Properties

Label 448.2.z.a.47.10
Level $448$
Weight $2$
Character 448.47
Analytic conductor $3.577$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,2,Mod(47,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.10
Character \(\chi\) \(=\) 448.47
Dual form 448.2.z.a.143.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.282507 - 1.05433i) q^{3} +(-1.39922 + 0.374919i) q^{5} +(0.298614 + 2.62885i) q^{7} +(1.56627 + 0.904287i) q^{9} +(-1.42219 + 5.30770i) q^{11} +(-1.84531 + 1.84531i) q^{13} +1.58116i q^{15} +(5.69424 - 3.28757i) q^{17} +(3.24453 - 0.869370i) q^{19} +(2.85604 + 0.427830i) q^{21} +(0.256173 - 0.443704i) q^{23} +(-2.51288 + 1.45081i) q^{25} +(3.71137 - 3.71137i) q^{27} +(-2.30263 - 2.30263i) q^{29} +(3.79637 + 6.57551i) q^{31} +(5.19429 + 2.99893i) q^{33} +(-1.40343 - 3.56637i) q^{35} +(1.07603 + 4.01582i) q^{37} +(1.42426 + 2.46689i) q^{39} -0.453189 q^{41} +(-3.40842 - 3.40842i) q^{43} +(-2.53059 - 0.678070i) q^{45} +(1.71468 - 2.96992i) q^{47} +(-6.82166 + 1.57002i) q^{49} +(-1.85753 - 6.93238i) q^{51} +(-1.37226 - 0.367696i) q^{53} -7.95984i q^{55} -3.66642i q^{57} +(-6.57560 - 1.76193i) q^{59} +(1.30846 + 4.88324i) q^{61} +(-1.90952 + 4.38752i) q^{63} +(1.89015 - 3.27384i) q^{65} +(6.19818 + 1.66080i) q^{67} +(-0.395441 - 0.395441i) q^{69} -6.44865 q^{71} +(7.43995 + 12.8864i) q^{73} +(0.819730 + 3.05927i) q^{75} +(-14.3778 - 2.15377i) q^{77} +(3.33780 + 1.92708i) q^{79} +(-0.151668 - 0.262697i) q^{81} +(-2.44051 - 2.44051i) q^{83} +(-6.73491 + 6.73491i) q^{85} +(-3.07824 + 1.77722i) q^{87} +(3.81344 - 6.60506i) q^{89} +(-5.40208 - 4.30001i) q^{91} +(8.00527 - 2.14500i) q^{93} +(-4.21387 + 2.43288i) q^{95} -11.2152i q^{97} +(-7.02722 + 7.02722i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 6 q^{3} - 6 q^{5} + 8 q^{7} - 2 q^{11} - 12 q^{17} + 6 q^{19} - 10 q^{21} + 12 q^{23} - 24 q^{29} - 12 q^{33} + 2 q^{35} + 6 q^{37} + 4 q^{39} + 12 q^{45} - 8 q^{49} + 34 q^{51} + 6 q^{53} - 42 q^{59}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.282507 1.05433i 0.163106 0.608719i −0.835169 0.549994i \(-0.814630\pi\)
0.998274 0.0587246i \(-0.0187034\pi\)
\(4\) 0 0
\(5\) −1.39922 + 0.374919i −0.625749 + 0.167669i −0.557740 0.830016i \(-0.688331\pi\)
−0.0680093 + 0.997685i \(0.521665\pi\)
\(6\) 0 0
\(7\) 0.298614 + 2.62885i 0.112866 + 0.993610i
\(8\) 0 0
\(9\) 1.56627 + 0.904287i 0.522090 + 0.301429i
\(10\) 0 0
\(11\) −1.42219 + 5.30770i −0.428807 + 1.60033i 0.326658 + 0.945143i \(0.394077\pi\)
−0.755465 + 0.655189i \(0.772589\pi\)
\(12\) 0 0
\(13\) −1.84531 + 1.84531i −0.511798 + 0.511798i −0.915077 0.403279i \(-0.867870\pi\)
0.403279 + 0.915077i \(0.367870\pi\)
\(14\) 0 0
\(15\) 1.58116i 0.408253i
\(16\) 0 0
\(17\) 5.69424 3.28757i 1.38106 0.797353i 0.388771 0.921334i \(-0.372900\pi\)
0.992285 + 0.123982i \(0.0395664\pi\)
\(18\) 0 0
\(19\) 3.24453 0.869370i 0.744347 0.199447i 0.133338 0.991071i \(-0.457431\pi\)
0.611009 + 0.791624i \(0.290764\pi\)
\(20\) 0 0
\(21\) 2.85604 + 0.427830i 0.623238 + 0.0933601i
\(22\) 0 0
\(23\) 0.256173 0.443704i 0.0534157 0.0925187i −0.838081 0.545546i \(-0.816322\pi\)
0.891497 + 0.453027i \(0.149656\pi\)
\(24\) 0 0
\(25\) −2.51288 + 1.45081i −0.502576 + 0.290162i
\(26\) 0 0
\(27\) 3.71137 3.71137i 0.714254 0.714254i
\(28\) 0 0
\(29\) −2.30263 2.30263i −0.427587 0.427587i 0.460219 0.887806i \(-0.347771\pi\)
−0.887806 + 0.460219i \(0.847771\pi\)
\(30\) 0 0
\(31\) 3.79637 + 6.57551i 0.681848 + 1.18100i 0.974416 + 0.224751i \(0.0721568\pi\)
−0.292568 + 0.956245i \(0.594510\pi\)
\(32\) 0 0
\(33\) 5.19429 + 2.99893i 0.904211 + 0.522046i
\(34\) 0 0
\(35\) −1.40343 3.56637i −0.237223 0.602827i
\(36\) 0 0
\(37\) 1.07603 + 4.01582i 0.176899 + 0.660196i 0.996220 + 0.0868615i \(0.0276838\pi\)
−0.819321 + 0.573334i \(0.805650\pi\)
\(38\) 0 0
\(39\) 1.42426 + 2.46689i 0.228064 + 0.395018i
\(40\) 0 0
\(41\) −0.453189 −0.0707762 −0.0353881 0.999374i \(-0.511267\pi\)
−0.0353881 + 0.999374i \(0.511267\pi\)
\(42\) 0 0
\(43\) −3.40842 3.40842i −0.519779 0.519779i 0.397726 0.917504i \(-0.369800\pi\)
−0.917504 + 0.397726i \(0.869800\pi\)
\(44\) 0 0
\(45\) −2.53059 0.678070i −0.377238 0.101081i
\(46\) 0 0
\(47\) 1.71468 2.96992i 0.250112 0.433207i −0.713444 0.700712i \(-0.752866\pi\)
0.963556 + 0.267505i \(0.0861992\pi\)
\(48\) 0 0
\(49\) −6.82166 + 1.57002i −0.974523 + 0.224289i
\(50\) 0 0
\(51\) −1.85753 6.93238i −0.260106 0.970727i
\(52\) 0 0
\(53\) −1.37226 0.367696i −0.188495 0.0505070i 0.163337 0.986570i \(-0.447774\pi\)
−0.351831 + 0.936063i \(0.614441\pi\)
\(54\) 0 0
\(55\) 7.95984i 1.07330i
\(56\) 0 0
\(57\) 3.66642i 0.485629i
\(58\) 0 0
\(59\) −6.57560 1.76193i −0.856070 0.229383i −0.196015 0.980601i \(-0.562800\pi\)
−0.660055 + 0.751218i \(0.729467\pi\)
\(60\) 0 0
\(61\) 1.30846 + 4.88324i 0.167531 + 0.625235i 0.997704 + 0.0677284i \(0.0215751\pi\)
−0.830173 + 0.557506i \(0.811758\pi\)
\(62\) 0 0
\(63\) −1.90952 + 4.38752i −0.240577 + 0.552775i
\(64\) 0 0
\(65\) 1.89015 3.27384i 0.234445 0.406070i
\(66\) 0 0
\(67\) 6.19818 + 1.66080i 0.757229 + 0.202899i 0.616722 0.787181i \(-0.288460\pi\)
0.140507 + 0.990080i \(0.455127\pi\)
\(68\) 0 0
\(69\) −0.395441 0.395441i −0.0476055 0.0476055i
\(70\) 0 0
\(71\) −6.44865 −0.765314 −0.382657 0.923890i \(-0.624991\pi\)
−0.382657 + 0.923890i \(0.624991\pi\)
\(72\) 0 0
\(73\) 7.43995 + 12.8864i 0.870780 + 1.50823i 0.861191 + 0.508281i \(0.169719\pi\)
0.00958835 + 0.999954i \(0.496948\pi\)
\(74\) 0 0
\(75\) 0.819730 + 3.05927i 0.0946543 + 0.353255i
\(76\) 0 0
\(77\) −14.3778 2.15377i −1.63850 0.245445i
\(78\) 0 0
