46527 + 0.575722i
\(37\) 1.72139 + 0.461245i 0.282995 + 0.0758283i 0.397524 0.917592i \(-0.369869\pi\)
−0.114530 + 0.993420i \(0.536536\pi\)
\(38\) −2.39441 + 2.78128i −0.388425 + 0.451183i
\(39\) 7.55822 + 4.36374i 1.21028 + 0.698758i
\(40\) −0.0953379 + 2.50939i −0.0150742 + 0.396770i
\(41\) 7.77589i 1.21439i 0.794553 + 0.607195i \(0.207705\pi\)
−0.794553 + 0.607195i \(0.792295\pi\)
\(42\) 0 0
\(43\) −7.51575 + 7.51575i −1.14614 + 1.14614i −0.158836 + 0.987305i \(0.550774\pi\)
−0.987305 + 0.158836i \(0.949226\pi\)
\(44\) −6.25620 + 8.47006i −0.943158 + 1.27691i
\(45\) −4.05035 + 1.08529i −0.603790 + 0.161785i
\(46\) −10.7930 + 0.806742i −1.59133 + 0.118948i
\(47\) 5.55792 + 9.62661i 0.810707 + 1.40418i 0.912370 + 0.409366i \(0.134250\pi\)
−0.101664 + 0.994819i \(0.532417\pi\)
\(48\) −0.407138 11.1086i −0.0587653 1.60339i
\(49\) 0 0
\(50\) 3.35436 + 4.92196i 0.474377 + 0.696070i
\(51\) −2.34163 + 8.73909i −0.327894 + 1.22372i
\(52\) 0.705636 6.24122i 0.0978542 0.865502i
\(53\) 1.07250 + 4.00262i 0.147319 + 0.549803i 0.999641 + 0.0267853i \(0.00852703\pi\)
−0.852322 + 0.523017i \(0.824806\pi\)
\(54\) 6.39179 2.23521i 0.869813 0.304174i
\(55\) 4.67452i 0.630312i
\(56\) 0 0
\(57\) 7.21173i 0.955217i
\(58\) 1.01486 + 2.90209i 0.133258 + 0.381063i
\(59\) 2.50344 + 9.34298i 0.325921 + 1.21635i 0.913383 + 0.407101i \(0.133460\pi\)
−0.587463 + 0.809251i \(0.699873\pi\)
\(60\) 3.07524 + 3.85926i 0.397012 + 0.498228i
\(61\) −1.23431 + 4.60651i −0.158037 + 0.589803i 0.840789 + 0.541363i \(0.182092\pi\)
−0.998826 + 0.0484399i \(0.984575\pi\)
\(62\) 2.85301 1.94435i 0.362332 0.246932i
\(63\) 0 0
\(64\) −7.21173 + 3.46279i −0.901467 + 0.432849i
\(65\) 1.39413 + 2.41471i 0.172921 + 0.299508i
\(66\) 1.54238 + 20.6346i 0.189854 + 2.53995i
\(67\) −1.26436 + 0.338785i −0.154467 + 0.0413892i −0.335224 0.942139i \(-0.608812\pi\)
0.180757 + 0.983528i \(0.442145\pi\)
\(68\) 6.43885 0.967979i 0.780825 0.117385i
\(69\) −15.0387 + 15.0387i −1.81045 + 1.81045i
\(70\) 0 0
\(71\) 12.1113i 1.43735i −0.695348 0.718674i \(-0.744750\pi\)
0.695348 0.718674i \(-0.255250\pi\)
\(72\) −9.08045 9.79767i −1.07014 1.15467i
\(73\) −5.55501 3.20719i −0.650165 0.375373i 0.138354 0.990383i \(-0.455819\pi\)
−0.788519 + 0.615010i \(0.789152\pi\)
\(74\) −1.91000 1.64432i −0.222032 0.191148i
\(75\) 11.3057 + 3.02934i 1.30546 + 0.349798i
\(76\) 4.75787 2.07367i 0.545766 0.237866i
\(77\) 0 0
\(78\) −6.95084 10.1992i −0.787027 1.15483i
\(79\) 3.64128 + 6.30687i 0.409675 + 0.709579i 0.994853 0.101326i \(-0.0323086\pi\)
−0.585178 + 0.810905i \(0.698975\pi\)
\(80\) 1.66185 3.13856i 0.185801 0.350901i
\(81\) −0.431344 + 0.747110i −0.0479271 + 0.0830122i
\(82\) 4.77322 9.90684i 0.527114 1.09403i
\(83\) 1.96506 + 1.96506i 0.215694 + 0.215694i 0.806681 0.590987i \(-0.201262\pi\)
−0.590987 + 0.806681i \(0.701262\pi\)
\(84\) 0 0
\(85\) −2.04387 + 2.04387i −0.221689 + 0.221689i
\(86\) 14.1889 4.96187i 1.53003 0.535052i
\(87\) 5.23203 + 3.02071i 0.560932 + 0.323854i
\(88\) 13.1700 6.95088i 1.40393 0.740966i
\(89\) −0.576282 + 0.332717i −0.0610858 + 0.0352679i −0.530232 0.847853i \(-0.677895\pi\)
0.469146 + 0.883121i \(0.344562\pi\)
\(90\) 5.82653 + 1.10359i 0.614170 + 0.116329i
\(91\) 0 0
\(92\) 14.2459 + 5.59741i 1.48524 + 0.583570i
\(93\) 1.75595 6.55331i 0.182084 0.679547i
\(94\) −1.17177 15.6765i −0.120859 1.61690i
\(95\) −1.15201 + 1.99533i −0.118193 + 0.204717i
\(96\) −6.30029 + 14.4028i −0.643020 + 1.46998i
\(97\) 8.34450 0.847256 0.423628 0.905836i \(-0.360756\pi\)
0.423628 + 0.905836i \(0.360756\pi\)
\(98\) 0 0
\(99\) 17.5832 + 17.5832i 1.76718 + 1.76718i
\(100\) −1.25226 8.32986i −0.125226 0.832986i
\(101\) 1.23696 + 4.61640i 0.123082 + 0.459349i 0.999764 0.0217217i \(-0.00691477\pi\)
−0.876682 + 0.481070i \(0.840248\pi\)
\(102\) 8.34782 9.69659i 0.826557 0.960105i
\(103\) −16.6465 + 9.61088i −1.64023 + 0.946988i −0.659482 + 0.751720i \(0.729224\pi\)
−0.980750 + 0.195268i \(0.937442\pi\)
\(104\) −4.73017 + 7.51844i −0.463832 + 0.737244i
\(105\) 0 0
\(106\) 1.09059 5.75787i 0.105927 0.559254i
\(107\) −3.37044 0.903107i −0.325833 0.0873066i 0.0921947 0.995741i \(-0.470612\pi\)
−0.418028 + 0.908434i \(0.637278\pi\)
\(108\) −9.51551 1.07583i −0.915630 0.103522i
\(109\) −3.34112 + 0.895251i −0.320021 + 0.0857495i −0.415254 0.909706i \(-0.636307\pi\)
0.0952324 + 0.995455i \(0.469641\pi\)
\(110\) −2.86945 + 5.95555i −0.273591 + 0.567840i
\(111\) −4.95253 −0.470073
\(112\) 0 0
\(113\) 3.35149 0.315281 0.157641 0.987497i \(-0.449611\pi\)
0.157641 + 0.987497i \(0.449611\pi\)
\(114\) 4.42691 9.18807i 0.414618 0.860542i
\(115\) −6.56320 + 1.75860i −0.612021 + 0.163991i
\(116\) 0.488463 4.32036i 0.0453527 0.401136i
\(117\) −14.3269 3.83889i −1.32453 0.354906i
\(118\) 2.54567 13.4401i 0.234348 1.23726i
\(119\) 0 0
\(120\) −1.54899 6.80460i −0.141403 0.621172i
\(121\) −14.4804 + 8.36025i −1.31640 + 0.760022i
\(122\) 4.40026 5.11122i 0.398381 0.462748i
\(123\) −5.59291 20.8730i −0.504296 1.88206i
\(124\) −4.82840 + 0.725873i −0.433603 + 0.0651853i
\(125\) 5.78313 + 5.78313i 0.517259 + 0.517259i
\(126\) 0 0
\(127\) −5.55623 −0.493036 −0.246518 0.969138i \(-0.579286\pi\)
−0.246518 + 0.969138i \(0.579286\pi\)
\(128\) 11.3137 + 0.0151595i 0.999999 + 0.00133992i
\(129\) 14.7689 25.5805i 1.30033 2.25224i
\(130\) −0.293923 3.93224i −0.0257788 0.344880i
\(131\) −3.53986 + 13.2109i −0.309279 + 1.15425i 0.619920 + 0.784665i \(0.287165\pi\)
−0.929199 + 0.369580i \(0.879502\pi\)
\(132\) 10.7015 27.2362i 0.931444 2.37061i
\(133\) 0 0
\(134\) 1.81882 + 0.344500i 0.157122 + 0.0297603i
\(135\) 3.68152 2.12553i 0.316855 0.182936i
\(136\) −8.79757 2.71923i −0.754386 0.233172i
\(137\) 4.26568 + 2.46279i 0.364441 + 0.210410i 0.671027 0.741433i \(-0.265853\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(138\) 28.3915 9.92852i 2.41685 0.845172i
\(139\) −7.58393 + 7.58393i −0.643261 + 0.643261i −0.951356 0.308095i \(-0.900309\pi\)
0.308095 + 0.951356i \(0.400309\pi\)
\(140\) 0 0
\(141\) −21.8433 21.8433i −1.83954 1.83954i
\(142\) −7.43450 + 15.4303i −0.623889 + 1.29489i
\(143\) 8.26738 14.3195i 0.691353 1.19746i
\(144\) 5.55461 + 18.0567i 0.462885 + 1.50472i
\(145\) 0.965062 + 1.67154i 0.0801440 + 0.138814i
\(146\) 5.10861 + 7.49604i 0.422792 + 0.620376i
\(147\) 0 0
\(148\) 1.42406 + 3.26738i 0.117057 + 0.268577i
\(149\) 3.68278 + 0.986799i 0.301705 + 0.0808417i 0.406496 0.913653i \(-0.366751\pi\)
−0.104790 + 0.994494i \(0.533417\pi\)
\(150\) −12.5444 10.7995i −1.02424 0.881773i
\(151\) 1.87431 + 1.08213i 0.152529 + 0.0880625i 0.574322 0.818630i \(-0.305266\pi\)
−0.421793 + 0.906692i \(0.638599\pi\)