\(79\) 3.33780 + 1.92708i 0.375532 + 0.216813i 0.675873 0.737019i \(-0.263767\pi\)
−0.300341 + 0.953832i \(0.597100\pi\)
\(80\) 0 0
\(81\) −0.151668 0.262697i −0.0168520 0.0291886i
\(82\) 0 0
\(83\) −2.44051 2.44051i −0.267881 0.267881i 0.560365 0.828246i \(-0.310661\pi\)
−0.828246 + 0.560365i \(0.810661\pi\)
\(84\) 0 0
\(85\) −6.73491 + 6.73491i −0.730503 + 0.730503i
\(86\) 0 0
\(87\) −3.07824 + 1.77722i −0.330022 + 0.190538i
\(88\) 0 0
\(89\) 3.81344 6.60506i 0.404223 0.700135i −0.590007 0.807398i \(-0.700875\pi\)
0.994231 + 0.107262i \(0.0342085\pi\)
\(90\) 0 0
\(91\) −5.40208 4.30001i −0.566292 0.450763i
\(92\) 0 0
\(93\) 8.00527 2.14500i 0.830107 0.222427i
\(94\) 0 0
\(95\) −4.21387 + 2.43288i −0.432334 + 0.249608i
\(96\) 0 0
\(97\) 11.2152i 1.13873i −0.822085 0.569365i \(-0.807189\pi\)
0.822085 0.569365i \(-0.192811\pi\)
\(98\) 0 0
\(99\) −7.02722 + 7.02722i −0.706263 + 0.706263i
\(100\) 0 0
\(101\) 5.03457 18.7893i 0.500959 1.86960i 0.00725520 0.999974i \(-0.497691\pi\)
0.493704 0.869630i \(-0.335643\pi\)
\(102\) 0 0
\(103\) −6.15035 3.55091i −0.606012 0.349881i 0.165391 0.986228i \(-0.447111\pi\)
−0.771403 + 0.636347i \(0.780445\pi\)
\(104\) 0 0
\(105\) −4.15662 + 0.472156i −0.405645 + 0.0460777i
\(106\) 0 0
\(107\) 11.5830 3.10366i 1.11977 0.300042i 0.348981 0.937130i \(-0.386528\pi\)
0.770791 + 0.637088i \(0.219861\pi\)
\(108\) 0 0
\(109\) 2.68591 10.0240i 0.257264 0.960122i −0.709553 0.704652i \(-0.751103\pi\)
0.966817 0.255470i \(-0.0822302\pi\)
\(110\) 0 0
\(111\) 4.53799 0.430727
\(112\) 0 0
\(113\) −13.4601 −1.26622 −0.633109 0.774062i \(-0.718222\pi\)
−0.633109 + 0.774062i \(0.718222\pi\)
\(114\) 0 0
\(115\) −0.192088 + 0.716883i −0.0179123 + 0.0668497i
\(116\) 0 0
\(117\) −4.55896 + 1.22157i −0.421476 + 0.112934i
\(118\) 0 0
\(119\) 10.3429 + 13.9876i 0.948132 + 1.28224i
\(120\) 0 0
\(121\) −16.6227 9.59715i −1.51116 0.872468i
\(122\) 0 0
\(123\) −0.128029 + 0.477811i −0.0115440 + 0.0430828i
\(124\) 0 0
\(125\) 8.09362 8.09362i 0.723916 0.723916i
\(126\) 0 0
\(127\) 13.7356i 1.21884i −0.792849 0.609418i \(-0.791403\pi\)
0.792849 0.609418i \(-0.208597\pi\)
\(128\) 0 0
\(129\) −4.55651 + 2.63070i −0.401178 + 0.231620i
\(130\) 0 0
\(131\) −2.81460 + 0.754169i −0.245912 + 0.0658920i −0.379670 0.925122i \(-0.623962\pi\)
0.133757 + 0.991014i \(0.457296\pi\)
\(132\) 0 0
\(133\) 3.25430 + 8.26977i 0.282184 + 0.717080i
\(134\) 0 0
\(135\) −3.80156 + 6.58449i −0.327186 + 0.566703i
\(136\) 0 0
\(137\) 6.25695 3.61245i 0.534568 0.308633i −0.208307 0.978064i \(-0.566795\pi\)
0.742874 + 0.669431i \(0.233462\pi\)
\(138\) 0 0
\(139\) −0.708981 + 0.708981i −0.0601350 + 0.0601350i −0.736535 0.676400i \(-0.763539\pi\)
0.676400 + 0.736535i \(0.263539\pi\)
\(140\) 0 0
\(141\) −2.64687 2.64687i −0.222906 0.222906i
\(142\) 0 0
\(143\) −7.16997 12.4188i −0.599583 1.03851i
\(144\) 0 0
\(145\) 4.08518 + 2.35858i 0.339255 + 0.195869i
\(146\) 0 0
\(147\) −0.271845 + 7.63583i −0.0224214 + 0.629793i
\(148\) 0 0
\(149\) 2.46397 + 9.19566i 0.201856 + 0.753338i 0.990385 + 0.138340i \(0.0441766\pi\)
−0.788529 + 0.614998i \(0.789157\pi\)
\(150\) 0 0
\(151\) −3.55073 6.15004i −0.288954 0.500483i 0.684606 0.728913i \(-0.259974\pi\)
−0.973560 + 0.228430i \(0.926641\pi\)
\(152\) 0 0
\(153\) 11.8916 0.961381
\(154\) 0 0
\(155\) −7.77723 7.77723i −0.624683 0.624683i
\(156\) 0 0
\(157\) 8.47741 + 2.27152i 0.676571 + 0.181287i 0.580713 0.814108i \(-0.302774\pi\)
0.0958582 + 0.995395i \(0.469440\pi\)
\(158\) 0 0
\(159\) −0.775348 + 1.34294i −0.0614891 + 0.106502i
\(160\) 0 0
\(161\) 1.24293 + 0.540942i 0.0979563 + 0.0426322i
\(162\) 0 0
\(163\) 3.28686 + 12.2667i 0.257447 + 0.960805i 0.966713 + 0.255864i \(0.0823600\pi\)
−0.709266 + 0.704941i \(0.750973\pi\)
\(164\) 0 0
\(165\) −8.39231 2.24871i −0.653340 0.175062i
\(166\) 0 0
\(167\) 21.5280i 1.66588i −0.553361 0.832942i \(-0.686655\pi\)
0.553361 0.832942i \(-0.313345\pi\)
\(168\) 0 0
\(169\) 6.18963i 0.476126i
\(170\) 0 0
\(171\) 5.86798 + 1.57232i 0.448736 + 0.120238i
\(172\) 0 0
\(173\) 5.18431 + 19.3481i 0.394156 + 1.47101i 0.823213 + 0.567733i \(0.192179\pi\)
−0.429057 + 0.903278i \(0.641154\pi\)
\(174\) 0 0
\(175\) −4.56434 6.17274i −0.345032 0.466615i
\(176\) 0 0
\(177\) −3.71531 + 6.43510i −0.279260 + 0.483692i
\(178\) 0 0
\(179\) 6.57967 + 1.76302i 0.491787 + 0.131774i 0.496186 0.868216i \(-0.334733\pi\)
−0.00439858 + 0.999990i \(0.501400\pi\)
\(180\) 0 0
\(181\) −6.32019 6.32019i −0.469776 0.469776i 0.432066 0.901842i \(-0.357785\pi\)
−0.901842 + 0.432066i \(0.857785\pi\)
\(182\) 0 0
\(183\) 5.51821 0.407917
\(184\) 0 0
\(185\) −3.01121 5.21558i −0.221389 0.383457i
\(186\) 0 0
\(187\) 9.35112 + 34.8989i 0.683822 + 2.55206i
\(188\) 0 0
\(189\) 10.8649 + 8.64836i 0.790305 + 0.629076i
\(190\) 0 0
\(191\) −11.5374 6.66112i −0.834817 0.481982i 0.0206820 0.999786i \(-0.493416\pi\)
−0.855499 + 0.517804i \(0.826750\pi\)
\(192\) 0 0
\(193\) 5.25772 + 9.10664i 0.378459 + 0.655511i 0.990838 0.135054i \(-0.0431207\pi\)
−0.612379 + 0.790564i \(0.709787\pi\)
\(194\) 0 0
\(195\) −2.91773 2.91773i −0.208943 0.208943i
\(196\) 0 0
\(197\) 14.0642 14.0642i 1.00203 1.00203i 0.00203129 0.999998i \(-0.499353\pi\)
0.999998 0.00203129i \(-0.000646580\pi\)
\(198\) 0 0
\(199\) 20.9503 12.0957i 1.48513 0.857439i 0.485272 0.874363i \(-0.338721\pi\)
0.999857 + 0.0169240i \(0.00538734\pi\)
\(200\) 0 0
\(201\) 3.50206 6.06575i 0.247017 0.427845i
\(202\) 0 0
\(203\) 5.36565 6.74085i 0.376595 0.473115i
\(204\) 0 0
\(205\) 0.634110 0.169909i 0.0442882 0.0118670i
\(206\) 0 0
\(207\) 0.802472 0.463307i 0.0557757 0.0322021i