\(152\) −7.33466 0.278662i −0.594920 0.0226024i
\(153\) 15.3760i 1.24308i
\(154\) 0 0
\(155\) 1.53267 1.53267i 0.123107 0.123107i
\(156\) 2.59492 + 17.2610i 0.207760 + 1.38199i
\(157\) 5.38577 1.44311i 0.429831 0.115173i −0.0374157 0.999300i \(-0.511913\pi\)
0.467247 + 0.884127i \(0.345246\pi\)
\(158\) −0.767685 10.2704i −0.0610738 0.817072i
\(159\) −5.75787 9.97293i −0.456629 0.790905i
\(160\) −4.04387 + 2.97854i −0.319696 + 0.235474i
\(161\) 0 0
\(162\) 1.00816 0.687072i 0.0792088 0.0539815i
\(163\) −3.01390 + 11.2480i −0.236067 + 0.881015i 0.741598 + 0.670845i \(0.234068\pi\)
−0.977665 + 0.210170i \(0.932598\pi\)
\(164\) −12.1626 + 9.69172i −0.949738 + 0.756797i
\(165\) 3.36221 + 12.5479i 0.261748 + 0.976855i
\(166\) −1.29733 3.70983i −0.100692 0.287938i
\(167\) 12.4649i 0.964562i 0.876016 + 0.482281i \(0.160192\pi\)
−0.876016 + 0.482281i \(0.839808\pi\)
\(168\) 0 0
\(169\) 3.13731i 0.241332i
\(170\) 3.85861 1.34936i 0.295942 0.103491i
\(171\) −3.17217 11.8387i −0.242582 0.905328i
\(172\) −21.1232 2.38820i −1.61063 0.182098i
\(173\) 5.09752 19.0242i 0.387557 1.44638i −0.446539 0.894764i \(-0.647344\pi\)
0.834096 0.551619i \(-0.185990\pi\)
\(174\) −4.81158 7.06020i −0.364765 0.535232i
\(175\) 0 0
\(176\) −21.0460 + 0.771348i −1.58640 + 0.0581426i
\(177\) −13.4401 23.2789i −1.01022 1.74975i
\(178\) 0.938447 0.0701462i 0.0703396 0.00525768i
\(179\) −1.33542 + 0.357825i −0.0998139 + 0.0267451i −0.308380 0.951263i \(-0.599787\pi\)
0.208566 + 0.978008i \(0.433120\pi\)
\(180\) −6.74582 4.98263i −0.502804 0.371384i
\(181\) 16.0038 16.0038i 1.18955 1.18955i 0.212362 0.977191i \(-0.431885\pi\)
0.977191 0.212362i \(-0.0681154\pi\)
\(182\) 0 0
\(183\) 13.2532i 0.979702i
\(184\) −14.7140 15.8762i −1.08473 1.17041i
\(185\) −1.37026 0.791120i −0.100744 0.0581643i
\(186\) −6.25990 + 7.27132i −0.458998 + 0.533159i
\(187\) 16.5568 + 4.43637i 1.21075 + 0.324420i
\(188\) −8.13007 + 20.6918i −0.592947 + 1.50910i
\(189\) 0 0
\(190\) 2.69254 1.83499i 0.195337 0.133124i
\(191\) −1.25560 2.17477i −0.0908521 0.157360i 0.817018 0.576612i \(-0.195626\pi\)
−0.907870 + 0.419252i \(0.862292\pi\)
\(192\) 16.8680 14.4824i 1.21734 1.04518i
\(193\) −5.04719 + 8.74199i −0.363305 + 0.629262i −0.988503 0.151204i \(-0.951685\pi\)
0.625198 + 0.780466i \(0.285018\pi\)
\(194\) −10.6313 5.12226i −0.763281 0.367757i
\(195\) −5.47912 5.47912i −0.392368 0.392368i
\(196\) 0 0
\(197\) −13.5617 + 13.5617i −0.966232 + 0.966232i −0.999448 0.0332158i \(-0.989425\pi\)
0.0332158 + 0.999448i \(0.489425\pi\)
\(198\) −11.6084 33.1952i −0.824970 2.35908i
\(199\) −4.86063 2.80629i −0.344561 0.198932i 0.317726 0.948183i \(-0.397081\pi\)
−0.662287 + 0.749250i \(0.730414\pi\)
\(200\) −3.51783 + 11.3813i −0.248748 + 0.804781i
\(201\) 3.15029 1.81882i 0.222204 0.128290i
\(202\) 1.25782 6.64080i 0.0885002 0.467245i
\(203\) 0 0
\(204\) −16.5877 + 7.22959i −1.16137 + 0.506173i
\(205\) 1.78683 6.66854i 0.124798 0.465751i
\(206\) 27.1081 2.02625i 1.88871 0.141176i
\(207\) 18.0725 31.3024i 1.25612 2.17567i
\(208\) 10.6416 6.67522i 0.737865 0.462843i
\(209\) 13.6631 0.945096
\(210\) 0 0
\(211\) 3.86025 + 3.86025i 0.265750 + 0.265750i 0.827385 0.561635i \(-0.189827\pi\)
−0.561635 + 0.827385i \(0.689827\pi\)
\(212\) −4.92392 + 6.66633i −0.338176 + 0.457846i
\(213\) 8.71121 + 32.5107i 0.596882 + 2.22759i
\(214\) 3.73972 + 3.21954i 0.255642 + 0.220083i
\(215\) 8.17249 4.71839i 0.557359 0.321792i
\(216\) 11.4628 + 7.21173i 0.779944 + 0.490696i
\(217\) 0 0
\(218\) 4.80629 + 0.910351i 0.325523 + 0.0616568i
\(219\) 17.2183 + 4.61362i 1.16350 + 0.311760i
\(220\) 7.31161 5.82624i 0.492949 0.392805i
\(221\) −9.87581 + 2.64621i −0.664319 + 0.178004i
\(222\) 6.30974 + 3.04010i 0.423482 + 0.204038i
\(223\) 12.5348 0.839390 0.419695 0.907665i \(-0.362137\pi\)
0.419695 + 0.907665i \(0.362137\pi\)
\(224\) 0 0
\(225\) −19.8917 −1.32612
\(226\) −4.26994 2.05730i −0.284032 0.136850i
\(227\) −21.4525 + 5.74818i −1.42385 + 0.381520i −0.886849 0.462059i \(-0.847111\pi\)
−0.537004 + 0.843580i \(0.680444\pi\)
\(228\) −11.2802 + 8.98857i −0.747047 + 0.595282i
\(229\) 9.96527 + 2.67019i 0.658524 + 0.176451i 0.572580 0.819849i \(-0.305943\pi\)
0.0859440 + 0.996300i \(0.472609\pi\)
\(230\) 9.44133 + 1.78827i 0.622543 + 0.117915i
\(231\) 0 0
\(232\) −3.27437 + 5.20449i −0.214973 + 0.341692i
\(233\) −0.158206 + 0.0913400i −0.0103644 + 0.00598388i −0.505173 0.863018i \(-0.668571\pi\)
0.494809 + 0.869002i \(0.335238\pi\)
\(234\) 15.8967 + 13.6855i 1.03920 + 0.894648i
\(235\) −2.55432 9.53286i −0.166626 0.621855i
\(236\) −11.4935 + 15.5606i −0.748162 + 1.01291i
\(237\) −14.3107 14.3107i −0.929577 0.929577i
\(238\) 0 0
\(239\) 0.261087 0.0168883 0.00844417 0.999964i \(-0.497312\pi\)
0.00844417 + 0.999964i \(0.497312\pi\)
\(240\) −2.20350 + 9.62021i −0.142235 + 0.620982i
\(241\) 3.76511 6.52137i 0.242532 0.420078i −0.718903 0.695111i \(-0.755355\pi\)
0.961435 + 0.275033i \(0.0886887\pi\)
\(242\) 23.5806 1.76258i 1.51582 0.113303i
\(243\) 4.33823 16.1905i 0.278297 1.03862i
\(244\) −8.74365 + 3.81083i −0.559755 + 0.243963i
\(245\) 0 0
\(246\) −5.68725 + 30.0264i −0.362606 + 1.91441i
\(247\) −7.05792 + 4.07489i −0.449085 + 0.259279i
\(248\) 6.59717 + 2.03911i 0.418921 + 0.129483i
\(249\) −6.68826 3.86147i −0.423851 0.244711i
\(250\) −3.81800 10.9179i −0.241472 0.690511i
\(251\) 2.22521 2.22521i 0.140454 0.140454i −0.633384 0.773838i \(-0.718335\pi\)
0.773838 + 0.633384i \(0.218335\pi\)
\(252\) 0 0
\(253\) 28.4918 + 28.4918i 1.79127 + 1.79127i
\(254\) 7.07889 + 3.41068i 0.444169 + 0.214005i
\(255\) 4.01633 6.95648i 0.251512 0.435632i
\(256\) −14.4049 6.96421i −0.900303 0.435263i
\(257\) −1.40714 2.43723i −0.0877748 0.152030i 0.818795 0.574085i \(-0.194642\pi\)
−0.906570 + 0.422055i \(0.861309\pi\)
\(258\) −34.5188 + 23.5248i −2.14905 + 1.46459i
\(259\) 0 0
\(260\) −2.03932 + 5.19027i −0.126474 + 0.321887i
\(261\) −9.91754 2.65740i −0.613881 0.164489i
\(262\) 12.6195 14.6584i 0.779632 0.905598i
\(263\) 7.38346 + 4.26284i 0.455283 + 0.262858i 0.710059 0.704142i \(-0.248668\pi\)
−0.254776 + 0.967000i \(0.582002\pi\)
\(264\) −30.3531 + 28.1311i −1.86810 + 1.73135i
\(265\) 3.67907i 0.226003i
\(266\) 0 0
\(267\) 1.30762 1.30762i 0.0800249 0.0800249i
\(268\) −2.10579 1.55539i −0.128631 0.0950104i
\(269\) −15.7335 + 4.21577i −0.959286 + 0.257040i −0.704298 0.709904i \(-0.748738\pi\)
−0.254988 + 0.966944i \(0.582071\pi\)
\(270\) −5.99518 + 0.448122i −0.364855 + 0.0272719i
\(271\) 13.3688 + 23.1554i 0.812094 + 1.40659i 0.911396 + 0.411531i \(0.135006\pi\)
−0.0993018 + 0.995057i \(0.531661\pi\)
\(272\) 9.53931 + 8.86479i 0.578406 + 0.537507i