\(208\) 0 0
\(209\) 18.4574i 1.27673i
\(210\) 0 0
\(211\) −8.81296 + 8.81296i −0.606709 + 0.606709i −0.942085 0.335375i \(-0.891137\pi\)
0.335375 + 0.942085i \(0.391137\pi\)
\(212\) 0 0
\(213\) −1.82179 + 6.79902i −0.124827 + 0.465861i
\(214\) 0 0
\(215\) 6.04700 + 3.49124i 0.412402 + 0.238101i
\(216\) 0 0
\(217\) −16.1523 + 11.9436i −1.09649 + 0.810785i
\(218\) 0 0
\(219\) 15.6883 4.20368i 1.06012 0.284058i
\(220\) 0 0
\(221\) −4.44106 + 16.5743i −0.298738 + 1.11490i
\(222\) 0 0
\(223\) 5.44902 0.364893 0.182447 0.983216i \(-0.441598\pi\)
0.182447 + 0.983216i \(0.441598\pi\)
\(224\) 0 0
\(225\) −5.24780 −0.349853
\(226\) 0 0
\(227\) −0.389502 + 1.45364i −0.0258521 + 0.0964815i −0.977647 0.210255i \(-0.932570\pi\)
0.951794 + 0.306737i \(0.0992371\pi\)
\(228\) 0 0
\(229\) 4.77902 1.28054i 0.315807 0.0846202i −0.0974340 0.995242i \(-0.531063\pi\)
0.413241 + 0.910622i \(0.364397\pi\)
\(230\) 0 0
\(231\) −6.33263 + 14.5505i −0.416656 + 0.957354i
\(232\) 0 0
\(233\) −10.7652 6.21528i −0.705251 0.407177i 0.104049 0.994572i \(-0.466820\pi\)
−0.809300 + 0.587395i \(0.800153\pi\)
\(234\) 0 0
\(235\) −1.28574 + 4.79843i −0.0838721 + 0.313015i
\(236\) 0 0
\(237\) 2.97474 2.97474i 0.193230 0.193230i
\(238\) 0 0
\(239\) 7.34038i 0.474810i 0.971411 + 0.237405i \(0.0762968\pi\)
−0.971411 + 0.237405i \(0.923703\pi\)
\(240\) 0 0
\(241\) −8.98405 + 5.18694i −0.578713 + 0.334120i −0.760622 0.649195i \(-0.775106\pi\)
0.181909 + 0.983315i \(0.441773\pi\)
\(242\) 0 0
\(243\) 14.8897 3.98968i 0.955173 0.255938i
\(244\) 0 0
\(245\) 8.95636 4.75438i 0.572201 0.303746i
\(246\) 0 0
\(247\) −4.38292 + 7.59144i −0.278879 + 0.483032i
\(248\) 0 0
\(249\) −3.26257 + 1.88365i −0.206757 + 0.119371i
\(250\) 0 0
\(251\) 0.401720 0.401720i 0.0253563 0.0253563i −0.694315 0.719671i \(-0.744293\pi\)
0.719671 + 0.694315i \(0.244293\pi\)
\(252\) 0 0
\(253\) 1.99072 + 1.99072i 0.125156 + 0.125156i
\(254\) 0 0
\(255\) 5.19817 + 9.00349i 0.325522 + 0.563820i
\(256\) 0 0
\(257\) 7.92211 + 4.57383i 0.494168 + 0.285308i 0.726302 0.687376i \(-0.241237\pi\)
−0.232134 + 0.972684i \(0.574571\pi\)
\(258\) 0 0
\(259\) −10.2356 + 4.02791i −0.636012 + 0.250282i
\(260\) 0 0
\(261\) −1.52430 5.68877i −0.0943519 0.352126i
\(262\) 0 0
\(263\) 2.29116 + 3.96841i 0.141279 + 0.244703i 0.927979 0.372634i \(-0.121545\pi\)
−0.786699 + 0.617336i \(0.788212\pi\)
\(264\) 0 0
\(265\) 2.05795 0.126419
\(266\) 0 0
\(267\) −5.88661 5.88661i −0.360254 0.360254i
\(268\) 0 0
\(269\) −9.22279 2.47124i −0.562323 0.150674i −0.0335497 0.999437i \(-0.510681\pi\)
−0.528773 + 0.848763i \(0.677348\pi\)
\(270\) 0 0
\(271\) −3.64178 + 6.30775i −0.221223 + 0.383169i −0.955179 0.296027i \(-0.904338\pi\)
0.733957 + 0.679196i \(0.237671\pi\)
\(272\) 0 0
\(273\) −6.05976 + 4.48080i −0.366754 + 0.271190i
\(274\) 0 0
\(275\) −4.12667 15.4009i −0.248848 0.928712i
\(276\) 0 0
\(277\) 31.2724 + 8.37942i 1.87898 + 0.503470i 0.999627 + 0.0272931i \(0.00868875\pi\)
0.879349 + 0.476177i \(0.157978\pi\)
\(278\) 0 0
\(279\) 13.7320i 0.822115i
\(280\) 0 0
\(281\) 4.09880i 0.244514i −0.992498 0.122257i \(-0.960987\pi\)
0.992498 0.122257i \(-0.0390132\pi\)
\(282\) 0 0
\(283\) −13.1954 3.53570i −0.784387 0.210176i −0.155669 0.987809i \(-0.549753\pi\)
−0.628718 + 0.777633i \(0.716420\pi\)
\(284\) 0 0
\(285\) 1.37461 + 5.13012i 0.0814249 + 0.303882i
\(286\) 0 0
\(287\) −0.135329 1.19136i −0.00798819 0.0703239i
\(288\) 0 0
\(289\) 13.1162 22.7180i 0.771543 1.33635i
\(290\) 0 0
\(291\) −11.8245 3.16838i −0.693167 0.185733i
\(292\) 0 0
\(293\) −16.6941 16.6941i −0.975280 0.975280i 0.0244213 0.999702i \(-0.492226\pi\)
−0.999702 + 0.0244213i \(0.992226\pi\)
\(294\) 0 0
\(295\) 9.86128 0.574146
\(296\) 0 0
\(297\) 14.4206 + 24.9771i 0.836766 + 1.44932i
\(298\) 0 0
\(299\) 0.346054 + 1.29149i 0.0200128 + 0.0746889i
\(300\) 0 0
\(301\) 7.94240 9.97801i 0.457792 0.575123i
\(302\) 0 0
\(303\) −18.3878 10.6162i −1.05635 0.609886i
\(304\) 0 0
\(305\) −3.66164 6.34215i −0.209665 0.363151i
\(306\) 0 0
\(307\) 16.7590 + 16.7590i 0.956484 + 0.956484i 0.999092 0.0426074i \(-0.0135665\pi\)
−0.0426074 + 0.999092i \(0.513566\pi\)
\(308\) 0 0
\(309\) −5.48135 + 5.48135i −0.311823 + 0.311823i
\(310\) 0 0
\(311\) 18.6053 10.7418i 1.05501 0.609111i 0.130963 0.991387i \(-0.458193\pi\)
0.924048 + 0.382277i \(0.124860\pi\)
\(312\) 0 0
\(313\) 10.4249 18.0565i 0.589253 1.02062i −0.405078 0.914282i \(-0.632756\pi\)
0.994331 0.106334i \(-0.0339111\pi\)
\(314\) 0 0
\(315\) 1.02687 6.85501i 0.0578576 0.386236i
\(316\) 0 0
\(317\) 14.3981 3.85795i 0.808676 0.216684i 0.169287 0.985567i \(-0.445854\pi\)
0.639390 + 0.768883i \(0.279187\pi\)
\(318\) 0 0
\(319\) 15.4964 8.94686i 0.867633 0.500928i
\(320\) 0 0
\(321\) 13.0891i 0.730565i
\(322\) 0 0
\(323\) 15.6170 15.6170i 0.868955 0.868955i
\(324\) 0 0
\(325\) 1.95985 7.31425i 0.108713 0.405722i
\(326\) 0 0
\(327\) −9.80980 5.66369i −0.542483 0.313203i
\(328\) 0 0
\(329\) 8.31948 + 3.62078i 0.458668 + 0.199620i
\(330\) 0 0
\(331\) −2.89002 + 0.774378i −0.158850 + 0.0425637i −0.337367 0.941373i \(-0.609536\pi\)
0.178518 + 0.983937i \(0.442870\pi\)
\(332\) 0 0
\(333\) −1.94609 + 7.26290i −0.106645 + 0.398005i
\(334\) 0 0
\(335\) −9.29528 −0.507855
\(336\) 0 0
\(337\) −20.5605 −1.12000 −0.560000 0.828493i \(-0.689199\pi\)
−0.560000 + 0.828493i \(0.689199\pi\)
\(338\) 0 0
\(339\) −3.80257 + 14.1914i −0.206527 + 0.770771i
\(340\) 0 0
\(341\) −40.3000 + 10.7983i −2.18237 + 0.584763i
\(342\) 0 0
\(343\) −6.16439 17.4643i −0.332846 0.942981i
\(344\) 0 0
\(345\) 0.701566 + 0.405049i 0.0377711 + 0.0218071i