\(273\) 0 0
\(274\) −3.92288 5.75618i −0.236990 0.347744i
\(275\) 5.73928 21.4193i 0.346092 1.29163i
\(276\) −42.2667 4.77870i −2.54415 0.287644i
\(277\) 3.31891 + 12.3863i 0.199414 + 0.744223i 0.991080 + 0.133269i \(0.0425475\pi\)
−0.791666 + 0.610954i \(0.790786\pi\)
\(278\) 14.3177 5.00689i 0.858716 0.300293i
\(279\) 11.5302i 0.690296i
\(280\) 0 0
\(281\) 28.4095i 1.69477i 0.530980 + 0.847384i \(0.321824\pi\)
−0.530980 + 0.847384i \(0.678176\pi\)
\(282\) 14.4209 + 41.2379i 0.858752 + 2.45568i
\(283\) −1.95496 7.29602i −0.116210 0.433703i 0.883164 0.469064i \(-0.155409\pi\)
−0.999375 + 0.0353608i \(0.988742\pi\)
\(284\) 18.9438 15.0953i 1.12411 0.895741i
\(285\) 1.65719 6.18472i 0.0981635 0.366351i
\(286\) −19.3230 + 13.1688i −1.14260 + 0.778688i
\(287\) 0 0
\(288\) 4.00724 26.4147i 0.236129 1.55650i
\(289\) 3.20053 + 5.54348i 0.188266 + 0.326087i
\(290\) −0.203463 2.72201i −0.0119477 0.159842i
\(291\) −22.3993 + 6.00189i −1.31307 + 0.351837i
\(292\) −1.90717 12.6862i −0.111609 0.742404i
\(293\) 8.64751 8.64751i 0.505193 0.505193i −0.407854 0.913047i \(-0.633723\pi\)
0.913047 + 0.407854i \(0.133723\pi\)
\(294\) 0 0
\(295\) 8.58773i 0.499997i
\(296\) 0.191366 5.03695i 0.0111229 0.292767i
\(297\) −21.8319 12.6046i −1.26681 0.731396i
\(298\) −4.08629 3.51790i −0.236712 0.203786i
\(299\) −23.2154 6.22055i −1.34258 0.359744i
\(300\) 9.35284 + 21.4593i 0.539986 + 1.23896i
\(301\) 0 0
\(302\) −1.72369 2.52922i −0.0991869 0.145540i
\(303\) −6.64080 11.5022i −0.381504 0.660785i
\(304\) 9.17364 + 4.85740i 0.526144 + 0.278591i
\(305\) 2.11707 3.66687i 0.121223 0.209964i
\(306\) −9.43853 + 19.5897i −0.539565 + 1.11987i
\(307\) −22.9681 22.9681i −1.31086 1.31086i −0.920782 0.390077i \(-0.872448\pi\)
−0.390077 0.920782i \(-0.627552\pi\)
\(308\) 0 0
\(309\) 37.7720 37.7720i 2.14877 2.14877i
\(310\) −2.89351 + 1.01186i −0.164340 + 0.0574699i
\(311\) 22.9893 + 13.2729i 1.30360 + 0.752635i 0.981020 0.193906i \(-0.0621156\pi\)
0.322583 + 0.946541i \(0.395449\pi\)
\(312\) 7.28959 23.5842i 0.412692 1.33519i
\(313\) 17.4811 10.0927i 0.988088 0.570473i 0.0833856 0.996517i \(-0.473427\pi\)
0.904702 + 0.426045i \(0.140093\pi\)
\(314\) −7.74756 1.46745i −0.437220 0.0828132i
\(315\) 0 0
\(316\) −5.32642 + 13.5562i −0.299634 + 0.762598i
\(317\) −0.340449 + 1.27057i −0.0191215 + 0.0713624i −0.974827 0.222961i \(-0.928428\pi\)
0.955706 + 0.294324i \(0.0950944\pi\)
\(318\) 1.21393 + 16.2404i 0.0680735 + 0.910718i
\(319\) 5.72294 9.91241i 0.320423 0.554989i
\(320\) 6.98044 1.31247i 0.390218 0.0733692i
\(321\) 9.69693 0.541230
\(322\) 0 0
\(323\) −5.97399 5.97399i −0.332402 0.332402i
\(324\) −1.70620 + 0.256501i −0.0947891 + 0.0142500i
\(325\) 3.42338 + 12.7762i 0.189895 + 0.708697i
\(326\) 10.7444 12.4804i 0.595079 0.691227i
\(327\) 8.32473 4.80629i 0.460359 0.265788i
\(328\) 21.4449 4.88171i 1.18410 0.269547i
\(329\) 0 0
\(330\) 3.41892 18.0505i 0.188205 0.993648i
\(331\) −14.2631 3.82179i −0.783972 0.210065i −0.155437 0.987846i \(-0.549678\pi\)
−0.628535 + 0.777781i \(0.716345\pi\)
\(332\) −0.624417 + 5.52285i −0.0342693 + 0.303106i
\(333\) 8.13002 2.17843i 0.445522 0.119377i
\(334\) 7.65155 15.8808i 0.418674 0.868961i
\(335\) 1.16216 0.0634955
\(336\) 0 0
\(337\) −27.6212 −1.50462 −0.752312 0.658807i \(-0.771061\pi\)
−0.752312 + 0.658807i \(0.771061\pi\)
\(338\) −1.92583 + 3.99708i −0.104752 + 0.217412i
\(339\) −8.99647 + 2.41060i −0.488621 + 0.130926i
\(340\) −5.74434 0.649458i −0.311530 0.0352218i
\(341\) −12.4157 3.32677i −0.672346 0.180155i
\(342\) −3.22568 + 17.0303i −0.174425 + 0.920892i
\(343\) 0 0
\(344\) 25.4459 + 16.0091i 1.37195 + 0.863152i
\(345\) 16.3529 9.44133i 0.880408 0.508304i
\(346\) −18.1724 + 21.1086i −0.976956 + 1.13480i
\(347\) 3.05763 + 11.4112i 0.164142 + 0.612586i 0.998148 + 0.0608309i \(0.0193750\pi\)
−0.834006 + 0.551755i \(0.813958\pi\)
\(348\) 1.79628 + 11.9486i 0.0962908 + 0.640512i
\(349\) 7.97685 + 7.97685i 0.426991 + 0.426991i 0.887602 0.460611i \(-0.152370\pi\)
−0.460611 + 0.887602i \(0.652370\pi\)
\(350\) 0 0
\(351\) 15.0369 0.802609
\(352\) 27.2870 + 11.9363i 1.45440 + 0.636207i
\(353\) −5.38113 + 9.32039i −0.286409 + 0.496074i −0.972950 0.231017i \(-0.925795\pi\)
0.686541 + 0.727091i \(0.259128\pi\)
\(354\) 2.83356 + 37.9086i 0.150602 + 2.01482i
\(355\) −2.78307 + 10.3866i −0.147710 + 0.551261i
\(356\) −1.23868 0.486694i −0.0656500 0.0257947i
\(357\) 0 0
\(358\) 1.92103 + 0.363860i 0.101530 + 0.0192306i
\(359\) 15.5646 8.98625i 0.821470 0.474276i −0.0294531 0.999566i \(-0.509377\pi\)
0.850923 + 0.525290i \(0.176043\pi\)
\(360\) 5.53590 + 10.4890i 0.291767 + 0.552819i
\(361\) 10.6223 + 6.13282i 0.559071 + 0.322780i
\(362\) −30.2135 + 10.5657i −1.58798 + 0.555318i
\(363\) 32.8568 32.8568i 1.72453 1.72453i
\(364\) 0 0
\(365\) 4.02695 + 4.02695i 0.210780 + 0.210780i
\(366\) −8.13543 + 16.8851i −0.425246 + 0.882599i
\(367\) −8.35453 + 14.4705i −0.436103 + 0.755352i −0.997385 0.0722722i \(-0.976975\pi\)
0.561282 + 0.827625i \(0.310308\pi\)
\(368\) 9.00071 + 29.2591i 0.469195 + 1.52524i
\(369\) 18.3625 + 31.8048i 0.955915 + 1.65569i
\(370\) 1.26015 + 1.84905i 0.0655119 + 0.0961278i
\(371\) 0 0
\(372\) 12.4389 5.42136i 0.644926 0.281085i
\(373\) 21.2808 + 5.70218i 1.10188 + 0.295248i 0.763529 0.645773i \(-0.223465\pi\)
0.338349 + 0.941021i \(0.390131\pi\)
\(374\) −18.3708 15.8155i −0.949932 0.817799i
\(375\) −19.6834 11.3642i −1.01645 0.586845i
\(376\) 23.0597 21.3716i 1.18921 1.10216i
\(377\) 6.82725i 0.351621i
\(378\) 0 0
\(379\) 23.6361 23.6361i 1.21411 1.21411i 0.244443 0.969664i \(-0.421395\pi\)
0.969664 0.244443i \(-0.0786052\pi\)
\(380\) −4.55682 + 0.685047i −0.233760 + 0.0351421i
\(381\) 14.9147 3.99639i 0.764105 0.204741i
\(382\) 0.264717 + 3.54150i 0.0135441 + 0.181199i
\(383\) 4.91665 + 8.51589i 0.251229 + 0.435141i 0.963864 0.266393i \(-0.0858319\pi\)
−0.712635 + 0.701535i \(0.752499\pi\)
\(384\) −30.3805 + 8.09683i −1.55035 + 0.413189i
\(385\) 0 0
\(386\) 11.7966 8.03948i 0.600431 0.409199i
\(387\) −12.9926 + 48.4890i −0.660450 + 2.46483i
\(388\) 10.4004 + 13.0520i 0.528002 + 0.662613i
\(389\) 3.78801 + 14.1371i 0.192060 + 0.716777i 0.993008 + 0.118044i \(0.0376624\pi\)
−0.800948 + 0.598733i \(0.795671\pi\)
\(390\) 3.61730 + 10.3440i 0.183169 + 0.523788i
\(391\) 24.9153i 1.26002i
\(392\) 0 0
\(393\) 38.0085i 1.91728i
\(394\) 25.6031 8.95340i 1.28986 0.451066i
\(395\) −1.67346 6.24545i −0.0842011 0.314243i
\(396\) −5.58722 + 49.4179i −0.280768 + 2.48334i
\(397\) −6.60834 + 24.6626i −0.331663 + 1.23778i 0.575779 + 0.817605i \(0.304699\pi\)
−0.907442 + 0.420177i \(0.861968\pi\)