\(346\) 0 0
\(347\) 1.55085 5.78787i 0.0832542 0.310709i −0.911724 0.410804i \(-0.865248\pi\)
0.994978 + 0.100095i \(0.0319147\pi\)
\(348\) 0 0
\(349\) 3.15549 3.15549i 0.168909 0.168909i −0.617590 0.786500i \(-0.711891\pi\)
0.786500 + 0.617590i \(0.211891\pi\)
\(350\) 0 0
\(351\) 13.6973i 0.731108i
\(352\) 0 0
\(353\) 6.03486 3.48423i 0.321203 0.185447i −0.330726 0.943727i \(-0.607293\pi\)
0.651929 + 0.758280i \(0.273960\pi\)
\(354\) 0 0
\(355\) 9.02307 2.41773i 0.478895 0.128320i
\(356\) 0 0
\(357\) 17.6695 6.95325i 0.935168 0.368005i
\(358\) 0 0
\(359\) −18.6187 + 32.2485i −0.982656 + 1.70201i −0.330735 + 0.943724i \(0.607297\pi\)
−0.651921 + 0.758287i \(0.726037\pi\)
\(360\) 0 0
\(361\) −6.68329 + 3.85860i −0.351752 + 0.203084i
\(362\) 0 0
\(363\) −14.8146 + 14.8146i −0.777566 + 0.777566i
\(364\) 0 0
\(365\) −15.2415 15.2415i −0.797774 0.797774i
\(366\) 0 0
\(367\) 13.0391 + 22.5844i 0.680637 + 1.17890i 0.974787 + 0.223138i \(0.0716300\pi\)
−0.294150 + 0.955759i \(0.595037\pi\)
\(368\) 0 0
\(369\) −0.709816 0.409813i −0.0369516 0.0213340i
\(370\) 0 0
\(371\) 0.556840 3.71726i 0.0289097 0.192991i
\(372\) 0 0
\(373\) 9.46676 + 35.3304i 0.490170 + 1.82934i 0.555555 + 0.831480i \(0.312506\pi\)
−0.0653850 + 0.997860i \(0.520828\pi\)
\(374\) 0 0
\(375\) −6.24686 10.8199i −0.322586 0.558736i
\(376\) 0 0
\(377\) 8.49813 0.437676
\(378\) 0 0
\(379\) 0.261074 + 0.261074i 0.0134105 + 0.0134105i 0.713780 0.700370i \(-0.246982\pi\)
−0.700370 + 0.713780i \(0.746982\pi\)
\(380\) 0 0
\(381\) −14.4819 3.88041i −0.741929 0.198799i
\(382\) 0 0
\(383\) 8.76848 15.1875i 0.448048 0.776043i −0.550211 0.835026i \(-0.685453\pi\)
0.998259 + 0.0589834i \(0.0187859\pi\)
\(384\) 0 0
\(385\) 20.9252 2.37692i 1.06645 0.121139i
\(386\) 0 0
\(387\) −2.25632 8.42070i −0.114695 0.428048i
\(388\) 0 0
\(389\) −21.5199 5.76625i −1.09110 0.292361i −0.331967 0.943291i \(-0.607712\pi\)
−0.759137 + 0.650930i \(0.774379\pi\)
\(390\) 0 0
\(391\) 3.36874i 0.170365i
\(392\) 0 0
\(393\) 3.18058i 0.160439i
\(394\) 0 0
\(395\) −5.39281 1.44500i −0.271342 0.0727058i
\(396\) 0 0
\(397\) −6.12529 22.8599i −0.307419 1.14730i −0.930843 0.365420i \(-0.880925\pi\)
0.623424 0.781884i \(-0.285741\pi\)
\(398\) 0 0
\(399\) 9.63844 1.09484i 0.482526 0.0548108i
\(400\) 0 0
\(401\) −3.87231 + 6.70703i −0.193374 + 0.334933i −0.946366 0.323096i \(-0.895276\pi\)
0.752992 + 0.658029i \(0.228610\pi\)
\(402\) 0 0
\(403\) −19.1394 5.12838i −0.953400 0.255463i
\(404\) 0 0
\(405\) 0.310707 + 0.310707i 0.0154392 + 0.0154392i
\(406\) 0 0
\(407\) −22.8451 −1.13239
\(408\) 0 0
\(409\) −15.9651 27.6524i −0.789425 1.36732i −0.926320 0.376739i \(-0.877045\pi\)
0.136894 0.990586i \(-0.456288\pi\)
\(410\) 0 0
\(411\) −2.04109 7.61745i −0.100680 0.375741i
\(412\) 0 0
\(413\) 2.66827 17.8124i 0.131297 0.876489i
\(414\) 0 0
\(415\) 4.32981 + 2.49981i 0.212542 + 0.122711i
\(416\) 0 0
\(417\) 0.547209 + 0.947793i 0.0267969 + 0.0464136i
\(418\) 0 0
\(419\) −6.96449 6.96449i −0.340238 0.340238i 0.516219 0.856457i \(-0.327339\pi\)
−0.856457 + 0.516219i \(0.827339\pi\)
\(420\) 0 0
\(421\) 6.31935 6.31935i 0.307986 0.307986i −0.536142 0.844128i \(-0.680119\pi\)
0.844128 + 0.536142i \(0.180119\pi\)
\(422\) 0 0
\(423\) 5.37132 3.10113i 0.261162 0.150782i
\(424\) 0 0
\(425\) −9.53929 + 16.5225i −0.462724 + 0.801461i
\(426\) 0 0
\(427\) −12.4466 + 4.89795i −0.602331 + 0.237028i
\(428\) 0 0
\(429\) −15.1191 + 4.05114i −0.729955 + 0.195591i
\(430\) 0 0
\(431\) −5.61569 + 3.24222i −0.270498 + 0.156172i −0.629114 0.777313i \(-0.716582\pi\)
0.358616 + 0.933485i \(0.383249\pi\)
\(432\) 0 0
\(433\) 17.1718i 0.825223i −0.910907 0.412612i \(-0.864617\pi\)
0.910907 0.412612i \(-0.135383\pi\)
\(434\) 0 0
\(435\) 3.64081 3.64081i 0.174564 0.174564i
\(436\) 0 0
\(437\) 0.445418 1.66232i 0.0213072 0.0795196i
\(438\) 0 0
\(439\) −27.1054 15.6493i −1.29367 0.746900i −0.314366 0.949302i \(-0.601792\pi\)
−0.979302 + 0.202402i \(0.935125\pi\)
\(440\) 0 0
\(441\) −12.1043 3.70966i −0.576396 0.176650i
\(442\) 0 0
\(443\) 11.7094 3.13752i 0.556330 0.149068i 0.0303104 0.999541i \(-0.490350\pi\)
0.526020 + 0.850472i \(0.323684\pi\)
\(444\) 0 0
\(445\) −2.85946 + 10.6717i −0.135552 + 0.505885i
\(446\) 0 0
\(447\) 10.3914 0.491495
\(448\) 0 0
\(449\) 33.4968 1.58081 0.790406 0.612583i \(-0.209869\pi\)
0.790406 + 0.612583i \(0.209869\pi\)
\(450\) 0 0
\(451\) 0.644522 2.40539i 0.0303494 0.113265i
\(452\) 0 0
\(453\) −7.48729 + 2.00621i −0.351783 + 0.0942601i
\(454\) 0 0
\(455\) 9.17085 + 3.99130i 0.429936 + 0.187115i
\(456\) 0 0
\(457\) −2.60908 1.50635i −0.122047 0.0704641i 0.437733 0.899105i \(-0.355781\pi\)
−0.559781 + 0.828641i \(0.689115\pi\)
\(458\) 0 0
\(459\) 8.93205 33.3349i 0.416912 1.55594i
\(460\) 0 0
\(461\) −20.6763 + 20.6763i −0.962993 + 0.962993i −0.999339 0.0363467i \(-0.988428\pi\)
0.0363467 + 0.999339i \(0.488428\pi\)
\(462\) 0 0
\(463\) 11.6775i 0.542697i 0.962481 + 0.271349i \(0.0874696\pi\)
−0.962481 + 0.271349i \(0.912530\pi\)
\(464\) 0 0
\(465\) −10.3969 + 6.00266i −0.482145 + 0.278367i
\(466\) 0 0
\(467\) −9.80739 + 2.62788i −0.453832 + 0.121604i −0.478492 0.878092i \(-0.658816\pi\)
0.0246599 + 0.999696i \(0.492150\pi\)
\(468\) 0 0
\(469\) −2.51512 + 16.7900i −0.116137 + 0.775290i
\(470\) 0 0
\(471\) 4.78986 8.29629i 0.220705 0.382273i
\(472\) 0 0
\(473\) 22.9383 13.2434i 1.05470 0.608933i
\(474\) 0 0
\(475\) −6.89183 + 6.89183i −0.316219 + 0.316219i
\(476\) 0 0
\(477\) −1.81683 1.81683i −0.0831870 0.0831870i
\(478\) 0 0
\(479\) −5.72312 9.91273i −0.261496 0.452924i 0.705144 0.709064i \(-0.250882\pi\)