\(398\) 4.47003 + 6.55902i 0.224062 + 0.328774i
\(399\) 0 0
\(400\) 11.4683 12.3409i 0.573414 0.617045i
\(401\) −9.40322 16.2869i −0.469575 0.813327i 0.529820 0.848110i \(-0.322259\pi\)
−0.999395 + 0.0347829i \(0.988926\pi\)
\(402\) −5.13009 + 0.383459i −0.255866 + 0.0191252i
\(403\) 7.40572 1.98436i 0.368905 0.0988478i
\(404\) −5.67897 + 7.68857i −0.282539 + 0.382521i
\(405\) 0.541596 0.541596i 0.0269121 0.0269121i
\(406\) 0 0
\(407\) 9.38288i 0.465092i
\(408\) 25.5714 + 0.971519i 1.26597 + 0.0480974i
\(409\) 25.6410 + 14.8038i 1.26787 + 0.732003i 0.974584 0.224023i \(-0.0719190\pi\)
0.293283 + 0.956026i \(0.405252\pi\)
\(410\) −6.36997 + 7.39918i −0.314591 + 0.365419i
\(411\) −13.2219 3.54278i −0.652186 0.174753i
\(412\) −35.7807 14.0587i −1.76279 0.692622i
\(413\) 0 0
\(414\) −42.2400 + 28.7869i −2.07598 + 1.41480i
\(415\) −1.23367 2.13677i −0.0605583 0.104890i
\(416\) −17.6555 + 1.97219i −0.865632 + 0.0966944i
\(417\) 14.9029 25.8126i 0.729798 1.26405i
\(418\) −17.4074 8.38706i −0.851423 0.410225i
\(419\) −1.15229 1.15229i −0.0562929 0.0562929i 0.678400 0.734693i \(-0.262674\pi\)
−0.734693 + 0.678400i \(0.762674\pi\)
\(420\) 0 0
\(421\) 19.7275 19.7275i 0.961459 0.961459i −0.0378258 0.999284i \(-0.512043\pi\)
0.999284 + 0.0378258i \(0.0120432\pi\)
\(422\) −2.54852 7.28773i −0.124060 0.354761i
\(423\) 45.4658 + 26.2497i 2.21062 + 1.27630i
\(424\) 10.3654 5.47067i 0.503389 0.265679i
\(425\) −11.8747 + 6.85586i −0.576008 + 0.332558i
\(426\) 8.85814 46.7674i 0.429178 2.26589i
\(427\) 0 0
\(428\) −2.78827 6.39746i −0.134776 0.309233i
\(429\) −11.8928 + 44.3847i −0.574192 + 2.14291i
\(430\) −13.3085 + 0.994772i −0.641793 + 0.0479722i
\(431\) −10.1980 + 17.6634i −0.491219 + 0.850817i −0.999949 0.0101095i \(-0.996782\pi\)
0.508730 + 0.860926i \(0.330115\pi\)
\(432\) −10.1772 16.2245i −0.489651 0.780601i
\(433\) −28.3107 −1.36052 −0.680262 0.732969i \(-0.738134\pi\)
−0.680262 + 0.732969i \(0.738134\pi\)
\(434\) 0 0
\(435\) −3.79281 3.79281i −0.181851 0.181851i
\(436\) −5.56461 4.11016i −0.266496 0.196841i
\(437\) −5.14020 19.1835i −0.245889 0.917670i
\(438\) −19.1048 16.4474i −0.912862 0.785885i
\(439\) 3.95973 2.28615i 0.188988 0.109112i −0.402521 0.915411i \(-0.631866\pi\)
0.591509 + 0.806299i \(0.298533\pi\)
\(440\) −12.8917 + 2.93467i −0.614590 + 0.139905i
\(441\) 0 0
\(442\) 14.2066 + 2.69085i 0.675739 + 0.127991i
\(443\) −9.74483 2.61112i −0.462991 0.124058i 0.0197808 0.999804i \(-0.493703\pi\)
−0.482772 + 0.875746i \(0.660370\pi\)
\(444\) −6.17274 7.74645i −0.292945 0.367630i
\(445\) 0.570670 0.152911i 0.0270523 0.00724865i
\(446\) −15.9699 7.69444i −0.756195 0.364343i
\(447\) −10.5956 −0.501153
\(448\) 0 0
\(449\) 13.0695 0.616790 0.308395 0.951258i \(-0.400208\pi\)
0.308395 + 0.951258i \(0.400208\pi\)
\(450\) 25.3430 + 12.2105i 1.19468 + 0.575609i
\(451\) −39.5453 + 10.5961i −1.86211 + 0.498952i
\(452\) 4.17723 + 5.24219i 0.196480 + 0.246572i
\(453\) −5.80958 1.55667i −0.272958 0.0731388i
\(454\) 30.8600 + 5.84514i 1.44833 + 0.274326i
\(455\) 0 0
\(456\) 19.8890 4.52753i 0.931390 0.212021i
\(457\) −27.6363 + 15.9559i −1.29277 + 0.746383i −0.979145 0.203162i \(-0.934878\pi\)
−0.313629 + 0.949546i \(0.601545\pi\)
\(458\) −11.0571 9.51910i −0.516665 0.444798i
\(459\) 4.03448 + 15.0569i 0.188313 + 0.702795i
\(460\) −10.9309 8.07387i −0.509658 0.376446i
\(461\) 11.2878 + 11.2878i 0.525727 + 0.525727i 0.919295 0.393568i \(-0.128759\pi\)
−0.393568 + 0.919295i \(0.628759\pi\)
\(462\) 0 0
\(463\) −21.0406 −0.977839 −0.488919 0.872329i \(-0.662609\pi\)
−0.488919 + 0.872329i \(0.662609\pi\)
\(464\) 7.36646 4.62079i 0.341980 0.214515i
\(465\) −3.01178 + 5.21656i −0.139668 + 0.241912i
\(466\) 0.257630 0.0192571i 0.0119345 0.000892068i
\(467\) 2.47257 9.22775i 0.114417 0.427009i −0.884826 0.465922i \(-0.845723\pi\)
0.999243 + 0.0389127i \(0.0123894\pi\)
\(468\) −11.8523 27.1941i −0.547871 1.25705i
\(469\) 0 0
\(470\) −2.59741 + 13.7133i −0.119809 + 0.632545i
\(471\) −13.4192 + 7.74756i −0.618323 + 0.356989i
\(472\) 24.1951 12.7697i 1.11367 0.587773i
\(473\) −48.4639 27.9806i −2.22837 1.28655i
\(474\) 9.44785 + 27.0170i 0.433954 + 1.24093i
\(475\) −7.72848 + 7.72848i −0.354607 + 0.354607i
\(476\) 0 0
\(477\) 13.8388 + 13.8388i 0.633634 + 0.633634i
\(478\) −0.332637 0.160268i −0.0152145 0.00733049i
\(479\) −5.26638 + 9.12164i −0.240627 + 0.416778i −0.960893 0.276920i \(-0.910686\pi\)
0.720266 + 0.693698i \(0.244020\pi\)
\(480\) 8.71270 10.9040i 0.397679 0.497695i
\(481\) −2.79836 4.84690i −0.127594 0.221000i
\(482\) −8.80005 + 5.99731i −0.400831 + 0.273170i
\(483\) 0 0
\(484\) −31.1247 12.2293i −1.41476 0.555876i
\(485\) −7.15617 1.91749i −0.324945 0.0870688i
\(486\) −15.4656 + 17.9644i −0.701534 + 0.814881i
\(487\) −2.99593 1.72970i −0.135759 0.0783803i 0.430582 0.902551i \(-0.358308\pi\)
−0.566341 + 0.824171i \(0.691642\pi\)
\(488\) 13.4791 + 0.512103i 0.610169 + 0.0231818i
\(489\) 32.3612i 1.46342i
\(490\) 0 0
\(491\) 0.356972 0.356972i 0.0161099 0.0161099i −0.699006 0.715116i \(-0.746374\pi\)
0.715116 + 0.699006i \(0.246374\pi\)
\(492\) 25.6774 34.7638i 1.15763 1.56727i
\(493\) −6.83633 + 1.83179i −0.307893 + 0.0824997i
\(494\) 11.4935 0.859104i 0.517116 0.0386529i
\(495\) −11.0387 19.1196i −0.496154 0.859364i
\(496\) −7.15339 6.64757i −0.321197 0.298485i
\(497\) 0 0
\(498\) 6.15079 + 9.02526i 0.275623 + 0.404431i
\(499\) 5.96768 22.2717i 0.267150 0.997018i −0.693771 0.720196i \(-0.744052\pi\)
0.960921 0.276822i \(-0.0892814\pi\)
\(500\) −1.83764 + 16.2536i −0.0821819 + 0.726884i
\(501\) −8.96553 33.4598i −0.400550 1.49487i
\(502\) −4.20095 + 1.46907i −0.187498 + 0.0655680i
\(503\) 27.6867i 1.23449i 0.786772 + 0.617243i \(0.211751\pi\)
−0.786772 + 0.617243i \(0.788249\pi\)
\(504\) 0 0
\(505\) 4.24323i 0.188821i
\(506\) −18.8102 53.7896i −0.836216 2.39124i
\(507\) 2.25655 + 8.42156i 0.100217 + 0.374015i
\(508\) −6.92518 8.69073i −0.307255 0.385589i
\(509\) 8.79130 32.8096i 0.389667 1.45426i −0.441009 0.897503i \(-0.645379\pi\)
0.830676 0.556756i \(-0.187954\pi\)
\(510\) −9.38721 + 6.39746i −0.415673 + 0.283284i
\(511\) 0 0
\(512\) 14.0775 + 17.7151i 0.622142 + 0.782904i
\(513\) 6.21267 + 10.7607i 0.274296 + 0.475095i
\(514\) 0.296665 + 3.96891i 0.0130853 + 0.175061i
\(515\) 16.4844 4.41699i 0.726390 0.194636i
\(516\) 58.4192 8.78240i 2.57176 0.386624i
\(517\) −41.3836 + 41.3836i −1.82005 + 1.82005i
\(518\) 0 0
\(519\) 54.7336i 2.40254i
\(520\) 5.78423 5.36080i 0.253655 0.235087i
\(521\) −16.9294 9.77420i −0.741691 0.428216i 0.0809928 0.996715i \(-0.474191\pi\)
−0.822684 + 0.568499i \(0.807524\pi\)
\(522\) 11.0042 + 9.47351i 0.481639 + 0.414644i