−0.966640 + 0.256140i \(0.917549\pi\)
\(480\) 0 0
\(481\) −9.39606 5.42482i −0.428424 0.247350i
\(482\) 0 0
\(483\) 0.921468 1.15764i 0.0419283 0.0526743i
\(484\) 0 0
\(485\) 4.20479 + 15.6925i 0.190930 + 0.712560i
\(486\) 0 0
\(487\) −4.85037 8.40108i −0.219791 0.380689i 0.734953 0.678118i \(-0.237204\pi\)
−0.954744 + 0.297429i \(0.903871\pi\)
\(488\) 0 0
\(489\) 13.8618 0.626851
\(490\) 0 0
\(491\) 11.4667 + 11.4667i 0.517483 + 0.517483i 0.916809 0.399326i \(-0.130756\pi\)
−0.399326 + 0.916809i \(0.630756\pi\)
\(492\) 0 0
\(493\) −20.6817 5.54166i −0.931459 0.249584i
\(494\) 0 0
\(495\) 7.19798 12.4673i 0.323525 0.560362i
\(496\) 0 0
\(497\) −1.92566 16.9525i −0.0863776 0.760424i
\(498\) 0 0
\(499\) −4.93931 18.4338i −0.221114 0.825209i −0.983924 0.178586i \(-0.942848\pi\)
0.762810 0.646623i \(-0.223819\pi\)
\(500\) 0 0
\(501\) −22.6976 6.08181i −1.01405 0.271715i
\(502\) 0 0
\(503\) 22.4043i 0.998960i 0.866325 + 0.499480i \(0.166476\pi\)
−0.866325 + 0.499480i \(0.833524\pi\)
\(504\) 0 0
\(505\) 28.1779i 1.25390i
\(506\) 0 0
\(507\) 6.52593 + 1.74862i 0.289827 + 0.0776588i
\(508\) 0 0
\(509\) −3.91534 14.6122i −0.173544 0.647676i −0.996795 0.0799982i \(-0.974509\pi\)
0.823251 0.567678i \(-0.192158\pi\)
\(510\) 0 0
\(511\) −31.6546 + 23.4065i −1.40032 + 1.03544i
\(512\) 0 0
\(513\) 8.81512 15.2682i 0.389197 0.674109i
\(514\) 0 0
\(515\) 9.93698 + 2.66261i 0.437876 + 0.117328i
\(516\) 0 0
\(517\) 13.3248 + 13.3248i 0.586025 + 0.586025i
\(518\) 0 0
\(519\) 21.8639 0.959721
\(520\) 0 0
\(521\) 3.63800 + 6.30121i 0.159384 + 0.276061i 0.934647 0.355578i \(-0.115716\pi\)
−0.775263 + 0.631639i \(0.782383\pi\)
\(522\) 0 0
\(523\) −4.66897 17.4249i −0.204160 0.761936i −0.989704 0.143130i \(-0.954283\pi\)
0.785544 0.618806i \(-0.212383\pi\)
\(524\) 0 0
\(525\) −7.79758 + 3.06849i −0.340314 + 0.133920i
\(526\) 0 0
\(527\) 43.2349 + 24.9617i 1.88334 + 1.08735i
\(528\) 0 0
\(529\) 11.3688 + 19.6913i 0.494294 + 0.856141i
\(530\) 0 0
\(531\) −8.70588 8.70588i −0.377803 0.377803i
\(532\) 0 0
\(533\) 0.836275 0.836275i 0.0362231 0.0362231i
\(534\) 0 0
\(535\) −15.0435 + 8.68540i −0.650389 + 0.375502i
\(536\) 0 0
\(537\) 3.71761 6.43909i 0.160427 0.277867i
\(538\) 0 0
\(539\) 1.36852 38.4402i 0.0589463 1.65574i
\(540\) 0 0
\(541\) −2.61709 + 0.701247i −0.112518 + 0.0301490i −0.314638 0.949212i \(-0.601883\pi\)
0.202121 + 0.979361i \(0.435217\pi\)
\(542\) 0 0
\(543\) −8.44907 + 4.87808i −0.362585 + 0.209338i
\(544\) 0 0
\(545\) 15.0327i 0.643931i
\(546\) 0 0
\(547\) 20.4366 20.4366i 0.873807 0.873807i −0.119078 0.992885i \(-0.537994\pi\)
0.992885 + 0.119078i \(0.0379937\pi\)
\(548\) 0 0
\(549\) −2.36645 + 8.83170i −0.100998 + 0.376928i
\(550\) 0 0
\(551\) −9.47278 5.46911i −0.403554 0.232992i
\(552\) 0 0
\(553\) −4.06928 + 9.35002i −0.173043 + 0.397603i
\(554\) 0 0
\(555\) −6.34964 + 1.70138i −0.269527 + 0.0722196i
\(556\) 0 0
\(557\) 1.22222 4.56137i 0.0517869 0.193271i −0.935186 0.354156i \(-0.884768\pi\)
0.986973 + 0.160885i \(0.0514348\pi\)
\(558\) 0 0
\(559\) 12.5792 0.532044
\(560\) 0 0
\(561\) 39.4367 1.66502
\(562\) 0 0
\(563\) 1.89945 7.08884i 0.0800522 0.298759i −0.914279 0.405085i \(-0.867242\pi\)
0.994331 + 0.106326i \(0.0339087\pi\)
\(564\) 0 0
\(565\) 18.8336 5.04645i 0.792335 0.212306i
\(566\) 0 0
\(567\) 0.645300 0.477158i 0.0271001 0.0200387i
\(568\) 0 0
\(569\) 10.8006 + 6.23575i 0.452787 + 0.261416i 0.709006 0.705202i \(-0.249144\pi\)
−0.256220 + 0.966619i \(0.582477\pi\)
\(570\) 0 0
\(571\) −9.94080 + 37.0996i −0.416010 + 1.55257i 0.366795 + 0.930302i \(0.380455\pi\)
−0.782805 + 0.622267i \(0.786212\pi\)
\(572\) 0 0
\(573\) −10.2824 + 10.2824i −0.429555 + 0.429555i
\(574\) 0 0
\(575\) 1.48663i 0.0619969i
\(576\) 0 0
\(577\) −16.4040 + 9.47084i −0.682906 + 0.394276i −0.800949 0.598732i \(-0.795671\pi\)
0.118043 + 0.993009i \(0.462338\pi\)
\(578\) 0 0
\(579\) 11.0868 2.97069i 0.460750 0.123458i
\(580\) 0 0
\(581\) 5.68696 7.14450i 0.235935 0.296404i
\(582\) 0 0
\(583\) 3.90324 6.76062i 0.161656 0.279996i
\(584\) 0 0
\(585\) 5.92098 3.41848i 0.244803 0.141337i
\(586\) 0 0
\(587\) −7.54134 + 7.54134i −0.311264 + 0.311264i −0.845399 0.534135i \(-0.820637\pi\)
0.534135 + 0.845399i \(0.320637\pi\)
\(588\) 0 0
\(589\) 18.0340 + 18.0340i 0.743078 + 0.743078i
\(590\) 0 0
\(591\) −10.8551 18.8015i −0.446517 0.773391i
\(592\) 0 0
\(593\) −10.2804 5.93539i −0.422165 0.243737i 0.273838 0.961776i \(-0.411707\pi\)
−0.696003 + 0.718039i \(0.745040\pi\)
\(594\) 0 0
\(595\) −19.7162 15.6939i −0.808284 0.643387i
\(596\) 0 0
\(597\) −6.83423 25.5057i −0.279706 1.04388i
\(598\) 0 0
\(599\) 10.9170 + 18.9089i 0.446058 + 0.772595i 0.998125 0.0612043i \(-0.0194941\pi\)
−0.552067 + 0.833800i \(0.686161\pi\)
\(600\) 0 0
\(601\) −37.4893 −1.52922 −0.764610 0.644493i \(-0.777068\pi\)
−0.764610 + 0.644493i \(0.777068\pi\)
\(602\) 0 0
\(603\) 8.20620 + 8.20620i 0.334182 + 0.334182i
\(604\) 0 0
\(605\) 26.8570 + 7.19631i 1.09189 + 0.292572i
\(606\) 0 0
\(607\) 2.33958 4.05227i 0.0949605 0.164476i −0.814632 0.579979i \(-0.803061\pi\)
0.909592 + 0.415502i \(0.136394\pi\)
\(608\) 0 0
\(609\) −5.59125 7.56151i −0.226569 0.306408i
\(610\) 0 0
\(611\) 2.31630 + 8.64456i 0.0937075 + 0.349721i
\(612\) 0 0
\(613\) −4.89703 1.31216i −0.197789 0.0529975i 0.158564 0.987349i \(-0.449313\pi\)
−0.356354 + 0.934351i \(0.615980\pi\)
\(614\) 0 0
\(615\) 0.716563i 0.0288946i
\(616\) 0 0
\(617\) 16.4696i 0.663041i 0.943448 + 0.331520i \(0.107562\pi\)
−0.943448 + 0.331520i \(0.892438\pi\)
\(618\) 0 0