\(523\) −9.83797 2.63608i −0.430184 0.115268i 0.0372283 0.999307i \(-0.488147\pi\)
−0.467413 + 0.884039i \(0.654814\pi\)
\(524\) −25.0758 + 10.9290i −1.09544 + 0.477437i
\(525\) 0 0
\(526\) −6.79012 9.96337i −0.296063 0.434424i
\(527\) 3.97399 + 6.88316i 0.173110 + 0.299835i
\(528\) 55.9394 17.2081i 2.43445 0.748888i
\(529\) 17.7847 30.8039i 0.773246 1.33930i
\(530\) −2.25839 + 4.68730i −0.0980981 + 0.203603i
\(531\) 32.3027 + 32.3027i 1.40182 + 1.40182i
\(532\) 0 0
\(533\) 17.2676 17.2676i 0.747944 0.747944i
\(534\) −2.46864 + 0.863285i −0.106829 + 0.0373580i
\(535\) 2.68294 + 1.54899i 0.115993 + 0.0669688i
\(536\) 1.72810 + 3.27427i 0.0746424 + 0.141427i
\(537\) 3.32733 1.92103i 0.143585 0.0828988i
\(538\) 22.6330 + 4.28688i 0.975777 + 0.184820i
\(539\) 0 0
\(540\) 7.91320 + 3.10920i 0.340530 + 0.133799i
\(541\) −0.575849 + 2.14910i −0.0247577 + 0.0923970i −0.977199 0.212324i \(-0.931897\pi\)
0.952442 + 0.304721i \(0.0985633\pi\)
\(542\) −2.81852 37.7074i −0.121066 1.61967i
\(543\) −31.4484 + 54.4703i −1.34958 + 2.33754i
\(544\) −6.71188 17.1498i −0.287769 0.735293i
\(545\) 3.07104 0.131549
\(546\) 0 0
\(547\) −6.76891 6.76891i −0.289418 0.289418i 0.547432 0.836850i \(-0.315605\pi\)
−0.836850 + 0.547432i \(0.815605\pi\)
\(548\) 1.46451 + 9.74169i 0.0625607 + 0.416144i
\(549\) 5.82957 + 21.7562i 0.248800 + 0.928534i
\(550\) −20.4603 + 23.7661i −0.872430 + 1.01339i
\(551\) −4.88571 + 2.82076i −0.208138 + 0.120169i
\(552\) 50.9162 + 32.0336i 2.16714 + 1.36344i
\(553\) 0 0
\(554\) 3.37489 17.8181i 0.143385 0.757017i
\(555\) 4.24725 + 1.13805i 0.180286 + 0.0483074i
\(556\) −21.3148 2.40987i −0.903949 0.102201i
\(557\) −4.53648 + 1.21555i −0.192217 + 0.0515043i −0.353643 0.935380i \(-0.615057\pi\)
0.161426 + 0.986885i \(0.448391\pi\)
\(558\) 7.07781 14.6900i 0.299627 0.621878i
\(559\) 33.3799 1.41182
\(560\) 0 0
\(561\) −47.6346 −2.01114
\(562\) 17.4391 36.1950i 0.735625 1.52679i
\(563\) 25.6398 6.87017i 1.08059 0.289543i 0.325752 0.945455i \(-0.394382\pi\)
0.754837 + 0.655912i \(0.227716\pi\)
\(564\) 6.94092 61.3911i 0.292266 2.58503i
\(565\) −2.87421 0.770141i −0.120919 0.0324001i
\(566\) −1.98794 + 10.4955i −0.0835592 + 0.441159i
\(567\) 0 0
\(568\) −33.4014 + 7.60348i −1.40149 + 0.319035i
\(569\) −20.3493 + 11.7487i −0.853086 + 0.492530i −0.861691 0.507433i \(-0.830594\pi\)
0.00860467 + 0.999963i \(0.497261\pi\)
\(570\) −5.90782 + 6.86235i −0.247451 + 0.287432i
\(571\) 9.13856 + 34.1056i 0.382437 + 1.42727i 0.842168 + 0.539215i \(0.181279\pi\)
−0.459731 + 0.888058i \(0.652054\pi\)
\(572\) 32.7021 4.91624i 1.36734 0.205558i
\(573\) 4.93467 + 4.93467i 0.206149 + 0.206149i
\(574\) 0 0
\(575\) −32.2326 −1.34419
\(576\) −21.3200 + 31.1937i −0.888335 + 1.29974i
\(577\) −7.20904 + 12.4864i −0.300116 + 0.519817i −0.976162 0.217043i \(-0.930359\pi\)
0.676046 + 0.736860i \(0.263692\pi\)
\(578\) −0.674764 9.02728i −0.0280665 0.375485i
\(579\) 7.26051 27.0966i 0.301737 1.12610i
\(580\) −1.41168 + 3.59286i −0.0586169 + 0.149185i
\(581\) 0 0
\(582\) 32.2220 + 6.10312i 1.33565 + 0.252983i
\(583\) −18.8944 + 10.9087i −0.782524 + 0.451791i
\(584\) −5.35758 + 17.3335i −0.221698 + 0.717265i
\(585\) 11.4045 + 6.58440i 0.471519 + 0.272232i
\(586\) −16.3256 + 5.70906i −0.674403 + 0.235839i
\(587\) 13.2110 13.2110i 0.545276 0.545276i −0.379795 0.925071i \(-0.624005\pi\)
0.925071 + 0.379795i \(0.124005\pi\)
\(588\) 0 0
\(589\) 4.47981 + 4.47981i 0.184587 + 0.184587i
\(590\) −5.27156 + 10.9411i −0.217027 + 0.450440i
\(591\) 26.6496 46.1585i 1.09622 1.89871i
\(592\) −3.33573 + 6.29983i −0.137098 + 0.258921i
\(593\) 8.19296 + 14.1906i 0.336445 + 0.582739i 0.983761 0.179482i \(-0.0574422\pi\)
−0.647317 + 0.762221i \(0.724109\pi\)
\(594\) 20.0775 + 29.4603i 0.823788 + 1.20877i
\(595\) 0 0
\(596\) 3.04666 + 6.99032i 0.124796 + 0.286335i
\(597\) 15.0660 + 4.03691i 0.616609 + 0.165220i
\(598\) 25.7590 + 22.1760i 1.05336 + 0.906844i
\(599\) 29.4485 + 17.0021i 1.20323 + 0.694687i 0.961273 0.275599i \(-0.0888762\pi\)
0.241961 + 0.970286i \(0.422210\pi\)
\(600\) 1.25684 33.0814i 0.0513104 1.35054i
\(601\) 3.33457i 0.136020i 0.997685 + 0.0680099i \(0.0216649\pi\)
−0.997685 + 0.0680099i \(0.978335\pi\)
\(602\) 0 0
\(603\) −4.37145 + 4.37145i −0.178019 + 0.178019i
\(604\) 0.643494 + 4.28042i 0.0261834 + 0.174168i
\(605\) 14.3394 3.84222i 0.582978 0.156208i
\(606\) 1.40007 + 18.7308i 0.0568741 + 0.760886i
\(607\) −5.23683 9.07046i −0.212556 0.368159i 0.739957 0.672654i \(-0.234846\pi\)
−0.952514 + 0.304495i \(0.901512\pi\)
\(608\) −8.70592 11.8198i −0.353072 0.479355i
\(609\) 0 0
\(610\) −4.94814 + 3.37220i −0.200344 + 0.136536i
\(611\) 9.03517 33.7197i 0.365524 1.36415i
\(612\) 24.0502 19.1643i 0.972172 0.774673i
\(613\) −3.29334 12.2909i −0.133017 0.496425i 0.866982 0.498340i \(-0.166057\pi\)
−0.999998 + 0.00191560i \(0.999390\pi\)
\(614\) 15.1635 + 43.3613i 0.611948 + 1.74992i
\(615\) 19.1857i 0.773643i
\(616\) 0 0
\(617\) 2.93899i 0.118319i 0.998249 + 0.0591597i \(0.0188421\pi\)
−0.998249 + 0.0591597i \(0.981158\pi\)
\(618\) −71.3094 + 24.9369i −2.86848 + 1.00311i
\(619\) −2.65281 9.90042i −0.106625 0.397932i 0.891899 0.452235i \(-0.149373\pi\)
−0.998525 + 0.0543029i \(0.982706\pi\)
\(620\) 4.30759 + 0.487019i 0.172997 + 0.0195592i
\(621\) −9.48400 + 35.3948i −0.380580 + 1.42034i
\(622\) −21.1419 31.0222i −0.847711 1.24388i
\(623\) 0 0
\(624\) −23.7644 + 25.5726i −0.951336 + 1.02372i
\(625\) 6.89868 + 11.9489i 0.275947 + 0.477954i
\(626\) −28.4670 + 2.12783i −1.13777 + 0.0850452i
\(627\) −36.6762 + 9.82735i −1.46470 + 0.392466i
\(628\) 8.96995 + 6.62543i 0.357940 + 0.264383i
\(629\) 4.10253 4.10253i 0.163579 0.163579i
\(630\) 0 0
\(631\) 9.59471i 0.381959i 0.981594 + 0.190980i \(0.0611665\pi\)
−0.981594 + 0.190980i \(0.938834\pi\)
\(632\) 15.1076 14.0016i 0.600947 0.556955i
\(633\) −13.1387 7.58562i −0.522216 0.301501i
\(634\) 1.21369 1.40978i 0.0482016 0.0559896i
\(635\) 4.76498 + 1.27677i 0.189092 + 0.0506672i
\(636\) 8.42256 21.4362i 0.333976 0.850000i
\(637\) 0 0
\(638\) −13.3760 + 9.11585i −0.529561 + 0.360900i
\(639\) −28.6005 49.5374i −1.13142 1.95967i
\(640\) −9.69905 2.61279i −0.383389 0.103279i
\(641\) 7.91443 13.7082i 0.312601 0.541441i −0.666324 0.745663i \(-0.732133\pi\)
0.978925 + 0.204222i \(0.0654664\pi\)
\(642\) −12.3543 5.95244i −0.487586 0.234924i
\(643\) −10.3033 10.3033i −0.406321 0.406321i 0.474132 0.880454i \(-0.342762\pi\)
−0.880454 + 0.474132i \(0.842762\pi\)
\(644\) 0 0
\(645\) −18.5439 + 18.5439i −0.730164 + 0.730164i
\(646\) 3.94401 + 11.2783i 0.155175 + 0.443737i
\(647\) 9.11681 + 5.26359i 0.358419 + 0.206933i 0.668387 0.743814i \(-0.266985\pi\)
−0.309968 + 0.950747i \(0.600318\pi\)
\(648\) 2.33123 + 0.720557i 0.0915795 + 0.0283061i
\(649\) −44.1035 + 25.4631i −1.73121 + 0.999516i
\(650\) 3.48112 18.3789i 0.136541 0.720880i
\(651\) 0 0
\(652\) −21.3500 + 9.30518i −0.836130 + 0.364419i
\(653\) 8.64357 32.2582i 0.338249 1.26236i −0.562054 0.827100i \(-0.689989\pi\)
0.900304 0.435263i \(-0.143344\pi\)
\(654\) −13.5564 + 1.01330i −0.530098 + 0.0396233i
\(655\) 6.07151 10.5162i 0.237233 0.410900i
\(656\) −30.3184 6.94441i −1.18374 0.271134i
\(657\) −30.2947 −1.18191
\(658\) 0 0
\(659\) −14.9087 14.9087i −0.580759 0.580759i 0.354353 0.935112i \(-0.384701\pi\)
−0.935112 + 0.354353i \(0.884701\pi\)
\(660\) −15.4361 + 20.8985i −0.600851 + 0.813472i
\(661\) −8.12957 30.3400i −0.316204 1.18009i −0.922864 0.385126i \(-0.874158\pi\)
0.606660 0.794961i \(-0.292509\pi\)
\(662\) 15.8259 + 13.6245i 0.615089 + 0.529532i
\(663\) 24.6065 14.2066i 0.955639 0.551739i
\(664\) 4.18572 6.65306i 0.162438 0.258189i
\(665\) 0 0
\(666\) −11.6952 2.21518i −0.453181 0.0858364i
\(667\) −16.0704 4.30606i −0.622249 0.166731i
\(668\) −19.4968 + 15.5360i −0.754355 + 0.601106i
\(669\) −33.6474 + 9.01579i −1.30088 + 0.348571i
\(670\) −1.48064 0.713389i −0.0572022 0.0275606i
\(671\) −25.1090 −0.969321
\(672\) 0 0
\(673\) 45.9274 1.77037 0.885186 0.465237i \(-0.154031\pi\)
0.885186 + 0.465237i \(0.154031\pi\)
\(674\) 35.1907 + 16.9552i 1.35549 + 0.653091i
\(675\) 19.4789 5.21936i 0.749744 0.200893i
\(676\) 4.90720 3.91029i 0.188738 0.150396i
\(677\) 42.3069 + 11.3361i 1.62599 + 0.435682i 0.952752 0.303748i \(-0.0982381\pi\)
0.673234 + 0.739430i \(0.264905\pi\)
\(678\) 12.9417 + 2.45126i 0.497021 + 0.0941400i
\(679\) 0 0
\(680\) 6.91987 + 4.35359i 0.265365 + 0.166953i
\(681\) 53.4510 30.8600i 2.04825 1.18256i
\(682\) 13.7760 + 11.8598i 0.527510 + 0.454135i
\(683\) −4.61649 17.2290i −0.176645 0.659248i −0.996266 0.0863413i \(-0.972482\pi\)
0.819621 0.572907i \(-0.194184\pi\)
\(684\) 14.5637 19.7173i 0.556855 0.753908i
\(685\) −3.09228 3.09228i −0.118150 0.118150i
\(686\) 0 0
\(687\) −28.6706 −1.09385
\(688\) −22.5920 36.0162i −0.861313 1.37310i
\(689\) 6.50682 11.2701i 0.247890 0.429358i
\(690\) −26.6298 + 1.99050i −1.01378 + 0.0757771i
\(691\) −8.45153 + 31.5415i −0.321511 + 1.19990i 0.596262 + 0.802790i \(0.296652\pi\)
−0.917773 + 0.397106i \(0.870015\pi\)
\(692\) 36.1100 15.7382i 1.37269 0.598275i
\(693\) 0 0
\(694\) 3.10920 16.4153i 0.118024 0.623117i
\(695\) 8.24664 4.76120i 0.312813 0.180603i
\(696\) 5.04607 16.3257i 0.191271 0.618823i
\(697\) 21.9236 + 12.6576i 0.830416 + 0.479441i
\(698\) −5.26629 15.0594i −0.199332 0.570008i
\(699\) 0.358977 0.358977i 0.0135778 0.0135778i
\(700\) 0 0
\(701\) 23.1180 + 23.1180i 0.873153 + 0.873153i 0.992815 0.119662i \(-0.0381810\pi\)
−0.119662 + 0.992815i \(0.538181\pi\)
\(702\) −19.1577 9.23036i −0.723059 0.348378i
\(703\) 2.31235 4.00511i 0.0872121 0.151056i
\(704\) −27.4378 31.9575i −1.03410 1.20444i
\(705\) 13.7133 + 23.7521i 0.516471 + 0.894554i
\(706\) 12.5771 8.57140i 0.473346 0.322589i
\(707\) 0 0
\(708\) 19.6600 50.0366i 0.738870 1.88049i
\(709\) 40.4313 + 10.8335i 1.51843 + 0.406862i 0.919224 0.393734i \(-0.128817\pi\)
0.599205 + 0.800596i \(0.295484\pi\)
\(710\) 9.92152 11.5246i 0.372348 0.432509i
\(711\) 29.7870 + 17.1975i 1.11710 + 0.644957i
\(712\) 1.27938 + 1.38043i 0.0479468 + 0.0517339i
\(713\) 18.6836i 0.699707i
\(714\) 0 0
\(715\) −10.3805 + 10.3805i −0.388210 + 0.388210i
\(716\) −2.22413 1.64280i −0.0831196 0.0613942i
\(717\) −0.700843 + 0.187790i −0.0261735 + 0.00701316i
\(718\) −25.3462 + 1.89456i −0.945913 + 0.0707043i
\(719\) −23.9987 41.5669i −0.894999 1.55018i −0.833806 0.552058i \(-0.813843\pi\)
−0.0611931 0.998126i \(-0.519491\pi\)
\(720\) −0.614326 16.7617i −0.0228946 0.624670i
\(721\) 0 0
\(722\) −9.76873 14.3340i −0.363555 0.533456i
\(723\) −5.41621 + 20.2136i −0.201431 + 0.751751i
\(724\) 44.9790 + 5.08536i 1.67163 + 0.188996i
\(725\) 2.36977 + 8.84409i 0.0880109 + 0.328461i
\(726\) −62.0301 + 21.6920i −2.30215 + 0.805064i
\(727\) 35.3027i 1.30931i −0.755930 0.654653i \(-0.772815\pi\)
0.755930 0.654653i \(-0.227185\pi\)
\(728\) 0 0
\(729\) 43.9928i 1.62936i
\(730\) −2.65858 7.60245i −0.0983984 0.281379i
\(731\) 8.95601 + 33.4243i 0.331250 + 1.23624i
\(732\) 20.7298 16.5185i 0.766195 0.610541i
\(733\) 2.32031 8.65952i 0.0857026 0.319847i −0.909744 0.415170i \(-0.863722\pi\)
0.995446 + 0.0953238i \(0.0303887\pi\)
\(734\) 19.5267 13.3076i 0.720744 0.491193i
\(735\) 0 0
\(736\) 6.49334 42.8025i 0.239348 1.57772i
\(737\) −3.44587 5.96842i −0.126930 0.219850i
\(738\) −3.87135 51.7926i −0.142506 1.90651i
\(739\) −1.14785 + 0.307565i −0.0422243 + 0.0113140i −0.279869 0.960038i \(-0.590291\pi\)
0.237645 + 0.971352i \(0.423624\pi\)
\(740\) −0.470443 3.12932i −0.0172938 0.115036i
\(741\) 16.0148 16.0148i 0.588319 0.588319i
\(742\) 0 0
\(743\) 46.9253i 1.72152i −0.509008 0.860762i \(-0.669988\pi\)
0.509008 0.860762i \(-0.330012\pi\)
\(744\) −19.1756 0.728527i −0.703011 0.0267091i
\(745\) −2.93157 1.69254i −0.107404 0.0620099i
\(746\) −23.6124 20.3280i −0.864513 0.744262i
\(747\) 12.6779 + 3.39703i 0.463860 + 0.124291i
\(748\) 13.6969 + 31.4265i 0.500809 + 1.14907i
\(749\) 0 0
\(750\) 18.1016 + 26.5611i 0.660978 + 0.969875i
\(751\) 5.75909 + 9.97504i 0.210152 + 0.363995i 0.951762 0.306837i \(-0.0992707\pi\)
−0.741610 + 0.670832i \(0.765937\pi\)
\(752\) −42.4980 + 13.0733i −1.54974 + 0.476733i
\(753\) −4.37267 + 7.57369i −0.159349 + 0.276000i
\(754\) 4.19090 8.69823i 0.152623 0.316771i
\(755\) −1.35872 1.35872i −0.0494491 0.0494491i
\(756\) 0 0
\(757\) −14.6371 + 14.6371i −0.531994 + 0.531994i −0.921165 0.389172i \(-0.872761\pi\)
0.389172 + 0.921165i \(0.372761\pi\)
\(758\) −44.6225 + 15.6045i −1.62076 + 0.566781i
\(759\) −96.9745 55.9882i −3.51995 2.03224i
\(760\) 6.22611 + 1.92442i 0.225845 + 0.0698060i
\(761\) 5.84549 3.37489i 0.211899 0.122340i −0.390295 0.920690i \(-0.627627\pi\)
0.602194 + 0.798350i \(0.294294\pi\)
\(762\) −21.4552 4.06380i −0.777240 0.147216i
\(763\) 0 0
\(764\) 1.83668 4.67452i 0.0664488 0.169118i
\(765\) −3.53326 + 13.1863i −0.127745 + 0.476753i
\(766\) −1.03657 13.8677i −0.0374528 0.501060i
\(767\) 15.1883 26.3069i 0.548418 0.949887i
\(768\) 43.6764 + 8.33332i 1.57604 + 0.300703i
\(769\) 2.23508 0.0805990 0.0402995 0.999188i \(-0.487169\pi\)
0.0402995 + 0.999188i \(0.487169\pi\)
\(770\) 0 0
\(771\) 5.53022 + 5.53022i 0.199166 + 0.199166i
\(772\) −19.9644 + 3.00134i −0.718535 + 0.108020i
\(773\) −6.08368 22.7046i −0.218815 0.816627i −0.984789 0.173756i \(-0.944410\pi\)