\(619\) −14.6852 3.93490i −0.590249 0.158157i −0.0486822 0.998814i \(-0.515502\pi\)
−0.541567 + 0.840657i \(0.682169\pi\)
\(620\) 0 0
\(621\) −0.696000 2.59751i −0.0279295 0.104234i
\(622\) 0 0
\(623\) 18.5024 + 8.05257i 0.741285 + 0.322619i
\(624\) 0 0
\(625\) −1.03623 + 1.79481i −0.0414493 + 0.0717922i
\(626\) 0 0
\(627\) 19.4602 + 5.21435i 0.777167 + 0.208241i
\(628\) 0 0
\(629\) 19.3295 + 19.3295i 0.770717 + 0.770717i
\(630\) 0 0
\(631\) 6.82302 0.271620 0.135810 0.990735i \(-0.456636\pi\)
0.135810 + 0.990735i \(0.456636\pi\)
\(632\) 0 0
\(633\) 6.80206 + 11.7815i 0.270357 + 0.468273i
\(634\) 0 0
\(635\) 5.14974 + 19.2191i 0.204361 + 0.762686i
\(636\) 0 0
\(637\) 9.69092 15.4853i 0.383968 0.613549i
\(638\) 0 0
\(639\) −10.1003 5.83143i −0.399563 0.230688i
\(640\) 0 0
\(641\) −16.5379 28.6446i −0.653210 1.13139i −0.982339 0.187108i \(-0.940089\pi\)
0.329130 0.944285i \(-0.393245\pi\)
\(642\) 0 0
\(643\) 14.7445 + 14.7445i 0.581464 + 0.581464i 0.935306 0.353841i \(-0.115125\pi\)
−0.353841 + 0.935306i \(0.615125\pi\)
\(644\) 0 0
\(645\) 5.38925 5.38925i 0.212201 0.212201i
\(646\) 0 0
\(647\) −9.62533 + 5.55719i −0.378411 + 0.218476i −0.677127 0.735867i \(-0.736775\pi\)
0.298716 + 0.954342i \(0.403442\pi\)
\(648\) 0 0
\(649\) 18.7035 32.3955i 0.734178 1.27163i
\(650\) 0 0
\(651\) 8.02937 + 20.4041i 0.314696 + 0.799699i
\(652\) 0 0
\(653\) 16.2451 4.35285i 0.635718 0.170340i 0.0734551 0.997299i \(-0.476597\pi\)
0.562263 + 0.826958i \(0.309931\pi\)
\(654\) 0 0
\(655\) 3.65548 2.11049i 0.142831 0.0824638i
\(656\) 0 0
\(657\) 26.9114i 1.04991i
\(658\) 0 0
\(659\) −32.5839 + 32.5839i −1.26929 + 1.26929i −0.322834 + 0.946455i \(0.604636\pi\)
−0.946455 + 0.322834i \(0.895364\pi\)
\(660\) 0 0
\(661\) 4.53812 16.9365i 0.176512 0.658753i −0.819777 0.572683i \(-0.805903\pi\)
0.996289 0.0860697i \(-0.0274308\pi\)
\(662\) 0 0
\(663\) 16.2201 + 9.36470i 0.629938 + 0.363695i
\(664\) 0 0
\(665\) −7.65398 10.3511i −0.296809 0.401399i
\(666\) 0 0
\(667\) −1.61155 + 0.431815i −0.0623996 + 0.0167199i
\(668\) 0 0
\(669\) 1.53939 5.74507i 0.0595162 0.222117i
\(670\) 0 0
\(671\) −27.7796 −1.07242
\(672\) 0 0
\(673\) 11.0728 0.426827 0.213413 0.976962i \(-0.431542\pi\)
0.213413 + 0.976962i \(0.431542\pi\)
\(674\) 0 0
\(675\) −3.94173 + 14.7107i −0.151717 + 0.566217i
\(676\) 0 0
\(677\) 5.69655 1.52639i 0.218936 0.0586638i −0.147684 0.989035i \(-0.547182\pi\)
0.366620 + 0.930371i \(0.380515\pi\)
\(678\) 0 0
\(679\) 29.4830 3.34902i 1.13145 0.128523i
\(680\) 0 0
\(681\) 1.42258 + 0.821328i 0.0545135 + 0.0314734i
\(682\) 0 0
\(683\) 0.824476 3.07699i 0.0315477 0.117738i −0.948356 0.317207i \(-0.897255\pi\)
0.979904 + 0.199469i \(0.0639218\pi\)
\(684\) 0 0
\(685\) −7.40047 + 7.40047i −0.282757 + 0.282757i
\(686\) 0 0
\(687\) 5.40044i 0.206040i
\(688\) 0 0
\(689\) 3.21077 1.85374i 0.122321 0.0706218i
\(690\) 0 0
\(691\) 20.4319 5.47470i 0.777265 0.208267i 0.151686 0.988429i \(-0.451530\pi\)
0.625578 + 0.780161i \(0.284863\pi\)
\(692\) 0 0
\(693\) −20.5719 16.3751i −0.781462 0.622037i
\(694\) 0 0
\(695\) 0.726208 1.25783i 0.0275466 0.0477122i
\(696\) 0 0
\(697\) −2.58056 + 1.48989i −0.0977458 + 0.0564336i
\(698\) 0 0
\(699\) −9.59422 + 9.59422i −0.362887 + 0.362887i
\(700\) 0 0
\(701\) 19.0687 + 19.0687i 0.720214 + 0.720214i 0.968649 0.248435i \(-0.0799162\pi\)
−0.248435 + 0.968649i \(0.579916\pi\)
\(702\) 0 0
\(703\) 6.98246 + 12.0940i 0.263348 + 0.456133i
\(704\) 0 0
\(705\) 4.69591 + 2.71118i 0.176858 + 0.102109i
\(706\) 0 0
\(707\) 50.8975 + 7.62437i 1.91420 + 0.286744i
\(708\) 0 0
\(709\) −9.03837 33.7317i −0.339443 1.26682i −0.898971 0.438008i \(-0.855684\pi\)
0.559528 0.828812i \(-0.310982\pi\)
\(710\) 0 0
\(711\) 3.48527 + 6.03666i 0.130708 + 0.226392i
\(712\) 0 0
\(713\) 3.89011 0.145686
\(714\) 0 0
\(715\) 14.6884 + 14.6884i 0.549315 + 0.549315i
\(716\) 0 0
\(717\) 7.73920 + 2.07371i 0.289026 + 0.0774442i
\(718\) 0 0
\(719\) −25.7551 + 44.6092i −0.960505 + 1.66364i −0.239268 + 0.970953i \(0.576908\pi\)
−0.721236 + 0.692689i \(0.756426\pi\)
\(720\) 0 0
\(721\) 7.49820 17.2287i 0.279248 0.641629i
\(722\) 0 0
\(723\) 2.93070 + 10.9375i 0.108994 + 0.406771i
\(724\) 0 0
\(725\) 9.12690 + 2.44555i 0.338965 + 0.0908253i
\(726\) 0 0
\(727\) 10.3415i 0.383546i 0.981439 + 0.191773i \(0.0614237\pi\)
−0.981439 + 0.191773i \(0.938576\pi\)
\(728\) 0 0
\(729\) 17.7358i 0.656881i
\(730\) 0 0
\(731\) −30.6138 8.20293i −1.13229 0.303396i
\(732\) 0 0
\(733\) 5.21156 + 19.4498i 0.192493 + 0.718395i 0.992901 + 0.118940i \(0.0379495\pi\)
−0.800408 + 0.599455i \(0.795384\pi\)
\(734\) 0 0
\(735\) −2.48245 10.7861i −0.0915666 0.397852i
\(736\) 0 0
\(737\) −17.6300 + 30.5361i −0.649411 + 1.12481i
\(738\) 0 0
\(739\) −29.5182 7.90938i −1.08584 0.290951i −0.328856 0.944380i \(-0.606663\pi\)
−0.756988 + 0.653429i \(0.773330\pi\)
\(740\) 0 0
\(741\) 6.76569 + 6.76569i 0.248544 + 0.248544i
\(742\) 0 0
\(743\) 36.5659 1.34147 0.670735 0.741697i \(-0.265979\pi\)
0.670735 + 0.741697i \(0.265979\pi\)
\(744\) 0 0
\(745\) −6.89526 11.9429i −0.252623 0.437556i
\(746\) 0 0
\(747\) −1.61558 6.02943i −0.0591110 0.220605i
\(748\) 0 0
\(749\) 11.6179 + 29.5232i 0.424509 + 1.07875i
\(750\) 0 0
\(751\) −30.5955 17.6643i −1.11644 0.644580i −0.175954 0.984398i \(-0.556301\pi\)
−0.940491 + 0.339819i \(0.889634\pi\)
\(752\) 0 0
\(753\) −0.310057 0.537034i −0.0112991 0.0195706i
\(754\) 0 0
\(755\) 7.27401 + 7.27401i 0.264728 + 0.264728i
\(756\) 0 0
\(757\) −1.06021 + 1.06021i −0.0385339 + 0.0385339i −0.726111 0.687577i \(-0.758674\pi\)
0.687577 + 0.726111i \(0.258674\pi\)
\(758\) 0 0