0.765974 0.642871i \(-0.222257\pi\)
\(774\) 46.3180 53.8016i 1.66487 1.93386i
\(775\) 8.90466 5.14111i 0.319865 0.184674i
\(776\) −5.23868 23.0131i −0.188058 0.826121i
\(777\) 0 0
\(778\) 3.85191 20.3365i 0.138098 0.729099i
\(779\) 19.4914 + 5.22270i 0.698351 + 0.187123i
\(780\) 1.74104 15.3992i 0.0623393 0.551379i
\(781\) 61.5935 16.5039i 2.20399 0.590557i
\(782\) −15.2942 + 31.7432i −0.546920 + 1.13514i
\(783\) 10.4090 0.371987
\(784\) 0 0
\(785\) −4.95040 −0.176688
\(786\) −23.3315 + 48.4246i −0.832206 + 1.72725i
\(787\) 5.48157 1.46878i 0.195397 0.0523564i −0.159793 0.987150i \(-0.551083\pi\)
0.355190 + 0.934794i \(0.384416\pi\)
\(788\) −38.1155 4.30936i −1.35781 0.153515i
\(789\) −22.8857 6.13220i −0.814752 0.218312i
\(790\) −1.70169 + 8.98424i −0.0605435 + 0.319645i
\(791\) 0 0
\(792\) 37.4535 59.5309i 1.33085 2.11534i
\(793\) 12.9705 7.48852i 0.460596 0.265925i
\(794\) 23.5584 27.3648i 0.836058 0.971141i
\(795\) 2.64621 + 9.87581i 0.0938516 + 0.350259i
\(796\) −1.66877 11.1004i −0.0591480 0.393444i
\(797\) −26.5404 26.5404i −0.940110 0.940110i 0.0581955 0.998305i \(-0.481465\pi\)
−0.998305 + 0.0581955i \(0.981465\pi\)
\(798\) 0 0
\(799\) 36.1888 1.28027
\(800\) −22.1865 + 8.68308i −0.784412 + 0.306993i
\(801\) −1.57140 + 2.72174i −0.0555226 + 0.0961681i
\(802\) 1.98247 + 26.5223i 0.0700034 + 0.936536i
\(803\) 8.74080 32.6211i 0.308456 1.15117i
\(804\) 6.77135 + 2.66055i 0.238807 + 0.0938304i
\(805\) 0 0
\(806\) −10.6533 2.01783i −0.375247 0.0710749i
\(807\) 39.2015 22.6330i 1.37996 0.796718i
\(808\) 11.9549 6.30956i 0.420571 0.221969i
\(809\) −5.44560 3.14402i −0.191457 0.110538i 0.401207 0.915987i \(-0.368591\pi\)
−0.592665 + 0.805449i \(0.701924\pi\)
\(810\) −1.02248 + 0.357560i −0.0359261 + 0.0125634i
\(811\) −28.2328 + 28.2328i −0.991388 + 0.991388i −0.999963 0.00857565i \(-0.997270\pi\)
0.00857565 + 0.999963i \(0.497270\pi\)
\(812\) 0 0
\(813\) −52.5409 52.5409i −1.84269 1.84269i
\(814\) 5.75967 11.9542i 0.201876 0.418995i
\(815\) 5.16940 8.95366i 0.181076 0.313633i
\(816\) −31.9827 16.9347i −1.11962 0.592833i
\(817\) 13.7913 + 23.8873i 0.482497 + 0.835709i
\(818\) −23.5805 34.6005i −0.824472 1.20978i
\(819\) 0 0
\(820\) 12.6576 5.51669i 0.442023 0.192651i
\(821\) 16.3630 + 4.38445i 0.571072 + 0.153018i 0.532788 0.846249i \(-0.321144\pi\)
0.0382839 + 0.999267i \(0.487811\pi\)
\(822\) 14.6705 + 12.6299i 0.511692 + 0.440517i
\(823\) −32.3363 18.6694i −1.12717 0.650774i −0.183951 0.982935i \(-0.558889\pi\)
−0.943223 + 0.332162i \(0.892222\pi\)
\(824\) 36.9563 + 39.8753i 1.28743 + 1.38912i
\(825\) 61.6244i 2.14549i
\(826\) 0 0
\(827\) −5.32642 + 5.32642i −0.185218 + 0.185218i −0.793625 0.608407i \(-0.791809\pi\)
0.608407 + 0.793625i \(0.291809\pi\)
\(828\) 71.4865 10.7469i 2.48433 0.373480i
\(829\) −7.89725 + 2.11606i −0.274283 + 0.0734939i −0.393339 0.919394i \(-0.628680\pi\)
0.119056 + 0.992888i \(0.462013\pi\)
\(830\) 0.260092 + 3.47963i 0.00902794 + 0.120780i
\(831\) −17.8181 30.8618i −0.618102 1.07058i
\(832\) 23.7045 + 8.32514i 0.821806 + 0.288622i
\(833\) 0 0
\(834\) −34.8320 + 23.7383i −1.20613 + 0.821989i
\(835\) 2.86432 10.6898i 0.0991239 0.369935i
\(836\) 17.0294 + 21.3710i 0.588975 + 0.739131i
\(837\) −3.02540 11.2909i −0.104573 0.390272i
\(838\) 0.760736 + 2.17539i 0.0262792 + 0.0751477i
\(839\) 7.20540i 0.248758i 0.992235 + 0.124379i \(0.0396939\pi\)
−0.992235 + 0.124379i \(0.960306\pi\)
\(840\) 0 0
\(841\) 24.2740i 0.837033i
\(842\) −37.2434 + 13.0240i −1.28349 + 0.448837i
\(843\) −20.4339 76.2603i −0.703780 2.62654i
\(844\) −1.22663 + 10.8493i −0.0422223 + 0.373448i
\(845\) −0.720926 + 2.69053i −0.0248006 + 0.0925571i
\(846\) −41.8122 61.3524i −1.43753 2.10934i
\(847\) 0 0
\(848\) −16.5642 + 0.607087i −0.568816 + 0.0208475i
\(849\) 10.4955 + 18.1787i 0.360205 + 0.623893i
\(850\) 19.3374 1.44541i 0.663266 0.0495772i
\(851\) 13.1739 3.52994i 0.451596 0.121005i
\(852\) −39.9938 + 54.1462i −1.37016 + 1.85502i
\(853\) 13.0316 13.0316i 0.446192 0.446192i −0.447894 0.894086i \(-0.647826\pi\)
0.894086 + 0.447894i \(0.147826\pi\)
\(854\) 0 0
\(855\) 10.8817i 0.372147i
\(856\) −0.374690 + 9.86222i −0.0128066 + 0.337084i
\(857\) −11.8030 6.81447i −0.403183 0.232778i 0.284674 0.958625i \(-0.408115\pi\)
−0.687856 + 0.725847i \(0.741448\pi\)
\(858\) 42.3975 49.2477i 1.44743 1.68129i
\(859\) −43.5800 11.6772i −1.48693 0.398422i −0.578231 0.815873i \(-0.696257\pi\)
−0.908699 + 0.417451i \(0.862923\pi\)
\(860\) 17.5663 + 6.90201i 0.599005 + 0.235357i
\(861\) 0 0
\(862\) 23.8353 16.2440i 0.811835 0.553272i
\(863\) 25.5923 + 44.3271i 0.871171 + 1.50891i 0.860786 + 0.508966i \(0.169972\pi\)
0.0103847 + 0.999946i \(0.496694\pi\)
\(864\) 3.00684 + 26.9180i 0.102295 + 0.915768i
\(865\) −8.74318 + 15.1436i −0.297277 + 0.514899i
\(866\) 36.0691 + 17.3784i 1.22568 + 0.590544i
\(867\) −12.5785 12.5785i −0.427188 0.427188i
\(868\) 0 0
\(869\) −27.1125 + 27.1125i −0.919727 + 0.919727i
\(870\) 2.50400 + 7.16042i 0.0848936 + 0.242761i
\(871\) 3.56006 + 2.05540i 0.120628 + 0.0696445i
\(872\) 4.56655 + 8.65235i 0.154643 + 0.293006i
\(873\) 34.1305 19.7053i 1.15514 0.666922i
\(874\) −5.22690 + 27.5959i −0.176802 + 0.933445i
\(875\) 0 0
\(876\) 14.2442 + 32.6821i 0.481266 + 1.10423i
\(877\) 7.83642 29.2459i 0.264617 0.987564i −0.697867 0.716227i \(-0.745867\pi\)
0.962484 0.271337i \(-0.0874659\pi\)
\(878\) −6.44823 + 0.481987i −0.217617 + 0.0162663i
\(879\) −16.9929 + 29.4326i −0.573156 + 0.992735i
\(880\) 18.2261 + 4.17467i 0.614402 + 0.140728i
\(881\) −29.7369 −1.00186 −0.500930 0.865488i \(-0.667009\pi\)
−0.500930 + 0.865488i \(0.667009\pi\)
\(882\) 0 0
\(883\) 14.3040 + 14.3040i 0.481368 + 0.481368i 0.905568 0.424200i \(-0.139445\pi\)
−0.424200 + 0.905568i \(0.639445\pi\)
\(884\) −16.4481 12.1490i −0.553208 0.408614i
\(885\) 6.17683 + 23.0522i 0.207632 + 0.774893i
\(886\) 10.8125 + 9.30853i 0.363254 + 0.312726i
\(887\) −49.1086 + 28.3528i −1.64890 + 0.951995i −0.671395 + 0.741099i \(0.734305\pi\)
−0.977509 + 0.210896i \(0.932362\pi\)
\(888\) 3.10920 + 13.6584i 0.104338 + 0.458347i
\(889\) 0 0
\(890\) −0.820923 0.155490i −0.0275174 0.00521203i
\(891\) −4.38731 1.17558i −0.146980 0.0393833i
\(892\) 15.6231 + 19.6061i 0.523100 + 0.656462i
\(893\) 27.8634 7.46599i 0.932415 0.249840i
\(894\) 13.4992 + 6.50406i 0.451481 + 0.217528i
\(895\) 1.22747 0.0410298
\(896\) 0 0
\(897\) 66.7919 2.23012
\(898\) −16.6512 8.02271i −0.555657 0.267721i
\(899\) 5.12646 1.37363i 0.170977 0.0458132i
\(900\) −24.7927 31.1135i −0.826423 1.03712i
\(901\) 13.0309 + 3.49163i 0.434124 + 0.116323i
\(902\) 56.8869 + 10.7749i 1.89413 + 0.358763i