\(759\) 2.66127 1.53649i 0.0965981 0.0557709i
\(760\) 0 0
\(761\) −15.2003 + 26.3277i −0.551010 + 0.954378i 0.447192 + 0.894438i \(0.352424\pi\)
−0.998202 + 0.0599396i \(0.980909\pi\)
\(762\) 0 0
\(763\) 27.1535 + 4.06755i 0.983023 + 0.147255i
\(764\) 0 0
\(765\) −16.6390 + 4.45840i −0.601584 + 0.161194i
\(766\) 0 0
\(767\) 15.3853 8.88274i 0.555533 0.320737i
\(768\) 0 0
\(769\) 38.0523i 1.37220i 0.727507 + 0.686101i \(0.240679\pi\)
−0.727507 + 0.686101i \(0.759321\pi\)
\(770\) 0 0
\(771\) 7.06039 7.06039i 0.254274 0.254274i
\(772\) 0 0
\(773\) −4.02680 + 15.0282i −0.144834 + 0.540528i 0.854929 + 0.518746i \(0.173601\pi\)
−0.999763 + 0.0217825i \(0.993066\pi\)
\(774\) 0 0
\(775\) −19.0796 11.0156i −0.685361 0.395693i
\(776\) 0 0
\(777\) 1.35511 + 11.9297i 0.0486142 + 0.427975i
\(778\) 0 0
\(779\) −1.47039 + 0.393989i −0.0526820 + 0.0141161i
\(780\) 0 0
\(781\) 9.17123 34.2275i 0.328172 1.22476i
\(782\) 0 0
\(783\) −17.0918 −0.610812
\(784\) 0 0
\(785\) −12.7134 −0.453760
\(786\) 0 0
\(787\) −4.32518 + 16.1418i −0.154176 + 0.575393i 0.844998 + 0.534769i \(0.179601\pi\)
−0.999175 + 0.0406241i \(0.987065\pi\)
\(788\) 0 0
\(789\) 4.83129 1.29454i 0.171998 0.0460868i
\(790\) 0 0
\(791\) −4.01937 35.3845i −0.142912 1.25813i
\(792\) 0 0
\(793\) −11.4256 6.59659i −0.405736 0.234252i
\(794\) 0 0
\(795\) 0.581386 2.16976i 0.0206196 0.0769535i
\(796\) 0 0
\(797\) −6.46029 + 6.46029i −0.228835 + 0.228835i −0.812206 0.583371i \(-0.801733\pi\)
0.583371 + 0.812206i \(0.301733\pi\)
\(798\) 0 0
\(799\) 22.5486i 0.797710i
\(800\) 0 0
\(801\) 11.9457 6.89688i 0.422082 0.243689i
\(802\) 0 0
\(803\) −78.9780 + 21.1621i −2.78707 + 0.746794i
\(804\) 0 0
\(805\) −1.94194 0.290899i −0.0684442 0.0102528i
\(806\) 0 0
\(807\) −5.21101 + 9.02573i −0.183436 + 0.317721i
\(808\) 0 0
\(809\) −24.9554 + 14.4080i −0.877386 + 0.506559i −0.869796 0.493412i \(-0.835750\pi\)
−0.00759061 + 0.999971i \(0.502416\pi\)
\(810\) 0 0
\(811\) 32.3761 32.3761i 1.13688 1.13688i 0.147873 0.989006i \(-0.452757\pi\)
0.989006 0.147873i \(-0.0472427\pi\)
\(812\) 0 0
\(813\) 5.62163 + 5.62163i 0.197159 + 0.197159i
\(814\) 0 0
\(815\) −9.19808 15.9315i −0.322195 0.558058i
\(816\) 0 0
\(817\) −14.0219 8.09555i −0.490564 0.283227i
\(818\) 0 0
\(819\) −4.57268 11.6200i −0.159782 0.406036i
\(820\) 0 0
\(821\) 7.00094 + 26.1279i 0.244334 + 0.911869i 0.973717 + 0.227762i \(0.0731409\pi\)
−0.729382 + 0.684106i \(0.760192\pi\)
\(822\) 0 0
\(823\) 12.1699 + 21.0790i 0.424218 + 0.734767i 0.996347 0.0853968i \(-0.0272158\pi\)
−0.572129 + 0.820163i \(0.693882\pi\)
\(824\) 0 0
\(825\) −17.4035 −0.605913
\(826\) 0 0
\(827\) 31.7583 + 31.7583i 1.10435 + 1.10435i 0.993880 + 0.110466i \(0.0352344\pi\)
0.110466 + 0.993880i \(0.464766\pi\)
\(828\) 0 0
\(829\) 39.6910 + 10.6352i 1.37853 + 0.369375i 0.870586 0.492017i \(-0.163740\pi\)
0.507941 + 0.861392i \(0.330407\pi\)
\(830\) 0 0
\(831\) 17.6694 30.6042i 0.612944 1.06165i
\(832\) 0 0
\(833\) −33.6826 + 31.3668i −1.16703 + 1.08679i
\(834\) 0 0
\(835\) 8.07125 + 30.1223i 0.279317 + 1.04243i
\(836\) 0 0
\(837\) 38.4939 + 10.3144i 1.33054 + 0.356518i
\(838\) 0 0
\(839\) 12.4384i 0.429423i 0.976678 + 0.214711i \(0.0688811\pi\)
−0.976678 + 0.214711i \(0.931119\pi\)
\(840\) 0 0
\(841\) 18.3958i 0.634339i
\(842\) 0 0
\(843\) −4.32149 1.15794i −0.148840 0.0398816i
\(844\) 0 0
\(845\) −2.32061 8.66065i −0.0798316 0.297935i
\(846\) 0 0
\(847\) 20.2656 46.5645i 0.696335 1.59997i
\(848\) 0 0
\(849\) −7.45561 + 12.9135i −0.255876 + 0.443190i
\(850\) 0 0
\(851\) 2.05748 + 0.551301i 0.0705297 + 0.0188984i
\(852\) 0 0
\(853\) −11.8456 11.8456i −0.405585 0.405585i 0.474611 0.880196i \(-0.342589\pi\)
−0.880196 + 0.474611i \(0.842589\pi\)
\(854\) 0 0
\(855\) −8.80008 −0.300956
\(856\) 0 0
\(857\) 7.54656 + 13.0710i 0.257786 + 0.446498i 0.965648 0.259852i \(-0.0836738\pi\)
−0.707863 + 0.706350i \(0.750340\pi\)
\(858\) 0 0
\(859\) −11.8045 44.0551i −0.402765 1.50314i −0.808141 0.588990i \(-0.799526\pi\)
0.405375 0.914150i \(-0.367141\pi\)
\(860\) 0 0
\(861\) −1.29432 0.193888i −0.0441104 0.00660767i
\(862\) 0 0
\(863\) 23.4497 + 13.5387i 0.798237 + 0.460862i 0.842854 0.538142i \(-0.180874\pi\)
−0.0446175 + 0.999004i \(0.514207\pi\)
\(864\) 0 0
\(865\) −14.5080 25.1285i −0.493286 0.854396i
\(866\) 0 0
\(867\) −20.2469 20.2469i −0.687619 0.687619i
\(868\) 0 0
\(869\) −14.9754 + 14.9754i −0.508004 + 0.508004i
\(870\) 0 0
\(871\) −14.5023 + 8.37290i −0.491391 + 0.283705i
\(872\) 0 0
\(873\) 10.1418 17.5660i 0.343246 0.594520i
\(874\) 0 0
\(875\) 23.6938 + 18.8600i 0.800995 + 0.637585i
\(876\) 0 0
\(877\) −8.80425 + 2.35909i −0.297298 + 0.0796609i −0.404385 0.914589i \(-0.632514\pi\)
0.107087 + 0.994250i \(0.465848\pi\)
\(878\) 0 0
\(879\) −22.3173 + 12.8849i −0.752745 + 0.434598i
\(880\) 0 0
\(881\) 0.723819i 0.0243861i −0.999926 0.0121930i \(-0.996119\pi\)
0.999926 0.0121930i \(-0.00388126\pi\)
\(882\) 0 0
\(883\) 21.2381 21.2381i 0.714718 0.714718i −0.252800 0.967518i \(-0.581352\pi\)
0.967518 + 0.252800i \(0.0813516\pi\)
\(884\) 0 0
\(885\) 2.78588 10.3971i 0.0936464 0.349493i
\(886\) 0 0
\(887\) −17.5247 10.1179i −0.588422 0.339726i 0.176051 0.984381i \(-0.443668\pi\)
−0.764473 + 0.644655i \(0.777001\pi\)
\(888\) 0 0
\(889\) 36.1088 4.10164i 1.21105 0.137565i
\(890\) 0 0
\(891\) 1.61002 0.431403i 0.0539377 0.0144526i
\(892\) 0 0
\(893\) 2.98139 11.1267i 0.0997683 0.372340i
\(894\) 0 0
\(895\) −9.86738 −0.329830
\(896\) 0 0
\(897\) 1.45942 0.0487288
\(898\) 0 0
\(899\) 6.39931 23.8825i 0.213429 0.796528i
\(900\) 0 0
\(901\) −9.02281 + 2.41766i −0.300594 + 0.0805438i
\(902\) 0 0
\(903\) −8.27634 11.1928i −0.275419 0.372473i
\(904\) 0 0
\(905\) 11.2129 + 6.47376i 0.372729 + 0.215195i
\(906\) 0 0
\(907\) −3.46515 + 12.9321i −0.115058 + 0.429404i −0.999291 0.0376423i \(-0.988015\pi\)
0.884233 + 0.467046i \(0.154682\pi\)
\(908\) 0 0
\(909\) 24.8764 24.8764i 0.825099 0.825099i
\(910\) 0 0
\(911\) 34.5549i 1.14485i −0.819955 0.572427i \(-0.806002\pi\)
0.819955 0.572427i \(-0.193998\pi\)
\(912\) 0 0
\(913\) 16.4244 9.48262i 0.543568 0.313829i
\(914\) 0 0
\(915\) −7.72117 + 2.06888i −0.255254 + 0.0683951i
\(916\) 0 0
\(917\) −2.82307 7.17393i −0.0932260 0.236904i
\(918\) 0 0
\(919\) 26.7589 46.3478i 0.882695 1.52887i 0.0343626 0.999409i \(-0.489060\pi\)
0.848333 0.529464i \(-0.177607\pi\)
\(920\) 0 0
\(921\) 22.4040 12.9350i 0.738238 0.426222i
\(922\) 0 0
\(923\) 11.8998 11.8998i 0.391686 0.391686i
\(924\) 0 0
\(925\) −8.53014 8.53014i −0.280469 0.280469i
\(926\) 0 0
\(927\) −6.42208 11.1234i −0.210929 0.365339i
\(928\) 0 0
\(929\) −0.0427340 0.0246725i −0.00140206 0.000809477i 0.499299 0.866430i \(-0.333591\pi\)
−0.500701 + 0.865620i \(0.666924\pi\)
\(930\) 0 0
\(931\) −20.7682 + 11.0245i −0.680649 + 0.361314i
\(932\) 0 0
\(933\) −6.06927 22.6508i −0.198699 0.741554i
\(934\) 0 0
\(935\) −26.1685 45.3252i −0.855802 1.48229i
\(936\) 0 0
\(937\) −0.977039 −0.0319185 −0.0159592 0.999873i \(-0.505080\pi\)
−0.0159592 + 0.999873i \(0.505080\pi\)
\(938\) 0 0
\(939\) −16.0925 16.0925i −0.525157 0.525157i
\(940\) 0 0
\(941\) −37.6344 10.0841i −1.22685 0.328733i −0.413496 0.910506i \(-0.635693\pi\)
−0.813351 + 0.581773i \(0.802359\pi\)
\(942\) 0 0
\(943\) −0.116095 + 0.201082i −0.00378056 + 0.00654812i
\(944\) 0 0
\(945\) −18.4448 8.02748i −0.600010 0.261134i
\(946\) 0 0
\(947\) 5.93312 + 22.1427i 0.192801 + 0.719541i 0.992825 + 0.119574i \(0.0381530\pi\)
−0.800025 + 0.599967i \(0.795180\pi\)
\(948\) 0 0
\(949\) −37.5084 10.0504i −1.21757 0.326248i
\(950\) 0 0
\(951\) 16.2702i 0.527599i
\(952\) 0 0
\(953\) 34.2308i 1.10884i −0.832235 0.554422i \(-0.812939\pi\)
0.832235 0.554422i \(-0.187061\pi\)
\(954\) 0 0
\(955\) 18.6407 + 4.99477i 0.603200 + 0.161627i
\(956\) 0 0
\(957\) −5.05511 18.8659i −0.163408 0.609849i
\(958\) 0 0
\(959\) 11.3650 + 15.3698i 0.366995 + 0.496318i
\(960\) 0 0
\(961\) −13.3248 + 23.0793i −0.429834 + 0.744494i
\(962\) 0 0
\(963\) 20.9487 + 5.61320i 0.675064 + 0.180883i
\(964\) 0 0
\(965\) −10.7710 10.7710i −0.346729 0.346729i
\(966\) 0 0
\(967\) −21.2761 −0.684193 −0.342096 0.939665i \(-0.611137\pi\)
−0.342096 + 0.939665i \(0.611137\pi\)
\(968\) 0 0
\(969\) −12.0536 20.8775i −0.387218 0.670680i
\(970\) 0 0
\(971\) −7.74616 28.9091i −0.248586 0.927736i −0.971547 0.236847i \(-0.923886\pi\)
0.722961 0.690889i \(-0.242781\pi\)
\(972\) 0 0
\(973\) −2.07551 1.65209i −0.0665379 0.0529635i
\(974\) 0 0
\(975\) −7.15798 4.13266i −0.229239 0.132351i
\(976\) 0 0
\(977\) 1.50722 + 2.61058i 0.0482201 + 0.0835197i 0.889128 0.457659i \(-0.151312\pi\)
−0.840908 + 0.541178i \(0.817978\pi\)
\(978\) 0 0
\(979\) 29.6342 + 29.6342i 0.947115 + 0.947115i
\(980\) 0 0
\(981\) 13.2714 13.2714i 0.423724 0.423724i
\(982\) 0 0
\(983\) −35.2886 + 20.3739i −1.12553 + 0.649826i −0.942807 0.333339i \(-0.891825\pi\)
−0.182724 + 0.983164i \(0.558491\pi\)
\(984\) 0 0
\(985\) −14.4059 + 24.9517i −0.459010 + 0.795029i
\(986\) 0 0
\(987\) 6.16781 7.74860i 0.196324 0.246641i
\(988\) 0 0
\(989\) −2.38547 + 0.639186i −0.0758536 + 0.0203249i
\(990\) 0 0
\(991\) 21.1944 12.2366i 0.673262 0.388708i −0.124049 0.992276i \(-0.539588\pi\)
0.797312 + 0.603568i \(0.206255\pi\)
\(992\) 0 0
\(993\) 3.26581i 0.103637i
\(994\) 0 0
\(995\) −24.7792 + 24.7792i −0.785552 + 0.785552i
\(996\) 0 0
\(997\) −11.1506 + 41.6146i −0.353143 + 1.31795i 0.529662 + 0.848209i \(0.322319\pi\)
−0.882805 + 0.469740i \(0.844348\pi\)
\(998\) 0 0
\(999\) 18.8978 + 10.9106i 0.597899 + 0.345197i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.z.a.47.10 56
4.3 odd 2 112.2.v.a.19.12 yes 56
7.3 odd 6 inner 448.2.z.a.367.10 56
8.3 odd 2 896.2.z.b.607.10 56
8.5 even 2 896.2.z.a.607.5 56
16.3 odd 4 896.2.z.a.159.5 56
16.5 even 4 112.2.v.a.75.3 yes 56
16.11 odd 4 inner 448.2.z.a.271.10 56
16.13 even 4 896.2.z.b.159.10 56
28.3 even 6 112.2.v.a.3.3 56
28.11 odd 6 784.2.w.f.227.3 56
28.19 even 6 784.2.j.a.195.14 56
28.23 odd 6 784.2.j.a.195.13 56
28.27 even 2 784.2.w.f.19.12 56
56.3 even 6 896.2.z.b.479.10 56
56.45 odd 6 896.2.z.a.479.5 56
112.3 even 12 896.2.z.a.31.5 56
112.5 odd 12 784.2.j.a.587.13 56
112.37 even 12 784.2.j.a.587.14 56
112.45 odd 12 896.2.z.b.31.10 56
112.53 even 12 784.2.w.f.619.12 56
112.59 even 12 inner 448.2.z.a.143.10 56
112.69 odd 4 784.2.w.f.411.3 56
112.101 odd 12 112.2.v.a.59.12 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.3 56 28.3 even 6
112.2.v.a.19.12 yes 56 4.3 odd 2
112.2.v.a.59.12 yes 56 112.101 odd 12
112.2.v.a.75.3 yes 56 16.5 even 4
448.2.z.a.47.10 56 1.1 even 1 trivial
448.2.z.a.143.10 56 112.59 even 12 inner
448.2.z.a.271.10 56 16.11 odd 4 inner
448.2.z.a.367.10 56 7.3 odd 6 inner
784.2.j.a.195.13 56 28.23 odd 6
784.2.j.a.195.14 56 28.19 even 6
784.2.j.a.587.13 56 112.5 odd 12
784.2.j.a.587.14 56 112.37 even 12
784.2.w.f.19.12 56 28.27 even 2
784.2.w.f.227.3 56 28.11 odd 6
784.2.w.f.411.3 56 112.69 odd 4
784.2.w.f.619.12 56 112.53 even 12
896.2.z.a.31.5 56 112.3 even 12
896.2.z.a.159.5 56 16.3 odd 4
896.2.z.a.479.5 56 56.45 odd 6
896.2.z.a.607.5 56 8.5 even 2
896.2.z.b.31.10 56 112.45 odd 12
896.2.z.b.159.10 56 16.13 even 4
896.2.z.b.479.10 56 56.3 even 6
896.2.z.b.607.10 56 8.3 odd 2