\(903\) 0 0
\(904\) −2.10406 9.24297i −0.0699802 0.307417i
\(905\) −17.4022 + 10.0472i −0.578470 + 0.333980i
\(906\) 6.44610 + 5.54947i 0.214157 + 0.184369i
\(907\) −5.58142 20.8301i −0.185328 0.691653i −0.994560 0.104164i \(-0.966783\pi\)
0.809232 0.587489i \(-0.199883\pi\)
\(908\) −35.7290 26.3903i −1.18571 0.875793i
\(909\) 15.9609 + 15.9609i 0.529389 + 0.529389i
\(910\) 0 0
\(911\) −7.88055 −0.261094 −0.130547 0.991442i \(-0.541673\pi\)
−0.130547 + 0.991442i \(0.541673\pi\)
\(912\) −28.1188 6.44058i −0.931105 0.213269i
\(913\) −7.31580 + 12.6713i −0.242118 + 0.419360i
\(914\) 45.0044 3.36395i 1.48861 0.111270i
\(915\) −3.04546 + 11.3658i −0.100680 + 0.375742i
\(916\) 8.24398 + 18.9151i 0.272389 + 0.624974i
\(917\) 0 0
\(918\) 4.10253 21.6597i 0.135404 0.714877i
\(919\) −1.83468 + 1.05925i −0.0605206 + 0.0349416i −0.529955 0.848026i \(-0.677791\pi\)
0.469434 + 0.882967i \(0.344458\pi\)
\(920\) 8.97039 + 16.9964i 0.295745 + 0.560355i
\(921\) 78.1739 + 45.1337i 2.57592 + 1.48721i
\(922\) −7.45220 21.3102i −0.245425 0.701816i
\(923\) −26.8951 + 26.8951i −0.885264 + 0.885264i
\(924\) 0 0
\(925\) −5.30740 5.30740i −0.174506 0.174506i
\(926\) 26.8066 + 12.9157i 0.880921 + 0.424437i
\(927\) −45.3916 + 78.6205i −1.49085 + 2.58224i
\(928\) −12.2217 + 1.36521i −0.401196 + 0.0448151i
\(929\) −16.1033 27.8918i −0.528333 0.915099i −0.999454 0.0330307i \(-0.989484\pi\)
0.471122 0.882068i \(-0.343849\pi\)
\(930\) 7.03932 4.79736i 0.230829 0.157312i
\(931\) 0 0
\(932\) −0.340053 0.133611i −0.0111388 0.00437658i
\(933\) −71.2574 19.0934i −2.33286 0.625088i
\(934\) −8.81460 + 10.2388i −0.288422 + 0.335023i
\(935\) −13.1795 7.60919i −0.431016 0.248847i
\(936\) −1.59272 + 41.9219i −0.0520596 + 1.37026i
\(937\) 17.8409i 0.582836i −0.956596 0.291418i \(-0.905873\pi\)
0.956596 0.291418i \(-0.0941271\pi\)
\(938\) 0 0
\(939\) −39.6655 + 39.6655i −1.29444 + 1.29444i
\(940\) 11.7271 15.8769i 0.382495 0.517847i
\(941\) −27.3429 + 7.32652i −0.891354 + 0.238838i −0.675300 0.737544i \(-0.735986\pi\)
−0.216055 + 0.976381i \(0.569319\pi\)
\(942\) 21.8525 1.63341i 0.711992 0.0532193i
\(943\) 29.7547 + 51.5366i 0.968946 + 1.67826i
\(944\) −38.6643 + 1.41707i −1.25842 + 0.0461217i
\(945\) 0 0
\(946\) 44.5693 + 65.3981i 1.44907 + 2.12627i
\(947\) 6.15356 22.9654i 0.199964 0.746275i −0.790962 0.611865i \(-0.790419\pi\)
0.990926 0.134410i \(-0.0429138\pi\)
\(948\) 4.54735 40.2204i 0.147691 1.30630i
\(949\) 5.21373 + 19.4579i 0.169245 + 0.631630i
\(950\) 14.5905 5.10232i 0.473380 0.165541i
\(951\) 3.65550i 0.118538i
\(952\) 0 0
\(953\) 30.3038i 0.981636i 0.871262 + 0.490818i \(0.163302\pi\)
−0.871262 + 0.490818i \(0.836698\pi\)
\(954\) −9.13632 26.1261i −0.295799 0.845865i
\(955\) 0.577052 + 2.15359i 0.0186730 + 0.0696884i
\(956\) 0.325414 + 0.408377i 0.0105247 + 0.0132079i
\(957\) −8.23259 + 30.7244i −0.266122 + 0.993180i
\(958\) 12.3089 8.38862i 0.397683 0.271024i
\(959\) 0 0
\(960\) −17.7938 + 8.54386i −0.574291 + 0.275752i
\(961\) 12.5200 + 21.6852i 0.403870 + 0.699523i
\(962\) 0.589974 + 7.89294i 0.0190215 + 0.254478i
\(963\) −15.9184 + 4.26532i −0.512962 + 0.137448i
\(964\) 14.8931 2.23894i 0.479674 0.0721115i
\(965\) 6.33726 6.33726i 0.204004 0.204004i
\(966\) 0 0
\(967\) 13.3675i 0.429869i −0.976629 0.214934i \(-0.931046\pi\)
0.976629 0.214934i \(-0.0689537\pi\)
\(968\) 32.1473 + 34.6865i 1.03325 + 1.11487i
\(969\) 20.3330 + 11.7393i 0.653190 + 0.377119i
\(970\) 7.94024 + 6.83577i 0.254946 + 0.219483i
\(971\) 12.7754 + 3.42316i 0.409982 + 0.109854i 0.457914 0.888996i \(-0.348597\pi\)
−0.0479326 + 0.998851i \(0.515263\pi\)
\(972\) 30.7313 13.3939i 0.985706 0.429610i
\(973\) 0 0
\(974\) 2.75518 + 4.04277i 0.0882816 + 0.129539i
\(975\) −18.3789 31.8332i −0.588596 1.01948i
\(976\) −16.8586 8.92655i −0.539630 0.285732i
\(977\) −26.6156 + 46.0996i −0.851509 + 1.47486i 0.0283371 + 0.999598i \(0.490979\pi\)
−0.879846 + 0.475259i \(0.842355\pi\)
\(978\) −19.8648 + 41.2296i −0.635208 + 1.31838i
\(979\) −2.47736 2.47736i −0.0791769 0.0791769i
\(980\) 0 0
\(981\) −11.5517 + 11.5517i −0.368817 + 0.368817i
\(982\) −0.673925 + 0.235672i −0.0215058 + 0.00752059i
\(983\) −0.255896 0.147742i −0.00816182 0.00471223i 0.495914 0.868372i \(-0.334833\pi\)
−0.504075 + 0.863660i \(0.668167\pi\)
\(984\) −54.0539 + 28.5286i −1.72318 + 0.909459i
\(985\) 14.7468 8.51406i 0.469871 0.271280i
\(986\) 9.83424 + 1.86269i 0.313186 + 0.0593201i
\(987\) 0 0
\(988\) −15.1706 5.96071i −0.482640 0.189635i
\(989\) −21.0532 + 78.5717i −0.669453 + 2.49843i
\(990\) 2.32728 + 31.1354i 0.0739659 + 0.989548i
\(991\) 21.0182 36.4046i 0.667665 1.15643i −0.310890 0.950446i \(-0.600627\pi\)
0.978555 0.205985i \(-0.0660397\pi\)
\(992\) 5.03314 + 12.8604i 0.159802 + 0.408318i
\(993\) 41.0357 1.30223
\(994\) 0 0
\(995\) 3.52358 + 3.52358i 0.111705 + 0.111705i
\(996\) −2.29624 15.2742i −0.0727592 0.483983i
\(997\) 11.9231 + 44.4977i 0.377609 + 1.40926i 0.849495 + 0.527597i \(0.176907\pi\)
−0.471885 + 0.881660i \(0.656426\pi\)
\(998\) −21.2745 + 24.7119i −0.673434 + 0.782241i
\(999\) −7.38970 + 4.26644i −0.233800 + 0.134984i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.x.j.557.1 16
7.2 even 3 inner 784.2.x.j.765.3 16
7.3 odd 6 112.2.m.c.29.3 8
7.4 even 3 784.2.m.g.589.3 8
7.5 odd 6 784.2.x.k.765.3 16
7.6 odd 2 784.2.x.k.557.1 16
16.5 even 4 inner 784.2.x.j.165.3 16
28.3 even 6 448.2.m.c.337.4 8
56.3 even 6 896.2.m.f.673.1 8
56.45 odd 6 896.2.m.e.673.4 8
112.3 even 12 896.2.m.f.225.1 8
112.5 odd 12 784.2.x.k.373.1 16
112.37 even 12 inner 784.2.x.j.373.1 16
112.45 odd 12 896.2.m.e.225.4 8
112.53 even 12 784.2.m.g.197.3 8
112.59 even 12 448.2.m.c.113.4 8
112.69 odd 4 784.2.x.k.165.3 16
112.101 odd 12 112.2.m.c.85.3 yes 8
224.59 even 24 7168.2.a.bd.1.1 8
224.101 odd 24 7168.2.a.bc.1.8 8
224.171 even 24 7168.2.a.bd.1.8 8
224.213 odd 24 7168.2.a.bc.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.c.29.3 8 7.3 odd 6
112.2.m.c.85.3 yes 8 112.101 odd 12
448.2.m.c.113.4 8 112.59 even 12
448.2.m.c.337.4 8 28.3 even 6
784.2.m.g.197.3 8 112.53 even 12
784.2.m.g.589.3 8 7.4 even 3
784.2.x.j.165.3 16 16.5 even 4 inner
784.2.x.j.373.1 16 112.37 even 12 inner
784.2.x.j.557.1 16 1.1 even 1 trivial
784.2.x.j.765.3 16 7.2 even 3 inner
784.2.x.k.165.3 16 112.69 odd 4
784.2.x.k.373.1 16 112.5 odd 12
784.2.x.k.557.1 16 7.6 odd 2
784.2.x.k.765.3 16 7.5 odd 6
896.2.m.e.225.4 8 112.45 odd 12
896.2.m.e.673.4 8 56.45 odd 6
896.2.m.f.225.1 8 112.3 even 12
896.2.m.f.673.1 8 56.3 even 6
7168.2.a.bc.1.1 8 224.213 odd 24
7168.2.a.bc.1.8 8 224.101 odd 24
7168.2.a.bd.1.1 8 224.59 even 24
7168.2.a.bd.1.8 8 224.171 even 24